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The prevailing view of the formation of porphyry copper deposits along

convergent plate boundaries involves deep crustal differentiation of
metal-bearing juvenile magmas derived from the mantle wedge above a
subduction zone. However, many major porphyry districts formed during
periods of flat-slab subduction when the mantle wedge would have been
reduced or absent, leaving the source of the ore-forming magmas unclear.
Here we use geochronology and thermobarometry to investigate deep
crustal processes during the genesis of the Late Cretaceous-Palaeocene
Laramide Porphyry Province in Arizona, which formed during flat-slab
subduction of the Farallon Plate beneath North America. We show that

the isotopic signatures of Laramide granitic rocks are consistent with a
Proterozoic crustal source that was potentially pre-enriched in copper.
This source underwent water-fluxed melting between 73 and 60 Ma,
coincident with the peak of granitic magmatism (78-50 Ma), porphyry
genesis (73-56 Ma) and flat-slab subduction (70-40 Ma). To explain the
formation of the Laramide Porphyry Province, we propose that volatiles
derived from the leading edge of the Farallon flat slab promoted melting of
both mafic and felsic pre-enriched lower crust, without requiring extensive
magmatic or metallogenic input from the mantle wedge. Other convergent
plate boundaries with flat-slab regimes may undergo a similar mechanism of
volatile-mediated lower-crustal melting.

Flat-slab subduction (slab dip <15°; Fig. 1b) currently occurs at -10% of
convergent plate boundaries' and can result from the burial of young,
warm, buoyant oceanic lithosphere', or when the rate of slab advance
is greater than the rate of slab rollback in a fixed mantle reference
frame?. This geodynamic scenario has been linked to major periods
of orogenesis™*~, inland migration and subsequent cessation of arc
magmatism’*~7, changes in upper-plate thermal structure®®, and the
formation of some of the largest porphyry copper deposits (PCDs) on
Earth (for example, Rio Blanco-Los Bronces, and La Escondida, Chile,

andResolution, Arizona, USA)” 2. However, despite the potential impor-
tance of flat-slab regimes to supply the copper and associated metals
(for example, Auand Mo) required to meet global net-zero emissions
goals, their role in ore formation is poorly understood.

Traditional PCD models assume the ore-forming magmas derive
fromjuvenile basaltic melts formed from metasomatism of the mantle
wedge above a steeply dipping subducting slab”™" (Fig. 1a). Magma
differentiation depth proxies (high Sr/Y, La/Yb and (Eu/Eu*)/Yb ratios)
suggest PCD formation is favoured in thickened continental crust
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Fig. 1| Contrasting models for the formation of PCDs along convergent plate
boundaries. a, ‘Standard’ steep-slab subduction with magmatic arcand PCDs
sourced from mantle-wedge-derived melts™. b, Flat-slab subduction analogous
to subduction of the Farallon plate during the Laramide orogeny. Here forced

flow into the mantle wedge is cut off, and volatiles derived from the slab
(H,0, CO,, Cland S) pass straight into the base of the crust, triggering water-
fluxed crustal anatexis, granitic magmatism and, potentially, PCD formation.
Bt, biotite; Hb, hornblende; Ms, muscovite; Grt, garnet. Data fromref. 14.

within mature compressional arcs''>", which often correlate with

flat-slab regimes"". Such deeply differentiated magmas are inter-
preted to contain high concentrations of volatiles (H,0, CO,, ClandS),
whichare criticalin controlling the ultimate enrichment of copper’® ™.
However, during flat-slab subduction, the mantle wedge is reduced, if
notabsent, meaning that substantial mantle melting cannot occur'*’
(Fig. 1b), and leaving it unclear from where the ore-forming magmas
were derived.

The-~80-40 Myr-old Laramide orogeny, western North America®*®,
represents aunique opportunity toaddress this paradox as it was asso-
ciated with crustal thickening and magmatism that reached >2,000 km
inland>*¢ and formed the world’s second largest PCD province®'*".
The most prominent model to explain the Laramide orogeny involves
flat-slab subduction of the Farallon plate®***'®?! in response to the
subduction of two oceanic plateaus (Shatsky at ~90 million years ago
(Ma) (refs. 19,20) and Hess at ~75-70 Ma (refs. 21,22)) in combina-
tion with westward movement of North America*”. An alternative
model involves the oblique collision of offshore terranes® based on
palaeomagnetic evidence that accreted terranes moved thousands
of kilometres northwards between ~85 and 55 Ma. In this Article, we
integrate geochemical and isotopic data of Laramide granitic rocks
with petrological and geochronological constraints from deep crus-
tal exposures, which provide critical insights into the roles of crus-
tal anatexis and flat-slab subduction in the genesis of the Laramide
Porphyry Province.

Laramide flat-slab subduction and crustal
anatexis

The Laramide Orogen in Arizona is characterized by (1) contem-
poraneous biotite + hornblende-bearing and muscovite + gar-
net + magnetite-bearing granitic intrusions spanning ~78-50 Ma
(refs. 9,16,23-25); (2) PCDs that formed between ~73 and 56 Ma
(refs. 9,16,17,23-26; Supplementary Table 1); and (3) contractional
structures active between ~80 and 56 Ma (refs.23,26-29). All these fea-
tures are concentrated in anorthwest-southeast trending belt along
the southern margin of the relatively undeformed Colorado Plateau
(the Colorado Plateau Transition Zone, CPTZ; Fig. 2b)'*'"*, Within the
CPTZ, most PCDs (for example, Ray, Resolution and Morenci; Fig. 2b)
areassociated with biotite + hornblende-bearing intrusions®*” with
elevated whole-rock Sr/Y, La/Yb and (Eu/Eu*)/Yb ratios®'®" typical of
‘fertile’ PCD-related magmas® (Supplementary Table 2). These mag-
mas are traditionally described as mantle-derived melts that have had

considerable crustal input®*~**; however, we question this interpreta-
tion for the following reasons.

A compilation of geochronology data across the western United
States (Supplementary Table 1) reveals that Laramide volcanism ter-
minated ~-2-5 million years before PCD formation, suggesting the
ore-formingintrusions developed during adistinct phase of plutonism
inavolcanically inactive arc segment following the relaxation of con-
tractional deformation®*?, Laramide intrusions are weakly to strongly
peraluminous (aluminium saturation index = 1.00-1.15), highly sili-
ceous (Si0, > 60-65%) and have low maficity (molar Mg + Fe <0.1),
whichoverlaps with the compositional range of experimentally derived
lower-crustal melts® (Extended Data Fig. 1). Furthermore, several pro-
spective PCDs (for example, Diamond Joe and Texas Canyon; Fig. 2b)
are associated with muscovite + garnet-bearing granites, which also
display elevated fertility indices (Extended Data Fig. 1 and Supple-
mentary Table 2) and are derived from crustal sources judging from
theirisotopic signatures*~’; thisimplies that crustal anatexis may be
important for regional metallogeny.

