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Abstract: The impacts of degradation and deforestation on tropical forests are poorly 

understood, particularly at landscape scales. We present an extensive ecosystem analysis of the 

impacts of logging and conversion of tropical forest to oil palm from a large-scale study in 

Borneo, synthesizing responses from 82 variables categorized into four ecological levels 
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spanning a broad suite of ecosystem properties: 1) structure and environment, 2) species traits, 3)

biodiversity, and 4) ecosystem functions. Responses were highly heterogeneous and often 

complex and non-linear. Variables that were directly impacted by the physical process of timber 

extraction, such as soil structure, were sensitive to even moderate amounts of logging, whereas 

measures of biodiversity and ecosystem functioning were generally resilient to logging but more 

affected by conversion to oil palm plantation.

One-Sentence Summary:  Logging tropical forest mostly impacts structure while biodiversity 

and functions are more vulnerable to habitat conversion.

Main Text: [Main Text = 2598; Figure captions = 405; References: 46 refs in main text, 112 in 

total]

Tropical forests support biodiversity and provide ecosystem services such as stocks and 

flows of carbon, nutrients and water, but their structure and functioning are threatened by 

degradation and conversion to other land uses (1, 2). A major cause of tropical forest degradation 

is selective logging for timber which can increase vulnerability to subsequent deforestation (3–5). 

In Southeast Asia, many forests have experienced multiple rounds of selective logging, with 

some then converted to oil palm plantations (6, 7), resulting in large-scale forest losses (3.25 Mha 

in Malaysia and Indonesia between 2000 and 2011 (8)) and increased carbon emissions (4,051 

MtCO2 in the same countries over the same period (8)). Indeed, ~45% of Southeast Asian oil 

palm plantations have been established through direct clearing of forest (9).

Knowledge of the full environmental impacts of logging and forest conversion in the 

tropics to other land uses such as oil palm (the forest disturbance gradient) is limited (10–12). The
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logistical challenges of studying highly biodiverse tropical forest ecosystems means that there 

are few comprehensive assessments of the impacts on biodiversity and the multiple ecosystem 

functions and services that tropical forests provide across the full disturbance gradient at the 

landscape scale (13). Here, we undertake a comprehensive assessment of how biodiversity, 

structure, and functioning of tropical forest ecosystems are altered across a disturbance gradient 

of increasing intensity of selective logging and conversion to oil palm plantation, and examine 

the points along that gradient where changes from old-growth forest conditions are most 

apparent.

We synthesize data from 82 metrics of ecosystem properties that collectively provide a 

comprehensive assessment of environmental and ecological conditions, capturing aspects of the 

forest structure and environment, as well as measures of biodiversity and ecosystem functioning. 

Data were collected as part of a coordinated large-scale study in the Stability of Altered Forest 

Ecosystems (SAFE) Project (14) and associated sites of the Human Modified Tropical Forests 

(HMTF) programme in the Malaysian state of Sabah, Borneo (Fig. 1a), where patterns of 

deforestation are representative of other regions in Southeast Asia (15). Study sites were located 

in areas of intact and disturbed lowland dipterocarp rainforest and oil palm plantations. 

We use a replicated experimental design and standardized analyses (sample sizes ranging from 

27 to 373,968 across the 82 variables; Table S1) to quantify the impacts of selective logging and 

land-use change across different intensities of disturbance from: (1) old-growth forest (OGF), 

through (2) moderately logged (MLF) and (3) highly logged (HLF) forest, to (4) oil palm 

plantation (OP). To allow us to synthesize the effects of habitat change on the whole ecosystem, 

we focus on understanding the comprehensive impacts of changes, rather than assessing specific 

drivers affecting each metric. Logged forest sites had an average of ca. 113 m3 ha-1 of timber 
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harvested during 1978, with a second cycle of harvesting in the late 1990s to early 2000s, 

removing a further ~66 m3 ha-1 in three rounds (HLF sites) or ~37 m3 ha-1 in two rounds (MLF) 

(16). Forests along the disturbance intensity gradient were characterized by a decrease in basal 

area of mature trees, a more open canopy, fewer large trees, and a higher proportion of pioneer 

tree species (17). Measurements with airborne LiDAR showed a progressive reduction of canopy 

height and simplification of canopy structure from OGF to MLF and HLF (Fig. 1), culminating 

in a homogeneous, single low layer in oil palm (18).

CATEGORIZING VARIABLES INTO ECOLOGICAL LEVELS

The 82 response variables (Tables S1-5) detail ecosystem properties sampled in OGF and

one or more of the disturbed habitat categories. Each property was categorized into one of four 

ecological levels, building in complexity and distance from the direct impacts of logging (17). 

