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Diversity and biogeography of the bacterial 
microbiome in glacier-fed streams

Leïla Ezzat1,2 ✉, Hannes Peter1, Massimo Bourquin1, Susheel Bhanu Busi3,4, Grégoire Michoud1, 
Stilianos Fodelianakis1, Tyler J. Kohler1,5, Thomas Lamy2, Aileen Geers1, Paraskevi Pramateftaki1, 
Florian Baier1, Ramona Marasco6, Daniele Daffonchio6, Nicola Deluigi1, Paul Wilmes4, 
Michail Styllas1,7, Martina Schön1, Matteo Tolosano1, Vincent De Staercke1 & Tom J. Battin1 ✉

The rapid melting of mountain glaciers and the vanishing of their streams is emblematic 
of climate change1,2. Glacier-fed streams (GFSs) are cold, oligotrophic and unstable 
ecosystems in which life is dominated by microbial biofilms2,3. However, current 
knowledge on the GFS microbiome is scarce4,5, precluding an understanding of its 
response to glacier shrinkage. Here, by leveraging metabarcoding and metagenomics, 
we provide a comprehensive survey of bacteria in the benthic microbiome across 
152 GFSs draining the Earth’s major mountain ranges. We find that the GFS bacterial 
microbiome is taxonomically and functionally distinct from other cryospheric 
microbiomes. GFS bacteria are diverse, with more than half being specific to a given 
mountain range, some unique to single GFSs and a few cosmopolitan and abundant. 
We show how geographic isolation and environmental selection shape their 
biogeography, which is characterized by distinct compositional patterns between 
mountain ranges and hemispheres. Phylogenetic analyses furthermore uncovered 
microdiverse clades resulting from environmental selection, probably promoting 
functional resilience and contributing to GFS bacterial biodiversity and biogeography. 
Climate-induced glacier shrinkage puts this unique microbiome at risk. Our study 
provides a global reference for future climate-change microbiology studies on the 
vanishing GFS ecosystem.

Mountain ecosystems, particularly those interfacing with the cryo-
sphere, are highly vulnerable to climate change6. Glaciers, and the 
streams that they feed (glacier-fed streams, GFSs), are among the most 
iconic of these ecosystems. Whereas GFSs dominated the Earth’s fluvial 
landscapes in the aftermath of snowball Earth and major ice ages7, today 
they are largely restricted to mountain tops, the world’s water towers, 
where they initiate the flow of water for some of the largest river sys-
tems globally8. In doing so, they supply freshwater resources to large 
human populations living in mountain regions, and to ecosystems 
further downstream, where they provide important services including 
regulation of water quality and supporting fisheries2,8.

Climate-induced glacier shrinkage changes the structure and func-
tion of GFSs, putting their ecosystem services and biodiversity at risk2,9. 
Biofilms, the microbial communities attached to streambed sediments, 
dominate life in GFSs and regulate key ecosystem processes, drive 
biogeochemical cycles and form the basis of food webs3. Nevertheless, 
despite the critical functions fulfilled by biofilms, microbial life in GFSs 
remains poorly studied5,10,11, with all work to date focusing on local to 
regional scales (for example, refs. 12–15). As a result, no global and 
systematic study on the GFS microbiome is available. This knowledge 
gap makes it challenging to assess how the world’s GFS microbiome 

might respond to climate-induced glacier shrinkage. Therefore, to fill 
this gap, we first need to put the GFS microbiome on the map of the 
world’s major mountain ranges and unravel the eco-evolutionary pro-
cesses that generate and maintain its regional and global biodiversity.

In this article, we provide a global atlas of the bacterial microbiome in 
GFS benthic biofilms and infer mechanisms underpinning its biodiver-
sity and biogeography. To this end, the Vanishing Glaciers project used 
standardized protocols to systematically collect benthic biofilms and 
environmental data related to glaciology, streamwater physicochem-
istry and sediment mineralogy from 152 GFSs spanning the Southern 
Alps of New Zealand, Nepalese Himalayas, Caucasus Mountains, Pamir 
and Tian Shan, European Alps, Scandinavian Mountains, Southwest  
Greenland, Alaska Range, the Rwenzori Mountains in Africa and both 
Ecuadorian and Chilean Andes (Fig. 1a and Extended Data Fig. 1a). This 
sampling effort covered an elevational gradient from 93 m above sea 
level (a.s.l.) in Greenland to 5,093 m a.s.l. in the Himalayas. We sam-
pled benthic biofilms from triplicate sediment patches within one 
upstream reach, as close to the glacier snout as possible, and from 
one downstream reach, around the terminal moraine of the Little Ice 
Age (Methods), to capture the environmental heterogeneity of GFSs. 
Leveraging a total of 54,837 bacterial amplicon sequence variants 
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Fig. 1 | GFSs sampled by the Vanishing Glaciers project, their environmental 
characteristics and microbiome structure and function. a, World map 
showing the mountain ranges and locations (black dots) where the Vanishing 
Glaciers project sampled GFSs. Radar charts depict key physicochemical 
parameters of GFS water and glacier metrics. Shown are median values of 
normalized parameters. No radar chart is shown for the Rwenzori Mountains, 
because only one GFS was sampled. DIN, dissolved inorganic nitrogen; DOC, 
dissolved organic carbon; NTU, nephelometric turbidity units; ppb, parts per 
billion; SRP, soluble reactive phosphorus. b, Non-metric multidimensional 
scaling (NMDS) based on Bray–Curtis dissimilarity, illustrating the composition 
of bacterial communities of 152 GFSs and other cryospheric ecosystems21 
(nsample = 268, k = 2, stress = 0.17). Taxonomic composition of the GFS microbiome 
differs significantly from that of other microbiomes, as shown by both 
permutational analysis of variance (PERMANOVA, F6,264 = 8.6, R2 = 0.16, P = 0.001; 

pairwiseAdonis, Padj < 0.02 for all tests, based on 151 GFSs, excluding the 
Rwenzori Mountains) and multivariate generalized linear models (Padj = 0.01  
for all tests; Supplementary Table 2). c, Principal coordinate analysis (PCoA), 
based on 8,502 KEGG normalized abundances of KOs, shows that the functional 
composition of the GFS differs from that of other cryospheric microbiomes 
(PERMANOVA, F1,111 = 92.5, R2 = 0.46, P = 0.001; nsample = 189; see Supplementary 
Table 5 for adjusted pairwise comparison P values). Grey dots indicate underlying 
KOs contributing to dissimilarity (Bray–Curtis dissimilarity) among GFSs and 
other cryospheric microbiomes. Highlighted are relevant pathways (thiamine 
and thienamycin biosynthesis; amino acid, carbon, pyruvate and sulfur 
metabolism; and bacterial motility, two-component system, hydrolases, 
energy metabolism and uncharacterized proteins), based on grouped KOs, 
contributing to the variation within and among samples and cryospheric 
systems, respectively.
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(ASVs) and 8,518 Kyoto Encyclopedia of Genes and Genomes (KEGG) 
orthologue groups (KOs), we first compared the structure and function 
of the GFS microbiome with other cryospheric ecosystems. We then 
performed analyses rooted in microbial biogeography and niche- and 
dispersal-based community ecology (for example, refs. 16,17) to disen-
tangle the effects of historical contingencies (for example, dispersal 
limitation) and contemporary environmental selection on the biodi-
versity and biogeography of the global GFS microbiome. Thereby, we 
shed new light on an old debate in microbial biogeography, rooted in the 
Baas–Becking hypothesis positing that ‘everything is everywhere’ but 
that ‘the environment selects’18. Our study unveils a distinct bacterial 
microbiome at the tips of some of the world’s largest river systems at 
risk because of climate change, thereby further aggravating the already 
imperilled biodiversity of the Earth’s running waters19.

The GFS environment
Glacier-fed streams figure among Earth’s harshest freshwater eco-
systems. Due to their inextricable interface with glaciers, they share 
some common characteristics to which ecological communities have 
adapted, and that manifest independently of geography (Fig. 1a, Sup-
plementary Table 1 and Extended Data Fig. 1b). For instance, the major 
contributions of glacier meltwater to GFS runoff maintain water tem-
peratures near freezing point. Given recently deglaciated terrain at 
the glacier snout, GFS sediments are poorly consolidated and regu-
larly scoured, particularly by daily meltwater peaks19. These mobilized 
sediments, along with glacial weathering products, increase stream-
water turbidity during summer, thereby limiting light availability and 
photoautotrophic production in GFSs. Although repeated streambed 
reworking, and possibly also debris flows, may affect life in GFSs, such 
legacy effects are difficult to quantify. On an annual basis, photoauto-
trophic production is further reduced by prolonged darkness during 
winter when ice and snow cover GFSs. This, together with dilute glacial 
meltwater, results in overall oligotrophic conditions, depriving the 
microbial food web of organic carbon and inorganic nutrients2,20. On 
a regional scale (for example, Ecuadorian Andes, Greenland), catch-
ment geology and associated sediment mineralogy can imprint on 
GFS streamwater geochemistry, including pH and ions (Extended 
Data Fig. 1b), which may be relevant in regard to microbial redox  
reactions.

