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Abstract Sea level variations in the coastal zone can differ significantly from those in the open ocean and
can be highly spatiotemporally coherent in the alongshore direction. Yet, where and how coastal sea levels
exhibit variations that emerge as persistent and recurrent patterns along the world's coastlines remain poorly
understood. Here, we use a Bayesian mixture model to identify large‐scale patterns of coherent modes of
monthly coastal sea level variations from coastal altimetry and tide gauge data. We determine nine clusters of
coherent coastal sea level variability that explain a majority of the monthly variance measured by tide gauges
(1993–2020). The analysis of along track altimetry data enables us to detect several additional clusters in
ungauged regions, such as the Indian Ocean or around the South Atlantic basin, which have so far been poorly
described. Although some clusters (e.g., at the eastern boundary of the Pacific, the western tropical Pacific, and
the marginal and semi‐enclosed seas) are highly correlated with climate modes, other clusters share very little
variability with the considered climate modes at the monthly timescale. Knowledge of these coherent regions
thus motivates and enables further investigations on the impacts of local and remote forcing on coastal sea level
variability, and the extent to which coastal sea level variability is decoupled from the adjacent deep ocean.

Plain Language Summary Coastal sea level variability can differ substantially from variability in
the open ocean. This decoupling is mainly due to the presence of the continental slope, shallow waters, and
coastlines. Coastal sea level variations are often highly coherent over the continental shelf, indicating the
existence of persistent and recurrent spatiotemporal variations along the world's coastlines. However, the
geographical distribution of these “coherent modes” has not been objectively investigated on a global scale, as
previous studies have often relied on either sparsely distributed tide gauges or gridded altimetry and have not yet
incorporated global and dedicated coastal altimetry products. Therefore, we use a Bayesian mixture model to
identify large‐scale patterns of coherent modes of monthly coastal sea level variations and complement the
sparse tide gauge data with coastal altimetry. We show that much of the observed variability can be described by
a relatively small number of cluster time series and thus be attributed to a set of common drivers. This
knowledge of the predominant modes of variability is essential for future investigations aimed at better
understanding the underlying drivers, the (de‐)coupling of coastal and open ocean variability, and the associated
implications for estimates of past and future coastal sea level variability.

1. Introduction
Sea level varies over a wide range of spatiotemporal scales reflecting the superposition of large‐scale processes
such as ocean mass changes due to land‐ice melt, global mean thermosteric changes induced by global ocean
temperature variations, and changes in the ocean circulation (Frederikse et al., 2019, 2020; Gregory et al., 2019;
Hay et al., 2015; C. W. Hughes et al., 2018). In the open ocean, a large fraction of interannual to decadal sea level
variability is linked to climate modes, with distinct sea level spatiotemporal structures in the global oceans (Han
et al., 2017; Stammer et al., 2013; J. Wang et al., 2021). However, at the coast, sea level variability can differ
substantially from variability in the open ocean and can be associated with different spatiotemporal characteristics
(e.g., C. W. Hughes & Williams, 2010, C. W. Hughes et al., 2018). Such decoupling is due to the presence of the
continental slope, shallow waters, and lateral boundaries (i.e., the coastlines), which mediate the transmission of
open‐ocean signals to the coast and give rise to a variety of coastal processes with short across‐shelf length scales
(Calafat et al., 2018; Cazenave et al., 2022; C. W. Hughes et al., 2018; C. Hughes et al., 2019; Woodworth
et al., 2019).
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Although coastal sea level variations can be decoupled from open‐ocean variability, they are often highly
coherent over the continental shelf, as evidenced by highly correlated signals up to several thousands of kilo-
meters along the shore in observations from tide gauges, satellite altimetry, and ocean models (Calafat et al., 2013,
2018; Enfield & Allen, 1980, Hermann et al., 2009; Hogarth et al., 2020; C. Hughes &Meredith, 2006; C. Hughes
et al., 2019; P. R. Thompson & Merrifield, 2014; P. R. Thompson et al., 2014). Coherent clusters of sea level
variability can be found in many different regions of the world, such as along the northeast (NE) US coast, at the
coasts of Western Europe, or Western Australia as illustrated by the highly correlated monthly tide gauge ob-
servations in Figure 1 (see also Papadopoulos and Tsimplis (2006)).

It is widely recognized that this alongshore coherence in sea level is largely established by the communication of
signals along the coast by coastally trapped waves, which propagate cyclonically around the ocean basins on the
continental shelf (i.e., away from the equator at the eastern boundary and toward the equator along the western
boundary (C. Hughes et al., 2019)). Based on data from 60 tide gauge stations, Enfield and Allen (1980) identified
alongshore wind‐driven and poleward propagating signals, causing coherent sea level variations over up to
12,000 km along the eastern boundary of the Pacific. Longshore wind variations and the induced coastal wave
propagation were also argued to permit highly coherent sea level variations along the eastern boundary of the
North Atlantic and the Norwegian Sea (Calafat et al., 2012, 2013), which was also supported by subsequent
studies (Chafik et al., 2019; Frederikse, Riva, Kleinherenbrink, et al., 2016; Frederikse, Riva, Slobbe, et al., 2016;
Hermans et al., 2020; Hogarth et al., 2020). Several other studies have reported high coherence in sea level
variations along the NE‐US coast (see also Figure 1a) in observational and numerical studies, discussing possible
influences of local wind or remote buoyancy forcing (Andres et al., 2013; Frederikse et al., 2017; Little
et al., 2021; Piecuch et al., 2016; K. R. Thompson, 1986; O. Wang et al., 2022).

Because numerous other regions of coherent sea level variability have been identified (Calafat et al., 2018;
Papadopoulos & Tsimplis, 2006; Piecuch, 2023; Steinberg et al., 2024), there are indications that coastal sea level
exhibits variations that emerge as persistent and recurrent patterns along the world's coastlines. However, pre-
vious approaches aimed at identifying such clusters were either based on often manually selected groups of
regionally distributed tide gauges (Dangendorf et al., 2021; Little et al., 2021; Papadopoulos & Tsimplis, 2006;
Piecuch et al., 2016) or gridded altimetry (Camargo et al., 2023; P. R. Thompson &Merrifield, 2014) and have not
yet included global and dedicated coastal altimetry products. Therefore, the geographic distribution of these
“coherent modes,” manifested as spatiotemporal clusters of coastal sea level variability, the degree of intra‐ and
intercluster similarity, and the sensitivity to the timescale (i.e., monthly, annual, or interannual time scales) has
not been objectively investigated on a global scale.

Robust identification and characterization of these clusters can help to understand whether sea level variability
within a larger coastal region can potentially be linked to a set of common drivers and whether these are related
to large‐scale climate variability or have different origins. This knowledge can also play a key role in current
efforts to understand the extent to which changes in the open ocean affect coastal sea level (Calafat et al., 2013;
Cazenave et al., 2022; Intergovernmental Panel on Climate Change (IPCC), 2023; Little et al., 2021; Steinberg
et al., 2024; Woodworth et al., 2019) and thus also enable a better understanding of past global mean sea level
changes. This is because historic changes are often reconstructed by identifying groups of highly correlated tide
gauges or by reconstructing open ocean variations (often represented by empirical orthogonal functions
(EOFs)) from coastal tide gauge observations (Church & White, 2011; Dangendorf et al., 2019; Frederikse
et al., 2020; Jevrejeva et al., 2006; P. R. Thompson & Merrifield, 2014). Finally, a better understanding of the
drivers and spatiotemporal scales of these modes can also support the assessment of future coastal sea level
changes and their uncertainties in projections.

