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Abstract

Background Early-life exposures including diet, and the gut microbiome have been
proposed to predispose infants towards multifactorial diseases later in life. Delivery via
Cesarian section disrupts the establishment of the gutmicrobiome andhas been associated
with negative long-term outcomes. Here, we hypothesize that Cesarian section delivery
alters not only the composition of the developing infant gut microbiome but also its
metabolic capabilities. To test this, we developed a metabolic modeling workflow targeting
the infant gut microbiome.
Methods The AGORA2 resource of human microbial genome-scale reconstructions was
expanded with a human milk oligosaccharide degradation module. Personalized metabolic
modeling of the gut microbiome was performed for a cohort of 20 infants at four time points
during the first year of life as well as for 13 maternal gut microbiome samples.
Results Here we show that at the earliest stages, the gut microbiomes of infants delivered
through Cesarian section are depleted in their metabolic capabilities compared with vaginal
delivery. Various metabolites such as fermentation products, human milk oligosaccharide
degradation products, and amino acids are depleted in Cesarian section delivery gut
microbiomes. Compared with maternal gut microbiomes, infant gut microbiomes produce
less butyrate but more L-lactate and are enriched in the potential to synthesize B-vitamins.
Conclusions Our simulations elucidate the metabolic capabilities of the infant gut
microbiome demonstrating they are altered in Cesarian section delivery at the earliest
time points. Our workflow can be readily applied to other cohorts to evaluate the effect of
feeding type, or maternal factors such as diet on host-gut microbiome inactions in early life.

The human gut microbiome plays an important role in human health and
well-being1. Changes in the composition and function of the gut micro-
biome have been implicated in noncommunicable diseases, including car-
diometabolic diseases, neurodevelopmental diseases, and allergies2. During
the first year of life, the gutmicrobiome performs essential functions such as
maturation of the immune system, digestion of the diet, synthesis of amino

acids and vitamins, and protection against pathogens1,3. Initial colonization
of the gastrointestinal tract occurs at birth, and drastic changes in compo-
sition and diversity occur during the first year of life4. The infant gut
microbiome is influenced by a variety of factors including diet, geography,
mode of delivery, infection, feeding type (formula versus breastfed), and
medication5. Specifically, breast milk shapes the composition of the infant
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Plain-language summary

Trillions of microorganisms live in the
digestivesystemofhumans,with thosewithin
the intestine being described as the intestinal
microbiome. Intestinal microbes perform
important metabolic functions such as
digestion of the diet (e.g., breast milk) and
production of metabolites such as
B-vitamins. Birth via Cesarian section dis-
rupts the establishment of the gut micro-
biome. Here, we evaluate the effect of birth
mode on microbiome metabolic functions
during the first year of life. Computational
metabolic models were built for a cohort of
mothers and infants, with each model repre-
senting the individual’s unique microbiome.
Microbiomes from infants delivered by
Cesarian section had perturbed metabolic
functions early in life but became comparable
to those in vaginally delivered infants later in
life. Moreover, the metabolic functions pre-
sent in infant gut microbiomes differed from
those in maternal gut microbiomes. This
information couldbeauseful starting point for
further research to improve the intestinal
microbiome of babies born by Cesarian
section.
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gut microbiome as it contains large amounts of oligosaccharides (human
milk oligosaccharides, HMOs) that are selectively utilized by beneficial gut
microbes and promote their growth6. Hence, they aid in resisting coloni-
zation of pathogens, and in the maturation of the immune system by pro-
moting short-chain fatty acid production6.Members of the Bifidobacterium
and Bacteroides genera are especially adept at using HMOs as carbon
sources6, but HMO utilization has also been shown in members of the
Bacilliales6 andClostridiales7 orders as well as theVerucomicrobia phylum8.

Themode of delivery also impacts the early gutmicrobiome. Vaginally
delivered (VD) infants receive maternal microbes via the fecal-oral route,
while this transmission is disrupted in infants born via Cesarian section
delivery (CSD)5. The gut microbiome of VD infants is first colonized by
facultative anaerobes such as Escherichia, followed by Bifidobacterium and
Bacteroides species shortly after9,10. In contrast, those born through CSD
acquire speciesmore often associatedwith the hospital environment such as
Staphylococcus epidermis and Bacteroides fragilis9. Short-term risks of CSD
include reduced diversity of the gut microbiome, impaired transmission of
bacterial strains from mother to newborn, microbiome-related functional
deficits, and predisposition to colonization by opportunistic pathogens,
including those carrying antimicrobial resistance genes9,11. Delivery by the
Cesarian section has been associated with a higher risk of allergies, asthma,
obesity, and neurodevelopmental disorders3,12.

The Developmental Origins of Health and Disease (DOHaD)
hypothesis, referred to as fetal programming, states that environmental
exposures, such as nutrients, chemicals, and drugs, during vulnerable
developmental stages can permanently program changes in offspring organ
structure and function toward the development of noncommunicable
diseases13,14. Recently, the gutmicrobiomehas beenproposed as an exposure
affecting early-life development5. Maternal obesity during pregnancy can
predispose infants to obesity later in life15, which may be mediated by the
maternal gut microbiota5. In animal models, obesity could be transferred
from mothers to offspring mediated by diet and the gut microbiota16,
however, evidence in humans for the transmittal of obesity via the gut
microbiome remains to be established. A key mechanism through which
early-life environmental exposures affect predisposition towards metabolic
diseases later in life, and health outcomes can be transmitted across gen-
erations, is epigenetic regulation17. Gut microbes produce short-chain fatty
acids, which aremetabolized by the human host and directly influence gene
regulation through at least four independent mechanisms18. For instance,
butyrate acts as a histone deacetylase inhibitor18. Consistently, in animal
models, the gut microbiome has been shown to modulate global histone
acetylation and methylation profiles in multiple host tissues in a diet-
dependent manner19, an obesogenic gut microbiota combined with a high-
fat diet reprogrammed the intestinal epigenome20, and a long-term high-fat
diet led to alterations of histone methylation and acetylation in epithelial
cells21. Hence, the gut microbiome has been proposed to contribute to
metabolic programming in early life via epigenome-mediated
mechanisms22. Besides short-chain fatty acids, gut microbes also produce
vitamins, including folate and B12 which play a key role in epigenetic
regulation17, and a variety of other bioactive metabolites that modulate the
regulation of host metabolism during the first year of life23. Hence, delivery
mode as well as other factors influencing infant gut microbiome composi-
tion (e.g., maternal diet and feeding5) may also affect microbial metabolites
and their crosstalk with host metabolism.

