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1. Introduction 

The hydrological cycle is a dynamic phenomenon occurring through a range of Earth 
processes associated with atmosphere, land, oceans, and life on Earth. A key element 
of this cycle is water storage in the form of lakes and reservoirs. Both lakes and 
reservoirs form essential components of the hydrological and biogeochemical water 
cycles as they are able to store, retain, clean, and provide water consistently (Crétaux 
et al., 2016). This is especially pertinent in light of increasing demands on the water 
sector due to a growing population and a changing future climate (Donchyts et al., 
2022). 
 
Despite this, the impact of water body storages on the system as a whole is not fully 
understood, largely due to a lack of information on the amount of water being stored 
and how this changes over time (Busker et al., 2019). This is especially the case for 
water stored in reservoirs. In many countries the privatization of water companies 
means that operating rule curves and associated data are rarely available to the public, 
and there remains a lack of both spatially and temporally consistent data for these 
water bodies (Salwey et al., 2023; Steyaert and Condon, 2023). 
 
Reservoir numbers have increased significantly over the last half century (Biswas et 

al., 2021); there currently exists more than 16 million reservoirs worldwide with a 
combined storage capacity of over 8 million cubic metres (Lehner et al. 2011), and 
over half of the world's large river systems are currently impacted by dams (Nilsson et 

al., 2005). Reservoirs are largely built for the supply and management of water 
resources; they play an integral role in hydroelectricity, irrigation, and domestic water 
supply needs, and are key for the management of water resources (Gao, Birkett and 
Lettenmaier, 2012). Available water resources for human use and  water  stress, both 
in the present and future periods,  can only be  meaningfully evaluated when human 
alterations to the hydrological  cycle are taken into account (Biemans et al., 2011). It 
is therefore vital to monitor reservoirs to support the evaluation of water body storage 
and the management of water resources (Gusyev, 2015).  Tools and associated 
metrics for this type of evaluation allow practitioners to better understand both 
anthropogenic impacts and climate change influences on behaviours of water supply 
and demand (Haddeland et al., 2014). 
 

1.1 Aims of the report 

The establishment of a standardised approach to represent reservoir status and 

outlooks would be a useful tool in supporting water practitioners, as well as providing 
a clear and meaningful pathway for the dissemination of water resources information 
to the general public. As such, initiatives such as the UK Hydrological Summary, the 
UK Hydrological Outlook, and the WMO HydroSOS, would benefit from the 
development and application of such tools to facilitate their current outputs around 
water resources status, both present and future.  
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To address these needs, this report will: 
 
- build upon previous work by Rickards et al. (2022) to explore the potential of 

reservoir status metrics for the reporting of water storage status and outlooks; 

- explore the use of forecasting methods to predict future changes in water body 

storage. 

This report contains a review of the current state of the science with respect to 
reservoir metrics and forecasting methods in Section 2. Different storage metrics are 
then explored in Section 3, with discussion of their relative strengths and potential 
visual presentations, to improve communication of reservoir storage status. In Section 
4 we investigate data-driven models for prediction and forecasting of reservoir storage 
at a range of lead times for selected reservoirs over the UK. 
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2. State of the science 

2.1 Reservoir metrics 

There is wide recognition that a standardised index can help support the evaluation of 
water body storage and the monitoring and management of water resources (Gusyev, 
2015). Such metrics are already in widespread use for hydrological variables, including 
for precipitation via the Standardised Precipitation Index (SPI), for groundwater 
fluctuations via the Groundwater Resilience Index (GRI) (Chinnasamy, Maheshwari 
and Prathapar, 2018), and for streamflow via the Standardised Streamflow Index (SSI) 
(Barker et al., 2015). Metrics are often more appropriate figures to report than absolute 
values in watershed management, largely due to the fact that certain data is often of 
a sensitive nature and can be highly emotive (Boongaling, Faustino-Eslava and 
Lansigan, 2018; Avisse et al., 2017; Vieira Valadão et al., 2021). This is especially 
pertinent for data associated with reservoir resources due to how water distribution is 
prioritised and subsequently allocated. 
 
