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Porphyry copper formation driven by 
water-fluxed crustal melting during flat-slab 
subduction
 

Thomas N. Lamont    1  , Matthew A. Loader2, Nick M. W. Roberts    3, 
Frances J. Cooper    1,4, Jamie J. Wilkinson    2,5, Dan Bevan    1,6, Adam Gorecki7, 
Anthony Kemp    6, Tim Elliott    1, Nicholas J. Gardiner    8 & Simon Tapster    3

The prevailing view of the formation of porphyry copper deposits along 
convergent plate boundaries involves deep crustal differentiation of 
metal-bearing juvenile magmas derived from the mantle wedge above a 
subduction zone. However, many major porphyry districts formed during 
periods of flat-slab subduction when the mantle wedge would have been 
reduced or absent, leaving the source of the ore-forming magmas unclear. 
Here we use geochronology and thermobarometry to investigate deep 
crustal processes during the genesis of the Late Cretaceous–Palaeocene 
Laramide Porphyry Province in Arizona, which formed during flat-slab 
subduction of the Farallon Plate beneath North America. We show that 
the isotopic signatures of Laramide granitic rocks are consistent with a 
Proterozoic crustal source that was potentially pre-enriched in copper.  
This source underwent water-fluxed melting between 73 and 60 Ma, 
coincident with the peak of granitic magmatism (78–50 Ma), porphyry 
genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the 
formation of the Laramide Porphyry Province, we propose that volatiles 
derived from the leading edge of the Farallon flat slab promoted melting of 
both mafic and felsic pre-enriched lower crust, without requiring extensive 
magmatic or metallogenic input from the mantle wedge. Other convergent 
plate boundaries with flat-slab regimes may undergo a similar mechanism of 
volatile-mediated lower-crustal melting.

Flat-slab subduction (slab dip < 15°; Fig. 1b) currently occurs at ~10% of 
convergent plate boundaries1 and can result from the burial of young, 
warm, buoyant oceanic lithosphere1, or when the rate of slab advance 
is greater than the rate of slab rollback in a fixed mantle reference 
frame2. This geodynamic scenario has been linked to major periods 
of orogenesis1,3–5, inland migration and subsequent cessation of arc 
magmatism1,4–7, changes in upper-plate thermal structure3,6, and the 
formation of some of the largest porphyry copper deposits (PCDs) on 
Earth (for example, Río Blanco–Los Bronces, and La Escondida, Chile, 

and Resolution, Arizona, USA)7–12. However, despite the potential impor-
tance of flat-slab regimes to supply the copper and associated metals 
(for example, Au and Mo) required to meet global net-zero emissions 
goals, their role in ore formation is poorly understood.

Traditional PCD models assume the ore-forming magmas derive 
from juvenile basaltic melts formed from metasomatism of the mantle 
wedge above a steeply dipping subducting slab13–15 (Fig. 1a). Magma 
differentiation depth proxies (high Sr/Y, La/Yb and (Eu/Eu*)/Yb ratios) 
suggest PCD formation is favoured in thickened continental crust 

Received: 8 July 2023

Accepted: 24 September 2024

Published online: 4 November 2024

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: thomas.lamont@unlv.edu

http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-024-01575-2
http://orcid.org/0000-0003-2485-672X
http://orcid.org/0000-0001-8272-5432
http://orcid.org/0000-0003-2294-6027
http://orcid.org/0000-0002-7706-6003
http://orcid.org/0000-0001-6382-8778
http://orcid.org/0000-0003-1642-0360
http://orcid.org/0000-0002-0984-0191
http://orcid.org/0000-0003-3465-9295
http://orcid.org/0000-0001-9049-0485
http://crossmark.crossref.org/dialog/?doi=10.1038/s41561-024-01575-2&domain=pdf
mailto:thomas.lamont@unlv.edu


Nature Geoscience | Volume 17 | December 2024 | 1306–1315 1307

Article https://doi.org/10.1038/s41561-024-01575-2

considerable crustal input30–32; however, we question this interpreta-
tion for the following reasons.

A compilation of geochronology data across the western United 
States (Supplementary Table 1) reveals that Laramide volcanism ter-
minated ~2–5 million years before PCD formation, suggesting the 
ore-forming intrusions developed during a distinct phase of plutonism 
in a volcanically inactive arc segment following the relaxation of con-
tractional deformation26–29. Laramide intrusions are weakly to strongly 
peraluminous (aluminium saturation index = 1.00–1.15), highly sili-
ceous (SiO2 > 60–65%) and have low maficity (molar Mg + Fe < 0.1), 
which overlaps with the compositional range of experimentally derived 
lower-crustal melts33 (Extended Data Fig. 1). Furthermore, several pro-
spective PCDs (for example, Diamond Joe and Texas Canyon; Fig. 2b) 
are associated with muscovite ± garnet-bearing granites, which also 
display elevated fertility indices (Extended Data Fig. 1 and Supple-
mentary Table 2) and are derived from crustal sources judging from 
their isotopic signatures34–37; this implies that crustal anatexis may be 
important for regional metallogeny.

Insights into the geodynamic setting and sources of Laramide 
granitic magmas can be gleaned from whole-rock Sr–Nd–Pb data30–32 
and Hf-in-zircon isotopes34–37 (Fig. 3). A compilation of igneous rocks 
younger than 140 Ma across the southwest United States and north-
west Mexico (Fig. 3a and Supplementary Table 3) shows (1) decreasing 
εNd(t) (where εNd(t) represents the εNd value for the rock, calculated 
at time (t), i.e. the crystallization age) between 110 and 75 Ma, reflecting 
a progressively diminishing contribution of mantle-wedge-derived 
magma; (2) negative (that is, unradiogenic) εNd(t) during the Lara-
mide orogeny (75–40 Ma) that overlaps with Proterozoic basement 
values, consistent with a substantial magma component deriving 
from such crustal sources; and (3) increasing εNd(t) after 40 Ma, 
suggesting an increasing contribution of juvenile magma associated 
with renewed asthenospheric melting following Farallon slab rollback 
or foundering38.

In Arizona, Laramide intrusions (~78–50 Ma) fit this isotopic frame-
work, with unradiogenic Nd signatures (biotite ± hornblende-bearing 
granites: εNd(t) = –0.2 to –13.5; muscovite ± garnet-bearing granites: 
εNd(t) = –3.0 to –18.4; Fig. 3b–d) and >1 billion years ago (Ga) two-stage 
Nd and Pb model ages that imply a crustal origin (Fig. 3c and Supple-
mentary Table 3). These data overlap with the known Proterozoic base-
ment (εNd(70 Ma) = 1.6 to –21.2), particularly the ~1.1 Ga diabase dykes 
(Fig. 3b), and CPTZ garnet–clinopyroxene xenoliths, which contain 
copper-bearing sulfides39. The origin of these xenoliths is unclear, but 

within mature compressional arcs11,12,15, which often correlate with 
flat-slab regimes11,12. Such deeply differentiated magmas are inter-
preted to contain high concentrations of volatiles (H2O, CO2, Cl and S), 
which are critical in controlling the ultimate enrichment of copper10–15. 
However, during flat-slab subduction, the mantle wedge is reduced, if 
not absent, meaning that substantial mantle melting cannot occur1–6,9 
(Fig. 1b), and leaving it unclear from where the ore-forming magmas 
were derived.