A distinct bacterial microbiome
Glacier-fed streams share some of their fundamental environmental 
constraints (for example, near-freezing temperatures, oligotrophy) 
with other cryospheric ecosystems. Despite this, we found marked 
differences in the composition of benthic GFS bacteria and those con-
tained in glacier cryoconite, proglacial lakes and permafrost soils21 
(Fig. 1b and Supplementary Table 2). To further explore these apparent 
differences, we investigated the GFS and other cryospheric microbi-
omes for patterns of functional potential as inferred from metagen-
omes (Methods). In line with patterns of taxonomic composition, we 
found significant differences in KEGG pathways segregating the GFS 
microbiome from other cryospheric microbiomes (Fig. 1c). Notably, 
pathways involved in biofilm formation (for example, secretion and 
two-component systems) drive this segregation. The biofilm mode of 
life protects bacteria from flow-induced erosion and resource scarcity 
in streams, offering a clear adaptive advantage in GFSs. It also enables 
bacteria to diversify energy acquisition and metabolic pathways (for 
example, degradation of amino acids, sugars and xenobiotic com-
pounds and sulfur and nitrogen metabolism; Extended Data Fig. 2) to 
exploit resources when they become available (for example, pulses of 
algal exudates during vernal and autumnal windows of opportunities), 
which can vary from weeks to months in GFSs, depending on glacier 
influence20.

Global biodiversity patterns
Whereas the cryospheric microbiome has gained attention in recent 
years, we still lack a comprehensive appreciation of the bacterial bio-
diversity of GFSs globally. Our survey (including Mount Stanley in the 
Rwenzori Mountains) unveiled bacteria spanning 44 phyla (Fig. 2a) 
and comprising novelty across all taxonomic ranks, including 219 ASVs 
unclassified at class level and 4,545 unclassified at genus level. For sys-
tematic assessment of biodiversity patterns (that is, gamma diversity 
per mountain range), we first explored asymptotic estimates based 
on incidence data (Methods). This shows that we sampled a median of 
86.2% (interquartile range (IQR) 79.7–90.03%) of ASVs per mountain 
range (Fig. 2b and Supplementary Table 3), indicating that our sampling 
is representative and enabling us to draw generalizable conclusions 
about bacterial biodiversity in GFSs. We also acknowledge that these 
figures imply that there is further bacterial diversity yet to be discov-
ered in the world’s GFSs, especially given our conservative filtering 
and denoising approaches (Methods).

We expected relatively low bacterial biodiversity and biomass in GFSs 
due to overall low resource availability. However, in exploring alpha 
diversity, we found median observed richness values of 2,791 ASVs (IQR: 
2,268–3,346 ASVs) (Fig. 2c) and Shannon H (based on Hill numbers) of 
327.0 (IQR: 200.8–464.1 ASVs). These values fall between those found 
for other cryospheric ecosystems (Supplementary Table 4) and even for 
globally distributed soils22,23, suggesting that GFS sediments provide 
niches that sustain a level of bacterial diversity similar to that in other 
cryospheric and matrix-dominated systems. The notion of viable niches 
in GFSs is corroborated by sediment bacterial abundances (median, 
7.6 × 106 cells per gram, IQR: 3 × 106–1.8 × 107 cells per gram; Supplemen-
tary Table 1), bracketed by abundances reported from other extreme 
sedimentary environments (for example, refs. 24,25), and further by 
marked compositional differences between sediment communities 
and those suspended in streamwater or locked in glacier ice14,26,27.

Rank abundance curves (Extended Data Fig. 3a) point to a few 
abundant ASVs structuring alpha diversity, with 11.1% of all ASVs hav-
ing a relative abundance above 0.1%. Comparison with log-normal 
rank-abundance models (Extended Data Fig. 3b) suggests a paucity 
of rare ASVs23. Rarity, a hallmark of many microbial communities, can 
either reflect microbial lifestyle adaptations or arise from local coloni-
zation and extinction dynamics23. We attribute the limited rarity of GFS 
bacteria to the unstable and selective environment, which is probably 
unfavourable for transient and rare taxa, thereby increasing the risk 
of local extinction.

Biodiversity patterns in mountains follow not only latitudinal but also 
elevational gradients—a recurrent topic in microbial ecology28. How-
ever, how taxonomic and functional diversity of the GFS microbiome 
changes with elevation at the global scale remains unclear. Leveraging 
our 5,000 m elevational gradient and accounting for latitudinal effects, 
we found that ASV richness decreases with elevation (Extended Data 
Fig. 4a). Whereas such elevational patterns have been reported for 
GFSs from several regions14, our findings underline their global char-
acter, consistent with findings from streams draining non-glacierized 
catchments. We suggest that shrinking metacommunity size with 
greater elevation from which local communities recruit29, along with 
increasing energetic constraints28 imposed by mountain topography, 
elevation and glacier influence, may collectively underlie the observed 
elevational gradients in ASV richness. The notion of glacier influence 
is indeed supported by the fact that ASV richness also decreases with 
increasing glacier coverage within the catchment (Extended Data 
Fig. 4b). Interestingly, the potential functional diversity of GFS bacte-
ria did not follow the elevational gradient of ASV richness, as inferred 
from 8,518 KOs, from our metagenomes (Extended Data Fig. 4c and 
Supplementary Table 5). This contrasts with findings from mountain 
streams that are not under glacier influence, where climate-related 
parameters largely drive microbial functional diversity30. We attribute 
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this apparent discrepancy to the dominance of glacier influence over 
climatic controls on GFS bacteria, and to its functional repertoire 
required to thrive in an ecosystem with globally similar environmental 
constraints (Extended Data Fig. 1b).

Our worldwide sampling effort enabled us to resolve the spatial 
structure of the GFS bacterial microbiome. We noted high community 
dissimilarities (Bray–Curtis dissimilarity index) both within (0.68, 
IQR: 0.64–0.70) and between (0.89, IQR: 0.82–0.91) mountain ranges 
(Extended Data Fig. 5a). This pattern was mirrored by the presence–
absence-based Sørensen index, indicating that ASV replacement drives 
beta diversity (Extended Data Fig. 5b and Supplementary Table 6). 
Through further analysis of beta diversity, we identified conspicuous 
biogeographical patterns in GFS bacterial composition, with a signifi-
cant segregation between the Southern and Northern hemispheres, 

and with GFS bacterial composition clustering according to moun-
tain range (Fig. 2d and Supplementary Tables 7 and 8). This biogeo-
graphical pattern was driven by 20,522 indicator ASVs (median relative 
abundance 21%, IQR: 15.3–37.2%; Extended Data Fig. 6a,b), as shown 
by dissimilarity-based multivariate analysis of variance (Methods).  
Indicator ASVs contributed 35.4% to global beta diversity (as total vari-
ance; Methods), emphasizing the relevance of regionality (that is, at 
the scale of mountain ranges) for the compositional turnover of the 
GFS microbiome. Pronounced dissimilarities among mountain ranges 
suggest that spatial processes (for example, dispersal limitation, spatial 
structuring of the environment) play a role in shaping GFS microbiome 
structure. Patterns of taxonomic composition were not reflected by 
spatial patterns of functional composition based on KOs (Extended 
Data Fig. 7a,b). Moreover, KO numbers were essentially invariant  

–2 –1 0 1 2 3

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

NMDS1

N
M

D
S

2

1,000

2,000

3,000

4,000

A
la

sk
a

R
an

ge

E
ur

op
ea

n
A

lp
s

C
au

ca
su

s
M

ou
nt

ai
ns

C
hi

le
an

A
nd

es

E
cu

ad
or

an
A

nd
es

S
ou

th
w

es
t

G
re

en
la

nd

P
am

ir 
an

d
Ti

en
 S

ha
n

H
im

al
ay

as

S
ou

th
er

n
A

lp
s

S
ca

nd
in

av
ia

n
M

ou
nt

ai
ns

A
S

V
 r

ic
hn

es
s

4,000

8,000

12,000

16,000

0 10 20 30 40 50

Number of GFSs

A
S

V
 r

ic
hn

es
s

Alaska Range
European Alps
Caucasus Mountains
Ecuadorian Andes

Chilean Andes
Southwest Greenland

Himalayas
Southern Alps

Pamir and Tien Shan
Scandinavian Mountains

Rarefaction

Extrapolation  1

  8

 23

 44

 73

109

152

Prevalence
(nsample)