Insights into the geodynamic setting and sources of Laramide
granitic magmas canbe gleaned from whole-rock Sr-Nd-Pb data**-*
and Hf-in-zirconisotopes®* (Fig.3). A compilation of igneous rocks
younger than 140 Ma across the southwest United States and north-
west Mexico (Fig.3aand Supplementary Table 3) shows (1) decreasing
eNd(¢) (where eNd(t) represents the eNd value for the rock, calculated
attime (¢),i.e.thecrystallization age) between 110 and 75 Ma, reflecting
a progressively diminishing contribution of mantle-wedge-derived
magma; (2) negative (that is, unradiogenic) eNd(t) during the Lara-
mide orogeny (75-40 Ma) that overlaps with Proterozoic basement
values, consistent with a substantial magma component deriving
from such crustal sources; and (3) increasing eNd(¢) after 40 Ma,
suggesting anincreasing contribution of juvenile magma associated
with renewed asthenospheric melting following Farallon slab rollback
or foundering’®.

InArizona, Laramideintrusions (-78-50 Ma) fit this isotopic frame-
work, withunradiogenic Nd signatures (biotite + hornblende-bearing
granites: eNd(¢) = -0.2 to -13.5; muscovite + garnet-bearing granites:
eNd(t) =-3.0to -18.4; Fig. 3b—d) and >1billion years ago (Ga) two-stage
Nd and Pb model ages that imply a crustal origin (Fig. 3c and Supple-
mentary Table 3). These data overlap with the known Proterozoic base-
ment (eNd(70 Ma) =1.6to-21.2), particularly the -1.1 Ga diabase dykes
(Fig. 3b), and CPTZ garnet-clinopyroxene xenoliths, which contain
copper-bearing sulfides®. The origin of these xenoliths is unclear, but
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Fig. 2| Summary maps showing locations and ages of PCDs in the Western
and Arizona. a, Tectonic setting of PCDs in the western United States. INB, Id.
Batholith; SNB, Sierra Nevada Batholith; SCB, Southern California Batholith;

PRB, Peninsular Range Batholith. Data fromrefs. 3,17,23,26,47,51,52. b, Locations

of biotite + hornblende-bearing and muscovite + garnet-bearing granites,

USA
aho

(thrust faults, high- and low-angle normal faults and monoclines) and line of
projection X-X’ (Fig. 6a). PCDs are represented by circles scaled according to
their relative economic value (see Supplementary Table 1for acompilation of all
data). Data fromref. 23. Bt, biotite; Hb, hornblende; Ms, muscovite, Grt, garnet;
Cpx, clinopyroxene.

metamorphic rocks, Proterozoic basement granitoids, key structural features

they equilibrated at pressures and temperatures (P-T) 0of1.0-2.8

and 600-850 °C (ref. 40),at~150 Ma and -75 Ma (U-Pb zircon)****° and
containsecondary amphibole, indicating they have been subsequently

GPa hydrated. It is possible they are cumulates from juvenile mantle-
derived magmas, due to similarity with Sierra Nevada cumulates®~*,

However, Nd, Pb, Re-Os and Hf-in-zircon mantle extraction ages of
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a, A compilation of Nd isotopes from igneous rocks formed between 140 Ma

and present day highlighting the influence of Farallon flat-slab subduction
between -80 and 40 Ma on magma petrogenesis. Range of calculated basement
eNd(¢) over this period representing younger (-1.1 Ga) mafic lithologies such

as the diabase dykes, garnet-clinopyroxene xenoliths and amphibolites with
unradiogenic values representing felsic older (-1.4-2.0 Ga) lithologies, including
the Proterozoic granites and Pinal Schist. b, Whole-rock Sr-Nd isotopes for
biotite + hornblende and muscovite + garnet-bearing granites, PCDs, and
basement lithologies. Negative eNd(¢) suggests all granitoids have unradiogenic
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signatures and overlap with the ~1.1 Ga diabase dykes, CPTZ xenoliths and
Proterozoic basement. They are notably distinct from the juvenile mantle-
wedge-derived magmas. ¥Sr/*¢Sr(i) represents the calculated initial ¥Sr/*¢Sr
ratio for the rock at time of crystallization. ¢, Whole-rock two-stage Sm-Nd
model age probability density plot for Laramide biotite + hornblende-bearing
granites, muscovite + garnet-bearing granites, xenoliths, basement and zircon
inheritance. d, Hf-in-zircon isotopes from granitic rocks in the southwest

United States and northwest Mexico, biotite + hornblende-bearing granites,
muscovite + garnet-bearing granites, and CPTZ garnet-clinopyroxene xenoliths
have overlapping unradiogenic isotopic signatures. Data compiled from sources
inSupplementary Table 3.

~2.1-0.5 Ga (refs. 39,43-45) suggest they represent Proterozoic lower
crust”* (Fig.3d). Laramide intrusions also show extensive zircon age
inheritance (Fig.3c), withU-Pbdates of-1.1,1.4,1.6-1.7,2.0and 2.6 Ga
(refs.24,46), which overlap with the source crustal residence ages from

Ndisotopes. The younger dates correlate with Yavapai-Mazatzal oro-
genesisat~1.7-1.6 Ga (ref.47), Granite-Rhyolite Province magmatism at
~1.4 Gaand the Southwest Laurentialarge igneous province responsible
for ~1.1 Ga (ref. 48) diabase dykes.
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Fig. 4 | Pressure-temperature-time evolution of Laramide-age metamorphic
rocks and migmatites from the Harcuvar and Granite Wash mountains
incentral Arizona. Shaded coloured polygons represent constraints from
petrological modelling to 1o, which considers approximate analytical
uncertainties in composition of phases derived from electron probe micro-
analysis, bulk-rock composition estimates, and thermodynamic model
uncertainties; shaded coloured ellipses represent average P-T calculation results
with 2o uncertainties; and green data points represent garnet-aluminium-
silicate-plagioclase and garnet-biotite thermobarometry results with error
bars showing 2o uncertainties. Calculated temperature from titanium-in-biotite
thermometry isin the light grey shaded domain, and the estimated 450-550 °C
Rb-Sr closure temperature range® is in the darker grey domain. U-Th-Pb
monazite ages arein red text and Rb-Sr ages in blue text. Observed assemblage
for TLAZ22-08isin the dark grey polygon. Peak metamorphic conditions of
0.75+0.06 GPaand 780 + 36 °C for sample TLAZ22-08 and 0.36 + 0.13 GPaand
503 + 36 °C for sample TLAZ22-167 define a geothermal gradient of ~28 °C km™
between -73 and 60 Ma. Garnet outer rim compositions and retrograde biotite
constrain cooling of sample TLAZ22-08 from 750 °C to 600 °C at 0.65-0.75 GPa.
Pl, plagioclase feldspar; Kfs, potassium feldspar; [lm, ilmenite; Sill, sillimanite;
Qz, quatz; Mt, magnetite; Liq, melt.