A major obstacle to the characterization of coastal sea level changes is the inhomogeneous global coverage of tide
gauges, which has hampered analyses in many regions, such as South America, Africa, or Asia. These obser-
vational gaps are now being closed due to the steady improvement of altimetry data near the coast (Cazenave
et al., 2022). Due to steady improvements in the retracking of coastal altimetry data as well as coastal adjustments
and corrections over the last decades (Cazenave et al., 2022; Fernandes & Lázaro, 2016; Passaro et al., 2014), we
are now able to complement the partially sparse tide gauge network and resolve coastal sea level dynamics on a
global scale. The inclusion of the more uniformly distributed altimetry data (as opposed to the heterogeneously
distributed tide gauge data) is also important for the interpretation of certain clusters when they are mainly
detected due to a high local density of tide gauges. Here, we provide a systematic global assessment of coastal sea
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level variability by extending the tide gauge network with coastal satellite altimetry. We seek to determine if
where and how coastal sea levels exhibit variations, which emerge as persistent and recurrent pattern along the
world's coastlines. Further, we investigate whether coastal sea level, similar to climate modes, exhibits spatially
stationary modes of variation. We address the following research questions:

⇒ Over what regions are coastal sea level variations spatially coherent and do the geometries of these re-
gions vary as a function of time?

Figure 1. Time series of monthly detrended and deseasoned sea level anomaly observations from tide gauges on the (a) southwestern European coast, (b) the northeast
US coast, and (c) western Australia. The maps show the correlation between all‐time series and an average of all tide gauge time series except for the map in (a), where
the correlations are computed with an average of all tide gauge time series between Malaga and Portsmouth. The numbers link the time series to the tide gauges shown
on the map.
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⇒ Does the more complete and spatially homogeneous coverage of altimetry permit the identification of
clusters, which are not apparent in the tide gauge data?

⇒ To what extent are these regions of coherent sea level variations related to large‐scale climate modes on
monthly time scales?

Previous approaches to determine clusters of coherent sea level variations often involved, for example, the
analysis of sorted cross‐correlation matrices (Calafat et al., 2018; Dangendorf et al., 2021; Little et al., 2021;
Piecuch et al., 2016), agglomerative hierarchical cluster analysis (P. R. Thompson & Merrifield, 2014), EOFs
(Papadopoulos & Tsimplis, 2006), or self‐organizing maps (Camargo et al., 2023; Hardman‐Mountford
et al., 2003; Liu et al., 2016). In this study, we use Bayesian mixture models (see Section 2.3) to probabilisti-
cally infer the cluster membership of globally distributed monthly tide gauge and altimetry observations. This
approach has advantages over the correlation‐based (or the EOF) approach in that it provides a rigorous un-
certainty quantification of the estimated components (cluster time series) and allows the incorporation of several
model properties. These include cluster time series properties (i.e., the implementation of autocorrelated pro-
cesses) as well as cluster‐dependent noise amplitudes, that is, of the variations of the observations around a cluster
mean time series. Furthermore, the detected modes do not necessarily have to be orthogonal to each other (as in
the EOF analysis). As opposed to EOF analysis, where the linear combination of a set of functions explains the
variance of a data set, the Bayesian mixture model is used to identify a set of time series, where each time series
best represents the variability of a cluster of stations (e.g., the tide gauges). This is particularly useful for iden-
tifying regionally separated clusters.

In Sections 3.1, 3.2, and 3.3, we investigate the global pattern of coherent modes of coastal sea level variability
using tide gauges and coastal altimetry. We show that a large fraction of the coastal sea level variability can be
described by a relatively small set of time series, which supports the existence of common modes along the
world's coastline. In Section 3.4, we investigate the influence of timescale on the detected clusters. We explore
how these coastal modes relate to large‐scale climate modes in Section 3.5.

2. Data and Methods
2.1. Sea Level Observations From Altimetry and Tide Gauge Data

To provide observations at coastlines, where no tide gauge data are available, we use dedicated coastal 1‐Hz
along‐track altimetry data of the missions Jason 1–Jason 3 from Schwatke et al. (2023). The data cover a
period of 20 years (January 2002–December 2021). All satellite orbits are referenced to the ITRF2014 reference
frame (Altamimi et al., 2016). To compute the sea surface heights (SSHs) and sea level anomalies (SLAs), we
apply the range adjustments and corrections as listed in Table 1.

The systematic differences between the different missions are reduced by the global multi‐mission crossover
analysis (MMXO) (Bosch et al., 2014; Bosch & Savcenko, 2007). To compute the SSH time series, we map the

Table 1
Applied Models and Geophysical Corrections for Estimating Sea Surface Heights

Parameter Model/Method Reference

Range and Sea State Bias ALES Passaro et al. (2014, 2018)

Inverse barometer DAC‐ERAa, DAC Carrère et al. (2016), Carrère and Lyard (2003)

Wet troposphere GPD+a, VMF3 Fernandes and Lázaro (2016), Landskron and
Böhm (2018a, 2018b)

Dry troposphere VMF3 Landskron and Böhm (2018a, 2018b)

Ionosphere NIC09 Scharroo and Smith (2010)

Ocean and Load tide FES2014 Carrèreet al. (2015)

Solid Earth and Pole tide IERS 2010 Petit and Luzum (2010)

Mean Sea surface DTU18MSS Andersen et al. (2018)

Radial errors MMXO Bosch et al. (2014)
aIf available.
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altimetry records on the 1‐Hz nominal tracks consistent with the CTOH nominal paths (Center for Topographic
studies of the Ocean and Hydrosphere, www.ctoh.legos.obs‐mip.fr) with nearest neighbor interpolation. We also
apply an outlier check to reject extreme values in the along track data. Outliers are detected if (a) the SSH values
are greater than 2 m (after subtracting the mean sea surface), (b) the absolute difference of the data and its running
median (centered, over 20 points along the track) is greater than 12 cm, and if (c) the difference of consecutive
points (along the track) exceeds 8 cm (see also Oelsmann et al. (2021)). Because we compare the data with
monthly tide gauge (TG) observations, we compute monthly averages of the SSH data (with an original temporal
resolution of 10 days).

To estimate clusters of coastal sea level variability from the altimetry observations, we create a time series at the
intersections of the TOPEX/Poseidon nominal tracks with the coastline. At every track, we average the 1‐Hz
altimetry data within 15 km to the coast, resulting in a set of 1,497 virtual stations (similar to Cazenave
et al. (2022)). Here, the chosen distance of 15 km represents a trade‐off between being very close to the coast and
ensuring the robustness of the coastal averages, as altimetry observations very close to the coast could lead to
spurious signals in the coastal averaged time series. Although previous studies have examined signals much closer
to the coast (i.e., in the last 3 km), we find evidence that the monthly variations are coherent on much larger spatial
scales (in the across‐shelf direction) as in more than 98% of the cases (virtual stations) the across‐shelf correlation
decay‐scales are larger than 20 km.

Next to the altimetry data, we use 634 tide gauge time series (covering January 1993–December 2020) from
PSMSL (Permanent Service for Mean Sea Level, https://www.psmsl.org/, Holgate et al. (2013)). The monthly
data are adjusted for the inverse barometer effect based on sea‐level pressure data from the NCEP/NCAR
reanalysis (Kalnay et al., 1996). For the clustering and correlation analyses, we deseason, detrend, and demean the
coastal altimetry and tide gauge data (i.e., the annual and semiannual signals and trends (over the full period) are
estimated through ordinary least squares). Thus, for these analyses, we primarily focus on coherence on monthly
timescales and exclude changes on longer timescales (contributions from vertical land motion, etc.).