Bacteria

Burkholderiales

Gammaproteobacteria

Proteobacteria

Comamonadaceae

Chitinophagaceae

Sphingobacteriales

Bacteroidia

Acidobacteriota

Verrucomicrobiae

Planctomycetes
Oligo�exia

Desulfobacterota

Myxococcota

a

c d

b

Fig. 2 | Global diversity patterns of the GFS microbiome. a, Heat tree 
illustrating the bacterial taxonomic structure, from domain to genus level,  
and highlighting the most prevalent lineages. Edge colour reflects occupancy, 
and node size indicates ASV frequency in a given lineage. b, Observed and 
estimated gamma diversity per mountain range based on asymptotic estimates 
(n = 151 GFSs). c, Violin plots illustrating ASV richness across mountain ranges. 
Horizontal lines represent the median, box height represents IQR and whiskers 
extend 1.5 times beyond IQR. Each dot represents one GFS (n = 151 GFSs).  
d, NMDS, based on Bray–Curtis dissimilarity, illustrating the composition of 
bacterial communities from 151 GFSs across ten mountain ranges (excluding 
the Rwenzori Mountains; k = 2, stress = 0.15). Colours correspond to mountain 

ranges shown in b. Also shown are latitudinal isolines. Community composition 
varied significantly across mountain ranges based on (1) PERMANOVA (based on 
151 GFSs, excluding the Rwenzori Mountains, F9,147 = 7.8, R2 = 0.33, Pmountain_range =  
0.001; pairwiseAdonis, two-sided tests, Padj = 0.045 for all tests, except for  
the Scandinavian Mountains and Southwest Greenland; pairwiseAdonis, 
Padj = 0.08) and (2) multivariate generalized linear models (Padj = 0.01 for all 
tests; Supplementary Table 7). Community composition varied significantly 
between hemispheres, based on both PERMANOVA (F1,147 = 15.9, R2 = 0.097, 
Phemisphere = 0.001) and multivariate generalized linear models (two-sided tests; 
Padj = 0.01; Supplementary Table 8).
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(ranging 7,202–7,928) across the global GFS alpha-diversity gradient 
(Extended Data Fig. 7c), with 75.3% present in all GFSs. Levin’s niche 
breadth, derived from KO prevalence and abundance, suggests that 
common KOs explain the subtle differences in global GFS functional 
potential (Extended Data Fig. 7d,e). Consistent with the elevational pat-
terns of taxonomic and functional diversity, this suggests a decoupling 
of the structure and functional potential of the GFS bacterial micro-
biome, probably due to functional redundancy among closely related 
community members. Indeed, functional redundancy can confer  
resilience to microbial communities31, which would be particularly 
advantageous within fluctuating environments such as GFSs32.

High mountain-range specificity
These marked beta-diversity patterns prompted us to further explore 
the GFS bacterial microbiome for ASVs that are specific to single moun-
tain ranges (hereafter referred to as ‘range-specific’ ASVs) (Methods). 
The determination of range-specific ASVs is not trivial because of sam-
pling effort, taxonomic resolution, spatial scales and rarity16. Therefore, 
we applied a conservative data pretreatment, benchmarked denoising 
approaches (that is, DADA2 (ref. 33), Deblur34 and UNOISE35), and con-
ducted analyses of mock communities and sensitivity analyses for each, 

to investigate the effects of rarefaction depth and the number of GFSs 
sampled per mountain range (Methods and Extended Data Fig. 8). As a 
result of these efforts, we retained Deblur which, in combination with 
our filtering, yielded the most conservative and consistent estimates 
of specific ASVs and biodiversity (Extended Data Fig. 8).

Following this methodology, we identified 62.2% of all ASVs as range 
specific, occurring at low relative abundances (9.0%; IQR: 3.7–22.2%; 
Fig. 3a). Despite low relative abundances, specific ASVs contribute 
20.9% to beta diversity as estimated by total variance (Methods), under-
scoring their relevance in regard to overall GFSs bacterial biodiver-
sity. Furthermore, 25.2% of all ASVs (excluding the only GFS from the 
Rwenzori Mountains) were repeatedly found across multiple sediment 
samples in a single GFS only, and are therefore considered ‘unique’ 
(Methods and Fig. 3a); by definition, unique ASVs are also range specific. 
Notably, 869 (6.4%) of unique ASVs were found in all sediment samples 
(six out of six) collected within a given GFS.

Amplicon sequence variant specificity was not uniformly distributed 
across mountain ranges (Fig. 3b). Instead, it was highest in the Southern 
Alps of New Zealand and the Ecuadorian Andes, consistent with the 
elevated endemicity of flora and fauna in these regions36. Such patterns 
of floral and faunal endemism align with island biogeography, with the 
Southern Alps and Ecuadorian Andes emerging as biogeographical 
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‘islands’ from the ocean and tropical lowlands, respectively, and also 
with the fact that spatial isolation, selection pressure and long-term 
climate stability promote speciation and endemism in the high moun-
tains37. Although it cannot be unequivocally demonstrated whether 
specific ASVs are also endemic to mountain ranges, the GFS bacterial 
microbiome adds to the ongoing debate on endemism in microbes 
(for example, ref. 38).

Range specificity and the uniqueness of GFS bacteria underscore the 
relevance of spatial isolation and selective pressures for biogeographic 
patterns across spatial scales. Long-distance dispersal limitation 
between mountain ranges produces regional isolation. Furthermore, 
GFSs are often incised within mountainous landscapes and form the 
tips of dendritic river networks, which limits dispersal across head-
waters even within the same network39. The GFS bacterial microbiome  
is therefore an example that refutes the idea of ‘everything is every-
where’ that has been so influential in microbial biogeography18.

A small core microbiome
The taxonomy of the GFS bacterial microbiome is characterized by a 
few dominant phyla, including Pseudomonadota, Bacteriodota, Gem-
matomonadota and Verrucomicrobiota. Within these phyla, relatively 
few genera (for example, Methylotenera, Polaromonas, Rhodoferax) 
prevail, whereas numerous genera occur at low abundance and preva-
lence (Fig. 3c). The prevalence of a few genera prompted us to further 
explore the GFS microbiome for core ASVs. Consistent with the high dis-
similarities among and within mountain ranges, we identified only 165 
(0.42%) core ASVs (based on over 0.1% of relative abundance and over 
50% of prevalence thresholds (Methods) contributing to 28.3% (IQR: 
21.2–38.04%) of total relative abundance. Similarly small core microbi-
omes were also reported from global surveys of wastewater, freshwater 
and soil systems (for example, refs. 40,41). Small but relatively abundant 
core taxa probably reflect their competitive advantage. Interestingly, 
core, specific and indicator ASVs broadly share taxonomies (Fig. 3d), 
dominated by the phyla Pseudomonadota (55.9 %), Bacteroidota (18.0%) 
and Verrucomicrobiota (5.5%), the families Comamonadaceae (22.2%), 
Methylophilaceae (8.6%) and Chitinophagaceae (5.2%) and the gen-
era Methylotenera (8.2%), Polaromonas (8.0%) and Rhodoferax (5.5%). 
Several of these genera were also reported from other cryospheric 
ecosystems (Extended Data Fig. 9), underscoring their ability to thrive 
in these extreme environments.

Drivers of GFS microbiome composition
Biogeographical patterns result from ecological and evolutionary pro-
cesses, including contemporary environmental selection and historical 
processes (that is, dispersal limitation, drift and past environmental 
selection)42. Exploring distance-decay patterns (DDPs) for all ASVs 
(that is, the entire GFS microbiome) across distances ranging from 
95 m to over 18,000 km, we found that the GFS microbiome is spatially 
structured (Fig. 4a). Both ASV replacement and changes in relative 
abundance drive DDPs generated by Sørensen and Bray–Curtis dis-
similarity indices, respectively (Fig. 4a). In line with the dominance of 
a few taxonomies across GFSs worldwide, weaker DDPs produced by 
phylogeny-informed analyses suggest that phylogenetically similar 
taxa are present even across distant GFSs (Fig. 4a).

To further quantify the processes underlying these biogeograph-
ical patterns, we computed distance-based redundancy analyses 
(db-RDAs) and multiscale variance partitioning (accounting for a lin-
ear gradient based on geographic coordinates and altitude, along with 
spatial and environmental variations) among and within mountain 
ranges (Methods). The model explained 54.9% of total compositional 
variance within the GFS bacterial microbiome. The linear gradient 
explained 15.9% of total variance and pure spatial processes, both 
among and within mountain ranges, explained 23.6%, whereas pure 

and spatially structured environmental processes explained 15.4% 
(Fig. 4c, Supplementary Table 9 and Supplementary Note 1). The 
dominance of spatial effects for GFS bacterial beta diversity con-
trasts with that of environmental effects on various terrestrial and 
aquatic microbial communities16. This finding highlights the role of 
geographic isolation and dispersal limitation for structuring the GFS 
bacterial microbiome, consistent with the numerous specific and 
unique bacteria dwelling in global GFSs.

In line with regional differences in some of the GFS environmental 
properties (Fig. 1a and Supplementary Table 10), spatially structured 
environmental processes among and within mountain ranges explained 
9.2 and 4.2% of explained variance, respectively (Fig. 4b). Much of this 
can be attributed to regional differences in catchment geology and 
associated streamwater geochemistry, as illustrated by volcanic rocks 
lowering streamwater pH in Ecuador (Fig. 1a and Extended Data Fig. 1b). 
However, whereas differences in pH presumably reflect weathering of 
different bedrock types, dissolved inorganic nitrogen and precipitation 
are also influential (Supplementary Table 10), further indicating the 
importance of atmospheric processes. The interactive roles of geol-
ogy and atmosphere for GFS bacteria at the scale of mountain ranges 
are consistent with the emerging awareness that geodiversity (that is, 
combined geological, geomorphological and hydrological processes) 
can shape biodiversity, particularly in mountains43,44.

In contrast to the composition of GFS bacterial communities, their 
functional potential (as KOs) does not demonstrate strong biogeo-
graphical patterns (Fig. 4c). In fact, DDPs show that KO turnover remains 
largely similar across geographic distances whereas KO abundances 
exhibit a weak spatial trend, which we attribute to the overall low KO 
dissimilarity (Extended Data Fig. 7). We interpret these contrasting 
biogeographical patterns between GFS bacterial composition and func-
tional potential as further supporting the notion of community-level 
functional redundancy. However, more studies are needed to verify 
such a pattern, ideally utilizing proteomics, because evolutionary 
changes in bacterial genomes could modulate the extent of their func-
tional redundancy45.