To link the gut microbiome and its impact on bioactive metabolites in
the fecal or blood metabolome beyond correlations, mechanistic systems
biology models are needed24. Constraint-based reconstruction and analysis
(COBRA) have emerged as an attractive mechanistic systems biology
approach for modeling the humanmicrobiome24. Briefly, COBRA employs
genome-scale reconstructions of metabolism that are built in a bottom-up
manner and curated through manual efforts based on genomic, biochem-
ical, andphysiological knowledge25. A resource of 773 curated genome-scale
reconstructions of the human gut microbiome, deemed AGORA26, has
enabled the strain-and molecule-resolved prediction of metabolic differ-
ences between patients and controls through dedicated modeling

pipelines27,28. An expansion of AGORA, accounting for 7302 strains and
deemed AGORA2, has been published recently29. Previous studies have
used COBRA modeling to elucidate metabolic mechanisms in the infant’s
gut. Metagenomic and nutritional data from a cohort of 13 infants at five-
time points were integrated into a referencemetabolic network and used to
predict gutmicrobialmetabolic patterns before and after the introduction of
solid foods30. Another study used 15 reconstructions from the AGORA
resource to build a spatiotemporal model of the infant colon31. The model
predicted cross-feeding between members of the infant’s gut and could
reproduce the switch from facultative anaerobes to an anaerobic environ-
ment dominated by bifidobacteria31. A follow-up study introduced degra-
dation of the HMO 2-fucosyllactose into the spatiotemporal model
revealing that 2-fucosyllactose promoted butyrate production through
cross-feeding mechanisms32. In another recent study, a high-quality gen-
ome-scale reconstruction of Bifidobacterium longum subsp. infantis was
built using the AGORA reconstruction as a template and accounting for
HMO degradation33.

Here, we aim to investigate through metabolic modeling if the birth
mode has an impact on the metabolic capabilities of the infant gut micro-
biome throughout the first year of life. Our hypothesis is that the known
disruption of the establishment of the gut microbiome in CSD, resulting in
an altered composition, would also result in altered microbial metabolic
functions. To test this hypothesis, we use metagenomic data from gut
microbiomes of infants born by VD or CSD at four-time points, as well as
maternal gut microbiome samples from the same cohort, and build a per-
sonalized genome-scale community model of each sample at each time
point. Our results demonstrate that at the earliest time points, the gut
microbiome of infants delivered through Cesarian section is depleted in
metabolic functions includinghumanmilkoligosaccharidedegradationand
bile acid transformation, while later in the first year of life, metabolic
functions in CSD and VD gut microbiomes become comparable. We also
show that the gut microbiome becomes more functionally diverse during
thefirst year of life. Finally,we compare themetabolic potential of infant and
adult gut microbiomes and show that infant gut microbiomes produce
different levels of fermentation products than those of adults and are
enriched in the potential to synthesize B vitamins.

Materials and methods
Description of the cohort
Metagenomic sequencingdata from20 infants at 5days, 1month, 6months,
and 1 year was retrieved from samples from the COSMIC cohort4,11,34.
Briefly, the COSMIC (Colonization, succession, and evolution of the gut
microbiome frombirth to infancy) cohortwas recruited fromwomengiving
birth at the Centre Hospitalier de Luxembourg (CHL) starting in 2012. The
collected information on infants included delivery mode, birth weight,
gestational age, sex, body length, weight, and feeding regime. More infor-
mation is given in Ref. 34. For a subset of infants 16S rRNA sequencing data
frommothers had been published in Ref. 34.Maternal gutmicrobiome data
for 13 samples was retrieved from https://pmc.ncbi.nlm.nih.gov/articles/
instance/6269548/bin/41467_2018_7631_MOESM6_ESM.xlsx.

Ethics statement
As described previously4, written informed consent was obtained before
specimen collection from all enrolled mothers after a detailed consultation.
All aspects of recruitment, aswell as the collection, handling, processing, and
storing of samples and data, were approved by the Luxembourg ethics
board, theComiténational d’éthiquedeRecherche, under referencenumber
201110/06, and by the Luxembourg National Commission for Data Pro-
tectionunder referencenumberA005335/R000058.Asnonewrawdatawas
generated in the present study, additional approval by the ethics board was
not necessary.

Mapping of metagenomic sequencing data
Metagenomic sequencing was performed on the NextSeq500 (Illumina)
instrument using 2 × 150 bp read length at the LCSB Sequencing Platform
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and processed using the metagenomic workflow of the Integrated Meta-
omics Pipeline (IMP)35. Kraken236 was used to map the reads against the
Struo2 database37 and to generate files of species-level taxonomic assign-
ment and abundance of metagenomics data. In total, 8882 taxa had been
determined through the Kraken pipeline. After excluding unclassified
species and those with low abundance, 617 species remained, of which 328
werename-matched to species present in theAGORA229 resource througha
custom script.

