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Extreme solar particle events (ESPEs) are infrequent yet highly potent manifestations of solar
activity. These events result in the production of significant amounts of cosmogenic isotopes (CIs):
10Be, 36Cl, and 14C, which are subsequently deposited in natural stratified archives. Analyzing CI
measurements from these archives allows us to assess the particle fluxes during ESPEs. In this
study, we introduce a novel approach to reconstruct ESPE fluence (integral flux) by using recent
modelling advancements. This method enables the integration of diverse CI data within a single
comprehensive model. Within the new approach, ESPE fluence is represented as an ensemble
of scaled fluence reconstructions for ground-level enhancement (GLE) events, detected by the
neutron monitor network since 1956 and coupled with satellite and ionospheric measurements.
The reconstructed ESPE fluences exhibit a softer spectral shape compared to previous estimates,
leading to significantly higher estimates of the low-energy (𝐸 <100 MeV) fluence. Consequently,
ESPEs pose an even greater risk to modern technological systems than previously believed. To
facilitate broader applications, the reconstructed ESPE fluences are fitted using a modified Band
function which simplifies the utilization of the obtained results in various practical contexts.
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1. Introduction

Cosmogenic isotopes (CIs) provide a quantitative means to study solar and cosmic-ray vari-
abilities over long timescales [1, 2]. These isotopes, such as 14C, 10Be, and 36Cl, are produced by
cosmic rays in the Earth’s atmosphere and stored in independently dateable stratified archives like
tree rings and ice cores. They serve as valuable proxies for long-term solar activity reconstructions
[3–6]. While sporadic solar energetic particle (SEP) events have negligible impact on CI production,
rare and intense extreme solar particle events (ESPEs) can generate huge amounts of CIs which will
be detectable over the galactic cosmic ray (GCR) background [7–9].

ESPEs represent a unique type of solar eruptive event that has not been directly observed
with scientific instruments. Understanding their characteristic parameters, particularly the energy
spectrum, is crucial. The energy spectrum can be estimated by analyzing multiple isotopes for the
same ESPE event, because 14C and 10Be are sensitive to SEPs with energies above 230 MeV, while
36Cl is sensitive to lower energies of about 60 MeV [10].

Several approaches have been employed to evaluate the spectra of ESPEs. In particular, some
studies [8] have utilized the relationship between the 36Cl/10Be ratio and the spectral hardness of
SEP-induced ground level enhancements (GLEs) registered by the neutron monitor (NM) network.
By comparing measured CI concentrations with modelled production rates induced by modern
GLEs, these studies estimated the spectra of ESPEs.

In this work, we present a systematic reconstruction of integral fluences for four ESPEs: 994
CE, 775 CE, 660 BCE, and 7176 BCE. Our approach involves a simulation of CI production during
the GLE events, scaling the simulated GLE CI response to fit all three CI data and using obtained
scaling for the reconstruction of ESPE fluence. This new method enhances the accuracy of ESPE
fluence reconstruction and provides insights into the energy spectra of ESPEs. These proceedings
shortly describe the main ideas of the full paper, which was published in 2023 [11].

2. Data and analysis

We utilize two data sources to study SEP events: cosmogenic isotope data for ESPEs over the
past millennia and direct observations of SEP events in recent decades through spacecraft and NM
observations of GLEs.

We analyze data for cosmogenic isotopes 10Be, 14C, and 36Cl from four ESPEs: 7176 BCE,
660 BCE, 775 CE, and 994 CE. These isotopes are extracted from independently dated stratified
archives such as tree rings and polar ice cores. To assess the ESPE isotope production, we calculate
the excess production rate 𝑄ESPE by subtracting the background production rate 𝑄GCR caused
by galactic cosmic rays (GCRs). However, the transport and deposition processes for 10Be and
36Cl [12] introduce uncertainties due to local/regional effects. To address this, a scaling factor 𝑘 ,
typically ranging from 0.8 to 1.3 [13], is typically introduced to account for the discrepancy between
modelled and measured production rates. This factor is a free parameter and affects the conversion
between production rates and SEP spectra. To mitigate this uncertainty, we employ the peak factor
𝑃ESPE, defined as the ratio of the measured isotope’s production/deposition excess 𝑄ESPE to the
background annual production/deposition rate 𝑄GCR, as an index of ESPE strength. In this study,
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we use the 𝑃-values for 10Be and 36Cl and convert published 𝑄ESPE-values to 𝑃-values for 14C
during the fluence reconstruction procedure.

Spacecraft measurements have directly captured thousands of SEP events in recent decades
[14, 15]. However, only a few dozen of these events have been energetic enough to generate a
nucleonic cascade in the Earth’s atmosphere and potentially produce cosmogenic isotopes. Despite
the large number of directly observed SEP events over the past 70 years, they have not led to a
detectable amount of cosmogenic isotopes [16, 17]. The strongest SEP events, known as GLEs, have
been detected by ground-based NMs and serve as reference events for ESPEs [17, 18]. Recently,
Koldobskiy et al. 2021 [19] reconstructed SEP spectral fluences for 58 moderate and strong GLE
events using a combination of ground-based and space-borne datasets and this dataset (represented
by parameterization with the modified Band function, MBF) is used in this work. The CI method
cannot distinguish between a single extreme event and a series of consecutive events, as in the case
of October–November 1989 GLEs. To address this, we combine “serial” GLEs produced by the
same solar active region into pseudo-single GLE events with summed spectral fluences.