An example of a metric already in use for reservoir storage is the Reservoir Storage 
Index (RSI) as used by Tiwari et al. (2019). The RSI, based on the SPI metric 
developed by McKee et al. (1993), was calculated to study the temporal variability in 
reservoir storage in India. The metric requires an input of monthly reservoir storage, 
and was used to forecast reservoir storage anomalies in a study to assess the severity 
and duration of water resource deficits in the dry season. Similarly, Gusyev et al. 
(2016) devised an approach based on the SPI methodology to analyse the status of 
reservoir storage in drought conditions: the Standardised Reservoir Supply Index 
(SRSI). The metric was implemented as part of a drought assessment framework of 
standardised indices in the Pampanga (Philippines), Solo (Indonesia), and Chao 
Phraya (Thailand) river basins, specifically for the assessment of socio-economic 
drought. Differing slightly to the approach of Tiwari et al. (2019), the metric requires 
inputs of reservoir inflows alongside available water storage, and compares SRSI with 
a Standardised Discharge Index (SDI). Both approaches standardise anomalies 
against a reference period, over either a monthly or seasonal accumulation period. 
 
Another approach to quantifying anomalous values in water body storage is the 
percentage difference in storage away from a monthly long-term mean (referred to 
here as Difference from the Monthly Mean (DMM)), as utilised in the UKCEH 
Hydrological Summary (NRFA, 2022; UK Met Office, 2022). This method again allows 
for a trend in water storage volumes to be identified and given as a metric, in this case 

the percentage difference from a monthly average. This approach can be used with 
actual values or an alternative representative of water storage e.g. percentage of total 
capacity, as is the case in the Hydrological Summary. From these the anomaly values 
per month or season for a reservoir can be reported. The user can therefore calculate 
the metric in different units, arguably making it more versatile and potential more 
meaningful for practitioners, than the RSI approach. 
 
Building on the above approaches, UKCEH have produced a metric based on the 
methodology set out for streamflow status for the World Meteorological Organisation’s 
(WMO) HydroSOS initiative (World Meteorological Organization, 2020). Here, 
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percentiles are calculated using the Weibull distribution to rank the water storage of 
the current month against an historical baseline period. From this, a percentile range 
can be categorised based on its rate of occurrence, as derived from the historical 
period. By doing this, the current month’s storage is considered alongside all other 
historical values for that particular month as opposed to being referenced against a 
long-term average, as in the RSI and DMM methodologies. The Environment Agency 
(EA) use a similar methodology in their assessment of reservoir status in England as 
part of their national monthly reports, where percentile bands are categorised based 
on the occurrence of a particular storage range seen over the duration of the historic 
(or baseline) period (Environment Agency, 2024). 
 
A suitable reference period must be established for all the above methodologies, often 
requiring data which covers a relatively long time period. For the SPI metric, The World 
Meteorological Organisation (WMO) recommends at least 20-30 years of monthly 

values, with 50-60 being preferred (World Meteorological Organisation, 2012). There 
is currently no recognised standard length of reference period for assessing trends in 
water storage status. The current UKCEH Hydrological Summary uses 25 years, 
based purely on data availability across all of its monitored sites, the same justification 
as Gusyev (2015), who use between 20-25 years of data. Whilst a longer time series 
better captures long-term trends and gives greater confidence in any metric produced, 
limitations arise as a result of both the length and quality of data available. Users 
therefore must make a subjective decision as to a suitable length and completeness 
of reservoir storage data in order to produce a meaningful and relevant storage metric. 
 

2.2 Forecasting 

Given the importance of reservoirs to water resources, it is important to have a reliable 
forecast for reservoir status to ensure efficient operation of individual reservoirs and 
the wider water resource system (Peñuela, Hutton and Pianosi, 2020; Ahmad and 
Hossain, 2019), particularly during critical periods such as extreme drought (Turner et 

al., 2017) and flooding events (Wang et al., 2012; Zarei et al., 2021). This is a current 
and vital issue for many regions worldwide, and will become increasingly important 
under changing climate and growing demand for water and hydropower (Gleick, 2003; 
Gleick et al., 2013). As such, there has been a lot of research on forecasting reservoir 
status (i.e. reservoirs storage, inflow, outflow, level, or storage anomaly) at different 
lead-times and with different methods. 
 
Change in reservoir storage is the difference between the sum of incoming flows 
(inflow, rainfall) and the sum of outgoing flows (reservoir release or diversions, 

evaporation, recharge to groundwater), and is dominated by inflow and reservoir 
release/diversions (hereafter referred to as outflow). While inflow can be predicted 
using typical hydro-meteorological variables and methods, outflow can be difficult to 
predict if there are irregular diversions, for example, the irregular industrial usage of 
water from reservoirs in the Brazos rivers basin in Texas (Fernando, Zhu and 
Negusse, 2017). 
 