Phylogeography of the microbiome
The phylogenetic structure of ecological communities bears evolution-
ary and ecological signatures, which can inform on processes underly-
ing biogeographic patterns16. Within this framework, we analysed the 
phylogeography of GFS bacteria to assess the role of deterministic 
(that is, environmental selection) and stochastic (that is, dispersal 
and drift) assembly processes. Among these processes, homogeneous 
environmental selection can induce phylogenetic clustering of closely 
related ASVs prevailing within putatively well-adapted clades, whereas 
dispersal limitation can be reflected by higher compositional turnover 
than that expected by chance46. Consequently, homogeneous selec-
tion may promote community similarity whereas dispersal limitation 
would promote dissimilarity and specificity.

Quantifying phylogenetic and compositional turnover compared 
with null-model expectations47 (Methods), we found that dispersal limi-
tation was the most common assembly process (59.4% of community 
pairs), followed by ecological drift (30.0%) and homogeneous selection 
(11.7%) (Fig. 5a). Whereas dispersal limitation shaped clades across 
the entire phylogenetic tree, homogeneous selection consistently 
prevailed among several clades. Accordingly, clades predominantly 
shaped by dispersal limitation accounted for 45.4% (IQR: 38.8–54.0%) 
of relative abundance within each mountain range. In comparison, the 
contribution of clades under homogeneous selection to relative abun-
dance varied more across mountain ranges. These clades contributed 
43.9% and 30.4% to relative abundance in the Caucasus Mountains and 
New Zealand, respectively, whereas they garnered 16.6% in the Chilean 
Andes and 18.8% in Southwest Greenland. These clades included the 
globally distributed genera Methylotenera and Polaromonas, as well 
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as less abundant genera, such as Pirellula (Planctomycetota) and Fer-
ruginibacter (Bacteroidota). We found homogeneous environmental 
selection invariant over geographical distance, whereas dispersal limi-
tation became more important with increasing distance between GFSs 
within the same mountain range (Fig. 5b). These phylogeographic find-
ings further support our observations from variance partitioning, that 
dispersal limitation and globally consistent environmental constraints 
jointly shape the GFS microbiome. The apparent relevance of ecological 
drift also points towards the role of stochasticity in structuring these 
communities, and is potentially related to the environmental instability 
typical for these nascent ecosystems48.

Whereas environmental constraints may imprint on the phylogeny 
of clades under selection, we anticipated that spatial isolation would 
result in the turnover of phylogenetically closely related ASVs, even 
among GFSs within the same mountain ranges. To test this hypothesis, 
we assessed how beta diversity changed as we successively agglomer-
ated the phylogenetic tree from its tips inwards (Methods). We found 
that beta diversity within mountain ranges decreased continuously 
from 0.383 (IQR: 0.355–0.390) to 0.238 (IQR: 0.208–0.256) along the 
inwards gradient of the phylogenetic tree (Fig. 5c). Regional beta diver-
sity within mountain ranges decreased by 27.5% (IQR: 24.5–28.9%) at 

phylogenetic distances shorter than the average phylogenetic dis-
tance among ASVs. The exponential decrease of beta diversity in all 
mountain ranges suggests that most compositional turnover indeed 
occurs among phylogenetically closely related taxa at the tips of the 
phylogenetic tree. Similarly, the number of unique ASVs decreases 
exponentially with increasing phylogenetic agglomeration, reflect-
ing that unique and specific ASVs are phylogenetically closely related 
to ASVs that occur in multiple mountain ranges. We suggest that this 
reflects the time scales relevant for global dispersal (and dispersal 
limitation) in GFS.

Furthermore, we found that several of the genera under homogene-
ous selection are microdiverse—that is, they contain numerous ASVs 
with distinctly shorter phylogenetic distances compared with other 
genera (Fig. 5d). Among microdiverse genera are prevalent mem-
bers of the GFS core microbiome, including Polaromonas (0.09; IQR: 
0.07–0.10), Rhodoferax (0.083; IQR: 0.079–0.087) and Methylotenera 
(0.093; IQR: 0.085–0.098) (Fig. 5d). Whereas microdiversity was previ-
ously reported from several GFSs in New Zealand15, our global survey 
shows that microdiverse genera resolve global biogeographic patterns 
similar to those observed for the entire GFS microbiome (Extended 
Data Fig. 10a). That microdiversity can contribute to biogeographic 
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geographic distance, independently of the dissimilarity indices or distances 
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s.e. = 0.0004, t = −41.73, P < 2 × 10−16, adj. R2 = 0.9). Because of the large file  
size only a subset of data is shown, whereas equations and statistics reflect  

the full dataset (see full figure in data repository). b, KOs based on 84 GFSs. 
Decrease in similarity was significant for both indices (rBC_KEGG = 0.24,  
PBC_KEGG = 0.001, rSOR_KEGG = 0.21, PSOR_KEGG = 0.005). As a result, dissimilarity 
increased more rapidly with geographic distance based on Bray–Curtis 
compared with Sørensen (permutation tests for analysis of variance (aovperm), 
F1,13940 = 161.4, P = 0.0002). c, Variance partitioning of beta diversity of the GFS 
microbiome (n = 140 GFSs) among spatial and environmental components 
within and among mountain ranges. Shown are adjusted R2 values (%) for each 
component, including residuals. The model explained 54.9% of total variance 
(linear gradient, 15.9%; analysis of variance (ANOVA) on a db-RDA model, 
F3,134 = 9.8, P = 0.001; among mountain ranges: 20.8%, ANOVA F9,131 = 5.97, 
P = 0.001; within mountain ranges: 16.4%, ANOVA F60,122 = 1.7, P = 0.001; based 
on two-sided tests).
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patterns is further corroborated by the genus Polaromonas which, 
despite being cosmopolitan, exhibits phylogeographic signatures 
(Extended Data Fig. 10b).

Theory posits that microdiversity can lead to the optimization of 
niche space49, which is arguably constrained in GFSs due to limited 
resources and strong environmental selection. Our findings suggest 
that few clades are capable of optimizing niche space exploitation in 
GFSs, albeit through microdiversification rather than diversifying 
into deeper-branching taxa. Furthermore, our findings suggest that 

fine-tuned niche exploitation and dispersal limitation collectively 
foster microdiversification, which ultimately contributes to the global 
biodiversity and biogeography patterns of GFS bacteria.

In conclusion, we present a comprehensive study showing a bacterial 
microbiome that is taxonomically and functionally distinct from other 
cryospheric microbiomes, and characterized by high regional specific-
ity and even local uniqueness. Dispersal limitation across spatial scales 
and strong selection imposed by the GFS environment shape a micro-
biome with a small core and biogeographic patterns that arise from 
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c, Turnover among phylogenetically closely related ASVs dominated both 
regional (grey) and global (red) beta diversity. Agglomerative merging of 
phylogenetic distances (from tips towards the root) resulted in a rapid decrease 
in regional and global beta diversity. The greatest change in beta diversity 
occurred when closely related community members were considered, whereas 
deeper-branching phylogenies had little influence. For visual guidance, the 
mean nearest taxon distance is shown as a vertical dashed line, and exponential 
models by solid red lines. a.u., arbitrary units. d, Clades under the influence of 
HoS (a) include microdiverse genera. Distributions of phylogenetic distances 
within genera that contribute to relative abundance, diversity and beta diversity 
in GFS are shown. The number of ASVs per genus is given in parentheses. Genera 
with a high degree of phylogenetic clustering are considered microdiverse.
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variation within a few dominant but microdiverse clades. We attribute 
this microbiome structure to the GFS environment, which maintains 
selective filters over time scales relevant for the eco-evolutionary 
dynamics of bacteria at global scales. Community-level functional 
redundancy, associated with microdiversity, may help GFS bacteria 
resist and recover from natural environmental fluctuations. However, 
climate-induced changes beyond such natural fluctuations may put 
specific, particularly unique, ASVs at risk because geographic isolation 
limits recovery through dispersal. Our study fills knowledge gaps in 
microbial community assembly and biogeography, as well as in cry-
ospheric microbial ecology. It serves as a fundamental reference for 
future studies on the GFS microbiome. The consequences of global 
warming on mountain glaciers and downstream ecosystems are pro-
found and, unlike the microbiome of terrestrial environments50, the 
GFS bacterial microbiome cannot be restored or managed. Its genetic 
potential should, therefore, be explored before it is too late.
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Methods

Study sites and sample collection
Benthic biofilms were collected from 152 GFSs encompassing the 
European Alps, Scandinavian Mountains, Himalayas, Pamir and Tian 
Shan, Ecuadorian and Chilean Andes, Southwest Greenland, Alaska 
Range, Caucasus, Rwenzori Mountains in Africa and Southern Alps 
in New Zealand, between January 2019 and July 2022. Sampling was 
predominantly performed in spring or autumn during hydrological 
‘windows of opportunity’ to avoid high-flow and scouring conditions 
typical for summer ice melt. GFSs from heavily debris-covered and 
rock glaciers were avoided, as were those with proglacial lakes, debris 
flows or tributaries in the reaches above the sampling site. At each 
GFS, we sampled three independent patches (that is, ecological repli-
cates) within approximately 10 m for each of two stream reaches. The 
upstream reach was sampled as close as possible to the glacier snout 
(median distance to glacier snout, 78 m (IQR: 29.5–319 m)), whereas the 
downstream reach was sampled close to the terminal moraine of the 
Little Ice Age (if present and/or accessible; median distance to glacier 
snout, 773 m (IQR: 348–1,300 m)). From each patch, we sampled sandy 
sediments (0.25–3.15 mm size fraction) from the benthic layer (upper 
5 cm of the streambed); all sampling devices were flame-sterilized in the 
field. Sediment samples were transferred into sterile cryovials, immedi-
ately flash-frozen in liquid nitrogen in the field and subsequently stored 
at −80 °C preceding and following shipping to Switzerland for DNA 
extraction and biomass analyses. As required, permits for sampling 
and sample export were obtained from the respective authorities.