The ~80–40 Myr-old Laramide orogeny, western North America3,4,6, 
represents a unique opportunity to address this paradox as it was asso-
ciated with crustal thickening and magmatism that reached >2,000 km 
inland3,4,6 and formed the world’s second largest PCD province9,16,17. 
The most prominent model to explain the Laramide orogeny involves 
flat-slab subduction of the Farallon plate3,4,6,18–21 in response to the 
subduction of two oceanic plateaus (Shatsky at ~90 million years ago 
(Ma) (refs. 19,20) and Hess at ~75–70 Ma (refs. 21,22)) in combina-
tion with westward movement of North America2,19. An alternative 
model involves the oblique collision of offshore terranes22 based on 
palaeomagnetic evidence that accreted terranes moved thousands 
of kilometres northwards between ~85 and 55 Ma. In this Article, we 
integrate geochemical and isotopic data of Laramide granitic rocks 
with petrological and geochronological constraints from deep crus-
tal exposures, which provide critical insights into the roles of crus-
tal anatexis and flat-slab subduction in the genesis of the Laramide  
Porphyry Province.

Laramide flat-slab subduction and crustal 
anatexis
The Laramide Orogen in Arizona is characterized by (1) contem-
poraneous biotite ± hornblende-bearing and muscovite ± gar-
net + magnetite-bearing granitic intrusions spanning ~78–50 Ma 
(refs. 9,16,23–25); (2) PCDs that formed between ~73 and 56 Ma  
(refs. 9,16,17,23–26; Supplementary Table 1); and (3) contractional 
structures active between ~80 and 56 Ma (refs. 23,26–29). All these fea-
tures are concentrated in a northwest–southeast trending belt along 
the southern margin of the relatively undeformed Colorado Plateau 
(the Colorado Plateau Transition Zone, CPTZ; Fig. 2b)16,17,26. Within the 
CPTZ, most PCDs (for example, Ray, Resolution and Morenci; Fig. 2b) 
are associated with biotite ± hornblende-bearing intrusions9,16,17 with 
elevated whole-rock Sr/Y, La/Yb and (Eu/Eu*)/Yb ratios9,16,17 typical of 
‘fertile’ PCD-related magmas15 (Supplementary Table 2). These mag-
mas are traditionally described as mantle-derived melts that have had 
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flow into the mantle wedge is cut off, and volatiles derived from the slab  
(H2O, CO2, Cl and S) pass straight into the base of the crust, triggering water-
fluxed crustal anatexis, granitic magmatism and, potentially, PCD formation.  
Bt, biotite; Hb, hornblende; Ms, muscovite; Grt, garnet. Data from ref. 14.
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they equilibrated at pressures and temperatures (P–T) of 1.0–2.8 GPa 
and 600–850 °C (ref. 40), at ~150 Ma and ~75 Ma (U–Pb zircon)38–40 and 
contain secondary amphibole, indicating they have been subsequently 

hydrated. It is possible they are cumulates from juvenile mantle- 
derived magmas, due to similarity with Sierra Nevada cumulates39–42. 
However, Nd, Pb, Re–Os and Hf-in-zircon mantle extraction ages of 
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~2.1–0.5 Ga (refs. 39,43–45) suggest they represent Proterozoic lower 
crust43–45 (Fig. 3d). Laramide intrusions also show extensive zircon age 
inheritance (Fig. 3c), with U–Pb dates of ~1.1, 1.4, 1.6–1.7, 2.0 and 2.6 Ga 
(refs. 24,46), which overlap with the source crustal residence ages from 

Nd isotopes. The younger dates correlate with Yavapai–Mazatzal oro-
genesis at ~1.7–1.6 Ga (ref. 47), Granite–Rhyolite Province magmatism at 
~1.4 Ga and the Southwest Laurentia large igneous province responsible 
for ~1.1 Ga (ref. 48) diabase dykes.
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the Proterozoic granites and Pinal Schist. b, Whole-rock Sr–Nd isotopes for 
biotite ± hornblende and muscovite ± garnet-bearing granites, PCDs, and 
basement lithologies. Negative εNd(t) suggests all granitoids have unradiogenic 

signatures and overlap with the ~1.1 Ga diabase dykes, CPTZ xenoliths and 
Proterozoic basement. They are notably distinct from the juvenile mantle-
wedge-derived magmas. 87Sr/86Sr(i) represents the calculated initial 87Sr/86Sr 
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have overlapping unradiogenic isotopic signatures. Data compiled from sources 
in Supplementary Table 3.

http://www.nature.com/naturegeoscience


Nature Geoscience | Volume 17 | December 2024 | 1306–1315 1310

Article https://doi.org/10.1038/s41561-024-01575-2

Additional constraints can be inferred from exposures of the Oro-
copia–Pelona schists at Cemetery Ridge and in the Plomosa Mountains, 
which are subduction-complex rocks related to the Farallon plate49–51 
(Fig. 2b). Detrital zircon analysis suggests these rocks were depos-
ited at the trench at ~73–70 Ma (refs. 49–51) and underwent prograde 
metamorphic zircon growth from ~70–65 Ma until ~40 Ma (refs. 49–51) 
under P–T conditions of 0.8–1.3 GPa and 660 °C. This subduction zone 
metamorphism temporally and spatially overlaps with the zenith of 
Laramide magmatism (and PCD formation) and suggests that the 
leading edge of the Farallon flat slab was transported >500 km directly 
beneath North America (Fig. 1b). Lawsonite-bearing eclogite xenoliths 
located ~1,000 km from the trench further indicate that the Farallon 
flat slab was located at ~120 km depth between ~80 and 30 Ma and 
removed ~80 km thickness of sub-continental cratonic lithospheric 
mantle beneath the Colorado Plateau52,53.

These diverse observations suggest that the mantle wedge beneath 
the CPTZ was largely eliminated during the genesis of the Laramide Por-
phyry Province. Isotope mixing calculations (Methods and Extended 
Data Fig. 2) support this hypothesis, revealing that >70–90% of melt 
in Laramide granitic magmas was derived from both mafic and felsic 
Proterozoic crustal sources. From a metallogenic standpoint, ref. 16 
suggested that this Proterozoic crust may have sourced the copper 
in the Arizona PCDs because it contains Proterozoic volcanogenic 

massive sulfide deposits (for example, Jerome; Fig. 2b) and the more 
recently recognized ~1.7 Ga Squaw Peak PCD54. Also noteworthy is the 
higher concentration of PCDs within the Mazatzal Terrane compared 
with the Yavapai and Mojave Terranes and the abundance of Cu-bearing 
sulfides in the garnet–clinopyroxene xenoliths, which contain up to 
~1,000 ppm Cu (ref. 39).