Although the assignment of responses to levels is partly subjective, they provide a useful 

framework for summarizing the ecosystem effects of logging and conversion, as each higher 

level generally captures features of properties at lower levels. Level 1 (Structure and 

Environment) comprised variables related to soil properties, microclimate, and forest structure 

that are directly affected by the physical processes of timber extraction and oil palm cultivation. 

Level 2 (Tree traits) constituted the traits of the remaining tree community, reflecting the change 

in plant species composition caused by selective logging, as well as subsequent colonization and 

growth of early successional species. Tree traits were grouped according to whether they 

contributed to structural stability and defense (structural traits), leaf photosynthetic potential and 

leaf longevity (photosynthesis traits), or foliar concentrations of key mineral nutrients (nutrient 

traits). Level 3 (Biodiversity) quantified below- and above-ground multi-trophic and functional 
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biodiversity, from assemblages of soil microorganisms to consumers in higher trophic levels, that

strongly depend on the abiotic and structural conditions described in level 1, and the tree 

community diversity and composition in level 2. Level 4 (Functioning) corresponded to 

ecosystem functions, such as decomposition, which, within a given environment, are largely 

defined by the composition of communities described in levels 2 and 3.

To allow comparison of multiple responses on a common scale, we transformed the raw 

data if necessary to improve normality and then standardized all variables as z-scores (mean-

centering each variable by subtracting its mean value and dividing by its standard deviation) 

before analyzing them using linear mixed-effects models to assess effects across the disturbance 

gradient (the four disturbance categories: OGF, MLF, HLF and OP), while taking account of the 

spatial hierarchical structure of our datasets (Fig. S1). To provide a comprehensive assessment, 

where possible, datasets were analyzed across multiple facets and spatial scales (Table S1). For 

example, we calculated three measures of the effective number of species for some biodiversity 

datasets (19): effort-standardized species richness (Hill number q = 0), Shannon diversity (q = 1), 

and Simpson’s diversity (q = 2). Similarly, we analyzed the species richness of some groups at 

the finest spatial grain at which those data were collected, but also aggregated data to coarser 

grain sizes. Although positive or negative responses for some variables have clear desirable or 

undesirable consequences, for others such as β-diversity, there is no obvious value judgment. We

therefore focus on examining whether each variable changed from values recorded within OGF, 

and where along the gradient change occurred.
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STRONG BUT HETEROGENEOUS RESPONSES TO DISTURBANCE ACROSS 

ECOLOGICAL LEVELS

Overall, 60 of the 82 response variables showed statistically significant differences across

the disturbance intensity gradient (Likelihood Ratio Tests (LRT) against a null model with no 

disturbance factor; Table S6). This was far greater than the expected level of false positives (~4 

out of 82 with a significance level of p < 0.05) in the absence of any effect of disturbance (Fig. 2,

solid lines).This result was consistent when controlling for dataset identity through 

randomization (84.27 % of variables significant) (17). The proportion of significant results and 

the degree of variation explained by disturbance intensity (the mean marginal R2 from linear 

mixed-effects models for group; Table S6), varied with the ecological level of the response 

variable. Generally, the responses that showed the strongest effect of disturbance were those 

most directly affected by logging (18) — level 1, environment and structure (mean marginal R2 ± 

s.e. for datasets with OP included = 0.210 ± 0.034, 9 out of 12 variables LRT p < 0.05; OP 

excluded = 0.228 ± 0.068, all 4 variables LRT p < 0.05) and level 2, aggregated tree traits (first 

axis values from a PCA; OP excluded = 0.253 ± 0.029, all 3 variables LRT p < 0.05). 

Biodiversity measures (level 3) showed stronger responses to disturbance intensity in variables 

where oil palm was sampled than those measured in forest habitats only (OP included = 0.232 ± 

0.023, 11 out of 13 variables LRT p < 0.05; OP excluded = 0.113 ± 0.021, 11 out of 12 variables 

LRT p < 0.05). Ecosystem functioning variables (level 4) showed weaker responses to 

disturbance intensity overall, with little change across the gradient for some variables (OP 

included = 0.081 ±0.021, 2 out of 4 variables LRT p < 0.05; OP excluded = 0.087 ± 0.023, 3 out 

of 3 variables LRT p < 0.05) (20).
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There was high variability in the observed patterns of responses to the disturbance 

gradient (Fig. 2). While some variables showed simple, monotonic responses (e.g., estimates of 

biomass carbon stocks decreased with disturbance, while frequency of photosynthetic traits 

associated with earlier successional species increased), other variables responded in a more 

complex manner (e.g., stem respiration increased in MLF but decreased to levels lower than in 

OGF in OP). Some patterns were also scale-dependent. For example, bat species richness 

decreased linearly across the disturbance intensity gradient at fine scales, but was highest in 

MLF at coarse scales, perhaps driven by an increase in community turnover and influxes of 

disturbance-adapted species in logged forest (16). Overall, different impacts of land-use change 

were heterogeneous, often non-linear and frequently not strongly correlated. Therefore, the 

impacts of logging and conversion defy simple interpretations, most likely due to a mixture of 

complex interactions, feedbacks and system redundancy.