Streamwater and sediment physicochemical characteristics
In the field, we measured streamwater temperature, pH, specific con-
ductivity and dissolved oxygen concentration (MultiLine Multi 3630 
IDS, WTW), as well as turbidity (Turb 430 IR, WTW), expressed as 
nephelometric turbidity units (NTU). We filtered streamwater (pre-
combusted GF/F filters, Whatman) into Nalgene HDPE bottles and 
froze samples within 48 h pending nutrient analyses, using a LaChat 
QuikChem 8500 flow-injection analyser for ammonium (N-NH4

+; 
QuikChem method, catalogue no. 10-107-06-3-D), nitrate (N-NO3

−, 
QuikChem method, catalogue no. 10-107-05-1-C) and soluble reac-
tive phosphorus (P-SRP, method no. 10-115-01-1-M). We combined 
inorganic forms of nitrogen into dissolved inorganic nitrogen (DIN). 
Filtered (precombusted GF/F filters, Whatman) dissolved organic car-
bon (DOC) samples were collected in acid-washed, precombusted 
glass vials (upstream reaches only) and stored in the dark at 4 °C pend-
ing analysis. DOC concentration was measured on a Sievers M9 TOC 
Analyser (GE). Sediment mineralogy was determined using an X-TRA 
ThermoARL Diffractometer. Errors varied between 5 and 10% for phyl-
losilicates, and 5% for grain minerals. Raw data files were generated and 
transformed using WinXRD 2.0-6 (ThermoFisher). Relative abundances 
of the main mineral groups were estimated from raw counts of mica, 
chlorite, amphibole, feldspars, calcite and quartz, divided by the sum 
of counts.

Glacier metrics
We calculated the distance of each stream reach to the glacier snout 
based on georeferencing (GPSMAPR 66 s, GARMIN) of the sampling 
sites, as well as glacier surface area and glacierized percentage catch-
ment based on satellite imagery (Sentinel-2, level 2a, March 2019–July 
2022 from scihub.copernicus.eu), and a catchment definition derived 
from the ASTER Global Digital Elevation Model v.3. (NASA/Meti/Aist/
Japan Spacesystems and US/Japan Aster Science Team, 2019).

Microbial biomass
Benthic microbial biomass was determined as described previously 
(for example, ref. 15). Briefly, chlorophyll a, a proxy for algal biomass, 
was extracted from the sediment (90% EtOH) in a hot (78 °C) water bath 

for 10 min and further incubated at 4 °C for 24 h. Following vortexing 
and centrifugation, chlorophyll a concentration in the supernatant was 
quantified using a plate reader (BioTek Synergy H1, catalogue no. EX/
EM: 436/680) and a spinach standard (Sigma-Aldrich). Concentrations 
were normalized to the dry mass of sediment. Bacterial abundance 
was determined using flow cytometry (NovoCyte, ACEA Biosciences) 
on cells stained with SybrGreen and detached from sediments using 
pyrophosphate and sonication51.

DNA extraction, library preparation and sequencing
DNA was extracted from sediment using a phenol–chloroform protocol 
specifically adapted for GFS sediments52. To avoid PCR bias, we ampli-
fied the V3–V4 hypervariable region of the bacterial 16S ribosomal RNA 
gene using primers 341 forward (5′-CCTACGGGNGGCWGCAG-3′) and 
785 reverse (5′-GACTACHVGGGTATCTAATCC-3′)53. We used KAPA HiFi 
DNA polymerase (Roche, Hot Start and Ready Mix formulation) in a 
25 µl amplification reaction containing 1× PCR master mix, 1 µM each 
primer, 0.48 µg µl−1 bovine serum albumin and 1 µl of template DNA. 
Amplification was performed on a biometra Trio (Biometra) instru-
ment. Thermal conditions applied, following initial denaturation at 
95 °C for 3 min, were 94 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s 
for 25 cycles, with a final extension at 72 °C for 5 min. Amplification 
was subsequently verified on 1.5% agarose gel. Amplicon libraries 
were prepared according to the MiSeq manufacturer’s protocol. In 
short, PCR was conducted for the addition of dual indices to purified 
amplicon PCR products. This allowed extensive multiplexing of sam-
ples on a single sequencing lane of the MiSeq (Illumina) platform, fol-
lowing quantification and normalization. Samples were sequenced 
using a 300-base-paired-end protocol at the Bioscience Core Lab of 
King Abdullah University of Science and Technology, Saudi Arabia. 
We also sequenced blanks and three types of mock community, which 
included community DNA (Zymo, catalogue no. 6305), cells (containing 
eight bacterial species in identical cell quantities; Zymo, catalogue no. 
6300) and communities created with strains isolated from alpine GFSs 
(Extended Data Fig. 11 and Supplementary Tables 11 and 12). Cell- and 
strain-based mock communities were extracted using the same DNA 
extraction protocol.

Metabarcoding
A total of 883 amplicon sequence libraries were produced, comprising 
868 benthic sediment samples, six blanks and nine mock communities. 
Paired-end sequencing generated a total of 158,774,383 reads, with 
an average read number of 163,697 ± 48,997 for sediment samples. 
Raw sequences were initially trimmed of primers using the plugin 
cutadapt54. Amplicon sequences were processed using Quantitative 
Insights into Microbial EcologyQ 2 (QIIME2, 2020.8)55 workflow. The 
plugin demux was used to visualize interactive quality plots and assess 
read quality. We used three different denoising approaches for the 
identification of ASVs, namely UNOISE3 (ref. 35), Deblur34 and DADA2 
(ref. 33 and Supplementary Methods 2 and 3). Following inspection 
of mock communities, we further proceeded with Deblur to perform 
quality control (that is, denoising, dereplication and filtering chimeras) 
and identify ASVs. Sequences were trimmed at 410 base pairs (bp), and 
included a minimum quality score of 25. These steps resulted in a total 
of 40,801,795 reads and 65,228 ASVs (one blank was discarded through 
the pipeline procedure due to an insufficient number of reads). Tax-
onomy was assigned against the SILVA reference database56 (v.138) using 
classify-sklearn from QIIME2. ASV and taxonomy tables, along with the 
metadata, were transferred to the R (v.4.1) environment for subsequent 
statistical analyses. Eukaryote, Archaea, mitochondria, chloroplast and 
blank-related sequences were discarded. We then applied a prevalence 
threshold to our dataset such that only ASVs present in at least two sedi-
ment patches from the same GFS were retained, independent of their 
prevalence in other GFSs. GFSs with fewer than three sediment patches 
were discarded (n = 6). Read counts were subsequently averaged across 

http://scihub.copernicus.eu


Article
replicates for a given GFS and multiplied by six before rarefaction  
(nrarefaction = 135,665). The final ASV table comprised 54,837 ASVs across 
152 GFSs, including the sole GFS from the Rwenzori Mountains. A phy-
logenetic tree was constructed using VeryFastTree57.

Shotgun metagenomics
DNA samples obtained from benthic sediments also underwent 
whole-genome shotgun sequencing, as described previously58. Briefly, 
libraries were prepared using the NEBNext Ultra II FS library kit, in 
which 50 ng of DNA was used. Library preparation included six PCR 
amplification cycles following a 12.5 min enzymatical fragmentation 
of input DNA. On average, an insert size of 450 bp was obtained, in 
which libraries were quantified by Qubit (Invitrogen), coupled with 
quality and size estimation using a bioanalyser (Agilent). Sequencing 
was performed at the Functional Genomics Centre Zurich on an S4 flow 
cell (150 bp paired-end; NovaSeq).

In regard to metagenomic sequence data, the Integrated Meta-omic 
Pipeline (IMP, v.3.0, catalogue no. 9672c874; available at https://git-r3lab.
uni.lu/IMP/imp3)59 was used to process paired forward and reverse 
reads from 97 GFS metagenomes. The IMP workflow for GFS analyses 
has previously been described59. Briefly, IMP uses MEGAHIT (v.1.2.9)60 
for the assembly, following an adaptor- and primer-trimming step with 
cutadapt53. Subsequently, the assemblies were used for functional gene 
calling through Prodigal61, yielding 24,946,385 non-redundant gene 
clusters following clustering with mmseqs2 with the following param-
eters: --cov-mode 0 c 0.8 --min-seq-id 0.3 (ref. 62). FeatureCounts was 
then used to estimate gene abundance, with KEGG annotations from 
gene annotations generated using Mantis63, mapping to 17,536 KOs. 
We filtered KEGG data so that only those 8,518 KOs associated with 
prokaryotes were retained, as determined by KofamScan profiles64. For 
comparison with other cryospheric systems, we obtained 92 metagen-
omes from ref. 21 and processed these with the IMP workflow using the 
same parameters.