2.2. Climate Mode Indices

The northern hemispheric climate indices (North Atlantic Oscillation (NAO), the East Atlantic Pattern (EA), the
Pacific North American Pattern (PNA), the East Atlantic/West Russia Pattern (EA/WR), the Scandinavia Pattern
(SCA)), are obtained from https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml. The El Niño‐
Southern Oscillation (ENSO) index is obtained from https://psl.noaa.gov/enso/mei/data/meiv2.data, the Arctic
Oscillation (AO) from https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml, the
Pacific Decadal Oscillation (PDO) index from https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.
pdo.dat, the Indian Ocean Dipole (IOD) from https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.
data. We use the climate indices ENSO, NAO, AO, PDO, PNA, and IOD, because they are among the most
prominent modes in the different basins and have been previously analyzed in the context of coastal sea level
variability (Han et al., 2019; Royston et al., 2022; J. Wang et al., 2021) and also include EA, EA/WR, and SCA.
All climate mode time series are detrended and deseasoned as the other tide gauge and altimetry data.

2.3. Bayesian Gaussian Mixture Models

We use a Gaussian mixture model to cluster the tide gauge stations into groups of coherent variability (e.g.,
Mclachlan &Basford, 1988; McLachlan & Peel, 2000). The samemodel is used to cluster the virtual stations from
altimetry; hence in the following, when we refer to tide gauge stations, this also applies to virtual stations. To lay
the basis for the formulation of the mixture model, we start by assuming that any given tide gauge record can be
drawn from one of K normal distributions, each one with its own location μt,k and scale σk, for k = 1,⋯ ,K and
t = 1,⋯ ,T, where T is the number of months spanned by the tide gauge observations. In other terms, we assume
that there are K regions or clusters of coherent sea level variability, and each tide gauge record belongs to one of
such regions. The locations μt,k are the latent time series of coherent sea level variability in each cluster (unknown
and to be estimated), whereas the scales σk are a measure of the amount of variation with respect to μt,k across tide
gauge records in each cluster due to small‐scale variability and observational errors (also unknown and to be
estimated). The number of clusters K needs to be specified a priori. We test a different number of clusters as
explained later in this section.
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The way to implement such a model is to express the likelihood as a mixture of normal distributions. Mixture
models are typically parameterized in terms of a categorical variable zn ∈ 1,⋯ ,K for n = 1,⋯ ,N, where N is
the total number of tide gauges stations. The assignment zn indicates which cluster (i.e., mixture component) the
n‐th tide gauge station belongs to and it is distributed according to a categorical distribution:

zn ∼ categorical( p) (1)

where p = (p1,⋯ ,pK) is a vector of event probabilities with pk > 0 and∑K
k=1pk = 1. The quantity pk indicates

the probability with which the k‐th mixture component occurs, and thus we will refer to the pk’s as the mixture
proportions. If we now let Yt,n be the sea level at month t as measured by the n‐th tide gauge, then the mixture
likelihood is:

Yt,n ∼ normal(μt,zn,σz
2
n) (2)

In practice, the discrete parameters zn are challenging to estimate. Hence, to facilitate inference, we marginalize
these parameters out. After this marginalization, the mixture likelihood can be written as a linear combination of
the mixture components:

Yt,n =∑
K

k=1
pk (μt,k + et,k) (3)

where et,k are assumed to be i.i.d. (independent and identically distributed) normal random variables
et,k ∼iidnormal(0,σ2k) . Note that, because pk > 0 and∑K

k=1pk = 1, the linear combination expressed by Equation 3
is, in fact, a convex combination.

Here, we adopt a Bayesian approach to inference, which means that the mixture likelihood needs to be supple-
mented with a prior distribution to form the posterior distribution, as explained in the following. The model is
specified as a Bayesian hierarchical model with three levels: (a) a probability model that describes the distribution
of the sea‐level observations conditional on the latent process μt,k and some parameters (data model); (b) a
probability model that describes the temporal evolution of μt,k conditional on a set of parameters (process model);
and (c) a prior distribution that describes the prior belief about the model parameters. Inferences are made by
drawing samples from the posterior distribution of the processes and parameters given the observations, which is
proportional to the product of the three probability models outlined above. Next, we describe the three levels of
the hierarchical model.

The data model is given by Equation 3. In the process model, the locations of the mixture normal distributions,
μt,k, are assumed to follow a second‐order autoregressive process (AR2):

μt,k = ϕ1,kμt− 1,k + ϕ2,kμt− 2,k + vt,k (4)

where ϕ1,k and ϕ2,k are autoregressive coefficients and vt,k are i.i.d. normal random variables vt,k ∼iidN (0,τ2k),
where τk is a scale parameter (to be estimated) that effectively controls the magnitude of the variability of the time
series in each cluster. The initial values μ0,k are modeled in the parameter layer of the Bayesian mixture model by
placing a prior distribution on them. Note that, although more complex time series models could be used, we use
here the AR2 model, because it describes the data sufficiently well (see Section 3.1).

Finally, the parameter layer contains six unknown parameters (pk, ϕ1,k, ϕ2,k, σk, τk, and μ0,k) on which we place the
following prior distributions. The mixing proportions are constrained to the unit simplex (i.e., pk ≥ 0 and
∑
K
k=1pk = 1) as they are probabilities and thus they are assigned a Dirichlet distribution: pk ∼ Dirichlet(K). The

scale parameters σk and τk are given half‐normal distributions (units in meters): σk ∼ half − normal(0,1.5) and
τk ∼ half − normal(0,1.5). For the initial state of the AR2 process, we assume a normal distribution:
μ0,k ∼ normal(0,3). Finally, in assigning priors to the autoregressive coefficients, we should enforce the
following stationarity conditions: ϕ2,k < 1 and ϕ2,k − 1<ϕ1,k < 1 − ϕ2,k < 1. In addition to these conditions, it is
important to note that, because the component distributions of the mixture model are identical (i.e., they are all
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normal distributions), it is not possible to distinguish which parameters of the model are associated with each
mixture component. To break this label degeneracy, we introduce an intermediate parameter
ϕi ∼ Dirichlet(K + 1) and then assume that ϕ2,k = 2∑K

i=1ϕi − 1. This formulation ensures that |ϕ2,k|< 1 and,
at the same time, breaks the label degeneracy by forcing the ϕ2,k to be ordered. For the other autoregressive
coefficient, we assume a uniform distribution: ϕ1,k ∼ unif orm(ϕ2,k − 1,1 − ϕ2,k) .

The posterior probability Pr that the tide gauge TGn belongs to the mixture component k can be computed as

Pr(TGn ∈ k) =
pknormal(Yn∣μk,σ2k)

A
(5)

where Yn = (Y1,n,… ,YT,n), μk = (μ1,k,… ,μT,k) , and A is a normalization constant that can be computed by
summing over all of the K mixture components. Membership for each tide gauge station is assigned to the cluster
that gives the maximum posterior probability.

The Bayesian mixture model is fitted using the No‐U‐Turn Sampler (NUTS) as implemented by the Numpyro
probabilistic programming language (Phan et al., 2019). We run NUTS with four chains of 1,250 iterations each
(warm‐up = 1,000) for a total of 5,000 post‐warm‐up draws.