To compare with the measured ESPE data, we used a model based on yield functions [20] to
compute the production of CIs in the Earth’s atmosphere. For radiocarbon (14C), which is globally
mixed in the atmosphere, we used a multi-box model to simulate its global carbon cycle [21]. For
10Be and 36Cl, we considered their concentrations in ice, which were translated into depositional
fluxes using a parameterized approach that accounts for transport and deposition [12, 22]. We
constructed “effective” yield functions, which include CI production and transport/deposition.
The production of cosmogenic isotopes from galactic cosmic rays (GCRs) was modelled using
the force-field approximation [23] and the local interstellar spectrum of GCRs by Vos et al.,
2015 [24]. We also considered heavier nuclei using an approach described in Koldobskiy et
al., 2019 [25]. The modulation potential 𝜙, which accounts for the modulation of GCRs by the
heliospheric and geomagnetic fields, was taken into account using values corresponding to the times
of the extreme events [13, 26, 27]. To account for the geomagnetic shielding, we considered two
archeo/paleomagnetic reconstructions of the geomagnetic field: one by Knudsen et al., 2008 [28]
and another by Panovska et al., 2018 [29]. Using the effective yield functions, the production of
cosmic rays from GCRs and SEPs was calculated for the GLE events described above. After that,
we fitted the ensemble of obtained CI responses to fit the observable CI data. Obtained scaling
factors were used to construct an ensemble of scaled fluences, which serve as an estimate for ESPE
fluence. More detailed description of this approach is given elsewhere [11].

3. Discussion

Figure 1 compares our results with earlier spectral estimates for ESPEs of 994 CE, 775 CE,
660 BCE, and 7176 BCE. Our new spectral reconstruction shows a significantly softer spectrum
at 𝐸 >100 MeV compared to the previous estimates by Mekhaldi et al., 2015 [8]. This is because
the earlier work relied on a simplified assumption of an unrealistically-hard power-law shape of the
SEP spectrum [31]. In addition, the yield function of CI production has been revised recently [20],
resulting in a higher enhancement factor needed to explain past ESPEs. In Mekhaldi et al., 2021
[17], the fluence >30 MeV for the 775 CE and 994 CE events was reevaluated using more realistic
fluence spectra [32] and accounting for solar modulation [33, 34], which brought the estimates
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Figure 1: Integral fluences of ESPEs of 994 CE, 775 CE, 660 BCE and 7176 BCE: red dashed lines with
shaded areas depict the reconstructions presented here; orange lines with shaded areas depict the spectral
reconstructions by Mekhaldi et al., 2015 [8]; olive vertical bars represent estimates of the 𝐹30 fluence by
Mekhaldi et al., 2021 [17]; black vertical bars for 7176 BCE correspond to the spectral estimates by Paleari
et al., 2022 [30] for the ESPE of 7176 BCE. Results of single-proxy “effective energy” fluence reconstruction
method [10] for 14C data are also shown by colour crosses for comparison.

closer to our new reconstruction but still significantly lower. The difference can be attributed to
the use of scaled spectra from specific GLEs in the earlier work, while the new reconstruction is
based on a broader ensemble of GLEs [19]. Fluence reconstruction for ESPE 7176 BCE is in good
agreement with the results of Paleari et al., 2022 [30], who used a similar approach. The events of
775 CE, 660 BCE, and 7176 BCE show close similarities within the uncertainties, while the 994
CE event is 2–3 times weaker. Comparing these spectra with those of typical GLEs, it is evident
that the ESPE spectra are about two orders of magnitude higher. The good fit between the CI
data and scaled spectra of observed GLEs suggests that the physical mechanisms of acceleration
and interplanetary transport during ESPEs are similar to those of normal GLEs, supporting the
hypothesis that ESPEs are "Black swan" rather than "Dragon king" events [6, 35].

To facilitate various applications, such as the calculation of cosmogenic isotope responses,
we parameterized the differential-in-energy particle flux using the MBF spectral form. The fitting
procedure involved iterative Monte Carlo simulations.

We also quantitatively investigated the possible response of an NM to an ESPE under the
single-event hypothesis. The strength of a GLE event can be measured by the integral relative
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increase 𝐼 of a sea-level polar NM count rate caused by SEPs above the GCR background [16, 36].
The highest known integral increase of NM count rate, 5300 %*h, was observed during GLE #5.
Using the yield function approach [37], we calculated the NM integral increase due to ESPEs,
taking into account the GCR background, heavy elements, and solar modulation potential values.
We considered three reference events of similar magnitude and estimated the expected NM response
for a polar sea-level NM. The estimated integral increase 𝐼 ranged from ∼75000 to ∼280000 %*h,
which is 15 – 50 times greater than GLE #5. Such a strong count rate enhancement would likely
cause saturation of a real NM due to standard dead-time limitations.

4. Conclusion

We developed a new quantitative non-parametric method for reconstructing integral fluences of
ESPEs based on scaling the existing GLE spectra to match cosmogenic-isotope data. This approach
enabled the consistent reconstruction of integral fluxes for four ESPEs. The method utilizes a Monte
Carlo approach to determine the most probable solution and estimate uncertainties. The revised
fluence estimates for the 994 CE, 775 CE, and 660 BCE ESPEs are an order of magnitude higher
for lower energies (<100 MeV) compared to previous estimates. The results are in agreement with
recent reconstructions. These fluence reconstructions are crucial for assessing the potential impact
of ESPEs on modern society, as SEPs with energies 𝐸 < 100 MeV pose significant technological
and health hazards. The statistical analysis suggests that ESPEs are likely produced by a mechanism
similar to regular GLEs, indicating their nature as Black-swan events that can be understood within
existing knowledge.
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