Data analysis
Gamma and alpha diversity. Rank abundance curves were computed 
for each mountain range. We explored patterns of gamma diversity by 
computing both observed and estimated (that is, asymptotic estimator) 
ASV richness using iNEXT65. For alpha diversity, we used the Hill num-
bers approach because it provides an effective comparison of diversity 
indices based on the ‘equivalent number’ of features66. We therefore 
present ASV observed richness (q = 0) and effective number of ASVs 
based on the exponential of Shannon entropy, calculated using the 
function hill_taxa within the package hillR67 (v.0.5.2). For comparison of 
alpha diversity from GFSs with other cryospheric ecosystems, we used 
a published 16S rRNA gene amplicon sequence dataset of 178 samples 
spanning various cryospheric ecosystems (for example, snow, cryo-
conite, permafrost soil)21. Preprocessing of cryospheric-related data 
is further detailed in Supplementary Methods 3. To assess the effects 
of elevation and glacier coverage of the catchment on ASV richness, 
we computed generalized additive models and linear models using 
the package mgcv68 (v.1.8-42). Assumptions of normality and homo-
scedasticity of variance were tested on data residuals using Shapiro–
Wilk and Levene tests, with the function check_model in the package 
performance69 (v.0.9.2.2).

Beta diversity and indicator taxa. For assessment of compositional 
differences between (1) the GFS microbiome and other cryospheric eco-
systems (16S rRNA gene dataset of 178 cryospheric samples from ref. 21)  
and (2) mountain ranges and hemispheres for the GFS microbiome 
dataset, we computed non-metric multidimensional scaling (NMDS) 
analyses based on the Bray–Curtis index using metaMDS in the package 
vegan70 (v.2.6-2). We used generalized additive models to visualize lati-
tudinal variation in NMDS space using the function ordisurf in vegan. We 
tested for the effects of ecosystem type for (1) GFS mountain ranges and 

GFS hemispheres and (2) community composition using permutational 
analysis of variance (PERMANOVA) based on Bray–Curtis dissimilarity, 
with the function adonis2 in vegan. Pairwise differences were assessed 
using the package pairwiseAdonis71 (v.0.4), and P values were adjusted 
for multiple comparisons following the Holm method. To account for 
issues pertaining to PERMANOVA—in which differences in microbi-
ome dispersion could be confounded by composition effects72—we 
computed multivariate generalized linear models using the function 
manyglm in the package mvabund73 (v.4.2.1), and further computed 
ANOVA with the function anova.manyglm for significance testing. In 
addition, we partitioned the contribution of ASVs to beta diversity74 
measured as total community variance, along with the contribution 
of GFSs in different mountain ranges to global beta diversity, using 
the function beta.div in the package adespatial75 (v.0.3-21). Indicator 
ASVs significantly contributing to compositional differences among 
mountain ranges were calculated based on Bray–Curtis dissimilarity, 
999 permutations and Benjamini–Hochberg correction76,77, using the 
function dbMANOVAspecies implemented in the package adiv78 (v.2.2).

Specific, unique and core ASVs. Amplicon sequence variants  
exclusively detected in a single mountain range (that is, accounting for 
multiple GFSs) were categorized as specific, and those identified in only 
one GFS as unique. The occurrences of unique ASVs among replicated 
sediment patches were assessed from the dataset before averaging and 
rarefaction. We tabulated the number of specific and unique ASVs in 
each mountain range, their contribution to total relative abundance, 
the number of GFSs per mountain range where specific ASVs occur and 
finally investigated the taxonomic composition of these specific ASVs. 
The taxonomic core microbiome was computed at the ASV level. ASVs 
present in at least one GFS across more than six out of ten mountain 
ranges (that is, omitting the sole GFS from the Rwenzori Mountains), 
and detected at a relative abundance equal to or greater than 0.1%, 
were categorized as core ASVs. To illustrate the relative abundance of 
the most abundant phyla and families across core, indicator and spe-
cific ASVs, we computed ridgeline plots using ggridges79 (v.0.5.4) and  
agglomerated ASVs at the genus level using tax_glom in the phyloseq80 
package (v.1.41.1).

Distance-decay patterns. Distance-decay patterns were generated 
on both taxonomic and functional tables based on either geographic 
distances and dissimilarity indices (Bray–Curtis, Sørensen) or distance 
metrics (that is, weighted and unweighted UniFrac distances). Distances 
between GFSs were calculated using distm in the package geosphere81 
(v.1.5-18), including the parameter distGeo, which estimates the short-
est distance between points on an ellipsoid. We computed Mantel tests 
to examine the statistical significance of distance-decay patterns. 
Moreover, we compared regression slopes using linear models or 
permutational analysis of covariance when assumptions were not met.

Variation partitioning. We partitioned the variance of the GFS micro-
biome (excluding the Rwenzori Mountains GFS) beta diversity82–85 with 
db-RDA using the Bray–Curtis dissimilarity index. This analysis quanti-
fies the relative importance of the spatial structure (that is, within and 
among mountain ranges), the GFS environment (that is, physicochemi-
cal parameters and glaciology) and climatic variables in explaining the 
variance in beta diversity. db-RDA analyses were executed to investigate 
the linear effects of latitude, longitude and elevation on microbiome 
composition.

We computed variation partitioning by combining a three-level, 
spatial-scale model with an environmental model. The former was 
built as follows: (1) a component accounting for the linear effects 
of latitude, longitude and elevation of the sample; (2) a component 
accounting for mountain range identity using dummy variables; and  
(3) a spatial component encompassing Moran’s eigenvector maps 
(MEMs) to elucidate the spatial relationships among GFSs within a 
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particular mountain range. The type of MEM variables used are principal 
coordinates of neighbour matrices (PCNM)85,86. MEM analysis generates 
a set of orthogonal variables based on the geographic coordinates of 
GFSs85; these variables serving as explanatory variables in the db-RDA 
to model spatial structure in community data. Specifically, MEM vari-
ables from the spatial matrix were arranged in blocks, with each block 
allocated to a specific mountain range. Pools from the other mountain 
ranges were assigned a value of 0. The environmental model was com-
puted using a forward selection procedure applied to a predetermined 
set of environmental variables86.

Before variation partitioning, we applied natural log transformation 
to the community data matrix87. We included streamwater temperature, 
pH, specific conductivity, turbidity, DOC, chlorophyll a, DIN, SRP, ben-
thic sediment mineral composition (that is, calcite, quartz, feldspar and 
clays) and glacier metrics (glacier surface area and percentage glacier 
cover of the catchment). In addition, we included monthly precipita-
tion and snow cover days, metrics retrieved from the Chelsa climate 
database (https://chelsa-climate.org). We used the functions dbrda 
and varpart of the vegan package and forward.sel of the package pack-
for88. Variance inflation factors were used to detect multicollinearity 
amongst predictors, which were log transformed before analyses. 
Lastly, PCNM from the PCNM package was used to compute MEM spatial 
eigenfunctions89.

Assembly processes and phylogenetic profiling. Phylogenetic 
turnover analyses can unravel community assembly processes (that 
is, ecological drift, selection and dispersal). To this end, we used the 
statistical framework iCAMP47 to identify dominant assembly processes 
within each mountain region. iCAMP leverages null-model analysis 
of the beta-net-relatedness index, a metric that quantifies bin-level 
phylogenetic distances, which emphasizes deep-level phylogenetic 
turnover. Taxonomic turnover, assessed using a modified version of 
the Raup–Crick metric, is further used to distinguish between dispersal 
limitation, homogenizing dispersal and ecological drift. iCAMP uses 
phylogenetic tree-based binning, thereby facilitating the resolution of 
different assembly processes at a finer taxonomic resolution. Bin-based 
dominant community assembly processes—namely, dispersal limi-
tation, HoS and ecological drift (Drift), along with the taxonomies 
of major clades— were visually represented on the phylogenetic tree  
using ggtreeExtra90.

The assessment of autocorrelation of phylogenetic distances among 
ASVs with a similar contribution to beta diversity (that is, phylogenetic 
signal in species contribution to beta diversity) was carried out using 
the packages adespatial and phylosignal91. To unravel the phyloge-
netic depth at which different facets of beta diversity manifest, we 
consecutively agglomerated phylogenetic tips using the tree_glom 
function in the package speedyseq (v.0.5.3.9018). As a reference metric 
we used mean phylogenetic distance between ASVs, specifically mean 
nearest taxon distance (0.09), and evaluated the rate of change in beta 
diversity. This was quantified as Bray–Curtis dissimilarity (that is, the 
quantitative form of Sørensen dissimilarity, using the beta.div.comp 
function in the package adespatial. Beta diversity exhibited a change 
of less 1% at phylogenetic depths greater than 0.2. In light of these 
findings, and corroborated by previous work (ref. 46 and references 
therein), we screened the phylogeny from 0 to 0.2 in steps of 0.005 (in 
arbitrary units). For each incremental step, we calculated both global 
beta diversity and the number of unique taxa—here referring to unique 
phylogenetic tips present in a single GFS.

