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A B S T R A C T

Countries in South Asia are suffering severe PM2.5 pollution with rapid economic development, impacting human 
health and the environment. Whilst much attention has been given to understanding the contribution of primary 
emissions, the contribution of agriculture to PM2.5 concentrations, especially from agricultural ammonia (NH3) 
emissions, remains less explored. Using an advanced regional atmospheric chemistry and transport modelling 
system (WRF-EMEP) with a new estimate of anthropogenic NH3 emissions inputs, we estimate the influence of 
agricultural NH3 emissions on surface PM2.5 in South Asia and evaluate the health impacts and the economic 
losses attributable to PM2.5 in 2018. Results show that WRF-EMEP can reproduce magnitudes and variations of 
PM2.5 well, with a high annual mean PM2.5 concentration that exceeds 120 µg/m2 and mainly appeared in the 
Indo-Gangetic Plain. We estimate 2,228,000 (95 % Confidence Interval: 2,052,000–2,400,000) premature deaths 
and US$ 596,000 (95 % CI: 549,000–642,000) million in economic losses are attributable to total ambient PM2.5 
under the current emissions. We calculate that NH3 emissions are associated with 11 % of the annual average 
PM2.5 concentrations across South Asia. Changes in PM2.5 concentrations follow a non-linear response to NH3 
emissions reductions, highlighting increased efficiency with 70 %–100 % reductions in NH3 emissions re
ductions. We estimate that 247,000 (227,000–265,000) premature deaths and US$ 66,000 (61,000–71,000) 
million economic losses through this pathway can be attributed to NH3 emissions. These findings confirm that in 
the current NH3-rich chemical environment of South Asia, the efficiency of PM2.5 reduction is only moderately 
sensitive to the reduction in intensity of NH3 emissions until emissions are cut very severely. Thus, SO2, NOx and 
NH3 emissions controls need to be considered jointly for greater mitigation of ambient secondary PM2.5 in South 
Asia.

1. Introduction

With the rapid development of industries and an expanding popu
lation, countries in South Asia are experiencing severe air pollution. The 
World Health Organization has reported that 16 cities in South Asia rank 
among the top 20 most polluted globally (WHO, 2018). As one of the 
major components of air pollution, observed PM2.5 (particles with an 
aerodynamic diameter less than 2.5 µm) concentrations were found to 

be 6–20 times higher than the WHO Air Quality Guidelines of 5 µg/m3 in 
most South Asian cities (World Bank, 2023). Exposure to high concen
trations of PM2.5 has been linked to significant adverse effects on human 
health, including an increased risk of cardiovascular diseases, respira
tory disease, and lung cancer (Cohen et al., 2017; Pope III et al., 2019; 
Coleman et al., 2020). The 2019 Global Burden of Disease Study (GBD 
2019) identified ambient PM2.5 pollution as the seventh greatest risk 
factor for all ages, attributing 4.1 million deaths to it globally (Sang 
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et al., 2022), including 0.98 million deaths in India alone (Pandey et al., 
2021). Although some mitigation policies have been implemented in 
South Asian countries (e.g., India), reductions in PM2.5 concentrations 
have not been effectively achieved (Chowdhury et al., 2017), and PM2.5 
pollution is expected to deteriorate in the coming decades due to rapid 
industrialization and urbanization. Furthermore, the high levels of 
PM2.5 pollution in South Asia transported by the Asian summer monsoon 
also affect global climate and air quality (Lelieveld et al., 2018; Chen 
et al., 2020). PM2.5 also affects ecosystems with chemical component 
species, contributing to the transport and deposition of eutrophying 
(nitrogen) compounds and acidity (Liu et al., 2019).

Atmospheric NH3 is the only alkaline gas and plays a critical role 
between the atmosphere and biosphere (Chang et al., 1989; Sutton et al., 
1993). NH3 reacts with H2SO4, HNO3 (formed by oxidation of SO2 and 
NOx, respectively (Hewitt, 2001)) and HCl to generate (NH4)2SO4, 
NH4HSO4, NH4NO3 and NH4Cl which are main constituents of PM2.5. 
Studies reported secondary inorganic aerosols (SIA) that include sulfate, 
nitrate, chloride, and ammonium accounted for 25–75 % of PM2.5 mass 
(Gray et al., 1986; Heitzenberg, 1989). In addition to reacting with acid 
gases, dry deposition and wet scavenging of NH3 and ammonium 
contribute to the eutrophication of water bodies and acidification of 
terrestrial ecosystems (Zhang et al., 2010; Sheppard et al., 2011; Paerl 
et al., 2014). South Asia is one of the biggest hotspots of atmospheric 
NH3 as a globally leading grain producer with intensive agricultural 
activities and fertilizer applications (Pawar et al., 2020; Balasu
bramanian et al., 2020), especially in the Indo-Gangetic Plain (IGP). The 
IGP records the highest global NH3 column concentrations (> 6 × 106 

mol/cm2), as observed by satellite (Van Damme et al., 2014; Van 
Damme et al., 2018; Kuttippurath et al., 2020). Despite this, many 
mitigation policies in South Asian countries primarily focus on reducing 
SO2 and NOx emissions, but neglect NH3 emissions, which can cause an 
increase in atmospheric NH3 concentrations (Warner et al., 2017; Liu 
et al., 2018). Previous studies based on atmospheric modelling found 
that abating NH3 emissions is more cost-effective for mitigating PM2.5 
pollution than nitrogen oxide control (Gu et al., 2021), and significantly 
decreases secondary inorganic aerosols levels e.g. in China (Xu et al., 
2019; Han et al., 2020; Liu et al., 2021). Source attributions have often 
lumped together the impact of agricultural activity through residue 
burning and NH3 emissions. For example, recently study (Chatterjee 
et al., 2023) has attributed 9 % of South Asia’s PM2.5 burden to agri
culture, while Pozzer et al., (2017) investigated that 16 % of PM2.5 in 
South Asia was attributable to agricultural emissions.

Accurate data on NH3 emissions are crucial for quantifying the total 
NH3 concentrations and understanding their impacts on PM2.5 air 
pollution. Different global or regional emission datasets have been uti
lized in previous studies that focused on South Asia (Wang et al., 2020; 
Gu et al., 2021). The Emissions Database for Global Atmospheric 
Research (EDGAR) represents global anthropogenic emissions, 
compiling international statistics with a consistent methodology. It in
cludes agricultural activity data for NH3 emissions sourced from the 
Food and Agricultural Organization (FAO) (Crippa et al., 2018). The 
Hemispheric Transport of Air Pollution (HTAP) dataset was developed 
as a global mosaic of emissions, collecting officially reported data from 
various regions and countries and stitching them together. For countries 
without official data, or data missing from official reporting, HTAP uses 
the EDGAR emissions database (Crippa et al., 2023). The Regional 
Emission Inventory in Asia (REAS) has been included in the HTAP 
framework for South Asia specifically, offering a resolution of 
0.25◦×0.25◦ with monthly variations for the years 2000–2008, consid
ering major NH3 sources like livestock and fertilizer application 
(Kurokawa et al., 2013). Additionally, another inventory, the MIX 
dataset, also addresses Asian anthropogenic emissions (Li et al., 2017), 
with REAS being specifically applied to NH3 emissions in South Asia. 
These NH3 emissions inventories are instrumental in analyzing the NH3 
mass load across South Asia. However, significant socio-economic 
changes such as urbanization and industrialization, population 

migration, and increased fertilizer application have altered the intensity 
and distribution of NH3 emissions in this region over the past decade. 
Consequently, it is essential to have an up-to-date and reliable emission 
inventory to accurately assess air pollution levels in South Asia, espe
cially for the regional health impacts.