Critical insights into the timing and conditions of crustal anatexis 
can be gleaned from exposures of high-grade metamorphic rocks in 
the Harcuvar, Harquahala and Granite Wash mountains metamorphic 
core complexes55–59 (Fig. 2b and Extended Data Fig. 3), which represent 
the CPTZ mid–lower crust. These rocks provide direct evidence of 
anatectic processes responsible for the formation of Laramide intru-
sions and PCDs exposed at higher crustal levels. See Supplementary 
Tables 4–7 for full results.

Timing and conditions of metamorphism and 
anatexis
At high structural levels in the Granite Wash Mountains, the Hercules 
thrust—a major south-southwest-verging Laramide-age contractional 
structure—preserves syn-kinematic P–T conditions of 0.36 ± 0.13 GPa 
and 502 ± 36 °C (Fig. 4; TLAZ22-167) in the mylonitized footwall meta-
sedimentary rocks, indicating contractional deformation was syn-
chronous with regional metamorphism. Metamorphic grade increases 
with structural depth beneath the Hercules thrust, with exposures of 
kyanite–sillimanite-bearing schists, migmatites and amphibolites 
in the Harcuvar Mountains (Figs. 4 and 5). Textures indicate partial 
melting, including quartzo-feldspathic leucosomes and biotite-rich 
melanosomes. Leucosomes have diffuse boundaries, trondhjemitic 
compositions, contain copper and silver oxides, and are complexly 
folded (Fig. 5c). This suggests that melting occurred during contrac-
tional deformation and can be traced from high-melt-fraction domains 
to garnet–biotite–muscovite leucogranites (for example, Tank Pass 
and Browns Canyon granites; Extended Data Figs. 3 and 4).

A sample of garnet–sillimanite migmatite (TLAZ22-08) records 
P–T conditions of 0.75 ± 0.06 GPa and 780 ± 36 °C (~28 km depth; Fig. 4). 
The lack of primary muscovite is consistent with conditions surpassing 
muscovite breakdown above the solidus60,61 (Extended Data Figs. 4–6). 
However, the low volumetric proportions of peritectic K-feldspar 
(<3%) and sillimanite (1.8%) relative to leucosome (former melt; 35%) 
differ from those expected from vapour-absent muscovite dehydra-
tion melting60 (normally in a ratio 8/5/10). This requires anatexis to 
have occurred with 2.4–3.5 wt% H2O (Extended Data Figs. 6 and 7), 
which is considerably greater than the observed mineralogically bound 
water determined by combining volumetric phase proportions and 
chemical compositions (1.2 wt% H2O). Therefore, 1.0–2.2 wt% H2O was 
added to the rock during anatexis. Cooling of this sample occurred 
through conditions of 0.65–0.75 GPa and 600–750 °C (Fig. 4 and  
Extended Data Fig. 6).

The U–Th–Pb monazite petrochronology suggests anatexis 
occurred at ~73–60 Ma (Fig. 5 and Extended Data Fig. 8), coincident 
with migmatite-related leucogranite crystallization at ~78–54 Ma  
(refs. 56,58,62–64). Older and younger monazite populations record 
pre-Laramide Sevier orogenesis at ~145 Ma and post-Laramide 
shearing during Basin and Range extension at ~20–15 Ma. It is also 
possible that monazite growth and reprecipitation continued from  
~60 to 40 Ma, indicated by the younger tail in the ~73–60 Ma popula-
tion. The Rb–Sr geochronologies of three samples provide overlap-
ping to younger dates of ~72–45 Ma (Extended Data Fig. 9). Given the 
~450–550 °C closure temperature65 of the Rb–Sr system is far below 
the peak metamorphic temperatures, this suggests that anatexis must 
have been equivalent to, or older than, these dates. An ~72 Ma date 
of syn-kinematic mica + plagioclase in the Hercules thrust mylonite 
constrains the timing of contraction at lower amphibolite-facies 
conditions. Two further samples yield younger dates of ~26–20 Ma, 
overlapping with previous thermochronology from the region66–68, 
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suggesting these samples experienced (1) delayed cooling compared 
with higher structural levels; (2) reheating during Basin and Range 
extension; and/or (3) isotopic resetting during deformation-induced  
recrystallization.

Implications for Laramide tectonics
Peak metamorphic conditions of 0.75 GPa and 780 °C at ~73–60 Ma 
suggest a crustal overburden of ~28 km and an average geothermal gra-
dient of ~28 °C km–1 (Fig. 4). The implications are that (1) supra-solidus 
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temperatures occurred at depths >25 km during peak Laramide oro-
genesis, and (2) the crust reached a minimum thickness of ~50–60 km, 
based on the addition of the ~28 km overburden to the present-day 
local Moho depth of ~25–30 km (ref. 69). This thickness is consistent 
with estimates derived from Sr/Y and La/Yb ratios of Laramide granitic 
rocks70 and indicates the crust was thinned by a factor of two during 
subsequent Basin and Range extension. Notably, our findings argue 
against the traditional premise that Laramide shortening did not result 
in considerable crustal thickening in Arizona26,27.

The timing of water-fluxed crustal anatexis was coincident with 
the formation of major PCDs (for example, Bagdad at ~72 Ma (ref. 71), 
Ray at ~72–68 Ma (ref. 24) and Resolution at ~64 Ma (ref. 24); Figs. 2 and 
5), the end of contractional deformation (Hercules thrusting at ~72 Ma; 
Supplementary Table 1) and, most importantly, the onset of flat-slab 
subduction beneath the CPTZ, evidenced by the isotopic signature of 
Laramide magmatism (Fig. 3a) and the timing of prograde metamor-
phism on the Farallon plate (~70–40 Ma (refs. 49–51); Figs. 5 and 6). 
Integration of these constraints with the potential pre-enrichment of 
copper in the Proterozoic basement39,54 supports the hypothesis that 

the Laramide Porphyry Province was produced by water-fluxed crustal 
anatexis during flat-slab subduction.

Along the CPTZ, the timings of contractional deformation (~80–
56 Ma), anatexis (~73–60 Ma) and PCD genesis (~73–56 Ma) are also 
transient at any given location and young towards the southeast at a 
rate of ~26.5 km Myr–1 (Fig. 6a). We propose that all these phenomena 
are controlled by a common geodynamic mechanism. Flat-slab subduc-
tion would cause a diachronous thermal evolution of the North Ameri-
can crust6,72 due to the interplay between competing mechanisms: (1) 
increased tractions or end-loading, leading to crustal thickening and 
heating with characteristic timescales >10 Myr (ref. 73); (2) shear heat-
ing along the plate interface (the Moho) given the rapid (~100 mm yr–1 
(refs. 18,19)) convergence rate; (3) cooling due to underthrusting of 
the Farallon plate6,72; (4) remnant mantle-wedge heat flow; (5) heat 
flow from earlier Sevier-related metamorphism (occurring at ~145 Ma). 
Given these constraints, it is likely that thermal climax and water-fluxed 
crustal anatexis occurred at a geodynamic ‘sweet spot’ immediately 
above the leading edge of the Farallon flat slab as it eroded the cratonic 
lithosphere (Fig. 6).