KEGG functional analysis. The KEGG counts per sample from GFSs 
were merged in R (v.4.1.0) and log transformed using the log1p func-
tion. The abundance-coverage estimator, and Shannon and Chao1 
indices (Supplementary Table 5), were calculated using the trans_ 
alpha function encoded in the package microeco (v.1.0.0). We used the 
MaAsLin2 (ref. 92) (v.1.7.3) R package to determine KOs significantly 

different between GFS samples and other cryospheric samples. The 
data were normalized with the total sum scaling method to account for 
differences in sequencing depth between samples. To further control 
for potential confounding variables, we added covariate data to the 
model to identify differences in sample type (GFS versus non-GFS). 
Beta diversity was calculated with trans_beta, generating a principal 
coordinate analysis (PCoA) figure using the built-in plot function. Sub-
sequently, KEGG API (https://www.kegg.jp/kegg/rest/keggapi.html) 
from KEGGREST93 (v.3.17) was used to retrieve pathway annotations 
for each KO number. The most abundant pathways were included in 
PCoA using geom_text from the package ggplot2 (ref. 94) (v.3.4.4). KO 
abundances were summarized based on KEGG pathways for both GFS 
and other cryospheric ecosystems, and a heatmap was generated using 
the package pheatmap95 (v.1.0.12). Classification of KOs into generalist 
and specialist functional potential, using Levin’s niche breadth index  
(derived from KO prevalence and abundance)96, was performed with 
spec.gen within the package EcolUtils (v.0.1)97. Finally, investigation of 
the contribution of generalists and specialists to functional dissimilarity 
was conducted using the function simper within the package vegan. All 
statistical analyses were computed in R (v.4.1.0)98. The maps were gen-
erated through RStudio using the package rnaturalearth (v.1.0.1)99,100.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequence data have been deposited in the Sequence Read Archives 
with NCBI BioProject accession no. PRJNA781406. Processed data, along 
with data tables associated with Figs. 1–5 and Extended Data Figs. 1–11, 
are available at Zenodo (https://doi.org/10.5281/zenodo.13897903)101.

Code availability
R analysis scripts are provided at GitHub (github.com/laylaeb/GFS_ 
biogeo2023).
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Extended Data Fig. 1 | World map of the glacier-fed streams (GFSs) sampled 
by the Vanishing Glaciers Project and environmental data associated  
with the study. (a) In total, the Vanishing Glaciers Project studied 170 GFSs 
from 11 of the largest mountain ranges worldwide between 2019 and 2022.  
Per mountain range, benthic sediment samples were collected from GFSs  
in up to three different regions (orange dots) to account for the variability 
within a given mountain range. For the present study, we retained 152 GFSs  
for microbiome analyses. Violin plots of environmental data. (b) Water 
temperature [°C] with n = 139 biologically independent samples, (c) pH (n = 139), 
(d) Conductivity [uS/cm] (n = 128), (e) Turbidity [NTU] (n = 138), (f) Dissolved 

inorganic nitrogen - DIN [ug/L] (n = 139), (g) Soluble reactive phosphorus -  
SRP [ug/L](n = 137), (h) Dissolved organic carbon - DOC [ug/L] (n = 139),  
(i) Chlorophyll a [ug/g] (n = 139), ( j) Clays [NIR] (n = 139), (k) Calcite [NIR] 
(n = 139), (l) Quartz [NIR] (n = 139), (m) Feldspar [NIR] (n = 139) across the 
different mountain ranges. Each dot represents a GFS. The horizontal lines 
within the box plots represent the median, box height is the interquartile 
range, and whiskers represent the data range. The width of the violin plot 
represents the frequency of values in the data. Solid and dashed lines across 
each graph are median and quartile values computed across the different 
mountain ranges.
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Extended Data Fig. 2 | Functional pathways across cryospheric ecosystems. 
Heatmap of illustrating functional pathways differentially associated (as log10 
abundance) with metagenomes collected from GFSs and other cryospheric 

ecosystems. Shown are abundances of 53 pathways generated by collapsing the 
8,518 KOs into their respective functional ortholog categories.



Extended Data Fig. 3 | Rank-abundance model fits. (a) Rank abundance 
curves (RAC) for the different mountain ranges. Bold lines represent the mean 
RAC for a given mountain range (n = 151 GFSs). (b) Rank-abundance distributions 
with log-normal model (red) and Brokenstick null model (cyan) fits for a subset 
of nine GFS for the filtered and rarefied dataset. The entire set of distributions 
for both filtered-rarefied and unfiltered datasets is found on Zenodo repository 
(see Data Availability section). For most GFS communities, the log-normal  
model fits the empirical abundance distributions (grey) well. The log-normal 

model (i.e., frequency distributions which approximate normality upon log- 
transformation) is expected to describe large communities because of the 
central limit theorem and is thought to emerge from interactions among 
stochastic processes, such as growth and dispersal. The log-normal model fit 
further suggests that communities have relatively few rare ASVs (compared for 
instance to the log-series model). While our stringent filtering criteria led to 
the preferential removal of rare taxa, they did not qualitatively influence 
rank-abundance model fits.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Microbiome structure and function in relation to 
altitude and glacier coverage. Linear relationships between ASV richness  
and (a) elevation (taking into account the latitudinal effect), and (b) percent 
glacier coverage across all GFSs (n = 151; excluding the Rwenzori Mountains). 
Generalised additive models (GAMs) were built regressing elevation against  
a spline of latitude (bs=tp). The residuals of this regression were then fitted 
against ASV richness in a second model. Results from the latter showed that 
species richness decreased significantly with increasing elevation, when 
accounting for latitude (GAM elev_lat, spline F = 179.6, p < 2e-16, Deviance 

explained=91.3%, adj R2 = 0.908; LM richness_elevation, F = 19.96, p = 0.000016, 
adj R2 = 0.118), and glacier coverage (LM richness_glaciercov, F = 13.66, 
p = 0.0003, adj R2 = 0.078). (c) The elevation model residuals were also  
fitted against the KEGG gene Shannon richness, displaying the more uniform 
functional diversity. (LM KEGG Shannon vs elevation residuals, F = 0.3898, 
p = 0.53341, adj R2 = −0.0074). Confidence intervals (95% as dashed lines)  
are shown around the regression line, indicating the standard errors of the 
predicted value.
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Extended Data Fig. 5 | Dissimilarities of the glacier-fed stream bacterial communities within and among mountain ranges. Average values of (a) Bray-Curtis 
and (b) Sørensen dissimilarity indices computed within and among mountain ranges (n = 151 GFSs).



Extended Data Fig. 6 | Indicator amplicon sequence variants (ASVs) that 
significantly contribute to beta-diversity of the GFS benthic microbiome. 
(a) Heatmap illustrating the relative abundance of the 500 most abundant 
indicator ASVs across mountain ranges (n = 151 GFSs). (b) NMDS based on 

Bray-Curtis dissimilarity illustrating biogeographic patterns (large circles 
reflect individual GFS, lines connecting GFSs to the group centroid highlight 
the different regions). Species scores of the 500 indicator ASVs, which contribute 
to dissimilarities among mountain ranges, are shown (dots, coloured by region).
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Functional diversity observed in the GFSs. (a) Principal 
coordinates analysis (PCoA) based on KEGG orthology (KO) abundances 
representing GFSs’ functional diversity. Filled circles represent individual 
samples across the mountain ranges. Grey dots indicate the underlying KOs 
contributing to the dissimilarity, calculated using Bray-Curtis distance. 
Pathways based on grouped KOs, contributing to the variation within the 
samples are indicated as text. (b) Functional dissimilarity across GFSs  
(as Bray-Curtis) was consistently low (average BCdis = 0.14), contrasting the large 
taxonomic dissimilarity (average BCdis = 0.86) and pointing to the replacement 
of functionally redundant taxa across samples. Shown is the density distribution 
of taxonomic and functional dissimilarity across all sample pairs. (c) Despite 
pronounced differences in GFS microbiome alpha diversity (in terms of number 
of ASVs and Faith’s phylogenetic diversity), these communities encoded similar 

numbers of KOs (between 7202 and 7928 KOs). (d) Classification of KOs into 
generalist and specialist functional potential using Levin’s niche breadth index 
revealed a large number of widely-distributed generalist KOs (n = 7133) and 
comparably few (n = 991) specialist KOs. Another 373 KOs could not be classified 
unambiguously using Levin’s index and 999 permutations (i.e. non-significant). 
Notably, (e) similarity percentage (SIMPER) analysis, revealed that generalist 
KOscontribute most to the observed functional dissimilarity. The boxplot 
shows median (horizontal line), interquartile ranges (IQR, boxes) and outliers 
(>1.5 x IQR, circles) for generalist (n = 7133), specialist (n = 991) and non-significant 
(n = 377) KOs. Taken together, the presence of most KOs across GFS globally 
and that wide-spread KOs contribute to the (low) functional dissimilarity 
points towards substantial functional redundancy in GFS microbiomes.
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Extended Data Fig. 8 | Benchmarking denoising procedures and sensitivity 
analyses. (a) Comparison of diversity metrics (ASV richness, Shannon index, 
proportion of unique ASVs in a sample, and relative abundance of unique ASVs) 
across the whole GFS microbiome dataset for the three different denoising 
approaches (DADA2, Deblur, UNOISE3). Values were computed with a rarefaction 
threshold set at n = 135,665 (22,611 reads/sample x 6) after filtering. Comparisons 
of the effect of different sequence denoising approaches and replicate merging 
strategies (sum, sample, filtering) on the identification of specific ASVs in the 
GFS dataset at a rarefaction depth of 22,611 reads per sample. (b) Proportion 
and (c) relative abundance of specific ASVs across mountain ranges as computed 
with UNOISE3, DADA2 and Deblur, taking into account a filtering approach 
(see Methods) without further alteration of the data. For the method ‘sum’, 
counts from replicate samples were summed; for the method ‘sample’, one 
replicate was randomly sampled each time; and for the method ‘filtering’,  