Premature mortality attributable to long-term exposure to ambient 
PM2.5 has been assessed in individual South Asian countries in previous 
studies based on ground measurement, satellite retrievals, and model 
simulation (van Donkelaar et al., 2015; Cohen et al., 2017; Pandey et al., 
2021; Maji et al., 2023; Chatterjee et al., 2023). Chowdhury and Dey 
(2016) reported an estimated 486,000 premature deaths in India, based 
on bias-corrected satellite-based PM2.5 data. High-resolution atmo
spheric chemical models have enabled more detailed analyses, attrib
uting specific emission sources to premature deaths. Lelieveld et al. 
(2015) attributed 645,000 deaths in India in 2010 to ambient PM2.5, 
with residential energy and power generation being the primary sources, 
whereas agricultural NH3 emissions contributed to only 1 %. Conibear 
et al. (2018) calculated 990,000 premature mortalities in India in 2016 
to PM2.5, with 52 % resulting from residential energy use. Different 
exposure–response functions have been applied for estimating PM2.5- 
attributable premature mortality. The above studies rely on the Inte
grated Exposure-Response (IER) model (Burnett et al., 2014), which 
introduces uncertainties in highly polluted regions because the IER 
function incorporates data on PM2.5-mortality associations from non- 
ambient PM2.5 sources at elevated concentrations. To reduce these un
certainties, Burnett et al. (2018) developed a new global exposure 
mortality model (GEMM), which has been proven to improve accuracy 
for highly air polluted areas (Lelieveld et al., 2020). Currently, insuffi
cient evidence exists with regard to the differential toxicity of the 
different PM2.5 chemical components and we discuss associated un
certainties. In addition, previous studies relied on old emission in
ventories, which have since been updated. Furthermore, few studies 
have quantified the health impacts of PM2.5 reduction through NH3 
emission changes. Notably, many studies have focused on individual 
countries (e.g. Ravishankara et al., 2020; Islam et al., 2023), without 
providing a comprehensive view of PM2.5 pollution and associated 
health impacts across the whole South Asian region.

In this study, we employ a state-of-the-art atmospheric chemistry 
transport model (EMEP model), with an updated South Asia emission 
inventory specific to South Asia, to address the above challenges. The 
EMEP model using the gas/aerosol thermodynamic scheme EQSAM4
clim, has a low cost with respect to the total CPU consumption across 
aerosols with a range of composition complexity (Metzger et al., 2024), 
which makes it suitable for full-year scenario simulations at relatively 
high spatial resolution (Angelbratt et al., 2011; Simpson et al., 2014; 
Dong et al., 2018; Thunis et al., 2021). We perform a range of model 
simulations to evaluate the response of PM2.5 pollution to global NH3 
reduction at various levels. We then quantify the premature human 
mortality in South Asia attributable to ambient PM2.5, following NH3 
emissions reductions utilizing a newly updated concentration–response 
model. Additionally, economic losses related to health impacts due to 
PM2.5 exposure are also assessed. The findings from this study provide 
crucial insights into the potential benefits of targeted NH3 emissions 
control strategies, offering a scientific foundation for the development 
and implementation of more effective air pollution control policies in 
South Asia.

2. Methodology

2.1. The EMEP model

2.1.1. Introduction to the EMEP model
The model of the European Monitoring and Evaluation Programme 

Meteorological Synthesizing Centre-West (EMEP MSC-W) rv4.45 is 
applied in this study to generate concentrations of air pollutants (http 
s://github.com/metno/emep-ctm/releases/tag/rv4_45, last access: 09 
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February 2024). This open-source 3-D Eulerian atmospheric chemical 
transport model has been widely used for scientific research and policy 
support on both global and regional scales (Vieno et al., 2016; Ge et al., 
2021, 2023; Gu et al., 2021). The EMEP model includes a complete 
description of advection, diffusion, chemical reactions, and dry and wet 
deposition processes. It uses the Emchem19 chemical mechanism which 
includes ~ 75 chemical species, 140 chemical reactions, and 34 photo- 
dissociation reactions (Simpson et al., 2020) to calculate gas-phase 
chemistry. The aerosol thermodynamic scheme, Equilibrium Simpli
fied Aerosol Model V4 (EQSAM4clim) is applied here to calculate gas/ 
aerosol partitioning as it results in faster run times making it suitable for 
full-year scenario runs (Metzger et al., 2016, 2018). The parameteriza
tion of Wesely (1989) is used for dry deposition for most compounds, 
with an extended parameterization for some compounds including NH3, 
SO2 and O3 (Simpson et al., 2012). Wet deposition processes are based 
on the parameterization of Berge and Jakobsen (1998). The volatility 
basis set (VBS) approach is added to simulated secondary organic 
aerosol dynamics (Robinson et al., 2007; Donahue et al., 2009; Berg
strom et al., 2012; Ots et al., 2016a, 2016b, 2018). A more technical 
description of the EMEP model rv4.0 is presented in Simpson et al. 
(2012), and an overview of model updates from version rv4.0 to rv4.45 
is presented in Hilde et al. (2022).

2.1.2. Model configuration
The configuration of the model with two domains in the current 

study is shown in Fig. S1. The outer domain covers the globe at a hor
izontal resolution of 1◦ (360 x 180 grid cells), approximate 110 km at the 
equator. The inner domain covers South Asia (9◦ S – 41◦ N and 54◦ E – 
104◦ E), at 0.11◦ (450 x 450 grid cells), around 12 km at the equator. 
Vertically, the EMEP model employs 21 terrain-following layers from 
the surface to 100 hPa, with the height of the lowest layer ~ 45 m. An 
intermediate model domain is used for the meteorology with a hori
zontal resolution of 0.33◦ (not shown here).

Meteorological fields used for the EMEP model in this study are 
calculated using the Weather Research and Forecasting (WRF) model 
v4.4.2 (Skamarock et al., 2019). The fifth-generation European Centre 
for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis 
of the global climate (ERA5) at 0.25◦ resolution is used as a boundary 
condition. The wind speed, wind direction, specific humidity, and 
temperature were also nudged towards the ERA5 every 6 h. Within WRF, 
the current study applies the bulk microphysical parameterization 
scheme (Lin et al., 2011), the Rapid Radiative Transfer Model long-wave 
radiation scheme (Mlawer et al., 1997), the Dudhia short-wave radiation 
scheme (Dudhia et al., 1989), the Kain-Fritsch cumulus parameteriza
tion scheme (JS Kain et al., 2004) and the Yonsei University planetary 
boundary layer scheme (Hong et al., 2006). The Noah Land Surface 
Model (Chen and Dudhia 2001) is used in this WRF simulation. For land 
cover data we applied the Moderate Resolution Imaging Spectroradi
ometer (MODIS) products (https://modis.gsfc.nasa.gov/data/dataprod/ 
mod12.php).

2.1.3. Emissions
The anthropogenic emissions used in the EMEP model are based 

upon the EDGARv6.1, for the year 2015 (Crippa et al., 2019; Janssens- 
Maenhout et al., 2019), with the exception that emissions of agricultural 
NH3 (i.e. agricultural soils and manure management) for South Asian 
countries (Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, 
Pakistan and Sri Lanka) were re-calculated using a bottom-up approach 
similar to Crippa et al. (2019) and Janssens-Maenhout et al. (2019), but 
with updated spatial proxies (e.g. Gridded Livestock of the World [GLW] 
version 4, plus more detailed crop surfaces) and sub-national activity 
data where available (Tomlinson et al., 2024). Furthermore, for India 
only, emissions of non-NH3 air pollutants in India (NOx, SO2, CO, 
NMVOCs and PM2.5) were replaced with a national inventory 
(Venkataraman et al., 2018; Sadavarte & Venkataraman, 2014; Pandey 
et al., 2014). This dataset uses consistent assumptions to calculate 

emissions of the suite of pollutants, including all sectors covered by 
global inventories, as well as agricultural residue burning emissions and 
industrial process emissions, whilst providing for finer spatial resolution 
using district-level data and sector-based spatial proxies. Fig. 1 shows 
the proportions of different emission sectors and the spatial distribution 
of NH3 emissions in South Asia (those of other pollutants can be found in 
Fig. S2). The majority of NH3 is emitted in India, Pakistan and 
Bangladesh, particularly along the IGP. Our estimate of annual NH3 
emissions in the study area is 8,905 kt, to which the agriculture sector 
contributes the biggest proportion (83 %). This is comparable to the 
9,301 kt of NH3 emissions estimated for the same countries in EDG
ARv6.1, but spatial and seasonal patterns are markedly different.