Southeast migration

of the Cu sweet spot

along CPTZ at ~26.5 km Myr –1

Farallon 
steep-subduction

pre-mineral 
arc volcanism 

and contractional
deformation (B) 

Farallon
flat-slab

subduction
post-

mineral
quiescence
and cooling

Cu 
Sweet spot
syn-mineral 

end of 
contraction 
and crustal
anatexis (C)

40

50

60

70

80

90

Ag
e 

(M
a)

1000 200 300 400 500 600 700 800 900 1,000

Distance along CPTZ (km)
Northwest southeast

Volcanics

Start of shortening
End of shortening

PCDs (size)

Orocopia Schist
metamorphism

Ms ± Grt granite

Shortening range

Crustal anatexis 
(this study)

Extension range

Farallon plate Flat-slab subduction and dehydration
 ~60–100 km depth 

0
25
50
75

100
125

+H2O

California Arizona

Southwest Northeast

Jurassic–Late Cretaceous arc

31

2 4

7
5

8

10

CPTZ

11 12

9

Peak Laramide orogenesis ~75–55 Ma

Farallon plate

0
25
50
75

100
125

Colorado 
plateau
(craton)

+H2O

Jurassic–Late Cretaceous arc CPTZ

Pre-Laramide orogenesis ~90–75 Ma

Mantle Wedge

Arc volcanism, Contraction and no PCDs

No volcanism, crustal anatexis and PCDs

i

i

ii
iii

6

North American crust
(~1.8–1.4 Ga)

Sweet spot

a

Bt ± Hb granite/magma
Ms ± Grt granite/magma
PCD i Particle position

Key

Thrust faultActive Volcano
Extinct Volcano Geodynamic Cu

sweet spot

D
ep

th
 (k

m
)

D
ep

th
 (k

m
)

Data from 400 km swath

X X’

Hess conjugate

Colorado 
Plateau
(craton)

b

c

1

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Distance from trench (km)

Cratonic
SCLM

~100 mm yr –1

150
175

200

150
175

200

~100 mm yr –1

Asthenosphere

Asthenosphere

Hess 
conjugate

SCLM

Cratonic
SCLM

Asthenosphere

Fig. 6 | Spatial-temporal tectonic–magmatic–mineralization relationships 
along the CPTZ supporting a flat-slab subduction and crustal anatexis PCD 
model for Arizona. a, Ages of volcanism, PCDs, shortening and extension, 
crustal anatexis, Orocopia Schist (ORS) metamorphism and muscovite ± garnet 
magmatism projected onto a northwest–southeast striking line (X–X’; Fig. 2b)  
along the CPTZ with a swath of 400 km. Error bars representing 2σ age 
uncertainties are less than the size of each data point. Dashed bars represent the 
inferred duration of contractional deformation or metamorphism based  
on nearby cross-cutting relations and structural constraints (Supplementary  
Table 1). b, Pre-Laramide orogenesis (~90–75 Ma) is associated with steep  
subduction and arc magmatism/ volcanism in western Arizona and California.  
c, Peak Laramide orogenesis (~75–55 Ma) flat-slab subduction shuts off the mantle 
wedge, resulting in the termination of arc volcanism and increased end-loading 
causing crustal thickening and anatexis. Geological features: (1) Orocopia 
Schist (Farallon Plate) 0.8–1.3 GPa and 660 °C, ~70–65 Ma; (2) Hercules thrust 

(top south-southwest), ~85–71 Ma; (3) Harcuvar and Harquahala mountains 
migmatites 0.75 GPa and 750–780 °C, ~73–60 Ma; (4) Tank Pass and Browns 
Canyon muscovite ± garnet-bearing granites (cuts Hercules thrust), ~79–70 Ma; 
(5) northwest Arizona PCDs, ~73–68 Ma (Bagdad, Mineral Park, Diamond Joe, 
Copper Basin, Crown King); (6) Coyote Mountains Pan-Tak muscovite ± garnet-
bearing granite, ~58 Ma, which intruded syn-Baboquivari thrusting (top east-
northeast); (7) southeast Arizona PCDs, ~72–56 Ma (for example, Ray, Resolution, 
Globe–Miami, San Manuel, Copper Creek, Sierra Rita, Texas Canyon, Morenci 
and Safford); (8) Galiuro Mountains thrusts (top east-northeast), ~73–60 Ma; (9) 
Santa Catalina Mountains Wilderness and Pinaleño muscovite ± garnet-bearing 
granites, ~58–50 Ma; (10) ’Maricopa thrust’ syn-Wilderness granites (top west-
southwest), ~58–50 Ma; (11) water-saturated melting of ~1.7–1.1 Ga mafic lower-
crustal source between ~75 and 55 Ma; (12) CPTZ garnet–clinopyroxene xenoliths, 
~150 Ma and 75 Ma. Positions (i), (ii) and (iii) represent particle positions on the 
subducting Farallon slab. SCLM, subcontinental lithospheric mantle.
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At this sweet spot, elevated crustal temperatures would have 
prevailed due to the proximity to the laterally displaced convecting 
mantle wedge, in combination with thickened CPTZ crust5. Volatiles 
released from the dehydrating flat slab could also pass across the Moho, 
facilitating melting of Proterozoic lower crust. This crustal hydration/
melting process possibly triggered rheological weakening74, causing 
the locus of contractional deformation to migrate further eastwards 
in front of the leading edge of the flat slab2,4,5. However, on timescales 
>15 Myr, continual underthrusting of the flat slab cooled the North 
American crust6,72, as suggested by our ~45–20 Ma Rb–Sr ages. This may 
explain the systematic spatial-temporal mineralization relationships 
involving (1) pre-mineralization volcanism, contraction and barren gra-
nitic magmatism related to steep subduction that did not sufficiently 
hydrate the crust, before slab flattening (inboard from the sweet spot), 
(2) syn-mineralization granitic magmatism and water-fluxed crustal 
anatexis coinciding with the end of contraction during slab flattening 
(at the sweet spot), and (3) post-mineralization ore-barren musco-
vite ± garnet-bearing magmatism, tectonic quiescence and cooling 
due to continued underthrusting of the Farallon plate after the sweet 
spot had passed (Fig. 6).