In silico simulations
All simulations were performed inMATLAB version R2020b (Mathworks,
Inc., Natick, MA, USA) using IBM CPLEX (IBM, Inc.) as the linear pro-
gramming solver. The simulations relied on functions implemented in the
COBRA Toolbox38.

Generation of genome-scale reconstructions
Curated genome-scale reconstructions for 289 speciesnot inAGORA2were
generated as follows. The KBase online framework39 was used to build draft
reconstructions. Reference genomes for one strainper specieswere retrieved
using the Narrative interface. Reference genomes were annotated using the
“Annotate Multiple Microbial Assemblies with RASTtk-v1.073” app. Draft
reconstructions were generated through the “Build Multiple Metabolic
Models” app. Draft reconstructions were downloaded in SBML format
using “Bulk Download Modeling Objects”. The dedicated Narrative can be
found at https://narrative.kbase.us/narrative/111089.

The 289 generated draft reconstructions were then refined through the
DEMETER40 pipeline. First, experimental data was collected for 28 named
species as described previously29. The collected experimental data and
taxonomic information for the289reconstructed strainswereused as inputs
for DEMETER. The resulting 289 refined genome-scale reconstructions are
described in Supplementary Data 1.

Formulation of HMO degradation module
Literature and database searches were performed for the utilization
of human milk oligosaccharides (HMOs) by the gut microbiome. Spe-
cies- and strain-specific utilization capabilities and transport and
enzyme mechanisms were identified from relevant articles6. A total of
243 HMO-utilizing AGORA2 strains from 31 species were identified
based on 24 peer-reviewed papers. A further seven strains were supple-
mented with pathways for monosaccharides present in HMOs. All
identified species- and strain-specific HMO degradation capabilities are
shown in Supplementary Data 2 with the corresponding references. The
structures of 38 HMOs metabolites and HMOs degradation products
were retrieved from 15 peer-reviewed papers and the Human Metabo-
lome Database41. Reactions constituting the pathway were formulated
based on transport and enzymatic mechanisms retrieved from reviewed
papers (Supplementary Data 3a, b). An established protocol for high-
quality genome-scale reconstruction42 was followed to ensure that the
reactions and metabolites followed the nomenclature and quality stan-
dards in the field. Through the rBioNet tool43, it was ensured that the
reactions were mass-and charge-balanced. The manually identified and
formulated reactions and metabolites were added to the appropriate
AGORA2 reconstructions through the custom MATLAB scripts run-
Refinement.m and HMOGapfill.m, resulting in the addition of
16.12 ± 11.03 reactions on average.

Diet formulation
To appropriately contextualize gut microbiome models, we defined breast
milk- and formula-feeding-based diets at 5 days, 1 month, 6 months, and 1
year of age. A literature search resulting in 10 consulted peer-reviewed
articles was performed for the metabolic components of breast milk and
their concentration. The composition of the formula diet was based on
Similac Pro-Advance Infant Formula Powder. Components and con-
centrations were retrieved from https://www.similac.com/products/baby-
formula/pro-advance-powder.html.

Metabolite concentrations were converted into fluxes (mmol/person/
day) while assuming a daily milk consumption of 480mL at 5 days, 720ml
at 1 month, 1260ml at 6 months, and 1320 at 1 year. For diets at 6 months
and 1 year of age, additional consumption of solid foodwas assumed. Fluxes
corresponding tobaby food itemswere retrieved fromtheDietDesigner tool
on the Virtual Metabolic Human database44. For 6 months, 50 g of apple
sauce strained and 50 g of chicken soup were assumed as consumed solid
foods. For 12months, 1/2 cup of bananas with apples and pears = 112 g, 1/2
baby food yogurt = 122.5 g, and 1/2 cup of chicken soup = 120 g were
assumed. The uptake constraints for each formulated diet are listed in
Supplementary Data 4.

Personalized simulations
To build personalized microbiome models for infant gut and maternal gut
samples, themgPipe workflow in theMicrobiomeModeling Toolbox v2.027

toolwas used,which takes relative organismabundancedata as the input.As
the taxonomic information obtained from Kraken was on the species level,
the function createPanModels was used to create pan-species models from
the expanded AGORA2 version (AGORA2+ 289). Pan-species models
consist of all unique reactions present in at least one strain reconstruction as
well as a merged version of all strain reconstructions’ biomass objective
functions. Compartmentalized gut microbiome community models were
built with the normalized species-level abundance data and pan-species
models as the inputs. Briefly, all pan-species models corresponding to
species present in a sample were joined in silico through a shared envir-
onment representing the intestinal lumen, which enables metabolite flow
between species. The intake of dietary nutrients, and the excretion of
metabolic products were enabled through exchange and transport reactions
for dietary metabolites and a separate set of exchange and transport reac-
tions representing fecal secretion. A community biomass function was
added inwhich the normalized relative abundances served as stoichiometric
parameters, hence enforcing growth ratios between species accordingly.

Each gutmicrobiomemodel was subsequently parameterized with the
appropriate diets described in the previous section according to sample
metadata on infants (Supplementary Data 5). One infant receiving com-
bined breast and formula feeding was assumed to receive the breastfeeding
diet in silico. Diets were converted to uptake fluxes through a dedicated
function (convertVMHDiet2AGORA.m). Reaction abundance, reaction
presence, subsystem abundance, and net secretion fluxes were determined
by running the main mgPipe workflow (initMgPipe.m). Briefly, reaction
abundances reflect for each microbiome model and each unique reaction
the total relative abundances of species that carry the reaction. Subsystem
abundances represent the reaction abundances summarized on the meta-
bolic subsystem level for each microbiome model. The computed net
secretion fluxes represent the maximal quantitative metabolite production
flux that can be achieved by the microbiome community, subtracted by
dietary uptake of metabolites.