2.1.4. Model extension to chloride
Given the growing evidence that a significant fraction of ammonium 

in South Asian cities is present in the form of ammonium chloride (e.g. 
Gunthe et al., 2021), the standard EMEP model was here extended to 
include treatment of hydrogen chloride (HCl) and particulate chloride, 
similar to the approach Pawar et al. (2023) took for the WRF-Chem 
model. This included reading in global emissions of total chloride 
(Zhang et al., 2022) as HCl, deposition treatment analogous to nitric acid 
and fine aerosol nitrate, and activation of the thermodynamic treatment 
already implemented in the EQSAM4clim module. Biomass burning 
emissions were taken from the Fire Inventory from NCAR version 1.5 
(Wiedinmyer et al., 2011). VOCs emissions from biogenic sources are 
calculated in the model based on meteorological conditions and land 
cover. Details of other emissions, i.e., aircraft, soil NO and lightning are 
described in Simpson et al (2012).

2.2. Observations and statistical metrics

Substantial observed data were collated and used to evaluate the 
performance of the WRF-EMEP model. Meteorological observations at 
297 sites across South Asia in 2018 were obtained from the National 
Climatic Data Centre (https://ncdc.noaa.gov/isd/data-access), 
including temperature (Temp), relative humidity (RH), and wind speed 
(WS). Observations of hourly surface PM2.5 concentrations for India in 
2018 were collected from the Central Pollution Control Board (http 
s://cpcb.nic.in). As we did not find national observations in other 
South Asian countries, hourly observed PM2.5 data for Nepal, 
Bangladesh, and Sri Lanka were obtained from the US Embassies and 
consulates (https://www.airnow.gov/international/us-embassies-and-c 
onsulates). The PM2.5 as calculated by the EMEP model is defined as 
particulate matter with aerodynamic diameter up to 2.5 μm. The 
modelled PM2.5 refers to the sum of all aerosol species included in the 
EMEP model: sulfate, fine nitrate, ammonium, chloride, fine elemental 
carbon, fine secondary organic aerosols, fine sea salt, fine dust, primary 
PM2.5 and 16 % of coarse nitrate, where fine and coarse present 2.5 μm 
and 2.5–10 μm particle size, respectively. Secondary inorganic aerosols 
include sulfate, fine nitrate, ammonium, and chloride (Simpson et al., 
2012).

Statistical metrics such as mean bias (MB), normalized mean bias 
(NMB), root mean square error (RMSE), and correlation coefficient (R) 
are used to assess model performances. Additionally, we applied mean 
fractional bias (MFB) and mean fractional error (MFE) specifically for 
PM2.5 evaluation (Boylan and Russell, 2006), which are calculated using 
Equations (1)-(2). 

MFB =
1
N

∑N

i=1

(Cm − Co)

(Cm+Co
2 )

(1) 

MFE =
1
N

∑N

i=1

|Cm − Co|

(Cm+Co
2 )

(2) 
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2.3. Assessing health impacts and economic valuation attributable to long- 
term PM2.5 exposure

The Global Exposure Mortality Model (GEMM, Burnett et al., 2018) 
is used here to calculate the premature mortality attributable to long- 
term PM2.5 exposure over South Asia in 2018. GEMM integrates data 
from 41 cohorts across 16 countries to generate the shape of the asso
ciation between PM2.5 and non-accidental mortality. Relying solely on 
outdoor PM2.5 studies, GEMM covers much of the global exposure range 
compared to the older IER model (Burnett et al., 2014), including a 
study on a cohort of Chinese men that extended PM2.5 concentration up 
to 84 µg/m3. These updated functions have been widely applied in 
previous studies (see Milner et al., 2023; Maji K J et al., 2023; Zhang 
et al., 2019). In the current study, we apply GEMM to estimate health 
impacts related to total non-accidental mortality, which includes non- 
communicable disease (NCD) and lower respiratory infections (LRI), 
denoted as GEMM − NCD + LRI.

The relative risk (RR) is calculated as: 

ΔC = max(0,C − C0) (3) 

RR(ΔC) = exp
{

θlog(1 + ΔC/α)
1 + exp(− (ΔC − μ)/v)

}

(4) 

where Δ C is the excess of the annual average PM2.5 concentration (C), 
over C0 the counter-factual concentration (C0 = 2.4 µg/m3) below which 
no adverse health effects are observed, and α, μ, v are fitting parameters 
that reproduce the observed concentration–response curves for different 
health endpoints and θ is estimated based on the Cox proportional 
hazards model (Cox, 1972). Mean relative risk and its 95 % confidence 
intervals (CIs) are calculated by a distribution of 1000 sets of parameters 
in the GEMM model. We assess PM2.5-related mortality for adults at 5- 
year age intervals, starting from age 25 to ages greater than 80.

RR can be converted to premature mortality attributable to PM2.5 
exposure, for each endpoint for each age and sex subgroup in each 
country (subscripts e, a, s, r, respectively) over South Asia in 2018. 

Me,a,s,r(ΔC) = Popa,s,r × Be,a,s,r ×
RRe,a(ΔC) − 1

RRe,a(ΔC)
(5) 

where Me,a,s,r is the PM2.5-attributable premature mortality caused by a 
specific endpoint at a specific age, sex and country. Popa,s,r represents the 
population exposed in a specific age-sex group at a country level. 

Population data at 1 km × 1 km resolution for 2018 was obtained from 
WorldPop (https://www.worldpop.org/) and re-gridded to 0.1◦ × 0.1◦

to match model resolution in the South Asian domain. Be,a,s,r represents 
the baseline mortality, i.e., the incidence of a specific health endpoint at 
a specific age-sex in a country. National baseline incidence rates of 
various health endpoints for different countries in South Asia were ob
tained from the Global Burden Disease (GBD) database (http://vizhub. 
healthdata.org/gbd-compare). To exclude the influence of population 
sizes between the different countries, we also calculate the per capita 
mortality by dividing the number of premature deaths by the 
population.

To calculate the fraction of PM2.5 health impacts due to NH3 emis
sions, we use the attribution and subtraction methods (Conibear et al., 
2018; Gao et al., 2018). Philosophically, the attribution method and the 
subtraction method answer two different questions: the former quan
tifies the contribution of NH3 as a component precursor for the PM2.5 
mix that is causing the current health impacts whilst the latter identifies 
the gains achievable by NH3 emissions control given the currently high 
concentrations.

The approach computes fractional reduction in PM2.5 concentration 
from reducing or removing anthropogenic NH3 emissions globally, then 
applies this fraction to scale the overall estimate of premature mortality 
(Equation (4). In this study, we limit the assessment of the contributions 
of anthropogenic NH3 emissions to the South Asian domain. 

MNH3 = MBASE ×
(PM2.5BASE − PM2.5 NH3 change)

PM2.5BASE
(6) 

The subtraction assesses the premature mortality due to NH3 emissions 
(MNH3 ) by calculating the difference between the total premature mor
tality from all sources (MBASE) and the premature mortality when 
anthropogenic NH3 emissions are changed or removed (Equation (5). 