Global hydrological and land-surface models that include reservoir representation can 
be used in forecast mode to predict reservoir storage, e.g. H08 (Hanasaki et al., 2008), 
WaterGap (Alcamo et al., 2003; Döll, Kaspar and Lehner, 2003), PCR-GLOBWB 
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(Wada, van Beek and Bierkens, 2012), VIC (Droppers et al., 2020), LPJmL (Biemans 
et al., 2011), CWATM (Burek et al., 2019), and JULES (Clark et al., 2011; Best et al., 
2011). Benefits of this method include global coverage, the ability to forecast at 
virtually any lead-time, and no requirements for historical data on reservoir storage. 
However, these models rely on generic release schemes to simulate reservoir 
operations, which inevitably results in inaccuracies when locally important operational 
drivers are neglected. More flexible reservoir simulations are being developed to 
improve global reservoir simulations, including empirically derived storage-release 
functions incorporated into large-scale hydrological models (Yassin et al., 2019; 
Turner, Doering and Voisin, 2020), and fuzzy reservoir operational rules determined 
by artificial neural networks (Coerver, Rutten and van de Giesen, 2018).  
 
This approach is, however, limited by the flow biases present in the models (Turner, 
Doering and Voisin, 2020). To avoid accuracy issues arising from generic schemes 

and flow biases, catchment scale models can be used to simulate reservoir storage 
(or level) as these can incorporate local reservoir operation rules and be calibrated for 
a given catchment (Gronewold et al., 2011; Hughes, Birkinshaw and Parkin, 2021; Kim 
et al., 2020; Zhao et al., 2016). The gains in accuracy by using a small-scale model 
are balanced by the reduction in spatial coverage and the increased data requirements 
(e.g. reservoir operational rules, streamflow for calibration, etc.). Hydrological models 
are sometimes used to forecast reservoir inflow rather than reservoir storage (Anghileri 
et al., 2016; Xu et al., 2021) which is then used to optimise reservoir operations (Ficchì 
et al., 2016). 
 
As an alternative to hydrological models, data-driven models have become popular for 
forecasting. These include empirically defined storage-release functions (Yassin et al., 
2019; Turner, Doering and Voisin, 2020), autoregressive integrated moving average 
(ARIMA) models (Valipour, Banihabib and Behbahani, 2013; Ibañez et al., 2021), 
various Artificial Neural Network (ANN) models (Valipour, Banihabib and Behbahani, 
2013; Zhang et al., 2018; Ehsani et al., 2016; Ibañez et al., 2021; Zhu et al., 2020; 
Coerver, Rutten and van de Giesen, 2018) and Recurrent Neural Networks (RNN), 
including the Long Short-Term Memory (LSTM) model (García-Feal et al., 2022; 
Özdoğan-Sarıkoç et al., 2023), random forest (RF) and related algorithms (Wang and 
Wang, 2020; Sapitang et al., 2020; Hong et al., 2020), as well as other machine 
learning (ML) models (Raghavendra. N and Deka, 2014; Zarei et al., 2021; Yang et 
al., 2017). While some studies forecast reservoir storage directly (Kim et al., 2022; 
Özdoğan-Sarıkoç et al., 2023), others forecast reservoir levels (Wang and Wang, 
2020; Ibañez et al., 2021; Sapitang et al., 2020; Zhu et al., 2020; Castillo-Botón et al., 
2020), which can be used to estimate reservoir storage or as a proxy for storage. Data-

driven models have also been used to forecast reservoir inflow (Valipour, Banihabib 
and Behbahani, 2013; Yang et al., 2017; Hong et al., 2020; Choong and El-Shafie, 
2015; Zarei et al., 2021), reservoir outflow (Yang et al., 2016; García-Feal et al., 2022), 
and reservoir storage anomalies (Tiwari and Mishra, 2019). 
 