For the comparison between infant and maternal samples, a default
Average European diet was used for consistency. Net secretion fluxes for
infant gutmicrobiomes andmaternal gutmicrobiomeswere computed. For
12 metabolites, species-level contributions were additionally computed
through the predictMicrobeContributions function. Species-level con-
tributions represent themaximal secretion flux of an individual pan-species
model for a metabolite of interest. Note that due to the steady-state
assumption resulting in multiple possible solutions, not every species will
maximally secrete the metabolite in each possible flux distribution. For
better visibility, the average species to metabolite contribution was calcu-
lated for each stratification group and then summarized on the genus level.

Statistics and reproducibility
Statistical analyses by the Wilcoxon rank sum test and calculation of
Spearman correlations were performed in MATLAB. In either case, cor-
rection for multiple testing by the Benjamini–Hochberg procedure was
subsequently performed. All analyses can be reproduced using the
provided code.
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Results
We developed a pipeline for modeling the metabolic capabilities of the
infant gut microbiome during the first year of life (Fig. 1a, “Methods”). We
used species-level abundances that had been inferred based on con-
taminant-free, high-resolution metagenomic sequencing data from the gut
microbiomes of 20 infants, including 11 vaginally delivered (VD) and nine
delivered through Cesarian section (CSD), at 5 days, 1 month, 6 months,
and 1 year of age11. We reconstructed personalizedmicrobiome models for
the 20 infants and four-timepoints (“Methods”).Moreover, 13maternal gut
microbiome models were constructed (“Methods”). Infant microbiome
models were appropriately contextualized with a breast milk or formula
feeding-baseddiet.Contextualizedmicrobiomemodelswere interrogated in

simulations as described previously45, yielding community-level relative
reaction and subsystem abundances and net secretion potential for meta-
bolites, as well as species-level contributions to metabolites of interest.
Ultimately, the analysis yielded structural and functional features of gut
microbiomes that differed between VD and CSD at each time point, in
infants between time points, and between infants and adults.

Literature-driven formulation of HMO degradation pathways
To account for gut microbial degradation of HMOs, we first performed a
literature search of HMO degradation mechanisms and their distribution
across human microbes yielding 19 species known to degrade at least one
HMOora simple sugarpresent inHMOs(SupplementaryData2).Basedon

Fig. 1 | Overview of the modeling and analysis workflow and performed refine-
ment. a Schematic overview of the personalized microbiome model generation and
analysis pipeline. Shown is the formulation of the HMO degradation module, the
construction and parameterization of personalized microbiome models, and the
prediction of metabolite fluxes and reaction abundance profiles. Created in https://

BioRender.com. b Human milk oligosaccharide utilization by AGORA2 strains
represented in the expanded genome-scale reconstructions. Rows represent HMO
metabolites, and columns represent all 243 AGORA2 reconstructions with at least
one known HMO utilization capability annotated by species and phylum. Blue =
strain can degrade this HMO, white = strain cannot degrade this HMO.
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information from 14 peer-reviewed articles, we formulated an HMO
degradation module accounting for 34 metabolites and 78 reactions,
encompassing 28 HMOs and seven simple sugars and disaccharides
(“Methods”, SupplementaryData 3a, b).HMOmetabolites anddegradation
reactions were added to the appropriate AGORA2 reconstructions, adding
on average 16.12 ± 11.03 reactions to 250 AGORA2 reconstructions.While
previous works have reconstructed 2-fucosyllactose degradation32, and the
HMO utilization by B. longum subsp. infantis33, the present work, to our
knowledge is themost comprehensiveHMOreconstruction to date in terms
of captured HMO structures and species. The largest capacity for HMO
degradation was found in Bifidobacterium longum subsp. infantis, followed
by other Bifidobacterium sp., (Fig. 1b), in agreement with the experimental
evidence6. Other gut bacteria with HMO degradation capability included
Bacteroides sp., Phocaeicola vulgatus, Roseburia sp., Akkermansia mucini-
phila, and several species formerly assigned to the Lactobacillus
genus (Fig. 1b).

Generation and interrogation of personalized gut
microbiome models
We mapped species-level abundances determined for reference genomes
based on themetagenomic data from the 20 subjects at four time points11 to
the 1744 species found in the AGORA229 resource, and reconstructed
289 species not present in AGORA2 through the DEMETER40 pipeline
(“Methods”, Supplementary Data 1). The reconstructions from AGORA2
together with the newly created 289 strain-level reconstructions, were
deemedAGORA2+ 289.Using the species-level abundances that had been
determined previously11 as the input data for the mgPipe pipeline27

(“Methods”), 71 personalized microbiomemodels were built by joining the
appropriate AGORA2+ 289 genome-scale reconstructions into a com-
partmentalized communitymodel (“Methods”, SupplementaryData 5).On
average, the personalized infant gut microbiome models derived from
AGORA2+ 289 encompassed 47.90 ± 19.76 species, 76,028.76 ± 24,459.82
reactions, and 67,915.83 ± 22,158 metabolites.

Functional characterization of infant gut microbiomes
We next evaluated the functional differences between VD and CSD
microbiomes, and between the four time points during the first year of life.
Microbiome-level relative reaction and subsystem abundances (Supple-
mentaryData 6 and 7) aswell as absolute reaction presence (Supplementary
Data 8) were retrieved and statistically significantly different features were
determined via Wilcoxon rank sum test, p-value < 0.05 after correction for
false discovery rate (FDR) (“Methods”, Supplementary Data 9). Clear dif-
ferenceswere found betweenmicrobiomes at different time points, whereby
the relative abundances of 3076 of all 8185 reactions, the absolute presence
of 1259 of all 8185 reactions, and the relative abundances of 85 of all 143
metabolic subsystems differed significantly over time (Table 1). Micro-
biomes at 5 days were lowest in functional diversity as demonstrated by
reactions distinct in absolute presence across time points, with the number
of present metabolic capabilities increasing throughout the first year of life
(Fig. 2a). Hence, the modeling demonstrated that the metabolic capabilities

present in infant microbiomes varied greatly during the first year of life.
Increasing taxonomical diversity associated with the establishment of the
gut microbiome during the first year of life11 was also associated with
increasing functional diversity, or the number of unique reactions present,
in the corresponding samples’microbiome models.