Slab flattening beneath Arizona can be correlated with subduction 
of the conjugate Hess oceanic plateau at ~75–70 Ma (refs. 19–21) as it 
can explain prograde metamorphism of the Orocopia–Pelona Schist 
(~70–65 Ma (refs. 49–51)), water-fluxed anatexis (~73–60 Ma) and the 
shutdown of arc magmatism in Southern California at ~70 Ma (ref. 21) 
(Extended Data Fig. 10). Furthermore, if the conjugate Hess was orien-
tated obliquely (north-northeast–south-southwest) with respect to the 
trench (north-northwest–south-southeast) and convergence vector 
(northeast), it would intersect the subduction zone at progressively 
younger times towards the south, causing a diachronous onset of slab 
flattening and therefore driving the sweet spot southeastwards along 
the CPTZ (Fig. 6a and Extended Data Fig. 10). Other models including 
the collision of offshore terranes22, or subduction of the conjugate 
Shatsky18 (which would have been further northeast in Colorado by ~75–
70 Ma (refs. 19–21)), have difficulty explaining all these phenomena.

Crustal anatexis drove metallogenesis
We propose that biotite ± hornblende-bearing granitic PCD-related 
magmas derived from water-fluxed anatexis of mafic (amphibolitic or 
garnet–pyroxenite) lower-crustal protoliths extracted from the mantle 
between ~1.7 and 1.1 Ga (Fig. 3c). Dehydration melting is not a plausible 
mechanism because it is associated with high solidus temperatures and 
produces low-volume, relatively dry (<2 wt% H2O)33,61,75,76 metaluminous 
magma that is unlikely to form extensive magmatic–hydrothermal 
systems in the shallow crust. However, we argue that during flat-slab 
subduction, volatiles migrated across the Moho causing water-fluxed 
anatexis at depths >25 km. Water-saturated melting of similar mafic 
lithologies at such depths produces (1) water-rich melt (>8 wt% H2O)33,75, 
(2) larger melt fractions (>50% volume melt)33,75, (3) peraluminous 
magma enriched in Na and Al and relatively depleted in Fe, Mg, Ti and 
K33,75–77, (4) an increase in amphibole stability as a restitic phase and 
preferential consumption of plagioclase during anatexis33,61,75–77, and (5) 
magma enriched in Sr and depleted in Ba61. Such crustal-derived melts 
would have ‘adakite-like’ chemistries characterized by elevated Sr/Y, 
La/Yb and (Eu/Eu*)/Yb ratios15,33,75–79, as observed in many Laramide 
intrusions9,16,17. Furthermore, we argue that the melt source is equivalent 
to that of the CPTZ sulfide- and Cu-rich39 garnet–clinopyroxene xeno-
liths because these rocks have mantle extraction ages of ~2.1–0.5 Ga 
(refs. 43–45) and U–Pb zircon dates of ~75 Ma and 150 Ma (refs. 39–41), 
which overlap with our Laramide and Sevier metamorphic monazite 
dates (Fig. 5). This implies that metals were recycled from precursor arc 
cumulates in the lower crust or remnant Proterozoic sub-continental 
lithosphere80 due to the addition of water. By contrast, we infer the 
muscovite ± garnet + magnetite-bearing granites were derived from 
melting of ~1.7–1.4 Ga granitic basement. Water-fluxed anatexis of this 

source would form oxidized, volatile-rich and peraluminous magma60 
with elevated fertility indices (Sr/Y and (Eu/Eu*)/Yb)79 due to consump-
tion of plagioclase during anatexis61. Subsequent rollback or foundering 
of a flat slab can also explain post-orogenic PCDs as this would increase 
asthenospheric heat flow38, facilitating melting of the lower crust and 
sub-continental lithospheric mantle that had been hydrated during 
previous flat-slab subduction.

We conclude that flat-slab subduction was fundamental to the for-
mation of the Laramide Porphyry Province as it allowed volatiles to flux 
directly into a lower crust pre-enriched in metals, driving anatexis that 
led to the formation of ore-forming magmas. It is possible that other 
convergent plate boundaries with flat-slab regimes underwent a similar 
mechanism of volatile-mediated lower-crustal anatexis10. Our model 
may explain the correlation between flat-slab subduction and PCD 
genesis in the southwest United States, central Andes and southeast 
China, which collectively host >30% of the world’s known Cu reserves17. 
We therefore propose flat-slab settings to be favourable exploration 
targets to meet the ever-increasing global demand for copper.
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Methods
Electron probe micro-analysis
The compositions of phases in samples TLAZ22-08 and TLAZ22-167 
were derived from electron probe micro-analysis (EPMA) performed on 
a CAMECA SX100 electron microprobe in the School of Earth Sciences, 
University of Bristol. Operating conditions involved an accelerating 
voltage of 15.0 keV corresponding to a current of 20 nA, a range of 
primary standards were used, including andradite (Fe, Mg, Ca), TiO2 
(Ti), Mn metal (Mn), labradorite (Na, Al, Si) and sanidine (K) for major 
elements, and secondary standards include diopside, KK1, SPH Lab-
radorite, RN18 and FDLA1. Garnet line profiles were collected using 
a 75 μm step size across all garnets from sample TLAZ22-08 corre-
sponding to between 25 and 30 analyses per porphyroblast. Garnets 
show minor zoning in major elements, with homogeneous cores and 
resorbed rims (Extended Data Fig. 5 and Supplementary Information). 
Pyrope [XMg] displays a flat profile across the garnet core and mantle, 
but then shows convex downtrends (0.18–0.13) from the inner to the 
outer rim, grossular [XCa] remains either homogeneous or increases 
slightly from the core towards the outer rim (0.05–0.07), whereas 
almandine [XFe] remains homogeneous before decreasing towards 
the outer rim (0.73–0.71). However, spessartine [XMn] is homogeneous 
or concaves upwards (0.05–0.08) from core to outer rim, indicative 
of garnet resorption. It is also possible that the increase in grossu-
lar and decrease in pyrope at the rim is due to diffusion because of 
resorption of garnet by biotite. These garnet profiles suggest garnet 
growth zoning has been modified by diffusion81, and therefore only 
peak metamorphic conditions are preserved in the garnet core and 
inner rim, whereas garnet outer rims record retrograde net transfer 
reactions82. Mineral abbreviations follow the guidelines of ref. 83. 
Anhydrous phase compositions were calculated to standard numbers 
of oxygen per formula unit84, micas were recalculated to 11 oxygens, 
and chlorite to 28 oxygens. Where present, H2O content was assumed 
to occur in stoichiometric amounts. The proportion of Fe3+/Fetotal was 
calculated using AX85. The complete EPMA database is presented in 
Supplementary Table 4.

Thermobarometry and petrological modelling
Several thermobarometric approaches were employed to constrain 
the P–T conditions of metamorphism, including the Ti-in-biotite 
thermometer86, the garnet–biotite thermometer87, the garnet–alumi-
nosilicate–plagioclase–quartz barometer85,86, the garnet–muscovite–
plagioclase barometer, and average P–T (ref. 88) using THERMOCALC 
version TC-3.50i with characteristic end members judged to be in tex-
tural equilibrium for each sample. The complete results are presented 
in Supplementary Table 5.