We determine clusters of coherent sea level variations based on monthly tide gauge observations and coastal
altimetry data using the Gaussian mixture model (described in Section 2.3). Prior to this analysis and in order to
define an optimal number of clusters used for each data set, we iteratively estimate different numbers of clusters
for the altimetry (K = 3,… ,34) and tide gauge data set (K = 1,… ,20, see Figure S1 in Supporting Informa-
tion S1). Based on the dependency between the average variance explained and different numbers of clusters K,
we select the optimal number of clusters at a threshold where increasing the number of clusters does not sub-
stantially improve the explained variance anymore (an approach also referred to as the “elbow method”
(Thorndike, 1953)). Accordingly, we use 20 clusters for the tide gauge data and for the altimetry data set. We sort
the different cluster labels k such that the altimetry and tide gauge clusters are comparable. Note that although the
number of clusters selected is still somewhat subjective and may differ when determined by other methods, we do
not expect substantial differences for other numbers, as we have found largely consistent geographic distributions
of clusters, for example, for the tide gauge data set for K = 12,… ,20 (see also Figure S1 in Supporting
Information S1).

3. Results
3.1. Regional Cluster of Coherent Sea Level Variations

The geographical distribution of the different detected clusters (based on monthly data) are shown in Figures 2a
and 2b and selected cluster time series (i.e., the posterior means) are provided in Figure 4. Both, the tide gauge
clusters and the altimetry‐based clusters form regionally confined groups. This underlines the inherent regional
coherence of coastal sea level, as such a regional confinement is not enforced within the model itself (distances
between stations are unknown to the model). Overall, there is a high correlation between the estimated tide gauge
cluster time series μt,k and most of the tide gauge time series within the respective clusters (Figures 2c and 4b).
There are nine tide gauge (Figure 4) clusters that show an average correlation of 0.82 (i.e., the average of the
averaged correlations between the cluster time series and the associated tide gauge time series). The corre-
sponding altimetry‐based clusters have a lower correlation of 0.6. Note that we discuss differences between the
data sets and poorly correlated clusters in more detail in Section 3.2.

We identify seven clusters, where the altimetry‐based clusters coincide with those derived from tide gauge ob-
servations and have a correlation of at least 0.5 with each other (as shown in Figure 3). These detected clusters
indicate the major regions of coherent sea level variations and include the NW‐US coast (e.g., Enfield &
Allen, 1980; Han et al., 2019; Woodworth et al., 2019), the Gulf of Mexico (including parts of the SE‐US coast up
to Cape Hatteras, or the Oregon Inlet Marina tide gauge) (Rashid et al., 2019; P. R. Thompson &Mitchum, 2014),
the North Sea (including the tide gauges along the Norwegian Coast (e.g., Calafat et al., 2012, 2013; Chafik
et al., 2019; Frederikse, Riva, Kleinherenbrink, et al., 2016; Frederikse, Riva, Slobbe, et al., 2016; Hermans
et al., 2020; Hogarth et al., 2020; C. Hughes &Meredith, 2006)), the Baltic Sea (e.g., Grawe et al., 2019; Hünicke
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&Zorita, 2006; Passaro et al., 2021), the easternMediterranean Sea, theWestern Australian Coast and parts of the
South China Sea as well as the Sea of Japan. The uncertainties of the cluster mean time series, which are here
computed as the temporally averaged standard deviation across the samples μk,t of the from the posterior dis-
tribution, provide an estimate of the uncertainty around the cluster mean required to account for the spread of
observations associated with the cluster. As the cluster mean uncertainty is usually in the order of 0.5 cm for the
aforementioned clusters, it supports the robustness of the detected clusters. In Figure 4c, we show the scaled
uncertainties derived as the temporally averaged standard deviation across the samples μk,t of the posterior
distribution divided by the temporal standard deviation of the cluster mean time series. This shows that the
uncertainties of the cluster mean time series for these most robust clusters are usually below 20% of the absolute
variability of the cluster mean time series. These uncertainties are approximately inversely proportional to the
correlations of the cluster mean time series with the individual stations. As can be seen in Figure 4b, the cor-
relations for the aforementioned clusters are usually larger than 0.7. Correlations for the altimetry‐based clusters
are only slightly but systematically smaller than the tide‐gauge‐based clusters. This is, on the one hand, expected
due to the remaining inaccuracies in the coastal altimetry data from measurement, correction, or geophysical
adjustment errors but, on the other hand, also supports the substantial improvements in accuracy over the last
decade (Passaro et al., 2014; Cazenave et al., 2022), as differences in the correlations between the data sets are
usually small (for the most robust clusters).

To better emphasize the boundaries between the individual clusters, we show in Figure 5 the correlations of each
cluster time series with the globally distributed tide gauges (empty circles) or coastal altimetry intersections
(small outlined circles), which are spatially sorted along the coastlines starting from the Gulf of Alaska. For each
cluster and data type, we added bars to indicate where four consecutive data points have a correlation greater than
0.4 within the cluster time series in order to better separate the clusters from each other. This representation of the
regional distribution of the clusters demonstrates that, indeed, a large fraction of the global coastal sea level
variations can be divided into individual clusters. Some of these clusters are also (anti) correlated with others, for
example, the northern Europe and the Baltic Sea level variations are highly correlated (Frederikse, Riva,
Kleinherenbrink, et al., 2016; Passaro et al., 2021), whereas the NW‐US cluster and theWestern Australian/South
China Sea cluster are slightly anticorrelated.

Figure 2. Clusters based on monthly mean (mm) tide gauge (a) and coastal altimetry (b) observations, as derived by the
Bayesian mixture model approach described in Section 2.3. (c) and (d) Show correlations of cluster time series μt,k with the
associated monthly individual (virtual) station time series. Points with correlations below 0.3 are shown as gray‐outlined circles.
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3.2. Differences Between Altimetry and Tide Gauge Clusters

Although the altimetry and tide gauge clusters often agree qualitatively, some of them differ in their regional
extent and in how well they represent the underlying individual time series data (as indicated by the correlation
with the cluster time series in Figures 2c, 2d, and 4b and by the scaled uncertainty in 4C). Such poorly correlated
station time series are represented by the gray outlined circles (Figures 2a and 2b), which (for the altimetry data
set) are more abundant at the western boundaries of the ocean, that is, at the eastern coasts of South America,
Africa, Australia, or North America (i.e., the NE‐US coast cluster). We also note that in some cases, even though
the clusters are indicated by the same color, they may not overlap perfectly for the different data sets, tide gauges,
and altimetry.