CSD gut microbiomes are depleted in metabolic capabilities
Performing a statistical analysis for VD and CSDmicrobiomes at each time
point (Wilcoxon rank sum test, p-value < 0.05 after FDR correction)
revealed that the highest number of statistically significant reactions and
subsystemswas present at 5 dayswith the abundances of 2033 reactions and
65 subsystems, and the absolute presence of 275 reactions differing sig-
nificantly (Table 1). At 1 month of age, the relative abundance of 277
reactions and the absolute presence of 80 reactions were still significantly
different between VD and CSD microbiomes (Table 1). Hence, the largest
differences in reaction and pathway abundance between VD and CSD
microbiomes were seen at the earliest stage of life. This was expected as the
composition of the gut microbiome differedmost between VD and CSD at
this stage11. Compared with VD microbiomes, CSD microbiomes were
clearly depleted in both relative abundance and absolute presence for a wide
variety of reactions, as nearly all significantly differentially abundant reac-
tions between VD and CSD were higher in VD (Fig. 2b, Supplementary
Data 9). For instance, at 5 days, metabolic subsystems reduced in relative
abundance in CSD microbiomes included drug and xenobiotics metabo-
lism, fatty acid synthesis, glycerophospholipid metabolism, nucleotide
interconversion, pentose and glucuronate interconversions, and glycolysis/
gluconeogenesis (Supplementary Data 9a). Reactions belonging to the
subsystems of starch and sucrose metabolism, O-glycan degradation,
heparan sulfate degradation, HMO degradation, and plant polysaccharide
degradation were also clearly depleted in CSD both in relative abundance
and absolute presence (Supplementary Data 9a, b). The reduced abundance
and absolute presence of reactions in starch and sucrose and O-glycan
metabolism, andplantpolysaccharidedegradation still remainedat 1month
of age (SupplementaryData 9a, b). Finally, while no reactions or subsystems
were significant after correction for false discovery rate at 6 months and 1
year, the abundance of 472 and 705 reactions, respectively, was still initially
significant at these time points (Table 1, Fig. 2b, Supplementary Data 9a, b).
Taken together, reducedmetabolic capabilities were seen in CSD compared
to VDmicrobiomes at 5 days of life, which were still present to an extent at
1 month but largely disappeared at later stages of life.

Community-level metabolic potential of the infant gut
microbiome
Next, we evaluated through simulations how the sample-specific metabolic
reactions translated into the microbiome communities’ total potential to
synthesize and secretemetabolic products. For simulations, themicrobiome
models were appropriately contextualized with breast milk- or formula-
feeding-based diets specific to each time point (Methods, Supplementary
Data 4). The theoretical potential for biosynthesis of each secreted meta-
bolite in each infant microbiome in mmol/person/day was subsequently

Table 1 | Number of features that differed significantly betweenmicrobiomemodels of vaginally delivered infants (VD) and those
delivered through Cesarian section (CSD), as well as between infants at different time points

Dataset Secretion capacity Reaction abundance Reaction presence Subsystem abundance Species-level metabolite
contribution

vs. time points (all
samples)

215(4)/854 3076(716)/8185 1259(912)/8185 85(9)/143 242(174)/3900

VD vs. CSD (5 days) 21(51)/295 2033(1207)/8185 275(332)/8185 65(11)/143 6(16)/3900

VD vs. CSD (1 month) 0(23)/295 277(827)/8185 80(276)/8185 0(0)/143 0(23)/3900

VD vs. CSD (6 months) 0(7)/295 0(472)/8185 0(243)/8185 0(1)/143 0(17)/3900

VD vs. CSD (1 year) 0(11)/295 0(705)/8185 0(20)/8185 0(37)/143 0(58)/3900

Shown are the number of features out of the total features that differed significantly after correction for multiple testing out of the total number of features present in at least one microbiome model. The
number of initially significant features is shown in brackets. The tested features include net secretion potential (secretion capacity), relative abundance on reaction level, absolute reaction presence, relative
abundance for reactions summarized by metabolic subsystem, and species to metabolite contributions.
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computed (“Methods”, Supplementary Data 10). In total, 295 metabolites
were predicted to be secreted by at least one infant microbiome. We
determined the correlations between metabolite secretion and species-level
abundances (Fig. S1). Several metabolites, including 1,2-propanediol and
thiamin, were positively correlated with Escherichia coli but negatively
correlated with Staphylococcus sp. (Fig. S1). Secondary bile acids correlated
with Eggerthella lenta, as expected45.