The main advantage of these models is their ability to capture reservoir operations 
without prior knowledge of operational rules. However, they do require sufficiently long 
observational records of the target variable (e.g. reservoir storage, level, inflow, or 
anomaly), and the performance of these models can be reduced by anthropogenic 
effects (Özdoğan-Sarıkoç et al., 2023). Other explanatory variables employed in these 
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models include current and lagged hydro-meteorological variables such as rainfall, air 
temperature, relative humidity, short and long-wave radiation, upstream and 
downstream flow, snow depth, snowmelt, and climate phenomenon indices such as 
the Oceanic Niño Index. A few studies have included demand-related data, for 
example, irrigation releases (Ibañez et al., 2021), legally mandated water allocations 
(Yang et al., 2016), and water used to generate electricity (Castillo-Botón et al., 2020). 
When using data-driven models it is important to remember that they may not perform 
well in conditions beyond the range seen in the training data, and that they are 
vulnerable to future changes (e.g. variation in demand, increasing climatic extremes, 
new upstream reservoirs, etc.). This can be mitigated to some extent by training a 
“universal” model which uses timeseries data from multiple reservoirs along with static 
characteristics, thus exposing the model to a greater range of conditions in the training 
data. This idea has been demonstrated by Kratzert et al. (2019) for rainfall runoff 
modelling. Another potential limitation of ML methods is the lack of interpretability 

inherent to “black-box” models (some ML models, such as neural networks, fall into 
this category). 
 
A combination of physical-based and data-driven models have been explored for use 
in hydrological forecasting, particularly in streamflow (Ng et al., 2023; Hunt et al., 2022; 
Degenne et al., 2024; Kraft et al., 2022). These hybrid models show promise for 
modelling complex systems with increased accuracy and interpretability and could be 
considered for modelling reservoirs, particularly if multiple variables are being 
predicted (e.g. reservoir inflow, storage, and outflow). 
An important consideration when forecasting reservoir status is the forecast lead-time. 
The majority of the forecasts performed with ML models have one-step ahead 
forecasts, with a lead-time of a day or a week depending on the data, but for 
operational purposes long-term or multi-step forecasting is often more useful. Long-
term forecasts of reservoir level were considered in Castillo-Botón et al. (2020) using 
a persistence-based approach, and multiple ML models were used in Ibañez et al. 
(2021) to forecast reservoir level at lead-times of 1, 30, 90, and 180 days. 
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3. Storage status and metrics 

A methodology that allows for the reporting of reservoir storage status without the need 
to divulge storage values negates many of the sensitivities surrounding water supplies 
and current water stocks. Here we look at two anomaly-based methodologies, as well 
as a percentile-based categorisation method. The Wimbleball reservoir is used as a 
case study for all metric calculations. This reservoir, located in Devon, UK, and 
primarily used for water supply, has a period of record spanning more than 30 years 
and very few missing data observations (Figure 1).  

3.1 Data and methods 

To derive water storage status, a time series of reservoir volumes (or levels and 
corresponding waterbody dimensions) is generally required: for our case study 
reservoirs we use observed data sourced from the representative water authority via 
the NRFA (2024). To extend this work to other reservoirs, we would ideally source 
observed data from, for example, a national hydrological monitoring program or 
relevant water authority. However, this may not always be possible and so alternative 
data sources may need to be considered. These alternative data may also be required 
for the process of infilling, where data gaps or uncertainties exist in observed time 
series. Potential alternative data sources are reviewed in Rickards et al. (2022), along 
with a more extensive catalogue of freely available reservoir data collated through the 
Copernicus In Situ (COINS) project (Rickards et al., 2023). 
 
Difference from the long-term monthly mean (DMM) 

The percentage difference in storage away from the long-term monthly mean (DMM) 

is the metric currently utilised by UKCEH to report the status of reservoir storage in 
the Hydrological Summary (NRFA, 2024). This method calculates the average 
percentage storage for each calendar month in a reference period, and then presents 
current storage as a percentage difference away from the corresponding average 
monthly means. 
 
The metric is calculated for the Wimbleball reservoir, UK, in Figure 2. The example 
displays the metric for October through to December 2020, using a baseline period of 
1989-2019.  
 

Figure 1: Percentage of reservoir capacity as reported for Wimbleball 
reservoir, UK; 1989-2020. 
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Table 1 Anomaly, current and long-term monthly average values (percent 
storage) for the Wimbleball reservoir, October-December 2020. 
 

 
 

 
 
 
As displayed in Table 1 and Figure 2, storage at Wimbleball in October 2020 was  
slightly below the long-term average for the month. However, both November and 
December show slight increases on the long-term means for the respective months, 
at 3.2% and 17.5%, respectively. Although Table 1 gives both the current and long-
term average storage in percent alongside the anomaly metric, it may be preferable 
for users to report the anomaly metric only for reservoirs where there is more sensitivity 
around data sharing. 
 
The calculation of the DMM metric is simple and the outputs are relatively 
straighforward to interpret. The UKCEH Hydrological summary currently reports this 
status metric in both tabular and graphical formats, as seen in Figure 2 and Table 1. 
 