Additional constraints can be inferred from exposures of the Oro-
copia-Pelonaschists at Cemetery Ridge and in the Plomosa Mountains,
which are subduction-complex rocks related to the Farallon plate* ™"
(Fig. 2b). Detrital zircon analysis suggests these rocks were depos-
ited at the trench at-73-70 Ma (refs. 49-51) and underwent prograde
metamorphic zircon growth from-~70-65 Ma until ~40 Ma (refs. 49-51)
under P-Tconditions of 0.8-1.3 GPaand 660 °C. This subduction zone
metamorphism temporally and spatially overlaps with the zenith of
Laramide magmatism (and PCD formation) and suggests that the
leading edge of the Farallon flat slab was transported >500 km directly
beneath North America (Fig. 1b). Lawsonite-bearing eclogite xenoliths
located ~1,000 km from the trench further indicate that the Farallon
flat slab was located at ~-120 km depth between ~80 and 30 Ma and
removed ~-80 km thickness of sub-continental cratonic lithospheric
mantle beneath the Colorado Plateau®>>,

These diverse observations suggest that the mantle wedge beneath
the CPTZ was largely eliminated during the genesis of the Laramide Por-
phyry Province. Isotope mixing calculations (Methods and Extended
Data Fig. 2) support this hypothesis, revealing that >70-90% of melt
in Laramide granitic magmas was derived from both mafic and felsic
Proterozoic crustal sources. From a metallogenic standpoint, ref. 16
suggested that this Proterozoic crust may have sourced the copper
in the Arizona PCDs because it contains Proterozoic volcanogenic

massive sulfide deposits (for example, Jerome; Fig. 2b) and the more
recently recognized ~1.7 Ga Squaw Peak PCD**. Also noteworthy is the
higher concentration of PCDs within the Mazatzal Terrane compared
with the Yavapaiand Mojave Terranes and the abundance of Cu-bearing
sulfides in the garnet-clinopyroxene xenoliths, which contain up to
~1,000 ppm Cu (ref. 39).

Critical insights into the timing and conditions of crustal anatexis
can be gleaned from exposures of high-grade metamorphic rocks in
the Harcuvar, Harquahala and Granite Wash mountains metamorphic
core complexes®™’ (Fig. 2b and Extended Data Fig. 3), which represent
the CPTZ mid-lower crust. These rocks provide direct evidence of
anatectic processes responsible for the formation of Laramide intru-
sions and PCDs exposed at higher crustal levels. See Supplementary
Tables 4-7 for full results.

Timing and conditions of metamorphism and
anatexis

At high structural levels in the Granite Wash Mountains, the Hercules
thrust—amajor south-southwest-verging Laramide-age contractional
structure—preserves syn-kinematic P- T conditions of 0.36 + 0.13 GPa
and 502 + 36 °C (Fig. 4; TLAZ22-167) in the mylonitized footwall meta-
sedimentary rocks, indicating contractional deformation was syn-
chronous with regional metamorphism. Metamorphic gradeincreases
with structural depth beneath the Hercules thrust, with exposures of
kyanite-sillimanite-bearing schists, migmatites and amphibolites
in the Harcuvar Mountains (Figs. 4 and 5). Textures indicate partial
melting, including quartzo-feldspathic leucosomes and biotite-rich
melanosomes. Leucosomes have diffuse boundaries, trondhjemitic
compositions, contain copper and silver oxides, and are complexly
folded (Fig. 5¢). This suggests that melting occurred during contrac-
tional deformation and can be traced from high-melt-fraction domains
to garnet-biotite-muscovite leucogranites (for example, Tank Pass
and Browns Canyon granites; Extended Data Figs. 3 and 4).

A sample of garnet-sillimanite migmatite (TLAZ22-08) records
P-Tconditionsof 0.75+ 0.06 GPaand 780 + 36 °C (-28 km depth; Fig. 4).
Thelack of primary muscovite is consistent with conditions surpassing
muscovite breakdown above the solidus®*®' (Extended Data Figs. 4-6).
However, the low volumetric proportions of peritectic K-feldspar
(<3%) and sillimanite (1.8%) relative to leucosome (former melt; 35%)
differ from those expected from vapour-absent muscovite dehydra-
tion melting®® (normally in a ratio 8/5/10). This requires anatexis to
have occurred with 2.4-3.5 wt% H,0 (Extended Data Figs. 6 and 7),
whichis considerably greater than the observed mineralogically bound
water determined by combining volumetric phase proportions and
chemical compositions (1.2 wt% H,0). Therefore,1.0-2.2 wt% H,0 was
added to the rock during anatexis. Cooling of this sample occurred
through conditions of 0.65-0.75 GPa and 600-750 °C (Fig. 4 and
Extended Data Fig. 6).

The U-Th-Pb monazite petrochronology suggests anatexis
occurred at ~73-60 Ma (Fig. 5 and Extended Data Fig. 8), coincident
with migmatite-related leucogranite crystallization at ~78-54 Ma
(refs. 56,58,62-64). Older and younger monazite populations record
pre-Laramide Sevier orogenesis at ~145 Ma and post-Laramide
shearing during Basin and Range extension at ~20-15 Ma. It is also
possible that monazite growth and reprecipitation continued from
~60 to 40 Ma, indicated by the younger tail in the ~73-60 Ma popula-
tion. The Rb-Sr geochronologies of three samples provide overlap-
ping to younger dates of -72-45 Ma (Extended Data Fig. 9). Given the
~450-550 °C closure temperature® of the Rb-Sr system is far below
the peak metamorphic temperatures, this suggests that anatexis must
have been equivalent to, or older than, these dates. An -72 Ma date
of syn-kinematic mica + plagioclase in the Hercules thrust mylonite
constrains the timing of contraction at lower amphibolite-facies
conditions. Two further samples yield younger dates of -26-20 Ma,

overlapping with previous thermochronology from the region® 3,
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field evidence. a, Upper crustal fold-thrust belt and PCDs (for example, Superior/
Globe-Miami/San Pedro Valley). b, Upper-mid crustal muscovite + garnet-
bearing granites and low-grade metamorphic rocks (for example Santa Catalina
Mountains). ¢, Mid-lower crustal high-grade metamorphic rocks and migmatites
(for example, Harcuvar and Harquahala mountains) Ky, kyanite; Sill, sillimanite.
d, Lower-crustal garnet-clinopyroxene xenoliths (for example, Chino Valley).
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interface of the Farallon plate (for example, minor serpentinized peridotites
and Orocopia Schists (mostly pelagic metasediment) at Cemetery Ridge).