We next performed a statistical analysis (Wilcoxon rank sum test,
p-value < 0.05 after FDR correction) for microbiome models’ maximal
secretion capacity between the four time points and between VD and
CSDmicrobiomes at each time point (“Methods”, SupplementaryData 11).
As could be expected, the secretion capacity changed clearly during
the first year of life with 215 metabolites differing significantly between

the four time points (Table 1). Differences between the VD and CSD gut
microbiomes were also observed. At 5 days of life, the secretion capacity
for 21 metabolites was significantly different after correction for multiple
testing (Table 1), all of which were lower in CSD. A further 51 metabolites
were initially significant but not after correction for multiple testing
(Table 1). At later time points, no metabolites were significantly different
after correction for multiple testing, but 23, 7, and 11 metabolites were
initially significant at 1 month, 6 months, and 1 year, respectively (Table 1).
Metabolites depleted in CSD at 5 days included the fermentation products
pyruvate and isobutyrate (Fig. 3a, b), Notably, CSD microbiomes at 5 days
had a reduced capacity to secrete N-acetylglucosamine, N-acetylneur-
aminate, L-fucose, and lactose, all of which are components of HMOs6

(Fig. 3c–f). Moreover, CSD microbiomes were depleted in the capacity

Fig. 2 | Significantly different features, andmetabolic network structure of infant
microbiomes plotted by time point and birth mode. a Absolute presence of
reactions that differed significantly between time points after correction formultiple
tests. Colored = reaction present, white = reaction absent. b Relative abundance of

reactions that differed significantly between VD and CSD. Shown are reactions that
were significantly different after correction for multiple testing for at least one-time
point. All predicted reaction abundances are shown in SupplementaryData 6. n = 20
infant gut microbiome samples.
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to secrete N-acetylgalactosamine and glucosamine (Fig. 3g, h), revealing
an equally reduced capacity to degrade host-derived mucin o-glycans
and glycosaminoglycans. The CSD microbiomes at 5 days also showed
significantly reduced secretion of the neurotransmitter GABA (Fig. 3i),
and the amino acids L-cysteine and -methionine, which are involved in the
one-carbon metabolism and transulfuration pathways (Fig. 3j, k). In con-
trast, the predicted production of butyrate was initially significantly higher
in CSD at 1 month (Fig. 3l). At 6 months, N-acetylglucosamine and D-
glucosamine secretion were still initially significantly lower in CSD micro-
biomes (Fig. 3c, h). Hence, differences in metabolic potential in the
microbiomes of CSD infants, though subtle, still remained at later stages
in the first year of life, in agreement with previous functional analyses
performed for the same cohort11. Finally, we evaluated the effect of anti-
biotics on net secretion capacity and found it had little impact as no
metabolites were statistically significant after correction for multiple testing
(Supplementary Data 11).

Infantandmaternalgutmicrobiomesdiffer inmetabolicstructure
and function
Infant and adult gut microbiomes differ in their composition; for example,
the infant gut has a higher relative abundance of bifidobacteria and
streptococci9. For a subset of 13 mothers enrolled in the cohort used in this
study, gut microbiome samples had been published previously34. Micro-
biome community models were built and interrogated for gut maternal
samples as previously for infant gut microbiomes (“Methods”). We deter-
mined relative subsystem abundances that were statistically significantly
different (Wilcoxon rank sum test, p-value < 0.05 after FDR correction)
betweenmaternal and infant gut (SupplementaryData 12). For instance, the
gut microbiomes of infants up to 6 months were enriched in squalene and
cholesterol synthesis, limonene and pinene degradation, primary amine
metabolism, and glycerophospholipid metabolism (Fig. S2). Maternal gut
microbiomes had a higher abundance in the nucleotide salvage pathway,
tRNA charging, and chondroitin sulfate degradation (Fig. S2).

Fig. 3 | Predicted metabolite secretion capacity of infant microbiomes on the
infant diet depicted by time point and birth mode. Shown are net secretion fluxes
per microbiome sample in mmol/person/day for a subset of metabolites that were at
least initially significantly different between vaginal delivery (VD) and Cesarian
section delivery (CSD) for at least one-time point. a Pyruvate, b isobutyrate,

cN-acetyl-D-glucosamine, dN-acetylneuraminate, e L-fucose, f lactose, gN-acetyl-
D-galactosamine, h D-glucosamine, i GABA, j L-methionine, k L-cysteine, l buty-
rate. **p-value after correction formultiple testing, *initial p-value. All predicted net
secretion fluxes are shown in Supplementary Data 10. n = 20 infant gut microbiome
samples.
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Fig. 4 | Features differing between infant and maternal gut microbiomes.
a Predicted metabolite secretion capacity of infant microbiomes at the four-time
points and maternal gut microbiomes on the Average European (AE) diet. Shown
are net secretion fluxes per microbiome sample in mmol/person/day for a subset of
metabolites that differed between adult and infant gut for at least one time point.
Significant p-values after correction for multiple tests against maternal gut micro-
biome samples are indicated. All predicted net secretion fluxes on the AE diet are

shown in Supplementary Data 13. b, c Taxon-metabolite contributions (mmol/
person/day) on the AE diet for infant and maternal gut microbiomes. Species to
metabolite contributions were averaged for all samples in each stratification group
(infant gut microbiomes at all time points and maternal gut microbiomes) and then
summarized on the genus level. Shown are contributions tob fermentation products,
c B vitamins. All predicted microbe-metabolite contributions are shown in Sup-
plementary Data 15. N = 20 infant and 13 maternal gut microbiome samples.
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We then predicted for all samples the microbiome-wide potential to
secretemetabolites on an Average European diet (Supplementary Data 13).
For the 288 metabolites net secreted by at least one infant or maternal gut
microbiome, a statistical analysis was performed (Wilcoxon rank sum test,
p-value < 0.05 after FDR correction) (Methods, Supplementary Data 14).
For instance, maternal gut microbiomes had a clearer higher potential to
secrete butyrate, while infant gut microbiomes were enriched in the secre-
tion of L-lactate (Fig. 4a). The infant’s gut had a higher secretion capacity for
the primary amine glycine betaine, while the synthesis of secondary bile
acids, e.g., ursodexycholate, was much lower infants than adults during the
first months (Fig. 4a). Compared with the maternal gut, infant gut micro-
biomes also had enriched capability to secrete the B-vitamins cobalamin,
folate, pantothenate, and riboflavin (Fig. 4a). Taken together, the
microbiome-level potential to secrete metabolites including short-chain
fatty acids, amines, bile acids, and B-vitamins differed between infant and
maternal gut microbiomes.