Phase diagram construction was performed using THERMOCALC 
version TC-350i89 and Theriak Domino90 and the internally consistent 
thermodynamic dataset ds6291. Migmatite sample TLAZ22-08 was 
modelled in the 11-component system MnO–Na2O–CaO–K2O–FeO–
MgO-Al2O3–SiO2–H2O–TiO2–O. The a–x relations for solid–solution 
phases were used: clinopyroxene (diopside–omphacite–jadeite) and 
clinoamphibole (glaucophane–actinolite–hornblende)92; garnet, 
biotite, muscovite–paragonite, and chlorite, epidote, ilmenite93; 
plagioclase feldspar94 and melt95. Pure phases comprised talc, law-
sonite, kyanite, sillimanite, andalusite, zoisite, quartz, coesite and 
rutile. The effective bulk compositions for sample TLAZ22-08 were 
calculated using mineral proportions derived by point counted analy-
ses of an entire thin section using J-MicroVision and representative 
EPMA-derived phase compositions following the method of ref. 96. 
Details on the determination of the bulk-rock composition used to 
perform phase equilibrium modelling are shown in the Supplementary 
Information. Uncertainties related to the absolute positions of assem-
blage field boundaries calculated phase diagrams have been shown to 
be less than ±0.1 GPa and ±50 °C at the 2σ (95% confidence) level87,95, with 
this variation being largely a function of propagated uncertainty on 

endmember thermodynamic properties within the dataset. However, 
because phase diagrams were calculated using the same dataset and 
a–x relations, it has also been shown that similar absolute errors associ-
ated with dataset endmembers cancel, and calculated phase equilibria 
are relatively accurate to within ±0.02 GPa and ±10–15 °C (refs. 91,97).

The P–T conditions of peak metamorphism were determined by 
investigating compositional isopleths for pyrope and grossular con-
tent in garnet. Since these isopleths vary to first order with changes in 
pressure and temperature and commonly intersect at high angles, they 
specify unique intersection points with a high degree of confidence for 
tracking garnet composition evolution in P–T space. The intersections 
of isopleths representing measured compositions are represented by 
shaded polygons indicating uncertainties at the 1σ level calculated by 
THERMOCALC/Theriak Domino. The results were verified by compar-
ing mineral volumetrically determined mineral proportions by point 
counting using J-MicroVision and intersection of garnet compositional 
isopleths with those predicted by the petrological model. The results 
are in good agreement with conventional thermobarometry. In melt-
ing calculations, the bulk-rock supra-solidus water content of sam-
ple TLAZ22-08 was varied. In a closed system scenario, the bulk-rock 
supra-solidus water content was fixed to allow minimal water saturation 
at the wet solidus, here defined as ∼1 mol% free H2O. It was determined 
7 mol% H2O represents fluid saturation at the wet solidus. Bulk-rock H2O 
content was estimated at 4.5 mol% (1.2 wt%), determined by combining 
point counted volume estimates of hydrous phases and average phase 
compositions determined by EPMA (Supplementary Information). 
Temperature–X(H2O) calculations were performed to test the effect 
of an open system to simulate water-fluxed melting (Extended Data 
Figs. 6 and 7 and Supplementary Information).

To investigate the effect of water-fluxed melting, bulk-rock H2O 
content was varied between 0.25 wt% H2O and 6 wt% H2O at 0.75 GPa. 
An H2O content of <1.2 wt% represents a closed system with water 
derived from hydrous phases in the rocks such as biotite and muscovite, 
whereas >1.2 wt% H2O represents an open system and fluxing water 
from an external source. Phase diagrams demonstrate that above the 
water-saturated solidus, the addition of water does not drastically 
change the muscovite dehydration melting reaction, and therefore 
at peak conditions, anatexis progressed by incongruent breakdown 
of muscovite and plagioclase. Intersection of mineral volume isop-
leths was used to constrain the likely range of water contents during 
melting, and the loss of k-feldspar from the predicted assemblage 
defines the maximum possible amount of water during which anatexis 
occurred. It was determined that the observed assemblage equili-
brated at supra-solidus conditions with a bulk-rock water content of 
~3.0–3.2 wt% H2O. The predicted major element melt compositions, 
aluminium saturation index, volumes of restitic phases, melt and mag-
matic water content are presented in Extended Data Fig. 7 and plotted 
compared with average Laramide granites. This was calculated using 
an in-house Matlab script that utilizes the pixelmap output function of 
Theriak Domino. The full results are presented in the Supplementary 
Information and Supplementary Table 5 and discussed in the main text.

Sr–Nd isotopes and Sm–Nd model ages
The 87Sr/86Sr and 143Nd/144Nd measurements were compiled from the 
literature for Arizona Laramide biotite ± hornblende and musco-
vite ± garnet-bearing granitoids, PCDs, Laramide volcanics, xenoliths 
and basement. Initial Sr and Nd isotope ratios were calculated using 
the available U–Pb magmatic ages or K–Ar ages and decay constants 
of 1.393 × 10–11 for 87Sr (ref. 98) and 6.524 × 10–12 for 147Sm (ref. 99). Ini-
tial Sr isotope values are quoted as 87Sr/86Sr(i) and Nd isotope values 
are quoted as ɛNd(t) using the CHUR values of ref. 100. Two-stage Nd 
model ages were calculated using 147Sm/144Nd of 0.09 and 0.12, that of 
average-evolved and less-evolved continental crust101, respectively, 
and a depleted mantle with a modern-day 143Nd/144Nd of 0.51315 and 
147Sm/144Nd of 0.2135102. Two-component Sr–Nd mixing calculations 
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were performed between a depleted mantle source and a nominal 
crustal source. The latter was varied to reflect a mixture of crustal 
rocks by using the average felsic crust and mafic crust from Arizona. A 
spectrum of 20 different crustal combinations was used, representing 
5% sequential additions of mafic and felsic crust. The resultant calcu-
lated mixtures between depleted mantle and ‘mixed’ crust that were 
deemed successful plotted within the 95% confidence ellipse for the 
biotite ± hornblende-bearing granites (Extended Data Fig. 2), and the 
successful results were plotted as a cumulative density plot to show the 
statistical likelihood of the relative importance of crustal and mantle 
sources. The results are compiled with source references in Supplemen-
tary Table 3 and the Supplementary Information and strongly suggest 
that the PCD data can be explained by various combinations of different 
(crustal) source components. Although we cannot entirely rule out a 
juvenile mantle-derived component in the formation of the Laramide 
intrusions, it is likely this component is relatively small.