Right: probability density function plots showing a strong correlation between
Laramide orogenesis and anatexis, the zenith of granitic magmatism and
porphyry genesis, and metamorphism of the subducted Farallon slab. f, Zircon
U-Pb and molybdenite Re-Os ages from igneous rocks associated with PCDs
(Supplementary Table1). g, U-Pb zircon and K-Ar ages of biotite + hornblende-
bearing and muscovite + garnet-bearing granites and volcanics (Supplementary
Table1). h, Metamorphic U-Th-Pb monazite ages from the Harcuvar Mountains
(this study) and U-Pb ages from the Orocopia Schist at Cemetery Ridge, Plomosa
Mountains**~' and garnet-clinopyroxene xenoliths®.

suggesting these samples experienced (1) delayed cooling compared
with higher structural levels; (2) reheating during Basin and Range
extension; and/or (3) isotopic resetting during deformation-induced
recrystallization.

Implications for Laramide tectonics

Peak metamorphic conditions of 0.75 GPa and 780 °C at ~73-60 Ma
suggestacrustal overburden of -28 km and an average geothermal gra-
dientof-28 °C km™ (Fig. 4). The implications are that (1) supra-solidus
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crustal anatexis, Orocopia Schist (ORS) metamorphism and muscovite + garnet
magmatism projected onto a northwest-southeast striking line (X-X’; Fig. 2b)
along the CPTZ withaswath of 400 km. Error bars representing 2o age
uncertainties are less than the size of each data point. Dashed bars represent the
inferred duration of contractional deformation or metamorphism based

on nearby cross-cutting relations and structural constraints (Supplementary
Table1). b, Pre-Laramide orogenesis (-90-75 Ma) is associated with steep
subduction and arc magmatism/ volcanism in western Arizona and California.
¢, Peak Laramide orogenesis (-75-55 Ma) flat-slab subduction shuts off the mantle
wedge, resulting in the termination of arc volcanism and increased end-loading
causing crustal thickening and anatexis. Geological features: (1) Orocopia
Schist (Farallon Plate) 0.8-1.3 GPaand 660 °C, -70-65 Ma; (2) Hercules thrust

v Ms + Grt granite/magma
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(top south-southwest), ~-85-71 Ma; (3) Harcuvar and Harquahala mountains
migmatites 0.75 GPaand 750-780 °C, -73-60 Ma; (4) Tank Pass and Browns
Canyon muscovite + garnet-bearing granites (cuts Hercules thrust), ~79-70 Ma;
(5) northwest Arizona PCDs, ~73-68 Ma (Bagdad, Mineral Park, Diamond Joe,
Copper Basin, Crown King); (6) Coyote Mountains Pan-Tak muscovite + garnet-
bearing granite, ~58 Ma, which intruded syn-Baboquivari thrusting (top east-
northeast); (7) southeast Arizona PCDs, ~72-56 Ma (for example, Ray, Resolution,
Globe-Miami, San Manuel, Copper Creek, Sierra Rita, Texas Canyon, Morenci
and Safford); (8) Galiuro Mountains thrusts (top east-northeast), ~73-60 Ma; (9)
Santa Catalina Mountains Wilderness and Pinalefio muscovite + garnet-bearing
granites, ~58-50 Ma; (10) 'Maricopa thrust’ syn-Wilderness granites (top west-
southwest), ~58-50 Ma; (11) water-saturated melting of ~1.7-1.1 Ga mafic lower-
crustal source between -75 and 55 Ma; (12) CPTZ garnet-clinopyroxene xenoliths,
~150 Ma and 75 Ma. Positions (i), (i) and (iii) represent particle positions on the
subducting Farallon slab. SCLM, subcontinental lithospheric mantle.

temperatures occurred at depths >25 km during peak Laramide oro-
genesis, and (2) the crust reached a minimum thickness of ~50-60 km,
based on the addition of the ~28 km overburden to the present-day
local Moho depth of ~25-30 km (ref. 69). This thickness is consistent
with estimates derived from Sr/Y and La/Yb ratios of Laramide granitic
rocks’ and indicates the crust was thinned by a factor of two during
subsequent Basin and Range extension. Notably, our findings argue
against the traditional premise that Laramide shortening did not result
in considerable crustal thickening in Arizona>*”.

The timing of water-fluxed crustal anatexis was coincident with
the formation of major PCDs (for example, Bagdad at -72 Ma (ref. 71),
Rayat-72-68 Ma (ref. 24) and Resolution at ~64 Ma (ref. 24); Figs.2and
5), the end of contractional deformation (Hercules thrusting at~72 Ma;
Supplementary Table 1) and, most importantly, the onset of flat-slab
subductionbeneath the CPTZ, evidenced by the isotopic signature of
Laramide magmatism (Fig. 3a) and the timing of prograde metamor-
phism on the Farallon plate (-70-40 Ma (refs. 49-51); Figs. 5 and 6).
Integration of these constraints with the potential pre-enrichment of
copper in the Proterozoic basement®*** supports the hypothesis that

the Laramide Porphyry Province was produced by water-fluxed crustal
anatexis during flat-slab subduction.

Along the CPTZ, the timings of contractional deformation (-80-
56 Ma), anatexis (-73-60 Ma) and PCD genesis (-73-56 Ma) are also
transient at any given location and young towards the southeast at a
rate of -26.5 km Myr ™! (Fig. 6a). We propose that all these phenomena
are controlled by acommon geodynamic mechanism. Flat-slab subduc-
tion would cause a diachronous thermal evolution of the North Ameri-
can crust®”>due to the interplay between competing mechanisms: (1)
increased tractions or end-loading, leading to crustal thickening and
heating with characteristic timescales >10 Myr (ref. 73); (2) shear heat-
ingalong the plate interface (the Moho) given the rapid (<100 mm yr™*
(refs. 18,19)) convergence rate; (3) cooling due to underthrusting of
the Farallon plate®’?; (4) remnant mantle-wedge heat flow; (5) heat
flow from earlier Sevier-related metamorphism (occurring at ~145 Ma).
Giventhese constraints, itis likely that thermal climax and water-fluxed
crustal anatexis occurred at a geodynamic ‘sweet spot’ immediately
abovetheleading edge of the Farallon flat slab asit eroded the cratonic
lithosphere (Fig. 6).
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At this sweet spot, elevated crustal temperatures would have
prevailed due to the proximity to the laterally displaced convecting
mantle wedge, in combination with thickened CPTZ crust’. Volatiles
released fromthe dehydrating flat slab could also pass across the Moho,
facilitating melting of Proterozoic lower crust. This crustal hydration/
melting process possibly triggered rheological weakening™, causing
the locus of contractional deformation to migrate further eastwards
in front of the leading edge of the flat slab>**. However, on timescales
>15 Myr, continual underthrusting of the flat slab cooled the North
American crust®”?, as suggested by our -45-20 MaRb-Sr ages. This may
explain the systematic spatial-temporal mineralization relationships
involving (1) pre-mineralization volcanism, contraction and barrengra-
nitic magmatism related to steep subduction that did not sufficiently
hydrate the crust, before slab flattening (inboard from the sweet spot),
(2) syn-mineralization granitic magmatism and water-fluxed crustal
anatexis coinciding with the end of contraction duringslab flattening
(at the sweet spot), and (3) post-mineralization ore-barren musco-
vite + garnet-bearing magmatism, tectonic quiescence and cooling
due to continued underthrusting of the Farallon plate after the sweet
spot had passed (Fig. 6).