Next, we aimed to predict the microbial taxa that could synthesize
metabolites of interest in infant andmaternal gutmicrobiomes. To this end,
the taxon-level contributions to fermentationproducts andB-vitaminswere
computed (Supplementary Data 15, “Methods”) and are shown summar-
ized on the genus level in Fig. 4b, c. According to our simulations, genera
contributing to short-chain fatty acids changed during the first year of life
and differed from adults (Fig. 4b). In infants, the genera Bifidobacterium,
Streptococcus, andVeillonellaweremajor acetateproducers,while in adults,
Faecalibacterium and Subdoligranulum were the highest producers
(Fig. 4b). Faecalibacterium and Subdoligranulum were also the main
butyrate producers in adults but not infants (Fig. 4b). Veillonella was a
major propionate producer only in infants, while Akkermansia contributed
to propionate mainly in adults (Fig. 4b). L-lactate, as expected, was syn-
thesized mainly by infant microbial taxa such as Bifidobacterium, Strepto-
coccus, and Veillonella (Fig. 4b).

Microbial production of B-vitamins was also predicted to differ
between infant and maternal gut microbiomes (Fig. 4c). The genus
Escherichia was a major contributor to biotin, cobalamin, folate, pyridoxal,
riboflavin, and thiamin. Bifidobacterium was another major vitamin-
producing genus and contributed to folate, pyridoxal, riboflavin, and thia-
min. Other major producers included Bacteroides (nicotinic acid, ribo-
flavin), Streptococcus (folate, pantothenate, riboflavin), and Staphylococcus
(folate, riboflavin). The high B-vitamin biosynthesis capabilities of infant
microbial taxa, namely Bifidobacterium and Streptococcus, explained the
increased biosynthesis potential observed in the infant compared with the
maternal gut microbiome (Fig. 4a).

Discussion
Here, we aimed to investigate the impact of birth mode on the metabolic
pathways andcapabilities of infant gutmicrobiome throughout thefirst year
of life. To this end, we have developed a computational workflow to build
and interrogate species-specific community models of the gut microbiome
from infants delivered vaginally and through the Cesarian section. First, we
expanded a resource of genome-scale metabolic reconstructions of human
microbes, AGORA2, with pathways for the degradation of human milk
oligosaccharides. The resulting expanded reconstructions are freely avail-
able. Next, we built community metabolic models by mapping metage-
nomic data from the gut microbiomes of 20 infants at four time points
during the first year of life. We predicted the present functions and meta-
bolic capabilities of each gut microbiome and identified functions and
metabolic fluxes that differed between infants delivered vaginally and
through theCesarian section aswell as between timepoints. Finally, we built
and interrogated community models for maternal gut microbiomes from
the same cohort and identified functions and metabolic fluxes differing
between infant and adult gutmicrobiomes.Our key results include that (i) at
the earliest stages, CSD gut microbiomes were depleted in metabolic
functions compared with VD gut microbiomes though these differences
largely disappeared at later time points, (ii) the metabolic diversity, as
indicated by the number of unique reactions, increased during the first year

of life, (iii) the metabolic capabilities of infant and adult gut microbiomes
were clearly distinct in their potential to synthesize fermentation products
and B-vitamins and in taxa contributing most to these metabolites.

It is well established that the gut microbiomes of infants delivered
vaginally and through theCesarian section are distinct in the firstmonths of
life, though they become more similar over time9. Hence, there has been
concern over the impact of the Cesarian section on the maturation of the
developing infant gut microbiome14. Increases in Cesarian section may be
linked to the increase in noncommunicable diseases such as obesity in the
last decades, however, these associations are still unclear14. Our simulations
predicted that though birth mode resulted in only subtle functional differ-
ences betweenVD andCSD at 1 year, it had a clear impact on themetabolic
structure and capabilities of the gutmicrobiomeduring thefirstweeksof life,
with a predicted lower capability to produce various metabolites in CSD
microbiomes (Figs. 2–3). For instance, CSD microbiomes had a lower
capacity to produce the neurotransmitter GABA at early time points
(Fig. 3i), which plays a role in the gut–brain axis. Reduced GABA and
pyruvate, but increased butyrate production at 5months have been found in
the fecal metabolome of infants at risk of autism46. Another study found
higher fecal butyrate concentrations in CSD infants at 1 month47, also in
agreement with our predictions (Fig. 3l).

We predicted the fermentation product profiles of infant and adult gut
microbiomes and found they were distinct (Fig. 4a). Our prediction that
butyrate production was low early on and increased in production later
while L-lactate decreased after 6months agrees with a recent cohort study48.
The simulations further revealed that differences in fermentation products
were due to the distinct composition of the infant gut microbiome, with
higher abundances in bifidobacteria and facultative anaerobes, but lower
abundances in the Faecalibacterium and Subdoligranulum genera com-
pared with adult gut microbiomes (Fig. 4b, c). This finding agrees with the
known composition of the developing infant gut microbiome9. In future
studies, our predictions on metabolite secretion profiles could be validated
further using fecal metagenomic and metabolomic data from the same
infant cohort. Indeed, in a previous study, butyrate production predicted by
microbiomemodels was validated against matched metabolomic data for a
cohort of colorectal cancer patients and controls49. The modeling revealed
species beneficial or deleterious for total butyrate production by the
community49. A similar approach could be used to validate metabolite
productionpredictions in infantmicrobiome communities for a cohortwith
matched metagenomic and metabolomic data.