MNH3 = MBASE − MNH3 change (7) 

We further apply the Value of a Statistical Life (VSL) method to assess 
the economic losses of health impacts associated with PM2.5 exposure in 
2018 (Equation (5). VSL is the local trade-off rate between fatality risk 
and cost, indicating how much people would be willing to pay for a 
reduction (Gao et al., 2015). The unit economic costs of mortality for 
major countries in South Asia from Viscusi and Masterman (2017) are 
listed in Table 1: 

E = Cp × M (8) 

Fig. 1. The contributions of different emission sectors (left) and the spatial distribution of NH3 emissions in South Asia (right). The solid line shows the outline of the 
South Asian countries and the dashed line represent the area of the Indo-Gangetic Plain (IGP), the IGP is defined as according to Agarwal et al (2024).
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where E is the economic losses of health impacts due to PM2.5 concen
trations, Cp is the cost per case and M is PM2.5-attributable premature 
mortality estimated by attribution and subtraction approaches.

2.4. Sensitivity tests design

To evaluate the impacts of NH3 emissions variations on PM2.5 
pollution and related health and economic losses, a series of simulations 
were here conducted for 2018. The baseline simulation (BASE) 
including all emissions mentioned above is compared with measure
ments. Other sensitivity simulations are implemented by reducing 
anthropogenic NH3 emissions by 10 % steps (denoted as SN, N = 10, 20, 
30…, 100).

3. Results

3.1. Model evaluation

Daily variations of observed and simulated major meteorological 
variables are is presented in Fig. S3. Simulations from the WRF model 
are overall in good agreement with observations from major countries in 
South Asia, particularly for temperature and relative humidity. It is 
worth noting that there is only one site in Bhutan; this is at an altitude 
above sea level of around 2200 m, while the grid average terrain height 
for that location in the WRF model is nearly 3000 m. The discrepancy in 
height explains the difference between the observed and modelled re
sults, especially for temperature. The variations of observed wind speed 
are well reproduced by the model, but systematic overestimations were 
found in the simulations (by 0.1 to 1.8 m/s). Agarwal et al. (2023) used 
the WRF-Chem model and also observed this and suggested that it was 
driven by high nocturnal biases.

A comparison of observed and modelled daily mean PM2.5 concen
trations across four countries is shown in Fig. 2. The EMEP model can 
capture the magnitudes and temporal variations of observed PM2.5 well, 

with R values greater than 0.4. The model performs very well in India, 
achieving a small MB of − 7.6 µg/m3 (NMB = -0.1) and a high R value of 
0.8. Simulated PM2.5 concentrations are underestimated in Bangladesh 
and Nepal during winter presumably due to accumulating or missing 
local emissions. Specifically in Nepal, both US sites located in Kath
mandu observe substantial pollutants accumulation because of low 
windspeed and stagnant weather conditions, leading to elevated PM2.5 
concentrations. Conversely, the EMEP model slightly overestimates 
PM2.5 in Sri Lanka during spring. We also provide a time series of 
observed and simulated daily mean PM2.5 across 17 Indian cities 
(Fig. S4). Simulations compare reasonably well with observations in 
most cities, with R values greater than 0.5. Notably, the EMEP model 
accurately reproduces the magnitude and variation of observed PM2.5 in 
Delhi, with an R value of 0.8 and MB value of − 13 µg/m3 (NMB = -0.1), 
even capturing peak winter concentrations. There are episodes where 
simulated concentrations are lower than observations, possibly due to 
adverse meteorological conditions.

Fig. 3 shows the PM2.5 performance statistics of MFB and MFE as a 
function of absolute concentrations across all valid sites. There are 
various published performance criteria for air quality models. The U.S. 
EPA recommends a PM model performance goal of within ± 30 % for 
MFB and less than 50 % for MFE, and performance criteria of within ±
60 % for MFB and less than 75 % for MFE (U.S. EPA 2001). The “per
formance goal” represents the level of accuracy that is close to the best a 
model can be expected to achieve, and “criteria” indicates an acceptable 
level of accuracy (Boylan and Russell, 2006). Our PM2.5 simulations 
meet the performance goal of MFB, with 23 % of values falling between 
the goal and criteria at most of sites. For MFE, 77 % of values are within 
the goal, with the rest are between the goal and criteria. Overall, EMEP 
model can provide confident and reliable PM2.5 simulations compared to 
observations.

Fig. 4 displays the spatial distributions of the simulated annual mean 
PM2.5, NH3, and SIA for 2018, and their monthly spatial distributions 
can be found in Figs. S5 to S7. High PM2.5 concentrations are mainly 
concentrated in the IGP and eastern India, exceeding 100 µg/m3. 

Table 1 
Unit economic costs of mortality in South Asia (Viscusi and Masterman., 2017).

Countries India Pakistan Nepal Bangladesh Sri Lanka Bhutan Afghanistan

Cost per case (US$) 275,000 248,000 126,000 205,000 654,000 409,000 105,000

Fig. 2. Comparison of daily PM2.5 concentrations between observations and simulations in four South Asian countries.
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Because of increased emissions and unfavorable weather conditions, 
heavy PM2.5 pollution are predicted to have occurred in winter with 
concentrations of more than 150 µg/m3. Conversely, lower PM2.5 con
centrations (10 – 70 µg/m3) were predicted for the monsoon season due 
to reduced SO2, NOx and primary emissions and increased wet deposi
tion. In Delhi, the model underestimated PM2.5. An increasing number of 
studies shows that in Delhi a substantial fraction of PM2.5 is in particu
late chloride form (Cash et al., 2020; Pawar et al., 2023). With the 
magnitude of HCl emissions in the first published emission inventory 
used here the EMEP model was not able to reproduce the measured 
levels of particulate Cl− . This will have contributed to the underesti
mation of PM2.5 in urban areas and will be the subject of future im
provements. Annual NH3 concentrations are over 30 µg/m3 in the IGP. 
In contrast with the monthly variations of PM2.5, NH3 levels are pre
dicted to peak in June, extending beyond the IGP to central India. 
Modelled NH3 concentrations reach up to 40 µg/m3 in Punjab and 
Haryana, India. Our results are in agreement with Kuttippurath et al. 
(2020), who reported high NH3 total columns loading during the 
monsoon season because of high temperature, high agricultural activity 
levels and fertilizer applications by analyzing IASI satellite data. Based 
on WRF-Chem with satellite observations, Wang et al. (2020) identified 
that the reduced gas-to-particle conversion of NH3 caused by low SO2 
and NOx emissions also played an important role in high NH3 concen
trations loadings in monsoon season. Following the distribution patterns 

and temporal variations of PM2.5, high SIA concentrations of around 
25–35 µg/m3 also occur in IGP.

3.2. Impacts of NH3 emissions reductions on PM2.5 concentrations

In the current study, ten sensitivity tests have been conducted to 
assess the response of air pollutants to NH3 emissions reductions. Fig. 5
illustrates the changes in surface SIA and PM2.5 concentrations between 
the BASE and the sensitivity runs due to NH3 emissions reductions. The 
most notable changes in absolute terms happen in the IGP, where annual 
average SIA concentrations decrease by more than 15 µg/m3 (40 %) 
when NH3 emissions are reduced. This is also reflected in the predicted 
change in total PM2.5 concentrations, which decline by more than 12 µg/ 
m3 (15 %) in most place of the IGP when NH3 emissions are completely 
removed. Table 2 shows the relative change (%) of SIA and PM2.5 con
centrations in South Asian countries and the IGP resulting from NH3 
emissions reductions, comparing the BASE run with all sensitivity ana
lyses. An annual reduction in NH3 emissions by 10 % results in small 
decreases of 0.7 % in SIA and 0.2 % in PM2.5 concentrations across South 
Asian countries, with slightly greater reductions observed in the IGP, 
where SIA and PM2.5 concentrations drop by 1.1 % and 0.7 %, respec
tively. It is worth noting that the decrease in SIA and PM2.5 mass burden 
accelerates with increasing NH3 emissions reduction, e.g., a 100 % 
reduction in NH3 emissions leads to a 32.3 % decrease in SIA and a 11.0 

Fig. 3. Performance of simulated PM2.5 concentrations. The x-axis shows the observations. The dashed line and solid line represent model performance goals and 
criteria, respectively.