Slab flattening beneath Arizona canbe correlated with subduction
of the conjugate Hess oceanic plateau at ~75-70 Ma (refs. 19-21) as it
can explain prograde metamorphism of the Orocopia-Pelona Schist
(-70-65 Ma (refs. 49-51)), water-fluxed anatexis (-73-60 Ma) and the
shutdown of arc magmatism in Southern California at -70 Ma (ref. 21)
(Extended DataFig.10). Furthermore, if the conjugate Hess was orien-
tated obliquely (north-northeast-south-southwest) with respect tothe
trench (north-northwest-south-southeast) and convergence vector
(northeast), it would intersect the subduction zone at progressively
younger times towards the south, causing a diachronous onset of slab
flattening and therefore driving the sweet spot southeastwards along
the CPTZ (Fig. 6a and Extended Data Fig. 10). Other models including
the collision of offshore terranes?, or subduction of the conjugate
Shatsky'® (whichwould have been further northeastin Colorado by -75-
70 Ma (refs. 19-21)), have difficulty explaining all these phenomena.

Crustal anatexis drove metallogenesis

We propose that biotite + hornblende-bearing granitic PCD-related
magmas derived from water-fluxed anatexis of mafic (amphibolitic or
garnet-pyroxenite) lower-crustal protoliths extracted from the mantle
between-1.7 and 1.1 Ga (Fig. 3c). Dehydration melting is not a plausible
mechanism becauseitis associated with high solidus temperatures and
produces low-volume, relatively dry (<2 wt% H,0)***"”>’® metaluminous
magma that is unlikely to form extensive magmatic-hydrothermal
systems in the shallow crust. However, we argue that during flat-slab
subduction, volatiles migrated across the Moho causing water-fluxed
anatexis at depths >25 km. Water-saturated melting of similar mafic
lithologies at such depths produces (1) water-rich melt (>8 wt% H,0)*”,
(2) larger melt fractions (>50% volume melt)**”, (3) peraluminous
magma enriched inNa and Al and relatively depleted in Fe, Mg, Tiand
K**7777 (4) an increase in amphibole stability as a restitic phase and
preferential consumption of plagioclase during anatexis®**"”>””7, and (5)
magmaenrichedinSrand depleted in Ba®.. Such crustal-derived melts
would have ‘adakite-like’ chemistries characterized by elevated Sr/Y,
La/Yb and (Eu/Eu*)/Yb ratios™**”*”°, as observed in many Laramide
intrusions”*”, Furthermore, we argue that the melt source is equivalent
to that of the CPTZ sulfide- and Cu-rich® garnet-clinopyroxene xeno-
liths because these rocks have mantle extraction ages of ~2.1-0.5 Ga
(refs.43-45) and U-Pb zircon dates of 75 Ma and 150 Ma (refs. 39-41),
which overlap with our Laramide and Sevier metamorphic monazite
dates (Fig.5). Thisimplies that metals were recycled from precursor arc
cumulates in the lower crust or remnant Proterozoic sub-continental
lithosphere®® due to the addition of water. By contrast, we infer the
muscovite + garnet + magnetite-bearing granites were derived from
melting of ~1.7-1.4 Ga granitic basement. Water-fluxed anatexis of this

source would form oxidized, volatile-rich and peraluminous magma®°
withelevated fertility indices (Sr/Y and (Eu/Eu*)/Yb)” due to consump-
tion of plagioclase during anatexis®. Subsequent rollback or foundering
ofaflatslab canalso explain post-orogenic PCDs as this would increase
asthenospheric heat flow®, facilitating melting of the lower crust and
sub-continental lithospheric mantle that had been hydrated during
previous flat-slab subduction.

We conclude that flat-slab subduction was fundamental to the for-
mation of the Laramide Porphyry Province as it allowed volatiles to flux
directlyinto alower crust pre-enriched in metals, driving anatexis that
led to the formation of ore-forming magmas. It is possible that other
convergent plate boundaries with flat-slab regimes underwent a similar
mechanism of volatile-mediated lower-crustal anatexis'’. Our model
may explain the correlation between flat-slab subduction and PCD
genesis in the southwest United States, central Andes and southeast
China, which collectively host >30% of the world’s known Cu reserves".
We therefore propose flat-slab settings to be favourable exploration
targets to meet the ever-increasing global demand for copper.
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Methods

Electron probe micro-analysis

The compositions of phases in samples TLAZ22-08 and TLAZ22-167
were derived from electron probe micro-analysis (EPMA) performed on
aCAMECA SX100 electronmicroprobein the School of Earth Sciences,
University of Bristol. Operating conditions involved an accelerating
voltage of 15.0 keV corresponding to a current of 20 nA, a range of
primary standards were used, including andradite (Fe, Mg, Ca), TiO,
(Ti), Mn metal (Mn), labradorite (Na, Al, Si) and sanidine (K) for major
elements, and secondary standards include diopside, KK1, SPH Lab-
radorite, RN18 and FDLAL. Garnet line profiles were collected using
a 75 um step size across all garnets from sample TLAZ22-08 corre-
sponding to between 25 and 30 analyses per porphyroblast. Garnets
show minor zoning in major elements, with homogeneous cores and
resorbed rims (Extended DataFig. 5 and Supplementary Information).
Pyrope [XMg] displays aflat profile across the garnet core and mantle,
but then shows convex downtrends (0.18-0.13) from the inner to the
outer rim, grossular [XCa] remains either homogeneous or increases
slightly from the core towards the outer rim (0.05-0.07), whereas
almandine [XFe] remains homogeneous before decreasing towards
the outer rim (0.73-0.71). However, spessartine [XMn] ishomogeneous
or concaves upwards (0.05-0.08) from core to outer rim, indicative
of garnet resorption. It is also possible that the increase in grossu-
lar and decrease in pyrope at the rim is due to diffusion because of
resorption of garnet by biotite. These garnet profiles suggest garnet
growth zoning has been modified by diffusion®, and therefore only
peak metamorphic conditions are preserved in the garnet core and
inner rim, whereas garnet outer rims record retrograde net transfer
reactions®’. Mineral abbreviations follow the guidelines of ref. 83.
Anhydrous phase compositions were calculated to standard numbers
of oxygen per formula unit®, micas were recalculated to 11 oxygens,
and chlorite to 28 oxygens. Where present, H,O content was assumed
to occurinstoichiometricamounts. The proportion of Fe*'/Fe ., was
calculated using AX®. The complete EPMA database is presented in
Supplementary Table 4.