Our simulations predicted that infant gut microbiomes had enriched
biosynthesis potential for cobalamin, folate, pantothenate, and riboflavin
(Fig. 4a). Specifically, Bifidobacterium species such as B. longum sub-
stantially contributed to folate, pyridoxal, riboflavin, and thiamin bio-
synthesis (Fig. 4c). Several Bifidobacterium strains are folate producers, as
well as known probiotics, and supplementation with bifidobacteria, could
increase folate levels in serumand feces50.Moreover, B-vitamin biosynthesis
genes, including folate, nicotinic acid, and riboflavin,were enriched in infant
gut-associated bifidobacteria such asB. longum subsp. infantis but absent in
Bifidobacterium species of non-human origin51. Hence, the infant’s large
intestinalmicrobiomemaycontribute toB-vitaminhomeostasis in early life.

The potential of infant gut microbes to contribute to folate status in
the host especially has implications for epigenetic regulation through
DNA methylation17,52. Vitamin B12, which was also synthesized by
microbes (Fig. 4a), equally plays a key role in epigenetic regulation through
the synthesis of methionine, the immediate precursor of the universal
methyl donor S-adenosylmethionine53. Modulation of metabolic pro-
gramming through early-life exposures may result in long-lasting health
outcomes, including obesity and metabolic syndrome according to the
DOHaD hypothesis14,17. In addition, the vitamin B12 and folate status
during pregnancy influence the risk of obesity andmetabolic syndrome17,54.
Notably, our simulations predicted that CSD microbiomes at 5 days had a
lower potential to synthesizemethionine (Fig. 3j), which is a key component
in one-carbon metabolism, as well as a reduced abundance of 25 and two
reactions involved in vitamin B12 and folate metabolism, respectively
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(Supplementary Data 9a). It has been shown that the gut microbiome
substantially impacts DNAmethylation55. Butyrate, which was predicted to
be higher in CSD at 1 month (Fig. 3l), and lower in infant than in adult gut
microbiomes (Fig. 4a), also modulates epigenetic regulation by inhibiting
histone deacetylases18. For instance, butyrate inhibits the histone deacetylase
SIRT1, which plays an important role in the regulation of fatty acid oxi-
dation, inflammation, and insulin sensitivity56. Moreover, butyrate mod-
ulates host appetite and regulates metabolism by signaling to free fatty acid
receptor 2 (FFAR2, GRP43) and free fatty acid receptor 3 (FFAR3,
GRP41)57. Future studies may elucidate the impact of the infant gut
microbiome on epigenetic regulation later in life, and potential links to
noncommunicable diseases such as obesity and metabolic syndrome. It
should be noted that while microbiome models can be readily integrated
with the humanhost58, constraint-basedmodeling in its basic formdoes not
account for regulatory mechanisms including epigenetics59. Hence, directly
linking our predictions to epigenetic regulation in the host is not possible in
the present study. However, recent works have integrated epigenetics into
genome-scale models, e.g., histone acetylation and deacetylation60,
methylation61, and posttranslational modification62. In future studies,
metabolite productionpredicted bymicrobiomemodels could be integrated
with human models accounting for epigenetic mechanisms such as acet-
ylation or methylation.

Our study has several limitations. First, the sample size of theCOSMIC
cohort is relatively small with only 20 infants. Hence, the statistical power to
distinguish features based on birth mode was limited, resulting in relatively
few significantly different features after correction for multiple testing.
Moreover, the modeled cohort included only few formula-fed infants11,
hence, the impact of feeding mode could not be evaluated. Information on
the type of formula, the composition of breast milk, or food frequency
questionnaires formothers, which could be used to further contextualize the
models, were also not available. In future efforts, the modeling and analysis
pipeline we have established in this work as a proof of concept could be
applied to larger cohorts with available nutritional information to validate
our predictions. Finally, the results of the modeling pipeline are subject to
the general limitations of the constraint-basedmodeling approach, namely,
the steady-state assumption which results in the prediction of fluxes rather
than concentrations and a solution space rather than a single optimal flux
distribution38, and the lackof kinetic and regulatory constraints59.Hence, the
metabolite secretion predicted in the present work reflects the optimal
production by the microbiome community given the present microbial
species, reaction stoichiometry, and availability of dietary nutrients. Reg-
ulatory constraints that would limit the secretion of particular metabolites
are presently not accounted for but could be included in future efforts59.

In summary, we have developed a pipeline for mechanistically mod-
eling the infant gut microbiome. The pipeline identified differences in
metabolic capabilities between infants by birth mode and between infants
and adults. Modeling of mother-infant cohorts with available information
on factors implicated in fetal programming, e.g., feeding mode, infant diet,
maternal diet,maternal weight, and chemicals63,64 could provide insight into
the influence of these exposures on the developing infant. For example, in a
recent study,AGORA2was used to build communitymodels for a cohort of
infant gut microbiomes and predict the effect of different food items in
combination with breast milk on microbial growth and function65. Infant
gut microbiomes could also be compared with samples from the same
individuals later in childhood where available. Correlating infant gut
microbiome samples with matched methylome data could provide insight
into the impact of microbial metabolism on epigenetic regulation. Ulti-
mately, computational modeling of the infant microbiome could improve
our understanding of the links between microbial metabolism and infant
health and development.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The 250 AGORA2 reconstructions expanded with HMO degradation
pathways, and the additional 289 genome-scale reconstructions created in
this study are available at https://zenodo.org/uploads/1423841966. The
sequencing data used in this study that had been generated previously11 are
available under BioProject accession number PRJNA595749. The source
data for Fig. 2 can be found in SupplementaryData 6 and 8. The source data
for Fig. 3 can be found in Supplementary Data 10 and for Fig. 4 in Sup-
plementary Data 13 and 15.

Code availability
Scripts and input data that enable reproducing the generated recon-
structions, microbiome simulations, and analyses, including figures, are
available at https://github.com/almut-heinken/ngereSysBio/tree/main/
infantMicrobiome67.
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