Differences between the data sets are found for the Japanese cluster, the southwestern European/western Med-
iterranean cluster, at the NE‐US coast, and, to some extent, for the NW‐US coast. At the NE‐US coast, the tide
gauges are highly correlated with their respective cluster time series in contrast to the altimetry data (Figures 2a,
2b, and 4b, Figures S3B and S5B in Supporting Information S1). The tide‐gauge‐based cluster extends from north
of Cape Hatteras from the Duck Pier Outside tide gauge to the Eastport tide gauge (e.g., Andres et al., 2013;
Calafat et al., 2018; Little et al., 2021; Piecuch et al., 2016; K. R. Thompson, 1986; O. Wang et al., 2022). The
differences between the detected clusters in the data sets may be caused by the data distribution or the accuracy of
the altimetry data in the coastal zone. Since there are many more tide gauge stations in that region (compared to
the virtual coastal altimetry stations), the NE‐US cluster may be more easily detected by the Bayesian mixture
model in the tide gauge data set, which is also reflected by higher correlations (Figure 2c). Since the Bayesian
mixture model does not take into account the geographic distribution or density of the data, it treats all obser-
vations equally, which naturally leads to more robust estimated clusters in regions of high data density (see also
Figure S3 in Supporting Information S1). In addition, the altimetry‐based NE‐US cluster appears to absorb very
distant and randomly distributed data points, which essentially act as noise and drastically reduce the overall
correlation of this cluster with the underlying data (Figure 5). Note, that similar difficulties with detecting a robust
cluster at the NE‐US coast also exist for alternative data sets (gridded altimetry) or different clustering approaches
(hierarchical agglomerative clustering) as explained in Supporting Information S1 and by Figure S5 in Supporting
Information S1. Thus, this case is likely caused by the data‐distribution and not the nature of the clustering
approach. Therefore, the combined consideration of altimetry and tide gauges is necessary for the interpretation of
the detected clusters. This is mainly because the tide‐gauge‐based clusters and altimetry‐based clusters represent

Figure 3. Correlations between the cluster mean time series of the tide gauge (columns) and the altimetry (rows) data.
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two distinct experiments in terms of data distribution (notwithstanding their other differences): one more uniform
and homogeneous (altimetry) and one more nonuniform and heterogeneous (tide gauge). The extent to which they
produce analogous clusters gives us confidence that the clusters we identify are not simply artifacts of high‐
density sampling of local behavior by tide gauges.

Differences in the data distribution may also cause the NW‐US coast cluster (in the tide gauge data set) to be
interrupted by another cluster (shown here as cluster number eight in Figure 4a) starting from the Charleston 2 tide
gauge (Oregon) until the Bella tide gauge (British Columbia). In this region, the tide gauge data set has a much
denser coverage than the virtual stations from altimetry. Although this cluster is still highly correlated with the
NW‐US coast cluster (0.79), the standard deviation of the cluster mean time series (for cluster number 8) is
increased (5.4 cm) compared to the NW‐US coast cluster (3.8 cm) with increased variability at higher frequencies
(i.e., the monthly timescale). The separation of the clusters may be explained by the increased relative importance
of local longshore wind forcing and wind stress curl north of San Francisco, which superimpose remotely forced
variations of equatorial origin that are dominant southward of San Francisco (Enfield & Allen, 1980; P. R.
Thompson et al., 2014).

There also exist differences between the data sets (altimetry and tide gauges) for the southwestern European/
western Mediterranean cluster (red colors in Figures 2, 4, and 5). In contrast to the altimetry data set, the
southwestern European/western Mediterranean cluster is split up into two modes for the tide gauge data. The
geographic extent of both tide gauge clusters largely coincides with the coherent sea level variations described in

Figure 4. (a) Shows time series of 14 selected clusters (thick lines) based on tide gauges (until and including the Japan cluster) and on altimetry (after the Japan cluster).
Above the Japan cluster the altimetry cluster time series are represented by dashed lines. The individual time series of the tide gauges and the altimetry data are
illustrated by transparent lines. (b) Shows the average correlation of every cluster time series with all station time series associated with that cluster for tide gauges (blue)
and altimetry (red). (c) Represents the temporally averaged scaled uncertainty of the cluster time series, that is, the temporally averaged standard deviation across every
sample μk,t from the posterior distribution for the individual clusters divided by the temporal standard deviation of the cluster mean time series, in cm, for the tide gauge
(blue) and altimetry (red) data.
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Figure 5. The individual rows show correlations of the cluster mean time series with the individual tide gauge (empty circles) or altimetry (small circles) time series at
different locations. The stations are sorted along the coastal profile (starting from Alaska (left) to Russia (right)) as indicated by the colored contour in the map (and the
color bar at the bottom) in which the opacity is scaled by the correlation of the individual time series with the cluster time series. The horizontal bars indicate where the
rolling mean of four consecutive points have a correlation larger than 0.4.
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earlier work (Calafat et al., 2012, 2013) that attributed longshore wind variations and the induced Kelvin waves
propagation to increased coherence along the coast. Despite the regional overlap, the associated altimetry‐based
cluster (Figure 5) is less correlated with the individual time series and also contains more points along the East
African coastline and the south Caribbean Sea (Figure 2b). Due to averaging across these observations, the
temporal variability of the cluster mean time series is substantially reduced for the altimetry data compared to the
tide gauge data (Figure 4). This is also reflected by the enhanced scaled uncertainties of that cluster (Figure 2).
Still, since some of the tide gauges on the Canaries and in the Caribbean Sea are also connected to the western
Mediterranean cluster (Figure 2a), there seems to be some shared variability across the western tropical and
eastern extratropical Atlantic (which is partially present also in gridded altimetry data, Camargo et al. (2023)).

We have only moderate confidence in the cluster results for New Zealand. Although the tide‐gauge results assign
the coastal sea level variations around New Zealand to the western Indonesia/southern Australia cluster, the
average correlation of all tide‐gauge time series with the cluster mean time series is only 0.26. In contrast, for the
altimetry data, New Zealand is in the same cluster as central western Chile. Although the average correlations of
the virtual station with this cluster mean are higher (0.53) than those obtained for the tide gauge network, this
explains only a small fraction of the total variance.

As there are sometimes ambiguities between the altimetry and tide‐gauge‐based clusters, we perform an addi-
tional cluster analysis on a merged altimetry and tide gauge data set (Figure S4 in Supporting Information S1).
The resulting clusters are broadly consistent with both the altimetry and tide‐gauge‐based estimates (the Baltic
Sea, the North Sea, the eastern Mediterranean Sea, and east Indonesia) and increase the confidence in these
detected clusters. The merged data set also confirms the existence of coherent modes along the NE‐US coast and
the southwestern European/western Mediterranean coastlines, which is consistent with the tide gauge‐based
results and previous investigations (Andres et al., 2013; Calafat et al. (2012, 2013); Piecuch et al., 2016; K. R.
Thompson, 1986). However, in other cases, such as for the NW‐US coast and the Gulf of Mexico, the clusters are
spatially separated from each other at locations where tide gauges are not available. Therefore, the interpretation
of this merged data set with respect to the physical processes generating these clusters is sometimes hampered, as
the results may be influenced by the varying availability and differences in accuracy of the data types. Hence, a
separate analysis of both data types is necessary to understand the influence of data distribution on the regional
extent of the clusters.

3.3. Filling Unobserved Gaps With Altimetry Data

A key limitation to our understanding of the global coherent regions of sea level variability is that many coastal
regions are unobserved by the tide gauge network. The special value of filling observational gaps along the coast
with altimetry is demonstrated in Figures 2b and 5. There are several regions where additional clusters can be
detected, or where more information about the spatial extent of the clusters can be obtained with the coastal
altimetry data set.

For example, the NW‐US coast cluster extends much further south than observed by tide gauges alone (Figures 2b
and 5). This is in line with several previous studies (Enfield & Allen, 1980; C. Hughes & Meredith, 2006),
discussing a common equatorial origin to drive sea level variations along the western coast of North and South
America. Other additionally identified coherent clusters are located, at the coasts of the Caribbean Sea, around
Nantucket Island (O. Wang et al., 2022), eastern and western Indonesia, the Arabian Peninsula (South Central
Asia, consistent with (Piecuch et al., 2021), in particular Figure 8), in the northernmost subpolar North Atlantic,
and in the Red and Black Seas (Figures 2b, 4, and 5). Most of these clusters, similar to the tide gauges, show a high
regional coherence and capture coastal sea level variability that is largely decoupled from the neighboring regions
(i.e., the subpolar North Atlantic or the South Central Asia clusters, see Figure 5).