Fig. 4. Spatial distribution of annual simulated PM2.5, NH3, and SIA across South Asia (circles show annual mean observed values).
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% decline in PM2.5 concentrations over South Asian countries, indicating 
a nonlinear response of PM pollution to changes in NH3 emissions.

Fig. 6 shows the relative changes in annual mean concentrations of 

PM2.5 and its components across different regions or countries in South 
Asia, driven by NH3 emissions reductions in 2018 (with absolute vari
ations shown in Fig. S8). Most species follow a non-linear response to 
NH3 emissions reductions, except for chloride which demonstrates a 
nearly linear pattern. All trends become faster with increased NH3 
emissions reductions, particularly as the rate of change accelerating 
with reducing 70 %-100 % NH3 emissions. Overall PM2.5 and SIA con
centrations decrease by 11.0 % and 32.3 % with NH3 emissions removal 
across the South Asian region, respectively. As one of the most polluted 
areas, PM2.5 and SIA decrease by 13.6 % (8.6 µg/m3) and 45.1 % (8.9 µg/ 
m3) in the IGP. Among all South Asian countries, the largest decreases 
are observed for Bangladesh with a 14.2 % (7.7 µg/m3) reduction in 
PM2.5 and a 42.2 % (8.0 µg/m3) reduction in SIA concentrations. Fol
lowed by India, where PM2.5 and SIA concentrations decline by 9.8 % 
(4.1 µg/m3) and 32.6 % (4.3 µg/m3), respectively. Notably, PM2.5 con
centrations include 16 % of coarse nitrate, where a slight increase ac
counts for the minor discrepancies in absolute variations between PM2.5 
and SIA concentrations: reduced NH3 emissions result in higher HNO3 
concentrations which in the model can then partition onto pre-existing 
coarse particles (dust and seasalt) (Simpson et al., 2012).

Because of the affinity of acidic gases for NH3 and the more volatile 

Fig. 5. The absolute and relative changes in annual average SIA and PM2.5 concentrations between base and sensitivity runs with spatially homogeneous global NH3 
emissions reductions.

Table 2 
The change percentage (%) of SIA and PM2.5 concentrations between base and 
sensitivity runs with global NH3 emissions reductions averaged over the South 
Asian countries and IGP.

NH3 emissions Reduction 
(%)

SA IGP

SIA PM2.5 SIA PM2.5

S10-BASE 10 − 0.7 − 0.2 − 1.1 − 0.3
S20-BASE 20 − 1.5 − 0.4 − 2.3 − 0.7
S30-BASE 30 − 2.4 − 0.6 − 3.7 − 1.1
S40-BASE 40 − 3.6 − 0.9 − 5.4 − 1.6
S50-BASE 50 − 5.2 − 1.3 − 7.4 − 2.2
S60-BASE 60 − 7.3 − 1.9 − 10.0 − 2.9
S70-BASE 70 − 10.2 − 2.7 − 13.6 − 4.0
S80-BASE 80 − 14.4 − 3.8 − 18.8 − 5.6
S90-BASE 90 − 21.0 − 5.6 − 27.8 − 8.3
S100- 
BASE

100 –32.3 − 11.0 − 45.0 − 13.6
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nature of ammonium chloride, the relative changes of PM2.5 chloride 
show drastic declines with NH3 emissions reductions, but with the 
emissions used here the absolute contribution of chloride is small. The 
absolute change of PM2.5 fine nitrate ranges from 0.0 to 4.3 µg/m3 with 
NH3 emissions removal, slightly less than that of PM2.5 ammonium (1.0 
– 5.0 µg/m3). However, the relative changes of fine nitrate show more 
substantial declines than those of ammonium, decreasing by up to 100 % 
across the South Asia domain. The decline of nitrate accelerates from 
NH3-rich to NH3-poor environments, which highlights that NH3 plays a 
critical role in nitrate formation, particularly under low NH3 conditions, 
where ammonium nitrate formation is NH3 limited. Similar phenomena 
are reported by previous studies (Xu et al., 2016; Han et al., 2020; Liu 
et al., 2021) that focused on China and globally (Gu et al., 2023). 
Additionally, nitrate virtually disappears already for 90 % NH3 emis
sions reductions in some countries like Nepal, Bhutan, Sri Lanka and 
Afghanistan. In contrast to nitrate and ammonium, sulfate concentra
tions were predicted to increase as NH3 emissions declined, with the 
largest relative increases in Nepal and Bhutan. These increases in sulfate 
can be attributed to co-deposition effects in the EMEP model, where the 
non-stomatal canopy uptake resistance of SO2 increases with the mean 
molar SO2/NH3 ratio (Simpson et al., 2012), more sulfate formation is 
caused by a decline in dry deposition of SO2 when less NH3 is available 
to neutralize the SO2 deposited to plant surfaces.

3.3. Health impacts and economic losses attributable to ambient PM2.5 
exposure due to NH3 emissions

Exposure to ambient PM2.5 concentrations can lead to adverse health 
impacts and economic losses. Here we estimate premature mortality and 
economic losses with the current emission data and explore the contri
bution of NH3 emissions to these outcomes. Fig. S9 shows the population 
exposure to annual PM2.5 concentration for the BASE run in South Asia. 
Approximately 1.8 billion people (95 % of the total population) are 
estimated to be exposed to annual PM2.5 concentrations of between 20 
and 90 µg/m3 with all emission sectors included. Only around 2 million 
people (0.1 %) are predicted to experience levels ≤ 10 µg/m3, meeting 
the WHO 4th interim target, and less than 10 thousand do not exceed the 
WHO annual air quality guideline of 5 µg/m3. Annual mean PM2.5 
concentration varying with population density across South Asia is also 
shown in Fig. S9 (right). A clear increase in PM2.5 concentrations can be 
observed with population density up to 3000 person/km2. In other 
words, PM2.5 concentrations follow human activity and are lower in 
areas with less population density and higher in regions where the 
population is large.

Per capita mortality and corresponding premature deaths due to 
annual mean PM2.5 exposure in different locations across South Asia are 
illustrated in Fig. 7A, with specific values presented in Table 3. The 
estimated range of per capita mortality is 0.04–0.15 % with the 

Fig. 6. The relative variations of aerosol concentrations associated with reduced NH3 emissions (the dashed line represents zero mark).
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maximum in the IGP and the minimum in Afghanistan. High per capita 
mortality is due to high baseline mortality rates and population- 
weighted PM2.5 concentrations. The overall per capita mortality and 
premature deaths for South Asia are 0.12 % (95 % Confidence Interval: 
0.11 %-0.13 %) and 2,228,000 (2,052,000–2,400,000) for the BASE run, 
respectively. Among all South Asian countries, India is estimated to 
experience the largest number of premature deaths due to PM2.5 expo
sure (1,784,000; 1,643,000–1,921,000), followed by Pakistan (220,000; 
202,000–236,000), together accounting for 90 % of total premature 
deaths due to annual mean PM2.5 exposure in South Asia. These figures 
are significantly exceed estimated in the GBD study due to a newly 
updated concentration–response function used. Consistent with the 
spatial distribution of annual PM2.5 and population, the greatest number 
of premature deaths identifies in the IGP (Fig. 7B), with approximately 
1143,000 (1,055,000–1,228,000) mortalities attributable to ambient 
PM2.5 exposure. We apply both the attribution method and subtraction 
method to assess health burdens from NH3 emissions in this study. 
Fig. 7C presents the spatial distribution of the relative contribution of 
NH3 emissions to PM2.5 premature mortality, with values ranging from 1 
to 45 %. The largest contributions occur in the IGP, some central and 
eastern coastal Indian cities and northern Pakistan. Estimated premature 

deaths due to PM2.5 exposure from all NH3 emissions across South Asia 
are 247,000 (227,000–265,000), calculated with the attribution 
method, accounting for 11 % of the total premature mortality from all 
emission sectors. In contrast, the contribution that NH3 control could 
help avert, calculated with the subtraction method, ranges from 1 to 15 
% (Fig. 7D) relating to 140,000 (132,000–149,000) premature deaths 
attributable to ambient PM2.5 from all NH3 emissions, accounting for 6 
% of the total premature mortality from all sectors. The values derived 
from the subtraction approach are significantly smaller, by a factor of up 
to 2 than those obtained from the attribution approach. The discrepancy 
is primarily attributed to the strong nonlinearities in the GEMM expo
sure–response function.