Thermobarometry and petrological modelling

Several thermobarometric approaches were employed to constrain
the P-T conditions of metamorphism, including the Ti-in-biotite
thermometer®, the garnet-biotite thermometer?, the garnet-alumi-
nosilicate-plagioclase-quartz barometer®>*®, the garnet-muscovite-
plagioclase barometer, and average P-T (ref. 88) using THERMOCALC
version TC-3.50i with characteristicend membersjudged tobein tex-
tural equilibriumfor each sample. The complete results are presented
inSupplementary Table 5.

Phase diagram construction was performed using THERMOCALC
version TC-350i*° and Theriak Domino?® and the internally consistent
thermodynamic dataset ds62°'. Migmatite sample TLAZ22-08 was
modelled in the 11-component system MnO-Na,0-Ca0-K,0-FeO-
MgO-Al,0;-Si0,-H,0-TiO,-0. The a-x relations for solid-solution
phases were used: clinopyroxene (diopside-omphacite-jadeite) and
clinoamphibole (glaucophane-actinolite-hornblende)?*; garnet,
biotite, muscovite-paragonite, and chlorite, epidote, ilmenite®;
plagioclase feldspar® and melt”. Pure phases comprised talc, law-
sonite, kyanite, sillimanite, andalusite, zoisite, quartz, coesite and
rutile. The effective bulk compositions for sample TLAZ22-08 were
calculated using mineral proportions derived by point counted analy-
ses of an entire thin section usingJ-MicroVision and representative
EPMA-derived phase compositions following the method of ref. 96.
Details on the determination of the bulk-rock composition used to
perform phase equilibrium modelling are showninthe Supplementary
Information. Uncertainties related to the absolute positions of assem-
blage field boundaries calculated phase diagrams have been shown to
belessthan +0.1 GPaand +50 °C at the 20 (95% confidence) level®”, with
this variation being largely a function of propagated uncertainty on

endmember thermodynamic properties within the dataset. However,
because phase diagrams were calculated using the same dataset and
a-xrelations, it has also been shown that similar absolute errors associ-
ated with dataset endmembers cancel, and calculated phase equilibria
arerelatively accurate towithin £0.02 GPaand £10-15 °C (refs. 91,97).

The P-T conditions of peak metamorphism were determined by
investigating compositional isopleths for pyrope and grossular con-
tentingarnet.Since theseisopleths varytofirstorder with changesin
pressure and temperature and commonly intersect at high angles, they
specify uniqueintersection points with a high degree of confidence for
tracking garnet composition evolution in P-Tspace. The intersections
ofisopleths representing measured compositions are represented by
shaded polygonsindicating uncertainties at the 1o level calculated by
THERMOCALC/Theriak Domino. The results were verified by compar-
ing mineral volumetrically determined mineral proportions by point
counting usingJ-MicroVision and intersection of garnet compositional
isopleths with those predicted by the petrological model. The results
arein good agreement with conventional thermobarometry. In melt-
ing calculations, the bulk-rock supra-solidus water content of sam-
ple TLAZ22-08 was varied. In a closed system scenario, the bulk-rock
supra-solidus water content was fixed to allow minimal water saturation
atthewetsolidus, here defined as ~1 mol% free H,0. It was determined
7 mol%H,O represents fluid saturation at the wet solidus. Bulk-rock H,0
contentwas estimated at4.5 mol% (1.2 wt%), determined by combining
point counted volume estimates of hydrous phases and average phase
compositions determined by EPMA (Supplementary Information).
Temperature-X(H,0) calculations were performed to test the effect
of an open system to simulate water-fluxed melting (Extended Data
Figs. 6 and 7 and Supplementary Information).

To investigate the effect of water-fluxed melting, bulk-rock H,0
content was varied between 0.25 wt% H,0 and 6 wt% H,0 at 0.75 GPa.
An H,O content of <1.2 wt% represents a closed system with water
derived fromhydrous phasesinthe rocks such as biotite and muscovite,
whereas >1.2 wt% H,O represents an open system and fluxing water
from an external source. Phase diagrams demonstrate that above the
water-saturated solidus, the addition of water does not drastically
change the muscovite dehydration melting reaction, and therefore
at peak conditions, anatexis progressed by incongruent breakdown
of muscovite and plagioclase. Intersection of mineral volume isop-
leths was used to constrain the likely range of water contents during
melting, and the loss of k-feldspar from the predicted assemblage
defines the maximum possible amount of water during which anatexis
occurred. It was determined that the observed assemblage equili-
brated at supra-solidus conditions with a bulk-rock water content of
~3.0-3.2 wt% H,0. The predicted major element melt compositions,
aluminiumsaturationindex, volumes of restitic phases, melt and mag-
matic water content are presented in Extended Data Fig.7 and plotted
compared with average Laramide granites. This was calculated using
anin-house Matlab script that utilizes the pixelmap output function of
Theriak Domino. The full results are presented in the Supplementary
Informationand Supplementary Table 5and discussed inthe main text.

Sr-Nd isotopes and Sm-Nd model ages

The ¥Sr/%Sr and "**Nd/**Nd measurements were compiled from the
literature for Arizona Laramide biotite + hornblende and musco-
vite + garnet-bearing granitoids, PCDs, Laramide volcanics, xenoliths
and basement. Initial Sr and Nd isotope ratios were calculated using
the available U-Pb magmatic ages or K-Ar ages and decay constants
of1.393 x 107" for ¥Sr (ref. 98) and 6.524 x 107 for *’Sm (ref. 99). Ini-
tial Sr isotope values are quoted as ¥Sr/*¢Sr;, and Nd isotope values
are quoted as eNd,,, using the CHUR values of ref. 100. Two-stage Nd
model ages were calculated using *’Sm/**Nd of 0.09 and 0.12, that of
average-evolved and less-evolved continental crust'”, respectively,
and a depleted mantle with a modern-day **Nd/**Nd of 0.51315 and
¥7Sm/™Nd of 0.2135'°%. Two-component Sr-Nd mixing calculations

Nature Geoscience


http://www.nature.com/naturegeoscience

Article

https://doi.org/10.1038/s41561-024-01575-2

were performed between a depleted mantle source and a nominal
crustal source. The latter was varied to reflect a mixture of crustal
rocks by using the average felsic crust and mafic crust from Arizona. A
spectrum of 20 different crustal combinations was used, representing
5% sequential additions of mafic and felsic crust. The resultant calcu-
lated mixtures between depleted mantle and ‘mixed’ crust that were
deemed successful plotted within the 95% confidence ellipse for the
biotite + hornblende-bearing granites (Extended Data Fig.2), and the
successful results were plotted as acumulative density plot to show the
statistical likelihood of the relative importance of crustal and mantle
sources. Theresults are compiled with source references in Supplemen-
tary Table 3 and the Supplementary Information and strongly suggest
thatthe PCD datacanbe explained by various combinations of different
(crustal) source components. Although we cannot entirely rule out a
juvenile mantle-derived componentin the formation of the Laramide
intrusions, itis likely this component is relatively small.