Also, the coastal regions around Southeast Asia are better resolved with the coastal altimetry data. This region is
divided into three clusters: the western Australian/South China Sea cluster, the east Indonesia cluster, and the
west Indonesia/southern Australia cluster (Figure 2b). Even though the cluster time series are highly correlated
with each other (with a correlation of at least 0.79), they are geographically clearly separated. This is partially due
to the differences in their amplitudes of variability, for example, the west Indonesia/south Australia cluster time
series has a standard deviation of 2.2 cm compared to the 5 cm of the western Australian, South China Sea cluster.
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Since there are very few tide gauges along the coasts of Southeast and South Asia, Africa, and eastern South
America, altimetry data can contribute to a better understanding of coastal sea level variations in these regions.
However, even though some of the regions are associated with high coherence, many other regions, particularly
the African and eastern South American and Australian coasts, cannot be associated with any detected coherent
cluster (as expressed by the very low correlations with the altimetry clusters in Figure 2b). However, such poorly
correlated locations can also be informative as they may indicate the dominance of local processes. For example,
the altimetry‐based cluster number five, which is shown in more detail in Figure S6 in Supporting Information S1,
aggregates several globally distributed locations but has an overall very low average correlation of 0.2 with the
virtual stations and an increased uncertainty of 1.3 cm (which is by a factor of 2 and 3 larger than the uncertainties
of the nine most robust tide gauge cluster mean time series). Therefore, this cluster combines time series, which
cannot be associated with any other nearby cluster. Interestingly, several of these locations are situated near river
mouths, deltas, or freshwater lagoons, such as the Orinoco Delta, the Amazon Delta, the Ganges Delta, the
Salween River, the Curonian Lagoon, or the semi‐enclosed Salish Sea. Therefore, these poorly correlated clusters
can reveal local effects, such as river runoff, that can cause a decrease in alongshore coherence and motivate
further research to investigate these effects in more detail.

3.4. Timescale Dependency of Regional Pattern

Although several previous studies substantiated the separation of coherence at Cape Hatteras (Ezer, 2019; C. W.
Hughes et al., 2018; Little et al., 2021; Piecuch et al., 2016), Little et al. (2021) emphasized that the spatial
coherence in this region is strongly dependent on the time period considered as well as on the frequency itself.
Therefore, to explore the sensitivity to the timescale, we repeat the Bayesian mixture model cluster estimation
with annual tide gauge data.

Figures 2a and 6a reveal a high regional consistency of the cluster when derived from either monthly or annual
averages. Similar regions are detected for most of the major tide gauge clusters, such as the NW‐US Coast, the
NE‐US Coast, the NE‐US and GOM, or the Baltic Sea. In some areas, such as Japan or Southeast Asia, we observe
larger differences when comparing the results based on these different time scales, which might, however, be
difficult to interpret due to the partially low number of stations in these regions.

We also investigate these cluster characteristics at longer timescales using correlations with the cluster time series
based on 3‐year‐low‐pass filtered data (applied to the monthly time series in Figure S2 in Supporting Informa-
tion S1). As can be seen, at timescales longer than 3 years the separation between some clusters becomes less
apparent. In particular, the clusters north and south of Cape Hatteras (here called NE‐US Coast and NE‐
US + GOM) are more consistent at these longer timescales (i.e., more correlated), which is also supported by
Little et al. (2021), who looked at 10–15 years band‐pass filtered data. These results are consistent with the
general expectation that the spatial scales of the ocean's response to atmospheric forcing will grow larger with a
longer timescale (e.g., Philander, 1978). The higher consistency on longer timescales in the North Atlantic is also
consistent with results from numerical simulations from C. W. Hughes et al. (2018), who showed that ocean

Figure 6. Clusters based annual (a) tide gauge observations. (b) Shows correlations of cluster time series μt,k with the associated monthly individual station time series.
Points with correlations below 0.3 are shown as gray‐outlined circles.
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bottom pressure signals associated with the depth‐independent (barotropic) mode (at timescales of 1.5–10 years)
are highly uniform over the Atlantic continental shelves, which may explain some of the increased consistency of
coastal sea level variations at such timescales.

At timescales longer than 3 years, we also find higher correlations between sea level along the Gulf of Mexico, the
NW‐US Coast, the eastern North Atlantic (i.e., the northern Europe cluster), and parts of the Mediterranean Sea,
suggesting a common large‐scale driver of these variations (Figure S2 in Supporting Information S1). These
common variations could be caused by teleconnection mechanisms, such as remote influences of ENSO in
particular on decadal NE‐US Coast sea level variability as reported in previous work (Han et al., 2019; Valle‐
Levinson et al., 2017; Wise, Polton, et al., 2020).

Overall, these results emphasize that the clusters are largely consistent from monthly to annual timescales,
whereas on longer (multiannual) timescales, the spatial scales of coherent coastal sea level variations increase in
basins such as the North Atlantic. We also note that the increase in spatial scales could also be reflective of a
reduction in the degrees of freedom relative to monthly time series.

3.5. Interdependencies Between Coastal Sea‐Level Clusters and Climate Modes

In light of the extensive research in linking climate modes and sea level variability (e.g., Han et al., 2017, 2019;
Royston et al., 2022; Stammer et al., 2013; J. Wang et al., 2021), an obvious question to ask is to what extent these
clusters of coastal sea level variations are related to large‐scale climate modes resulting from ocean‐atmosphere
interactions, and where they are more independent and unique to individual coastal regions. Our aim here is to
examine these relationships from the perspective of the detected modes of coastal variability, which are inde-
pendently estimated from the large‐scale climate modes. By using coastal along‐track altimetry data, we extend
previous studies, which were based on model or gridded altimetry data (e.g., Han et al., 2019; Royston et al., 2022;
J. Wang et al., 2021). Since we are considering the coastal cluster mean time series, we obtain additional insights
into the relationships with climate modes at the regional scale since the clustering averages out some of the local
variability at the individual stations. The ultimate goal of this investigation is to provide a basis for future analyses
focusing on the pathways of atmospheric or oceanic forcing to coastal sea level variability.

In Figures 7a and 7b, we give an overview of the correlations between the monthly cluster time series (based on
tide gauges and coastal altimetry) and a set of climate indices, NAO, EA, PNA, EA/WR, SCA, AO, ENSO, and
the PDO (see also Section 2.2). We also show how much variance of the cluster time series μk,t is explained by a
climate mode (c). We performed additional regression analyses considering the climate mode and its Hilbert
transform (not shown), but the results were almost identical.

The highest correlations (and explained variances) with the cluster time series are found for the ENSO, PDO, and
AO indices. As ENSO and PDO are themselves highly correlated (Han et al., 2019), they explain a similar amount
of variability of different clusters in the Pacific and Indian Oceans (Figures 7c and 7d). ENSO is highly correlated
with sea level along the eastern boundary of the Pacific (i.e., the NW‐US cluster) and in antiphase with variations
in the tropical Western Pacific (the East Indonesia cluster) as well as on theWest coast of Australia (see also, e.g.,
Zhang & Church, 2012). These results are highly consistent with the current understanding of the mechanisms
behind these connections. Several previous studies have consolidated that eastward propagating equatorial Kelvin
waves associated with ENSO‐related tropical wind forcing cause, upon impinging on a western boundary
poleward coastally trapped signals that can explain large fractions of coastal sea level variability along the Pacific
North and South American coasts (Clarke, 1992; Enfield & Allen, 1980; P. R. Thompson et al., 2014; J. Wang
et al., 2021; Zhang & Church, 2012). In the western Pacific, it has been argued that sea level is driven by Rossby
waves forced by variations in wind stress curl associated with ENSO and PDO (Han et al., 2019).