RESPONSES ALONG THE DISTURBANCE GRADIENT

To investigate the relative robustness of the different variables to disturbance intensity, 

we used sequential statistical contrasts to determine the stage along the disturbance gradient at 

which each variable was most affected: the initial logging of old-growth forest, further rounds of 

logging, or conversion to oil palm. Variables showed a wide range of responses, but with some 

ecological levels responding in broadly similar ways. Structural and environmental components 

of the forest (level 1) were generally more sensitive to a moderate degree of logging (Figs. 3, 

S2). This was especially so for variables directly altered by the logging process itself, such as 

soil bulk density that was compacted by machinery (21), and above-ground carbon stock that was

reduced by timber removal (22–24). This indicates that impacts on variables at level 1 are likely 
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due to the direct effects of the timber removal and the conversion process, even several decades 

after they have taken place. Traits of the mature tree community (level 2) exhibit major changes 

consistent with the effects of selective logging (Fig. S3) (18, 25), which actively targets tree 

species with the most commercially desirable characteristics. Removing individuals of these 

species effectively reduces the incidence of traits such as structural features that aid longevity 

(25), while increasing the incidence of traits such as high photosynthetic rates and rapid growth 

(22), which are associated with species of low commercial value and early successional species 

that colonize open areas following logging.

In contrast, biodiversity components (level 3) were mostly altered by the conversion of 

logged forest to oil palm (Figs. 3, S4) (6, 10, 26). This was particularly true of taxonomic groups 

at higher trophic levels, such as birds (10, 23), where increased mobility and behavioral plasticity 

may buffer their sensitivity to change until conditions become drastically altered (27). In the 

highly disturbed conditions of oil palm plantations, major changes in plant food resources, 

reduced structural complexity, and shifts to hotter, drier, and more variable microclimatic 

conditions, likely resulted in the reduced abundance and diversity of many taxa, and a 

community composed of disturbance-tolerant species (28). The diversity of ectothermic groups, 

such as dung beetles, which can be particularly responsive to changes in microclimate (29), 

showed a slightly increased sensitivity to the initial impacts of logging relative to endothermic 

taxa, such as birds and bats. The richness of soil microorganisms showed the greatest sensitivity 

to logging, although there were both negative (ectomycorrhizal fungi (30, 31)) and positive 

(bacteria (32)) responses to disturbance. The impact on ectomycorrhizal fungi is likely to be 

particularly important for conservation and restoration perspectives, given their role in 

supporting canopy-dominant dipterocarps (33).
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Finally, ecosystem functions (level 4; Figs. 3, S4) showed the weakest and most variable 

patterns (marginal R2 values shown by high transparency of bars in Fig. 3, Table S6). For 

example, rates of dung removal were maintained in oil palm plantations, even though dung 

beetle richness and abundance decreased significantly with disturbance (34), with a small number

of disturbance-tolerant species increasing their contribution to dung removal in disturbed habitats

(35). Such functional redundancy and compensation may confer greater resilience (here, the 

ability to both resist and recover from change) of ecosystem functions to disturbance, through 

mechanisms such as the “insurance hypothesis” (36) or “portfolio effect” (37). Indeed, previous 

research at these study sites found that, while certain taxonomic groups that dominated litter 

decomposition and seed and invertebrate predation in old-growth forests declined along the 

logging gradient, different taxonomic groups compensated by increasing their contribution, and 

so maintained those ecosystem functions at similar levels (27). The relative stability of ecosystem

functions may also be related to the large spatial extent and connectivity of the habitat blocks 

investigated, which can enhance the relationship between biodiversity and ecosystem functions 

and services (38).

IMPLICATIONS FOR TROPICAL FOREST CONSERVATION

Our findings increase understanding of the ecosystem-wide impacts of habitat change in 

the tropics, with implications for land-use management and restoration. Although our large-scale 

study shares the standard limitations of the space-for-time approach to observational data, by 

adopting a unified framework that considers all measured variables, we reveal that selective 

logging and forest conversion to oil palm plantation have different environmental impacts, and 

that these vary depending on which aspects of the ecosystem are considered. Even a single type 
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of land use can have a range of impacts when the environment is assessed comprehensively to 

encompass its abiotic and biotic structure, biological diversity, and the multiple ecosystem 

functions and services that it provides. This emphasizes the importance of considering a broad 

range of ecological properties when making land-management, conservation, and research 

decisions.