Rb–Sr geochronology
The analytical procedure for in situ Rb–Sr dating is extremely similar to 
that described in ref. 103. Samples were analysed using a 193 nm Photon 
Machines excimer laser equipped with ARIS103 (aerosol rapid introduc-
tion system). Laser operating conditions, which were standardized for 
dating, were a 110 µm laser spot diameter, which was ablated using a 
repetition rate of 10 Hz, and a fluence of 7 J cm–2 for 600 laser pulses. 
These spots were positioned to target identified phases of interest, 
which include feldspar and mica that were exposed on polished sur-
faces of cut billets. This laser ablation system was coupled with Proteus, 
a collision-cell multicollector inductively coupled plasma tandem mass 
spectrometer housed at the University of Bristol. To provide chemical 
resolution of Rb+ and Sr+ during analysis104, a reaction gas mixture 
consisting of 5% SF6 (99.99% purity) in He (99.9999%) was used. The 
flow rates for the He and SF6 collision-cell gases were 2 ml min−1 and 
0.025 ml min−1, respectively. During analysis, the SrF isotopologues 
(86SrF+, 87SrF+ and 88SrF+) and atomic 85Rb+ and 88Sr+ were collected for 
each spot. The measurement of fluorinated and monoatomic ion spe-
cies was achieved by adjusting the centre mass of the sector magnetic 
field of Proteus during analysis. The position of the Faraday cup col-
lectors, integration and idle times were identical to those specified 
in ref. 103. However, in this method, 1013 Ω resistors were used in the 
collection of 87SrF+ and 86SrF+ ions to improve signal/noise ratio dur-
ing collection, and thus improve 87SrF/86SrF precision for small ion 
beam sizes105–108. The remaining isotopes, 88SrF+, 88Sr+ and 85Rb+, were 
collected in Faraday cups that were matched with 1011 Ω resistors. To 
correct for the slower response time of the 1013 Ω resistors, relative 
to 1011 Ω resistors, a conventional tau correction method was used106. 
Mean radiogenic Sr isotope ratio 87Sr/86Sr for each spot analysis was 
calculated using the measured 87SrF+/86SrF+ and 88SrF+/86SrF+ to correct 
for natural and instrumental mass-dependent fractionation by use of an 
exponential law correction. Residual inaccuracy after the exponential 
law correction was externally normalized using well-characterized 
in-house feldspar standard Te-1103, which was analysed every ~10 sample 
analyses. Sample analyses that were beyond the mean 88SrF+/86SrF+ ratio 
±2σ uncertainty measured for Te-1 were excluded due to the presence 
of an isobaric interference on 86SrF+.

Mean sample 87Rb/86Sr ratios for each spot analysis were converted 
using measured 85Rb+/88SrF+ ratios, which were externally normalized 
to analysis of NIST SRM 610 glass and a 87Rb/86Sr ratio of 2.389 (ref. 103). 
Correlation coefficients were also calculated for measured 85Rb+/88SrF+ 
and 87SrF+/86SrF+ ratios. Differential Rb–Sr elemental fractionation of 
the NIST SRM 610 glass standard and sample minerals was corrected 
for the analytical session using the Dartmoor granite (DG-1) as a sec-
ondary standard109. An 87Rb/86Sr correction factor of 0.952 ± 0.011 was 
determined from the analysis of plagioclase feldspar, K-feldspar and 
biotite in DG-1. This single correction factor was applied to all calcu-
lated sample feldspar and mica 87Rb/86Sr ratios in this study.

The Rb–Sr ages, initial radiogenic Sr isotope ratios and uncer-
tainties were all calculated using the open access software package 
IsoplotR110 using input mean calculated 87Rb/86Sr, 87Sr/86Sr ratios with 
associated 2σ uncertainties and correlation coefficient values. Total 
age uncertainties were then calculated by accounting for the relative 
uncertainty of sample isochron slope calculated in IsoplotR110 and the 
relative uncertainty of the DG-1 isochron slope used for calculation 
of the 87Rb/86Sr correction factor104. The full results are presented in 
Supplementary Table 6.

U–Th–Pb geochronology
In situ laser ablation inductively coupled plasma mass spectrometry 
(ICP-MS) U–Th–Pb split-stream geochronology was conducted at the 
Geochronology and Tracers Facility, British Geological Survey. The 
U–Th–Pb measurements were collected on a Nu Instruments Attom 
single-collector ICP-MS following similar analytical conditions and 
measurement protocols to those described previously111, with detailed 
methodology provided in the Supplementary Information. Laser con-
ditions were a 14 μm spot size, 10 Hz repetition rate, 17 s of ablation 
using a fluence of 3.1 J cm–2. The He carrier gas was split after exiting 
the laser and sent to both the single-cell ICP-MS for U–Th–Pb and an 
Agilent 7500 quadrupole ICP-MS for measurement of trace elements. 
The full analytical conditions for both instruments are provided in 
Supplementary Table 7. Matrix-matched normalization using standard 
sample bracketing was used for U–Th–Pb geochronology and trace 
elements, with data reduction for geochronology comprising the 
Attolab TRA software and in-house spreadsheet, and Iolite4112 for trace 
elements. Monazites 44069113 and Bananeira114 were used as primary 
reference materials for normalization of U–Th–Pb and trace elements, 
respectively. Internal standardization of trace elements used 31P assum-
ing 22.45 wt%. All plotting and age calculations were conducted with 
IsoplotR110 and are shown and quoted at 2σ.

Data availability
All data related to this manuscript can be found in the Supplementary 
Tables and are also available via Zenodo at https://doi.org/10.5281/
zenodo.13763104 (ref. 115). Source data are provided with this paper.

Code availability
All code used in petrological calculations is freely available to down-
load via hpxeos and thermocalc (https://hpxeosandthermocalc.org/) 
and Theriak Domino (https://titan.minpet.unibas.ch/minpet/theriak/
theruser.html, https://github.com/Theriak-Domino/theriak-domino/ 
and https://dtinkham.net/peq.html).
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Extended Data Fig. 1 | Whole rock geochemical plots showing key features of 
Laramide granites in Arizona. a) Sr/Y vs age (Ma) and b) Sr/Y vs (Eu/Eu*)/Yb for 
Laramide volcanic rocks, biotite ± hornblende-bearing and muscovite ± garnet-
bearing granites. Sr/Y > 35 and (Eu/Eu*)/Yb>2 indicate fertile porphyry magma15. 
c) CaO/Na2O-Al2O3/TiO2 plot and d) Rb/Ba–Rb/Sr plot116, both showing melting 
output of a basalt and sediment derived melt, with biotite ± hornblende-bearing 

granites overlapping with the basalt derived melt and the muscovite ±  
garnet-bearing granites overlapping with the sediment derived melt.  
e-h) Geochemical plots of the Laramide granites with NW Pacific arc rock 
compilation and experimental data33,117,118, showing the Laramide intrusions 
overlap with the compositions of crustal-derived melts33. The full suite of whole-
rock geochemical data is presented in Supplementary Table 2.
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Extended Data Fig. 2 | Isotopic mixing calculations and spatial and temporal 
Nd isotope evolution maps of the SW USA and NW Mexico. a-c) Sr–Nd isotope 
mixing calculations between average felsic Proterozoic crust, mafic Proterozoic 
crust and juvenile mantle, with relative success rate (%) plots of mixing 
calculations to produce the correct composition of the observed Laramide 