Slightly lower correlations with climate modes (e.g., with the NAO or the AO) are found for most of the marginal
and semi‐enclosed seas, such as for the Baltic Sea, the north European or the Mediterranean cluster (Figure 7b),
which are mostly attributed to atmospheric wind stress and pressure forcing (Chafik et al., 2017; Dangendorf
et al., 2014; Gomis et al., 2008; Jevrejeva et al., 2005; Passaro et al., 2021; J. Wang et al., 2021). There are
differences in these correlations between the tide gauge and altimetry clusters due to the partially different
distribution of the (virtual) stations (e.g., for the east Australian/Mediterranean and the Japanese clusters). For
example, the Japanese cluster based on altimetry data includes more stations around the Sea of Japan and shows a
significant correlation with ENSO, whereas the corresponding tide gauge cluster includes more stations on the
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east and south coasts of Japan and seems to be largely unrelated to ENSO. Thus, due to the limited number of
stations, the tide gauge clusters sometimes aggregate stations where sea levels are not always fully physically
connected, further supporting the importance of considering coastal altimetry data here as well.

Although we observe relatively high correlations with ENSO in some regions, which mathematically explains up
to 71% of the east Indonesian cluster (Figure 7d), very little (<=38%) of the variance of the coastal sea level
clusters can be mathematically explained by the remaining climate modes (Figure 7d). Thus, other drivers and

Figure 7. Correlations between monthly cluster time series and climate indices for the tide gauge data (a) and altimetry data (b). Only correlations with absolute values
greater than 0.3 are represented by numbers. (c) and (d) Show the explained variance of the cluster time series by a climate index. Only fractions with absolute values
greater than 0.32 are represented by numbers. The cluster maps at the top are the same as in Figures 4a and 4b.
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mechanisms must also be considered to fully understand the sources of these variations (K. R. Thompson, 1986).
The same is true for many of the western boundary clusters, such as the northeast US coast, the Southeast
American coast, or the eastern Australian coast. Here, the climate modes are poorly correlated with the cluster
time series (Figures 7a and 7b).

Overall, the average of the maximum absolute correlations between each individual cluster time series and all
climate indices considered is 0.41 for the tide gauge network and 0.47 for the altimetry data. This analysis
supports the idea that a large fraction of coastal sea level variability manifests distinctly from the adjacent deep
ocean, which could not be demonstrated in previous studies when limited to the geographically incomplete tide
gauge database (e.g., Papadopoulos & Tsimplis, 2006). Although the literature has shown that large‐scale patterns
of coupled ocean‐atmosphere variability directly drive much of the deep ocean sea level variability (Han
et al., 2017, 2019; Stammer et al., 2013), our analysis suggests the situation is more complex at the coast. This is
evident on monthly time scales from the medium‐to‐weak correlations between climate indices and a number of
the clusters. As some of the detected coastal modes of variability are not simply a reflection of the climate modes,
future efforts are required to identify their underlying drivers.

4. Conclusions
Here, we provide a systematic and quantitative analysis of the regions of coherent sea level variability on a global
scale. Using a Bayesian mixture model, we cluster monthly coastal sea level variations from tide gauges and

Figure 8. Summary of the clusters of coherent coastal sea level variations from tide gauges altimetry. Here, the colors indicate the cluster membership, whereas their
opacity is inversely scaled by the correlation of the virtual station or tide gauge with the cluster mean time series. Shown are tide‐gauge‐based clusters for the NE‐US
coast, the SE‐US coast and GOM, northern Europe, the southern North Sea, westernMed. Sea and the southwestern European coastline, western Australia and the South
China Sea, and Japan. We also show the west Indonesia and eastern Australia cluster, which is similar to the altimetry‐based west Indonesia and southern Australia
cluster. Altimetry‐based clusters are shown for the NW‐US coast, central western Chile, the subpolar North Atlantic, the Baltic Sea, the eastern Med. Sea, South Central
Asia, and east Indonesia. At the bottom, we show the best correlations of each station with the cluster mean time series.
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coastal altimetry and identify regions where coastal sea level along the shelf is highly correlated. In doing so, we
extend existing studies that have supported the existence of high regional coherence and thoroughly investigated
the pattern of these variations but have mostly been limited to the well‐instrumented areas around Europe and
North America (Calafat et al., 2013, 2018; Enfield & Allen, 1980; Hermann et al., 2009; Hogarth et al., 2020; C.
Hughes et al., 2019; Papadopoulos & Tsimplis, 2006).

We find that many of the coastal regions can indeed be clustered into regions of coherent coastal sea level
variations using unsupervised learning and are largely robust across the different underlying measurement sys-
tems (tide gauges or coastal altimetry). In Figure 8, we summarize the most robust clusters from both data sets.
Here, we select the tide‐gauge‐based clusters for the NE‐US coast, the SE‐US coast and GOM, northern Europe,
the southern North Sea, the westernMed. Sea, and the southwestern European coastline, western Australia and the
South China Sea, and Japan. We also show the west Indonesia and eastern Australia cluster (based on tide
gauges), which is similar to the altimetry‐based west Indonesia and southern Australia cluster. Altimetry‐based
clusters are shown for the NW‐US coast, central western Chile, the subpolar North Atlantic, the Baltic Sea, the
eastern Med. Sea, South Central Asia, and east Indonesia. The nine most highly correlated clusters (for the tide
gauge time series) have an average correlation of 0.82 at the monthly timescale and cover most European, North
American, Australian, and Japanese tide gauges. This is a striking result, as it supports the hypothesis that much of
the variability observed by tide gauges (in these regions) can be attributed to a set of common driving factors.
Therefore, this disentangling of the regional clustering of variability represents a basis for future analyses focused
on understanding the causes of these common variations.

The inclusion of coastal altimetry in our investigations reveals many more regions of coherent coastal sea level
variations than can be observed by the tide gauge network alone (Figure 8). Many of these additionally detected
station clusters, particularly in the Indian Ocean, have so far been poorly described or not described at all. Using
the altimetry data, we also obtain a much better understanding of where the monthly sea level variations are highly
coherent and where they are not. Although we find generally high correlations with the cluster time series at the
eastern boundaries, marginal, and semi‐enclosed seas, some stations along the western boundaries appear to be
poorly captured by the cluster analysis (see also Figure 8). The causes of these characteristics need to be better
understood, particularly for the eastern South American, African, and Australian coasts, where we do not find
highly correlated cluster time series. In addition, although we find that the detected clusters are largely consistent
at the monthly and annual timescales, we observe enhanced coherency within and across the ocean basins (e.g.,
the Atlantic and Eastern Pacific) at longer timescales. Therefore, mechanistic explanations of the drivers of the
coastal clusters should take this dependence on the timescale into account.