Rb-Sr geochronology

Theanalytical procedure for insitu Rb-Sr datingis extremely similar to
thatdescribedinref.103.Samples were analysed usinga193 nm Photon
Machines excimer laser equipped with ARIS' (aerosol rapid introduc-
tionsystem). Laser operating conditions, which were standardized for
dating, were a 110 pm laser spot diameter, which was ablated using a
repetition rate of 10 Hz, and a fluence of 7) cm™ for 600 laser pulses.
These spots were positioned to target identified phases of interest,
which include feldspar and mica that were exposed on polished sur-
faces of cutbillets. This laser ablation system was coupled with Proteus,
acollision-cell multicollector inductively coupled plasmatandem mass
spectrometer housed at the University of Bristol. To provide chemical
resolution of Rb* and Sr* during analysis'®*, a reaction gas mixture
consisting of 5% SF, (99.99% purity) in He (99.9999%) was used. The
flow rates for the He and SF; collision-cell gases were 2 ml min™ and
0.025 ml min™, respectively. During analysis, the SrF isotopologues
(®SrF*, ¥SrF* and ®8SrF*) and atomic *Rb* and %Sr* were collected for
eachspot. The measurement of fluorinated and monoatomicion spe-
cieswas achieved by adjusting the centre mass of the sector magnetic
field of Proteus during analysis. The position of the Faraday cup col-
lectors, integration and idle times were identical to those specified
in ref. 103. However, in this method, 10 Q resistors were used in the
collection of ¥SrF* and 5°SrF* ions to improve signal/noise ratio dur-
ing collection, and thus improve ¥SrF/5¢SrF precision for smallion
beam sizes'” %, The remaining isotopes, *SrF*, ¥8Sr* and %Rb*, were
collected in Faraday cups that were matched with 10" Q resistors. To
correct for the slower response time of the 10” Q resistors, relative
to 10" Qresistors, a conventional tau correction method was used'*®.
Mean radiogenic Sr isotope ratio ¥Sr/%Sr for each spot analysis was
calculated using the measured ¥SrF*/%SrF* and %SrF*/%¢SrF* to correct
fornatural andinstrumental mass-dependent fractionation by use of an
exponential law correction. Residual inaccuracy after the exponential
law correction was externally normalized using well-characterized
in-house feldspar standard Te-1', which was analysed every ~-10 sample
analyses. Sample analyses that were beyond the mean *8SrF*/%SrF* ratio
+2ouncertainty measured for Te-1were excluded due to the presence
of anisobaricinterference on **SrF".

Meansample¥Rb/%Sr ratios for each spot analysis were converted
using measured 3°Rb*/%8SrF* ratios, which were externally normalized
toanalysis of NIST SRM 610 glass and a®’Rb/**Sr ratio 0f 2.389 (ref.103).
Correlation coefficients were also calculated for measured *Rb*/*8SrF*
and ¥SrF*/%SrF" ratios. Differential Rb—Sr elemental fractionation of
the NIST SRM 610 glass standard and sample minerals was corrected
for the analytical session using the Dartmoor granite (DG-1) as a sec-
ondary standard'®. An¥Rb/**Sr correction factor of 0.952 + 0.011 was
determined from the analysis of plagioclase feldspar, K-feldspar and
biotite in DG-1. This single correction factor was applied to all calcu-
lated sample feldspar and mica Rb/%¢Sr ratios in this study.

The Rb-Sr ages, initial radiogenic Sr isotope ratios and uncer-
tainties were all calculated using the open access software package
IsoplotR" using input mean calculated ¥Rb/**Sr, ¥Sr/5¢Sr ratios with
associated 20 uncertainties and correlation coefficient values. Total
age uncertainties were then calculated by accounting for the relative
uncertainty of sampleisochronslope calculated inIsoplotR"’and the
relative uncertainty of the DG-1isochron slope used for calculation
of the Rb/**Sr correction factor'®. The full results are presented in
Supplementary Table 6.

U-Th-Pb geochronology

In situ laser ablation inductively coupled plasma mass spectrometry
(ICP-MS) U-Th-Pb split-stream geochronology was conducted at the
Geochronology and Tracers Facility, British Geological Survey. The
U-Th-Pb measurements were collected on a Nu Instruments Attom
single-collector ICP-MS following similar analytical conditions and
measurement protocols to those described previously™, with detailed
methodology provided in the Supplementary Information. Laser con-
ditions were a 14 pm spot size, 10 Hz repetition rate, 17 s of ablation
using a fluence of 3.1) cm™. The He carrier gas was split after exiting
the laser and sent to both the single-cell ICP-MS for U-Th-Pb and an
Agilent 7500 quadrupole ICP-MS for measurement of trace elements.
The full analytical conditions for both instruments are provided in
Supplementary Table 7. Matrix-matched normalization using standard
sample bracketing was used for U-Th-Pb geochronology and trace
elements, with data reduction for geochronology comprising the
Attolab TRA software and in-house spreadsheet, and lolite4""* for trace
elements. Monazites 44069 and Bananeira were used as primary
reference materials for normalization of U-Th-Pb and trace elements,
respectively. Internal standardization of trace elements used *'P assum-
ing 22.45 wt%. All plotting and age calculations were conducted with
IsoplotR™ and are shown and quoted at 20.

Data availability

All datarelated to this manuscript canbe found in the Supplementary
Tables and are also available via Zenodo at https://doi.org/10.5281/
zenodo.13763104 (ref. 115). Source data are provided with this paper.

Code availability

All code used in petrological calculations is freely available to down-
load via hpxeos and thermocalc (https://hpxeosandthermocalc.org/)
and Theriak Domino (https://titan.minpet.unibas.ch/minpet/theriak/
theruser.html, https://github.com/Theriak-Domino/theriak-domino/
and https://dtinkham.net/peq.html).
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Extended Data Fig. 1| See next page for caption.

Nature Geoscience


http://www.nature.com/naturegeoscience

Article

https://doi.org/10.1038/s41561-024-01575-2

Extended Data Fig. 1| Whole rock geochemical plots showing key features of
Laramide granites in Arizona. a) Sr/Y vs age (Ma) and b) Sr/Y vs (Eu/Eu*)/Yb for
Laramide volcanic rocks, biotite + hornblende-bearing and muscovite + garnet-

bearing granites. Sr/Y > 35and (Eu/Eu*)/Yb>2 indicate fertile porphyry magma®.