Applying unit economic costs of mortality and VSL, we estimate the 
economic losses for South Asia in 2018. The total GDP of South Asia for 
that year was US$ 11.27 trillion (in 2017 at purchasing power parity 
(PPP), according to the World Bank (https://data.worldbank.org/)), and 
the total economic losses for this region are assessed at approximately 
US$ 596,000 (549,000–642,000) million for the base run, accounting 
for 5 % (5 %–6 %) of total annual GDP of South Asia (in 2017 US$ at 
PPP). Further details on the economic losses across various regions and 
countries are listed in Table 4. The attribution method estimates US$ 

Fig. 7. Health impacts attributable to annual mean PM2.5 exposure. A: premature deaths in different countries and regions with per capita death rates; B: spatial 
distribution of premature deaths in South Asia; C: spatial distribution of the attributable fraction of premature deaths from all NH3 emissions (attribution method); D: 
spatial distribution of the averted contribution to premature deaths from removing all NH3 emissions (subtraction methods).
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66,000 (61,000–71,000) million economic losses due to NH3 emissions 
alone, representing 11 % of the total economic losses in South Asia, 
while the economic losses calculated from the subtraction method are 
US$ 37,000 (35,000–40,000) million, which accounts for 6 % of the 
overall economic losses from all sectors across South Asia.

Fig. 8 illustrates how different levels of NH3 emissions contribute to 
premature deaths and economic losses across South Asia in 2018. The 
attribution analysis estimates sector-specific mortality, assuming that 
the response of premature deaths and economic losses are similar to 
those observed for total PM2.5 concentration. The subtraction approach 
assesses the level of reduction in premature mortality and economic 
losses could be achieved if a specific sector is removed. Results from the 
attribution method are by a factor of up to 2 larger than those are from 
the subtraction method. Changes in premature mortality and economic 
losses all follow non-linear variations with the level of emissions control, 
with values increasing at an accelerated pace when NH3 emissions is 
reduced by 70 % or more. This finding emphasizes that a reduction of at 

least 70 % in NH3 emission in South Asia could lead to significantly 
greater health and economic benefits. Furthermore, by fixing the ratios 
between the left and the right-hand-side scales in Fig. 8, it becomes 
obvious that in countries such as Sri Lanka and Bhutan, the gaps be
tween premature deaths and economic losses are smaller compared to 
other countries. This is attributable to the higher economic costs of 
mortality in Sri Lanka and Bhutan than those in other South Asian 
countries (see Table 1).

3.4. Interactions with emission changes of SO2 and NOx

Some mitigation policies have been implemented in South Asian 
countries to address the high PM2.5 concentrations. Among these 
abatement strategies, the primary focus has been on reducing SO2 and 
NOx emissions which are predominantly from residential, industrial, 
transport and power sectors. The reductions in SO2 and NOx emissions 
have a significant impact on the formation of SIA. Here we conduct two 
additional sensitivity tests to quantify the impact of NH3 emissions re
ductions on PM2.5 pollution alongside reductions in SO2 and NOx 
emissions. The first sensitivity test involves a simultaneous reduction of 
30 % in both NH3 and SO2 emissions (defined as S30NS), while the 
second test aims for a further 30 % reduction in NOx emission on the top 
of the reductions in the first test (defined as S30NSN). We chose a 30 % 
reduction because reducing 30 % NH3 may be an achievable mitigation 
target (Sutton et al., 2011; Bittman et al., 2014).

Table 5 illustrates changes in PM2.5 and its components between the 
BASE run and sensitivity tests in South Asian countries and the IGP. We 
estimated that 30 % reductions in SO2, NOx and NH3 emissions represent 
about 17,000 Gg S, 10,700 Gg N and 13,000 Gg N annually over the 
South Asia domain, respectively. Throughout the South Asian countries, 
minor declines happen in SIA and PM2.5 concentration with 30 % 
reduction in NH3 emission alone, by contrast, a simultaneous 30 % 
reduction in NH3 and SO2 emissions leads to 26.2 % and 7.1 % decreases 
in SIA and PM2.5 concentrations, respectively, highlighting their critical 
role in the formation of SIA. Furthermore, an additional 30 % reduction 
in NOx emission results in substantial declines for all SIA components, 
with SIA and PM2.5 concentrations dropping by 8.7 % and 29.8 %. 
Specifically, fine nitrate levels have the most significant reduction while 
Cl− levels show a slight rise compared to the S30NS run. Additionally, 
according to the attribution method, 30 % reductions in SO2, NOx and 
NH3 emissions collectively contributes to a reduction of 235,000 
(216,000–253,000) premature deaths and US$ 63,000 (58,000–68,000) 
million in economic losses over South Asian countries (attribution 
method). These reductions are comparable to those achieved by a 
theoretical 100 % reduction in NH3 emission alone. The changes in all 
air pollutants and PM2.5-related impacts in the IGP slightly differ from 
those in all countries. These findings emphasize the necessity for joint 
emission controls targeting SO2, NOx, and NH3 for comprehensive 
mitigation of ambient PM2.5 pollution in South Asia.

4. Discussion

In the current study, the atmospheric chemical transport modelling 
system WRF-EMEP with a new estimate of anthropogenic NH3 emissions 
is applied at 0.11◦ resolution to assess the impacts of NH3 emissions 
control strategies on PM2.5 pollution, as well as the related premature 
human deaths and economic losses over South Asia in 2018 associated 
with long-term exposure. Results show that model simulations can 
reproduce magnitudes and variations of PM2.5. Total ambient PM2.5 
attribute 2,228,000 (95 % CI: 2,052,000–2,400,000) premature deaths 
and US$ 596,000 (95 % CI: 549,000–642,000) million economic los
ses⋅NH3 emissions contribute 11 % to the annual PM2.5 levels, with 
significant health and economic losses (247,000 premature deaths (95 % 
CI: 227,000–265,000) and US$ 66,000 (95 %CI: 61,000–71,000) 
million).

Table 3 
Estimated premature deaths (thousands) attributable to PM2.5 due to all sectors 
and NH3 emissions in 2018 across South Asia (SA) and the Indo-Gangetic Plain 
(IGP).

Premature deaths (thousands)

All sectors NH3 emissions 
(Attribution method)

NH3 emissions 
(Subtraction method)

SA 2228 
(2052–2400)

247 
(227–265)

140 
(132–149)

IGP 1143 
(1055–1228)

162 
(149–174)

88 
(83–93)

India 1784 
(1643–1921)

198 
(182–212)

111 
(104–118)

Pakistan 220 
(202–236)

21 
(20–23)

12 
(11–13)

Nepal 28 
(26–30)

2 
(2–3)

1 
(1–2)

Bangladesh 159 
(147–171)

23 
(21–25)

14 
(13–15)

Sri Lanka 19 
(18–21)

1.5 
(1.4–1.7)

1.0 
(0.9–1.0)

Bhutan 0.5 
(0.4–0.5)

0.02 
(0.02–0.03)

0.01 
(0.01–0.02)

Afghanistan 17 
(16–19)

0.8 
(0.7–0.9)

0.5 
(0.4–0.6)

Table 4 
Estimated economic losses (US$ million) attributable to PM2.5 due to all sectors 
and NH3 emissions in 2018.