We investigate the role of climate modes in shaping coastal sea level variations at the monthly timescale. We
consider these relationships using a global coastal altimetry product and use the cluster mean time series to reduce
some of the local variability at individual stations. A significant proportion of the clusters, that is, at the eastern
boundary of the Pacific, theWestern tropical Pacific, and the marginal and semi‐enclosed seas, are correlated with
climate modes such as ENSO, NAO, or AO, which is highly consistent with widely accepted knowledge (Chafik
et al., 2017; Clarke, 1992; Dangendorf et al., 2014; Enfield & Allen, 1980; Gomis et al., 2008; Han et al., 2017,
2019; Jevrejeva et al., 2005; Passaro et al., 2021; P. R. Thompson et al., 2014; Zhang & Church, 2012; J. Wang
et al., 2021). The transmission of equatorial forcing (linked to ENSO) along the eastern boundaries appears to
contribute to the high coherence in some of these regions.

However, and more importantly, the results also show that several other clusters, especially along the western
boundaries, share very little variability with the considered climate modes. At a global level, the correlation
between cluster time series and the best‐correlated climate index for each cluster averages only 0.39. Despite the
partially missing or weak links to large‐scale climate modes, coastal sea level variations often appear to exhibit
highly coherent behavior (e.g., the NE‐US coastal cluster, the south‐central Asian cluster, or the southwestern
European cluster). These results confirm that, although large‐scale climate modes explain much of the global
spatial sea level variability, many coastal zones exhibit variations whose dynamics are different from variability
associated with climate modes. Therefore, the identified clusters of coastal variability provide an important basis
for future work aimed at better understanding the drivers and pathways of open ocean or atmospheric forcing on
coastal sea level variability, which in most cases are not directly related to large‐scale climate modes at monthly
timescales but have different common origins.
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4.1. Discussion of the Causes of Coastal Coherence and De‐Coupling of Coastal and Open Ocean
Variability

Our investigations leave many unanswered questions that need to be better understood and resolved in future
work. In particular, this concerns the causes of the differences in coherence between different coastal regions and
of the decoupling of coastal and open ocean variability. In general, coastal and open ocean sea level can differ
because of three reasons (Williams & Hughes, 2012). First, sea level variability in shallow waters can be
dominated by local forcing, such as wind stress or atmospheric pressure. This local forcing is mostly reflected by
the enhanced high‐frequency content in the spectra of sea level variability especially in areas with wider shelves
or semi‐enclosed seas (C. W. Hughes & Williams, 2010). In addition to atmospheric forcing, river discharge can
also cause large differences between coastal and open ocean sea level variability. Using models and observations
(Piecuch, 2023; Piecuch & Wadehra, 2020; Piecuch et al., 2018) showed that river discharge has a significant
effect on local and regional sea level on monthly, seasonal, and interannual up to centennial timescales in the Río
de la Plata estuary. Understanding these effects on coastal sea level may, therefore, help to interpret some of the
regional differences in the clusters detected.

The second cause of differences between coastal and open ocean sea level variability is the role of bathymetry,
which can isolate coastal waters from deep ocean signals. Although deep ocean sea level is primarily driven by
steric changes, being a depth‐integrated signal, the contribution of the steric signal decreases toward the coast.
Therefore, a large fraction of coastal sea level variability is due to mass changes and thus reflected in a bottom
pressure signal (Dangendorf et al., 2021; C. W. Hughes et al., 2018; Steinberg et al., 2024). In contrast to small
islands, where the effect of topography is minimal, Williams and Hughes (2012) and C. W. Hughes et al. (2018)
showed that the topography of the continental shelves acts as a barrier to mesoscale variability. The suppression of
this deep ocean signal depends on several factors, such as the Rossby number, bottom slope, and eddy scale. For
example, Wise et al. (2018) and Wise, Hughes, et al. (2020) used an idealized model to show that the width and
steepness of the continental shelf and slope affect the extent to which deep ocean variability can penetrate the
coast by modifying the effective bottom friction. This implies that regions, where the coast is very far from the
deep ocean are relatively more insulated from deep ocean variability, and consequently, on‐shelf processes exert
an even stronger influence on coastal sea level coherence in these regions. Thus, regions such as the NE‐US
coastal shelf or the Argentine shelf may be less sensitive to forcing from the ocean interior and more domi-
nated by on‐shelf processes and local wind forcing than regions with narrower shelves (e.g., the coasts of
Australia or Africa).

Finally, the third factor that causes differences between coastal and open ocean variability is the difference in the
processes that dominate these different regimes. For example, these differences are particularly pronounced at
western boundaries, where deep ocean sea level is dominated by high‐frequency mesoscale variability. On the
other hand, processes that are unique to the coast, such as coastally trapped waves, not only cause differences
between coastal and open ocean sea level variability but also contribute to the alongshore coherence of coastal sea
level variability (C. W. Hughes et al., 2018). However, regional model‐based investigations are required to
disentangle the complex interplay of local and remote forcing, the cross‐shelf transport and the role of coastally
trapped waves to establish these coherent variations. As an example, Wise et al. (2024) used an ocean model to
understand the different contributions to sea level on the northwest European Shelf. They found that—as sug-
gested by earlier studies (Calafat et al., 2012)—that coastal trapped waves are associated with sea level variations
on the western northwest European Shelf, which can explain the coherent cluster identified in this region.

Although these factors need to be clarified, another challenge is the potential spatiotemporal nonstationarity of the
coherent regions, which is difficult to detect for this relatively short time period. If some of the forcing factors,
such as slow changes in the ocean circulation or the climate modes themselves, exhibit nonstationary variations,
we may not be able to fully comprehend their effects on the modes of coastal variability beyond the period
considered here. In fact, based on wavelet analysis, Little et al. (2021) reported different regimes in the variability
of the NE‐US coastal sea level with a spectral peak in the power spectrum at a period of about 12.4 years between
1950 and 2000 and much lower decadal variability after 2000. Such effects may therefore be hidden from our
analysis and could be further investigated in future work. Since we have focused primarily on the monthly
timescale, we need to determine the frequency‐dependent effects of climate modes on the coastal modes. Finally,
as the comparison of climate modes and sea level on a monthly timescale can only provide general hypotheses
about the underlying drivers, further investigations are required to understand the coupling/decoupling of the
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coastal modes and open ocean variability and the implications of these relationships for long‐term coastal sea
level trends.

Knowledge of the detected coherent regions represents a starting point for more extensive future investigations.
This includes analyses of how the coastal sea level variations are captured in sea level reconstructions (Dan-
gendorf et al., 2019) and how well they can represent open ocean changes, as sea level reconstructions are
commonly constrained by EOFs from sea level data associated with large‐scale climate variability (from global
data). Closely related to this point is the question of how coastal sea level variability will change in the future. This
could be better understood if we identify the common drivers of the coherent modes of variability, and how they
are projected to respond to future climate changes. Our analyses also motivate to focus on regions that have not
yet been sufficiently studied, which is now possible with coastal altimetry.

Data Availability Statement
Monthly tide gauge data from PSMSL are available at https://www.psmsl.org/data/obtaining/ (Holgate
et al., 2013). We use dedicated coastal 1‐Hz along‐track altimetry data of the missions Jason 1–Jason 3 from
DGFI‐TUM's OpenADB (Schwatke et al., 2023). Gridded altimetry (Global Ocean Gridded L 4 Sea Surface
Heights And Derived Variables Reprocessed 1993 Ongoing (Dataset), n.d.) data is available at https://resources.
marine.copernicus.eu/product‐detail/SEALEVEL_GLO_PHY_L4_MY_008_047/INFORMATION. The esti-
mated cluster properties for the tide gauge and the coastal altimetry data can be found here Oelsmann et al. (2024).
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