we applied the filtering as described in the methods, and averaged the replicates. 
For the boxplots, given are median, interquartile ranges and whiskers extending 
1.5× beyond the inter-quartile range. (d) Sensitivity analysis of the proportion 
of specific ASVs (within each mountain range) performed using Deblur, and for 
varying levels of rarefaction depth (right panel) and number of GFSs sampled 
per mountain range (left panel). Generally, and as expected, estimates of 
endemicity are sensitive to both low-rarefaction depth and a low number of 
samples per region. Lower bound estimates of the proportion of specific ASVs 
range between approximately 25-65% (using Deblur). Geographically isolated 
GFS (e.g., New Zealand’s Southern Alps, Ecuadorian Andes) harbor consistently 
(and with high confidence) higher levels of specificity than other regions. Please 
note that for comparability, a maximum number of six samples was chosen. For 
most regions, we included many more samples and final rarefaction was adjusted 
to 22,611 ASVs, leading to overall conservative estimates of specificity.



Extended Data Fig. 9 | Taxonomy of cryospheric samples. Relative abundance of the most abundant genera detected across cryospheric ecosystems  
(n = 268 samples). Data were retrieved from a previous meta-analysis (Bourquin et al.21), and were agglomerated at the genus level.
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Extended Data Fig. 10 | Microdiversity of globally present and abundant 
genera. (a) Globally dominant GFS microbiome members (i.e., Polaromonas, 
Rhodoferax, Methylotenera and Rhizobacter) resolve biogeographic differences. 
Shown are non-metric multidimensional scaling ordinations; lines connect the 
regional centroids with samples of the respective region (circles). Red symbols 
reflect the “species scores” of ASVs. Analysis of similarity (ANOSIM) testing  
for differences between regions are displayed for each genus. (b) The global 

distribution of Polaromonas ASVs shows phylogenetic signatures. Shown is the 
phylogenetic tree of 321 Polaromonas ASVs. Circles at the tips highlight regions 
in which the respective ASV dominates (in terms of relative abundance). 
Widespread ASVs (i.e. without dominance in a single region) are shown in grey. 
The outer ring displays mean regional abundances (log-transformed). Note 
that abundant Polaromonas ASVs tend to be abundant across many regions. 
Phylogenetically closely related ASVs tend to co-occur within regions.



Extended Data Fig. 11 | Taxonomic composition of blank and mock samples. 
Taxonomic composition of (a) blanks analysed with deblur with all the genera 
assigned and (b) with dada2 and unoise with an “other” category. (c) Taxonomic 
composition of commercial mock communities obtained both as DNA (DNA, 
Zymo, Cat. Nr. 6305) and cell cultures (Culture, Zymo Cat. Nr. 6300). (d) Mock 
community created based on isolates obtained from Swiss GFS. Taxonomic 
compositions were computed using the three denoising approaches (DADA2, 
Deblur and UNOISE3). Numbers above the bar plots correspond to the number 

of ASVs found in each community. (e) Visual representation of ASVs detected in 
blanks and retained by the three different denoising algorithms (Deblur, UNOISE3 
and DADA2). These circularized barcharts show the mean relative abundance 
of all genera detected in the blanks. Abundant genera are highlighted (moved 
inside). Note that for UNOISE only the 100 most abundant genera could be 
visualized and that GFS taxonomies, including Polaromonas, Rhodoferax  
and Methylotenera, were either absent (Methylotenera) or of very low relative 
abundance in these blank samples.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code
Policy information about availability of computer code

Data collection N.A.

Data analysis All data were analyses using R (version 4.4.1). All codes are available on github.com/laylaeb/GFS_biogeo2023

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

 
Raw sequence data have been deposited in the Sequence Read Archives with NCBI BioProject accession no. PRJNA781406. Processed data along with data tables 
associated with main and extended figures can be retrieved from Zenodo at doi:10.5281/zenodo.13897903. Data retrieval URL: https://zenodo.org/
records/13897903.
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender non applicable

Population characteristics non applicable

Recruitment non applicable

Ethics oversight non applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Field work at ca 150 glacier-fed streams around the world strictly following established standard operational procedures and trained 
personnel. Study systems were selected to cover the major mountain ranges, comply with geopolitical conditions, Covid-19 related 
context and field safety, covering altitudes from 2000 to 4800 m above sea level.

Research sample We sampled the benthic sandy sediments of glacier fed streams as this fraction contributes most surface area for microbial 
colonisation per unit streambed surface area. DNA was extracted from these sediments. We also collected water samples for 
physico-chemical characterisation. We inferred glaciological metrics from satellite imagery and GIS. Sediments were also analysed for 
mineral composition.

Sampling strategy As aforementioned, we covered the major glacierized mountain ranges across the continents. Per mountain range, we selected up to 
three regions to have representative sample at the scale of the mountain range. Per region, we identified up to 4 glacier-fed streams 
with different glacier size etc. Per stream, we sampled three sediment patches in a reach as close to the glacier snout as possible 
(depending on safety and accessibility). All samples for microbiological analyses flash-frozen (liquid nitrogen) immediately upon 
collection in the field. Temperature chain always (!!) kept until handling in the lab at EPFL, Switzerland.

Data collection The PI's (Battin) lab collected all samples to ensure the highest level of reproducibility and comparability possible. All DNA was 
extracted and libraries constructed in the PI's lab by the same two well-trained technicians (again to reduce bias etc). Sequencing was 
done at KAUST, data analyses at EPFL (Scitas computer) and University of Luxembourg (HPC).

Timing and spatial scale Expeditions (up to 2.5 months each) were conducted over four entire years, also during the Covid-19 pandemics. The design was 
such that we sampled glacier-fed streams once either during the vernal or autumnal 'window of opportunity' when environmental 
conditions were less extreme. For this, we basically traveled with the seasons depending on the hemisphere. This is critical allow 
comparability across systems.

Data exclusions A small percentage of samples was excluded because not enough DNA was extracted, which simply reduced the overall number of 
cases. Few ASVs excluded because they were identified in mock communities

Reproducibility This is a large-scale spatial survey of complex systems. Hence it is clear that reproducibility at the level of streams is simply not 
feasible. However (!), we did reproduce at the level of sediment patches (triplicates) sampled per stream reach.

Randomization none

Blinding Mock communities (DNA, Zymo, Cat Nr. 6305 and cell cultures Culture, Zymo Cat Nr. 6300) as well as sequencing blanks were used.

Did the study involve field work? Yes No
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Field work, collection and transport

Field conditions Challenging field conditions, well met by highly trained personnel. Safety regulations, regular medical checks and access respected.

Location Detailed map shown in Extended Data Fig 1 with the Southern Alps of New Zealand, Himalayas, Caucasus Mountains, Pamir and Tian 
Shan, European Alps, Scandinavian Mountains, Southwest Greenland, Alaska Range, African Rwenzori and both Ecuadorian and 
Chilean Andes

Access & import/export We had all required permits for sampling and sample exports. New Zealand: Ministry of Conservation (#72437 – RES); Greenland: 
Ministry of Industry and Energy (# G19-016); Russia: Ministry of Natural Resources and Environment (Permit granted to IGRAS base 
on the signed MoU); Ecuador: Ministerio del Ambiente, Direccion National de Biodiversidad; we worked under the global research 
permit of Escuela Politécnica Nacional); Norway: Norwegian Environment Agency; France (Permissions authorized through the 
collaboration between EPFL – RIVER Lab and academic and governmental and non-governmental entities in France); Nepal (Research 
permit from Department of National Parks and Wildlife Conservation;  Trekking permits (TIMS) for Sagamartha, Langtang National 
Parks & Annapurna Conservation Area); Kyrgyzstan (Government of Kyrgyz Republic, Ministry of Environment; Border Zone Permits 
and Research permits obtained under MoU with CAIAG); Uganda (Uganda National Council for Science and Technology UNCST, # 
NS291ES, Uganda Wildlife Authority UWA, # COD/96/05); Chile (Ministère de l'Agriculture, La Corporación Nacional Forestal, CONAF 
# 9.494.705-7); Alaska (US Forest Service USFS Authorization permit GLA1207 FS, Department of Natural Resources DNR Division of 
Parks & Outdoor Recreation Special Park Use Permit 11 AAC 18.010) 

Disturbance none

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals not applicable

Wild animals Benthic biofilm microorganisms

Reporting on sex not applicable

Field-collected samples As described above, all sediment sampled for microbiological analyses were deep-frozen at the spot in liquid nitrogen (dewars 
carried up to 5,200 m a.s.l.!), the temperature chain unbroken until handling in the lab. Liquid samples frozen or stored cool in the 
dark - prefiltered in precombusted vials. Sediments sampled with flame sterilized stainless equipment.

Ethics oversight None required. However, we had permissions from the various authorities to enter national reserves or Maori territory in NZ, for 
instance.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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