Economic losses (US$ million)

All sectors NH3 emissions 
(Attribution 
method)

NH3 emissions 
(Subtraction 
method)

SA 596,000 
(549,000–642,000)

66,000 
(61,000–71,000)

37,000 
(35,000–40,000)

IGP 301,000 
(278,000–323,000)

43,000 
(40,000–46,000)

23,000 
(22,000–25,000)

India 491,000 
(452,000–528,000)

54,000 
(50,000–58,000)

31,000 
(29,000–32,000)

Pakistan 54,000 
(50,000–57,000)

5,300 
(5,000–5,700)

3,000 
(2,800–3,200)

Nepal 3,600 
(3,300–4,000)

300 
(280–330)

190 
(170–200)

Bangladesh 33,000 
(30,000–35,000)

4,700 
(4,000–5,000)

2,800 
(2600–3,000)

Sri Lanka 13,000 
(12,00–14,000)

1,000 
(900–1,100)

600 
(580–680)

Bhutan 190 
(171–200)

11 
(10–12)

7 
(6–8)

Afghanistan 1,800 
(1,700–2,000)

84 
(77–92)

54 
(50–58)
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4.1. Comparisons with other studies

A comparison of studies of premature deaths due to ambient PM2.5 
exposure across South Asian countries is shown in Table S3. Our esti
mates of 2,228,000 (2,052,000–2,400,000) from all sectors across South 
Asia in 2018, and 1,784,000 (1,643,000–1,921,000) in India are 

consistent with previous studies (Cohen et al., 2017; Pozzer et al., 2017; 
Conibear et al., 2018; Pandey et al., 2021; Maji et al., 2023). Premature 
deaths based on GEMM exposure–response function are higher than 
those derived using the IER model. The GEMM incorporates data from a 
Chinese cohort study covering a wide range of PM2.5 concentrations, 
which helps to reduce these uncertainties (Burnett et al., 2018; Lelieveld 

Fig. 8. Premature deaths and economic losses attributable to NH3 emissions in 2018. The dark lines represent results from the attribution method, and the light lines 
represent results from the subtraction method.

Table 5 
The annual relative change (%) of PM2.5, its component concentrations and its impacts based on attribution method between the BASE and sensitivity tests in South 
Asian countries and IGP.

NH3 emissions reduction SO2−
4 NO−

3 NH+
4 Cl− SIA PM2.5 Premature deaths Economic losses

SA S30N-BASE 30 % NH3 2.2 − 18.1 − 5.0 − 30.0 − 2.4 − 0.6 − 0.8 − 0.8
S30NS-BASE 30 %NH3 + 30 %SO2 − 27.0 − 14.6 − 26.8 –23.4 − 26.2 − 7.1 − 7.3 − 7.3
S30NSN-BASE 30 % NH3 − 28.8 − 41.5 − 30.0 − 18.6 − 29.8 − 8.7 − 10.5 − 10.5

IGP S30N-BASE 30 % NH3 2.2 − 14.5 − 3.8 − 27.3 − 3.8 − 1.1 − 1.2 − 1.2
S30NS-BASE 30 %NH3 + 30 %SO2 − 28.0 − 11.2 –23.0 − 25.6 –22.3 − 6.8 − 6.8 − 6.8
S30NSN-BASE 30 %NH3 + 30 %SO2 + 30 %NOx − 30.4 − 37.4 –32.4 − 21.6 –32.8 − 10.8 − 10.9 − 10.9
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et al., 2020). Moreover, the GEMM function in this study considers all 
non-communicable diseases plus lower respiratory infections (NCD +
LRI), while the IER model is limited to only five specific diseases, 
including stroke, ischemic heart disease, chronic obstructive pulmonary 
disease, lung cancer and lower respiratory infections. In addition to 
applying different exposure–response functions, the discrepancies 
among these studies largely attributed to differences in annual PM2.5 
concentrations, stemming from different approaches, emissions, and 
resolutions. The study by Maji et al. (2023) reported higher premature 
mortality based on the finer resolution of ground level PM2.5 data. 
However, the PM2.5 concentrations used in their analysis are derived 
from aerosol optical depth retrievals applying statistical methods and 
downscaled meteorological variables (van Donkelaar et al., 2021), 
suggesting the reliable data content is not as high as what the resolution 
implies (Wang et al., 2020).

Using a coarse resolution global model and the subtraction method, 
Lelieveld et al. (2015) evaluated premature deaths due to PM2.5 result
ing from agricultural emissions in India, Pakistan, Bangladesh, and 
Nepal at 40,000; 1,900; 9,000 and 400, respectively. These estimates are 
lower compared with our findings using the subtraction method 
(Table 3). The main reasons for these discrepancies likely include the 
temporal and spatial variations in agricultural emissions, differences in 
model resolution, mechanisms and concentration–response functions.

The economic losses in our study amount to 596,000 
(549,000–642,000) million US$, 11 % of these due to NH3 emissions 
based on the attribution method. In contrast, only 6 % can be addressed 
through NH3 emissions reductions, based on the subtraction method. 
The World Bank (2016) reported economic losses of 253,000 million US 
$ due to ambient PM2.5 pollution in 2013 over South Asia, with India 
accounting for 81 % of these losses (Table S4). Our results are consistent 
with the World Bank’s findings, air pollution, particularly the ambient 
PM2.5 pollution, has emerged as one of the most severe environmental 
issues in South Asia over the last decade, which results in large and 
increasing economic losses.

4.2. Uncertainties

Although NH3 emissions are here perturbed at the global scale, the 
South Asia region is sufficiently large that most of the benefit in con
centration decreases are due to emission reduction within the region 
itself.

Persistently high chloride concentrations have been reported in 
Delhi and other Indian cities (Gunthe et al 2021; Chen et al., 2022), 
suggesting an excess of available NH3 neutralized hydrochloric acid to 
form ammonium chloride, subsequently increasing PM2.5 concentra
tions. In our study chloride predicted chloride concentrations are 
significantly lower than those observed in Delhi, which indicates sub
stantial uncertainties in local emissions of hydrochloric acid and NH3 in 
South Asia, particularly in densely populated urban areas. Hence, our 
findings possibly underestimate the contribution from NH3 to PM2.5 
formation and its related health impacts, as well as the PM2.5 response to 
NH3 emissions changes. To address these uncertainties, future work will 
incorporate direct speciated aerosol measurements to refine our un
derstanding of HCl emissions and thus the impacts of NH3 on PM2.5 
concentrations. For example, focusing on Delhi, Pawar et al. (2023)
obtained an improved model fit to the measurements for a winter month 
by adjusting emissions of HCl and NH3.

In the precious and current studies, the long-term health burdens 
were evaluated using exposure–response functions between the total 
mass concentrations of PM2.5 and the health endpoints, assuming equal 
toxicity for different chemical components of PM2.5. PM2.5 is the aerosol 
metric for which most epidemiological evidence of dose–response 
functions has been derived. This is driven by the large amount of data 
available for PM2.5. However, several studies have suggested that the 
toxicities of chemical compositions from various sources affect the 
health impacts of PM2.5 differently (Franklin et al., 2008; Atkinson et al., 

2015; Ostro et al., 2015). Estimates of health burdens due to ambient 
PM2.5 would be more precise if the effect modifications of individual 
chemical components were incorporated into risk assessments (Li et al., 
2021). In addition, PM2.5 contains constituents a range of particularly 
hazardous air pollution (e.g. PAHs, some heavy metals) for which con
centration thresholds for some hazardous air pollutants have been pro
vided e.g. by the US EPA, and some studies used the Incremental 
Lifetime Cancer Risk model to express the probability of developing 
cancer over a lifetime due to exposure particle borne carcinogens 
(Watanabe et al., 2010; U.S.EPA 2011a, 2011b). However, the concen
trations of these compounds are not affected by ammonia emission 
control and these additional health assessments are therefore not 
included here.