¢) CaO/Na,0-Al,0,/TiO, plot and d) Rb/Ba-Rb/Sr plot"®, both showing melting
output of abasalt and sediment derived melt, with biotite + hornblende-bearing

granites overlapping with the basalt derived melt and the muscovite +
garnet-bearing granites overlapping with the sediment derived melt.

e-h) Geochemical plots of the Laramide granites with NW Pacific arc rock
compilation and experimental data®>"""", showing the Laramide intrusions
overlap with the compositions of crustal-derived melts®. The full suite of whole-
rock geochemical datais presented in Supplementary Table 2.
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Extended DataFig. 2 | Isotopic mixing calculations and spatial and temporal biotite + hornblende-bearing granites (see Supplementary Material for full
Ndisotope evolution maps of the SW USA and NW Mexico. a-c) Sr-Nd isotope details). d-f) eNd(¢) compilation maps of granitic rocks from the SW USA and
mixing calculations between average felsic Proterozoic crust, mafic Proterozoic NW Mexico binned by the intrusion U-Pb age and colour coded for eNd, value.
crust and juvenile mantle, with relative success rate (%) plots of mixing d) 120-80 Ma, e) 80-40 Ma, f) 40-0 Ma. Locations of cratons and Proterozoic
calculations to produce the correct composition of the observed Laramide terrane boundaries derived from sources'?**,
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Extended Data Fig. 3| Summary Geological Maps of Harcuvar, Harquahala
and Granite Wash Mountains and cross-sections showing sample locations.
a) Study area map and sample locations in the Harcuvar, Harquahala and
Granite Wash Mountains metamorphic core complexes and exposures of the
Farallon Plate at Cemetery Ridge. Data from ref. 58. b) Schematic cross section
through the Harcuvar and Granite Wash Mountains showing the key structural

relationships of: i) the Hercules Thrust being folded and cross-cut by the -73 Ma
Granite Wash Granodiorite and ~78-70 Ma Tank Pass Granite, ii) metamorphic
gradeincreasing with increasing structural depth beneath the Hercules

Thrust and iii) the extensional Bullard detachment cross-cutting the older
compressional features.
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Extended DataFig. 4 | Outcrop photographs of migmatites and melting boundariesin textural equilibrium with garnet, sillimanite and biotite-bearing
textures from the Harcuvar Mountains. Outcrop photographs of migmatites melanosomes. Melt domains are locally extensive (>35% estimated rock volume)
and melting textures from the Harcuvar Mountains (GPS: 34.056997, and pytgmatically folded and connect to form larger leucogranite bodies
-113.314824), showing plagioclase rich (trondhjemitic) leucosomes with diffuse (for example Tank Pass pluton) exposed at higher structural levels.
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Extended Data Fig. 5| Summary of petrographic and textural features

in Harcuvar Mountains Migmatites. Plane polarized light (PPL), and cross
polarized light (XPL) photomicrographs and backscattered electron (BSE)
images of Harcuvar Mountains migmatites (TLAZ22-08). a) PPL image of garnet
and biotite bearing melanosome adjacent to leucosome (plagioclase and quartz
richdomain). b) High resolution PPL image of garnet with straight faciesin
equilibrium with prismatic sillimanite, plagioclase, quartz and minimal peritectic
k-feldspar. ¢) PPLimage of a pytgmatically folded leucosome and melanosome.
d-e) XPL photomicrographs of coarse plagioclase rich leucosomes rimmed

by biotite rich melanosomes. f-g) BSE images of leucosome and melanosomes

showing the minimal amount of K-feldspar in textural equilibrium with garnet,
plagioclase, biotite, sillimanite, quartz, magnetite. hand i) Agarnet chemical
traverse showing endmember molar proportions of pyrope (XMg) grossular
(XCa), spessartine (XMn), and almandine (XFe). Profiles show flat homogenized
cores withiincreasing spessartine content towards the outer rimindicative of
garnetresorption, note grossular also increases at the inner rim potentially due
to diffusion associated with garnet resorption. jand k) BSEimages and electron
dispersive spectra of Cuand Ag oxides. Full electron probe microanalysis Data in
Supplementary Table 4.
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Extended DataFig. 6 | Petrological modelling results for Harcuvar Mountains
migmatite sample TLAZ22-08. Equilibrium phase diagrams for sample TLAZ22-
08 showing predicted assemblage fields and phase isopleths intersections in
pressure-temperature-X(H,0) space. a) Phase diagramin pressure-temperature
space with 7% mole H,0, showing phase boundaries and reaction topologies
withall free water being consumed upon crossing the water saturated solidus.
Observed peak assemblage in red text. b) Garnet isopleth compositions for
pyrope and grossular, with polygons that overlay intersections that correspond

togarnet core and outer rim. ¢) Isobaric Temperature-X(H,0) phase diagram at
0.75 GPa, varying bulk-rock H,O content from 0.25 wt% to 6 wt% with observed
assemblage field in red text. d) Garnet pyrope and grossular compositional
isopleths with polygons representing observed garnet core and outer rim
compositions. e) K-feldspar and garnet volume isopleths with polygons showing
intersections at observed volume proportions. f) Melt volume, plagioclase

and sillimanite volume isopleths, with polygons showing the observed phase
proportions and leucosome proportions.
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Extended DataFig. 7 | Predicted melt compositions for variable Temperature- temperature and X(H,0) (0.25-6 wt% H,0). Red and yellow lines mark average
X(H,0) water-fluxed batch melting scenarios for Harcuvar Mountains biotite + hornblende and muscovite + garnet-bearing granites, and red and
migmatite sample TLAZ22-08. Petrological modelling outputs showing yellow fields mark the observed range in biotite + hornblende and muscovite +
predicted melt volume, water content (wt%) in the melt and volume proportions garnet-bearing granites respectively. All geochemical data of Laramide granites
of k-feldspar, plagioclase and garnet, with major element composition (wt%). isavailable in Supplementary Table 2.

Calculations were performed isobaric at a pressure of 0.75 GPa, varying
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Extended Data Fig. 10 | Summary geodynamic model for Hess plateau
subduction and diachronous onset of slab flattening leading to water fluxed
crustal anatexis. a-b) Global plate reconstructions of the Hess conjugate
showing the oblique intersection with the trench at ~75-70 Ma causing
diachronous slab-flattening towards the SE. Data from refs. 20,21,119. ¢) Map of
Western USA with sequential ‘sweet-spot’ advance related to slab geometry. Data
fromrefs.3,17,23,26,47,51,52.d) Cartoon block model showing the geometric
relationship of the Cu ‘sweetspot’ on the leading edge of the flat-slab relative to
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the conjugate Hess subduction. e) Schematic crustal temperature distribution
for a2-D flat-slab at the hypothesized ‘sweetspot’ based on the new pressure-
temperature data and Orocopia Schist data*~*'; note the inverted isotherms on
the trench-ward side of the ‘sweetspot’ due to continued underthrusting of a
flat-slab causing cooling of the upper-plate. f) Schematic pressure-temperature
phase diagram showing the decrease in granitic solidus with increasing addition
of water. Data from ref. 61.
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