biotite ± hornblende-bearing granites (see Supplementary Material for full 
details). d-f) εNd(t) compilation maps of granitic rocks from the SW USA and 
NW Mexico binned by the intrusion U–Pb age and colour coded for εNd(t) value. 
d) 120–80 Ma, e) 80–40 Ma, f) 40–0 Ma. Locations of cratons and Proterozoic 
terrane boundaries derived from sources17,26,47.
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Extended Data Fig. 3 | Summary Geological Maps of Harcuvar, Harquahala 
and Granite Wash Mountains and cross-sections showing sample locations. 
a) Study area map and sample locations in the Harcuvar, Harquahala and 
Granite Wash Mountains metamorphic core complexes and exposures of the 
Farallon Plate at Cemetery Ridge. Data from ref. 58. b) Schematic cross section 
through the Harcuvar and Granite Wash Mountains showing the key structural 

relationships of: i) the Hercules Thrust being folded and cross-cut by the ~73 Ma 
Granite Wash Granodiorite and ~78–70 Ma Tank Pass Granite, ii) metamorphic 
grade increasing with increasing structural depth beneath the Hercules 
Thrust and iii) the extensional Bullard detachment cross-cutting the older 
compressional features.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Outcrop photographs of migmatites and melting 
textures from the Harcuvar Mountains. Outcrop photographs of migmatites 
and melting textures from the Harcuvar Mountains (GPS: 34.056997, 
-113.314824), showing plagioclase rich (trondhjemitic) leucosomes with diffuse 

boundaries in textural equilibrium with garnet, sillimanite and biotite-bearing 
melanosomes. Melt domains are locally extensive (>35% estimated rock volume) 
and pytgmatically folded and connect to form larger leucogranite bodies  
(for example Tank Pass pluton) exposed at higher structural levels.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Summary of petrographic and textural features 
in Harcuvar Mountains Migmatites. Plane polarized light (PPL), and cross 
polarized light (XPL) photomicrographs and backscattered electron (BSE) 
images of Harcuvar Mountains migmatites (TLAZ22-08). a) PPL image of garnet 
and biotite bearing melanosome adjacent to leucosome (plagioclase and quartz 
rich domain). b) High resolution PPL image of garnet with straight facies in 
equilibrium with prismatic sillimanite, plagioclase, quartz and minimal peritectic 
k-feldspar. c) PPL image of a pytgmatically folded leucosome and melanosome. 
d-e) XPL photomicrographs of coarse plagioclase rich leucosomes rimmed 
by biotite rich melanosomes. f-g) BSE images of leucosome and melanosomes 

showing the minimal amount of K-feldspar in textural equilibrium with garnet, 
plagioclase, biotite, sillimanite, quartz, magnetite. h and i) A garnet chemical 
traverse showing endmember molar proportions of pyrope (XMg) grossular 
(XCa), spessartine (XMn), and almandine (XFe). Profiles show flat homogenized 
cores with increasing spessartine content towards the outer rim indicative of 
garnet resorption, note grossular also increases at the inner rim potentially due 
to diffusion associated with garnet resorption. j and k) BSE images and electron 
dispersive spectra of Cu and Ag oxides. Full electron probe microanalysis Data in 
Supplementary Table 4.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Petrological modelling results for Harcuvar Mountains 
migmatite sample TLAZ22-08. Equilibrium phase diagrams for sample TLAZ22-
08 showing predicted assemblage fields and phase isopleths intersections in 
pressure–temperature–X(H2O) space. a) Phase diagram in pressure–temperature 
space with 7% mole H2O, showing phase boundaries and reaction topologies 
with all free water being consumed upon crossing the water saturated solidus. 
Observed peak assemblage in red text. b) Garnet isopleth compositions for 
pyrope and grossular, with polygons that overlay intersections that correspond 

to garnet core and outer rim. c) Isobaric Temperature–X(H2O) phase diagram at 
0.75 GPa, varying bulk-rock H2O content from 0.25 wt% to 6 wt% with observed 
assemblage field in red text. d) Garnet pyrope and grossular compositional 
isopleths with polygons representing observed garnet core and outer rim 
compositions. e) K-feldspar and garnet volume isopleths with polygons showing 
intersections at observed volume proportions. f) Melt volume, plagioclase 
and sillimanite volume isopleths, with polygons showing the observed phase 
proportions and leucosome proportions.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Predicted melt compositions for variable Temperature-
X(H2O) water-fluxed batch melting scenarios for Harcuvar Mountains 
migmatite sample TLAZ22-08. Petrological modelling outputs showing 
predicted melt volume, water content (wt%) in the melt and volume proportions 
of k-feldspar, plagioclase and garnet, with major element composition (wt%). 
Calculations were performed isobaric at a pressure of 0.75 GPa, varying 

temperature and X(H2O) (0.25–6 wt% H2O). Red and yellow lines mark average 
biotite ± hornblende and muscovite ± garnet-bearing granites, and red and 
yellow fields mark the observed range in biotite ± hornblende and muscovite ± 
garnet-bearing granites respectively. All geochemical data of Laramide granites 
is available in Supplementary Table 2.
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Extended Data Fig. 8 | Summary of monazite U–Th–Pb geochronological  
data from Harcuvar Mountains samples TLAZ22-08 and TLAZ22-03.  
a-b) Example monazite chemical maps showing the locations where laser analysis 
was performed, c-d) Tera-wasserburg of all monazite U–Th–Pb data before 

common lead correction (colour coded for Th/U). e-f) 206Pb/238U vs. 208Pb/232Th 
plots using common lead corrected U–Th–Pb data (colour coded for Th/U).  
Full U–Th–Pb data is in Supplementary Table 7.
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Extended Data Fig. 9 | In-situ Rb–Sr isochron plots. In-situ Rb–Sr isochron plots for mica, plagioclase and k-feldspar from samples TLAZ22-167, TLA22-03,  
TLAZ22-08, TLAZ87 and TL-CR-09. Full Results in Supplementary Table 6.
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Extended Data Fig. 10 | Summary geodynamic model for Hess plateau 
subduction and diachronous onset of slab flattening leading to water fluxed 
crustal anatexis. a-b) Global plate reconstructions of the Hess conjugate 
showing the oblique intersection with the trench at ~75–70 Ma causing 
diachronous slab-flattening towards the SE. Data from refs. 20,21,119. c) Map of 
Western USA with sequential ‘sweet-spot’ advance related to slab geometry. Data 
from refs. 3,17,23,26,47,51,52. d) Cartoon block model showing the geometric 
relationship of the Cu ‘sweetspot’ on the leading edge of the flat-slab relative to 

the conjugate Hess subduction. e) Schematic crustal temperature distribution 
for a 2-D flat-slab at the hypothesized ‘sweetspot’ based on the new pressure-
temperature data and Orocopia Schist data49–51; note the inverted isotherms on 
the trench-ward side of the ‘sweetspot’ due to continued underthrusting of a 
flat-slab causing cooling of the upper-plate. f) Schematic pressure-temperature 
phase diagram showing the decrease in granitic solidus with increasing addition 
of water. Data from ref. 61.
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