Our finding that factors associated with forest structure and environment (level 1) are 

highly sensitive to disturbance shows that even low intensity logging will result in changes in 

these characteristics, and highlights the importance of maintaining areas of intact, undisturbed 

forest. The large negative effects on biodiversity when forest is converted to oil palm are 

consistent with findings from other studies in the region (23, 26), and confirm the value of 

disturbed forest for the maintenance of high overall biodiversity at the landscape scale (39). 

Therefore, while preserving areas of remaining old growth forests is important for conserving 

unique aspects of their biodiversity and functioning, protecting logged forest can also contribute 

to maintaining biodiversity and ecosystem functioning relative to landscapes with higher levels 

of conversion to agriculture. This validates an increasing focus within tropical agricultural 

systems of maintaining forest in sensitive areas within plantations, such as steep slopes and river 

margins (e.g., as highlighted by the Roundtable on Sustainable Palm Oil (RSPO) (40)), where it 

can support both biodiversity (41) and ecosystem processes (42). The reduction in some taxa, such

as birds and ectomycorrhizal fungi, and some ecosystem functions, such as mycelial production, 

within oil palm also has implications for crop management, and could affect nutrient cycling and 

predator control (20).

Understanding at which points on the deforestation gradient biodiversity and associated 

ecosystem functions are most affected is important for identifying priority habitats for 
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conservation and restoration (39, 43, 44), and can aid decision-making in these complex, multi-use

landscapes (45, 46). However, it is important to consider multiple facets of these tropical 

environments in order to avoid the risk of unintended consequences possible from more narrow 

assessments. This study provides an initial comprehensive synthesis and overview of the 

responses of a tropical forest ecosystem to degradation and deforestation. However, despite the 

breadth of ecosystem properties investigated, this study represents only a single area and 

ecosystem type: lowland tropical forest. Future research should establish whether these responses

are consistent across other tropical landscapes and in relation to the wider range of land-use 

changes seen across the global tropics.
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Fig. 1. Study sites and disturbance categories. (A) Location of the study sites in Sabah, 

Malaysian Borneo. (B) Canopy height profiles of the study systems for representative 1 ha plots 

(from left to right): old-growth forest (OGF), moderately logged forest (MLF), highly logged 

forest (HLF), and oil palm plantation (OP). Backgrounds show the maximum canopy height for 

each pixel, and inset graphs show the plant area density (mean ± 95% C.I.) of the vertical forest 

structure estimated through LiDAR.
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Fig. 2. Changes in different categories of the measured response variables across the 

disturbance gradient when old-growth forest (OGF) is moderately logged (MLF), highly 

logged (HLF) and converted to oil palm plantation (OP). Points show z-score standardized 

means (± 95% C.I.). Sample sizes ranged from 27 to 373,968 depending on the dataset. Line type

indicates whether a model with disturbance was significantly different from a null model with no

disturbance (solid lines = significant, p < 0.05; dashed lines = non-significant). Tree traits (level 

2) were analyzed individually (Fig. S3) as well as in combination via the first axis of a PCA (red 

backgrounds).

345

350

50



Fig. 3. Impacts of different degrees and types of disturbance when old-growth forest (OGF)

is moderately logged (MLF), highly logged (HLF) and converted to oil palm plantation 

(OP). The overall effect of disturbance was partitioned into a) three (for datasets that did sample 

in oil palm), or b) two (for datasets that did not sample in oil palm) or single degree of freedom 

contrasts that compare: 1) the effect of logging old-growth forest (old-growth vs logged forest: 

OGF vs MLF-HLF; green bars); 2) further logging of moderately logged forest (MLF vs HLF; 

orange bars); and 3) converting forest to oil palm plantation (oil palm vs the combined forest 

types: OP vs OG-MLF-HLF; blue bars). Sample sizes ranged from 27 to 373,968 depending on 

the dataset. The transparency for each variable is inversely related to its explanatory power (the 

marginal R2 from the linear mixed-effects model). Response variables are categorized into 

ecological levels: those related to the forest structure and environment (level 1; blue text); those 
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related to biodiversity (level 3; dark red text); and those related to ecosystem functioning (level 

4; dark green text), and are ordered by the size of the effect of logging OGF (variables at the 

bottom are mostly affected when OGF is logged, whereas those at the top are mostly affected 

when forest is converted to oil palm).365
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