Apart from different chemical compositions, the health impact of 
PM2.5 is likely influenced by aerosol size distribution (Kumar et al., 
2014; Ostro et al., 2015). Fine and ultrafine particles, which are inhal
able and can penetrate the respiratory system more deeply and possibly 
cross cell membranes, lead to greater health effects (Mitsakou et al., 
2007; Zwozdziak et al., 2017). These findings suggest that to improve 
the assessment of long-term health impacts and optimize emission 
reduction policies, researchers should develop and update exposur
e–response functions or coefficients, considering chemical composi
tions, size distribution and sources of ambient PM2.5. This would require 
a step change in measurement stations targeting these additional met
rics. For the time being the international consensus is that information 
on differential toxicity is too limited to consider chemical composition in 
health impact assessments (COMEAP, 2022; U.S. EPA, 2019; WHO 
2021).

Additionally, whilst our study focused on estimating health impacts 
due to long-term PM2.5 exposure, the short-term acute exposure to high 
PM2.5 on daily timescales can also be important (Pop III, 2000). Here we 
used a Poisson regression function to estimate the acute total non- 
accidental number of mortalities due to high PM2.5 concentrations 
during pollution episodes over annual timescales across South Asia, this 
approach has been applied widely in the epidemiology of air pollution 
(Wang and Mauzerall, 2006; Gao et al., 2015). Due to a lack of studies 
providing the hazard ratios (the magnitude of the association between 
PM2.5 exposure and the probability of death) for South Asian countries, 
we applied hazard ratios from a meta-analysis of the coefficients asso
ciating short-term PM2.5 exposure and health responses in China (Lu 
et al., 2015). We find a total of 121,000 (95 % CI: 67,000–177,000) 
acute mortalities over South Asia, estimated acute deaths due to daily 
PM2.5 exposure from NH3 emissions across South Asia are 15,000 
(9,000–22,000) based on the attribution method, accounting for 13 % of 
total acute deaths from all emission sectors. This equates to 5.4 % of the 
health impacts from long-term exposure for all sources, and 6 % for the 
ammonia impact, indicating that long-term exposure is the dominant 
mechanism, but that SIA production from ammonia makes a somewhat 
larger contribution to peak daily concentrations (used for the assessment 
of short-term exposure) than for annual average concentrations. More 
details about the related method and results are provided in the Sup
plementary (Section S1 and Table S5).

Mitigating NH3 emission will lead to significant reductions in PM2.5 
as well as improve health benefits, however, as a major alkaline gas in 
the atmosphere, NH3 emissions reductions will affect acids in the aerosol 
and cloud liquid phase neutralization, thus increasing the acidity of 
aerosol particles (Behera et al., 2013). Aerosol pH is crucial in the 
reactive uptake of gases, which can influence ozone chemistry and 
various particle characteristics, including the scattering efficiency, 
deposition processes and hygroscopic growth (Karydis V.A et al., 2021). 
Pozzer et al. (2017) highlighted that PM2.5 pH was found to be partic
ularly sensitive to reductions in NH3 emissions over South Asia, with 
aerosol pH decreasing by 1.72 pH units upon the removal of all NH3 
emissions. High acidic aerosols enhance the solubility of trace metals 
associated with toxicity (Oakes et al., 2012; Fang et al., 2017) from 
anthropogenic and mineral sources, which have detrimental health 
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impacts on human respiratory by generating reactive oxygen species 
(Raizenne et al., 1996; Weber et al., 2016). Therefore, the potential 
increase in aerosol acidity could counteract the air quality benefits 
achieved by controlling NH3 emissions, and the current concen
tration–response functions are not reflected the variability in aerosol 
acidity.

Fig. S10a shows that at the annual average over the entire South 
Asian region hydrogen ion (H+) concentration increases as NH3 emis
sions decrease in our calculations. However, the prevalence of H + is 
spatially variable. At baseline emissions most of South Asia is charac
terized by large concentrations of free NH3 and the aerosol is therefore 
fully neutralized, even at the annual average (Fig. S10b), and in these 
areas substantial emission reduction is required to significantly affect 
aerosol acidity. Acidic aerosol already exists in the less intensely agri
cultural areas in Afghanistan and Pakistan, near industrial SO2 sources 
around Kolkata, India, and above the sea, and it is these regions that 
drive the South Asian H+ response at the lower NH3 emission reductions 
(Fig. S10c).

It should be noticed that this analysis does not fully consider the 
chemical impact of alkaline soil dust. Soil dust from certain regions of 
South Asia, e.g. Afghanistan, southern Pakistan, and the Indian sub
continent during dry season, can contribute significantly to PM2.5 
(Kulshrestha et al., 2001; Karydis et al., 2016). Further study is needed 
to fully understand the net impact on PM2.5 acidity in South Asia.

The formation of ammonium aerosols depends on thermodynamic 
equilibrium influenced by temperature, relative humidity and chemical 
compositions (Pio and Harrison, 1987). High relative humidity and low 
temperatures favor their formation, while warmer conditions cause 
them to volatilize (Ianniello et al., 2011). The thermodynamic scheme 
EQSAM4clim was used in the EMEP model to represent these processes 
(Simpson et al., 2012). High temperature can also potentially enhance 
NH3 emissions (Mark et al., 2013), however, it is challenging to estimate 
ammonia emissions in relation to meteorology, as it requires integrating 
all activity data into the atmospheric chemical transport models, which 
has only been accomplished in limited countries and studies.

The WRF-EMEP model provides an estimate of PM2.5 pollution in 
South Asia and it is used to investigate sector-specific contributions. 
Compared to regions like North America, Europe and East Asia, South 
Asia has fewer measurement sites, observed species and data are often 
collected at a lower spatial resolution. Enhancing the accessibility of 
valid measurements would be beneficial to reduce the uncertainties that 
associated with atmospheric chemistry modelling. This said, the per
formance of the WRF-EMEP model has been thoroughly assessed across 
the world in many previous studies (Dong et al., 2018; Jonson et al., 
2022; Whaley et al., 2023), which makes our findings reliable and 
robust.

5. Conclusions

The emission levels of NH3 in South Asia are substantial and have a 
significant impact on regional air pollution. As a precursor of secondary 
aerosols, accurately capturing the nonlinear process of these aerosols’ 
formation is essential to understand the role of NH3 in PM2.5 pollution. 
Sensitivity tests demonstrate that all PM2.5 concentrations decrease 
rapidly when NH3 emissions reductions exceed 70 %. Particulate nitrate 
(NO3

− ) shows a more substantial decline than ammonium, and the 
decline accelerates from NH3-rich to a NH3-poor environments, indi
cating a significant contribution of NH3 to nitrate formation under low- 
NH3 conditions. It is also important to estimate human health impacts 
and economic losses attributable to ambient PM2.5 associated with NH3 
emissions reductions. We use attribution method and subtraction 
method to estimate premature mortality associated with NH3 emissions, 
the former estimates NH3 emissions accounts for 11 % of the total pre
mature mortality from all sectors, which are by a factor of up 2 larger 
than those derived from the subtraction approach over the South Asian 
countries. This discrepancy is primarily attributed to the strong 

nonlinearities in the GEMM exposure–response function.
This study indicates that the impacts of NH3 on PM2.5 pollution are 

complex, largely attributed to the nonlinear features of secondary 
inorganic aerosols formation. The effectiveness of PM2.5 reduction 
shows only moderate sensitivity to the intensity of NH3 emissions re
ductions alone. Thus, it is important to implement joint controls on SO2, 
NOx and NH3 emissions controls to achieve significant mitigation of 
ambient PM2.5 and improve air quality in South Asia.
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