Reservoir Storage Index (RSI) 

The Reservoir Storage Index (RSI) (McKee, Doesken and Kleist, 1993; Tiwari and 
Mishra, 2019) uses long-term monthly storage data to calculate a distribution function 
of reservoir storage, which is then transformed to a normal distribution so that an RSI 
of zero describes the normal storage for the given location, month and accumulation 
period (Svoboda, 2012). Deviations from this (both positive and negative) are then 
expressed in terms of standard deviations. More extreme values indicate that these 
deviations are more severe, but also less likely to occur. 
 

Location Reservoir Oct 2020 Nov 2020 Dec 2020 

Exmoor, UK Wimbleball Anom.= -0.6 
Cur.= 64.9 
Av. = 65.5 

Anom.= 3.2 
Cur.= 76.3 
Av. = 73 

Anom.= 17.5 
Cur.= 100 
Av. = 82.4 

Figure 2: Anomaly values calculated using the DMM at Wimbleball reservoir; 
dotted line shows the end of the baseline period (1989-2019); green box shows 
the period which metrics are being calculated for in Table 1. 

B
a
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Standardised indices can be calculated for month and season e.g. for 1 and 3 month 
accumulation periods. A one-month accumulation period was used here, so that the 
results could be compared to the current period as reported by the UKCEH 
Hydrological Summary. 
 
There is a further metric, the Standardised Reservoir Storage Index (SRSI) (Gusyev, 
2015), which is similar to the RSI but requires the additional input of reservoir inflow. 
This metric has therefore not been utilised here, due to the extra data requirement 
which is not available for many reservoirs. 
 
The RSI is based on the SPI metric as defined by McKee et al. (1993). In the SPI, 
McKee et al. (1993) define metric categories to describe drought severity. These 
categories can be amended to describe reservoir storage, for example: mild reduction 
in stock (-1 to 0), moderate reduction in stock (-1.5 to -1), severe reduction in stock (-

2 to -1.5) and extreme reduction in stock (less than -2). As the original metric is 
concerned with droughts, anything above 0 is considered to be wetter than normal; in 
the case of RSI, this indicates higher stock levels than normal. 

The RSI was calculated for the Wimbleball reservoir and presented in Figure 3. The 
general trends of the DMM are replicated by the RSI metric (Figure 2 and Figure 3), 
for example, at the end of 2016 the DMM shows >30% difference from the long-term 
monthly mean and the RSI is <-2, indicating an extreme, but rare, level of reduction in 
reservoir volume. The unit used by this method (standard deviation away from the 
mean) makes it less intuitive from a water management perspective, although this 
could be desirable where data is highly sensitive. 

 
Rank percentiles approach 

Another approach to categorising reservoir storage follows that used by the WMO for 
the reporting of streamflow status in HydroSOS,and is based upon ranking observed 
historical storage into percentiles. This has recently been applied by UKCEH for the 
WMO HydroSOS metric for streamflow status and is currently being explored as a 
possible methodology for use in the UK Hydrological Summary for reservoir storage. 
In this method, reservoir storage values from a defined baseline period are sorted and  
ranked per month. Where the lowest values are equal (e.g. dead storage) then the  

 
Figure 3: RSI values for the Wimbleball reservoir. 
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maximum rank is used, and where the highest values are equal (e.g. maximum 
reservoir storage) then the lowest rank is used. Where other values match i.e. 
anywhere between minimum and maximum values, the average rank is used. This is 
to ensure that multiple recordings of minimum and/or maximum capacity are assigned 
the same rank value. From here, the Weibull distribution is applied to the ranked 
values, which is used to assign a percentile to each record of storage. User defined 
percentile ranges can then be used to indicate where the current storage sits in terms 
of historic values, as seen in Table 2. The categories applied here are based upon the 
methodology in Barker et al. (2022). 
 

                   
Figure 4 displays the time series of rank percentile values for the Wimbleball. This 
clearly demonstrates where values are deemed to be outside of a normal range for a 
particular month. In Figure 5 a selection of reservoir storages in the UK are displayed 
for a given month. Where the current storage sits compared to the baseline period is 
indicated via the colour of the circles, with the percentage storage of each reservoir 
given within its corresponding circle.  

Figure 4 Timeseries of rank percentiles for Wimbleball, 1989-2021 

Figure 5: Timeseries of rank percentiles for Wimbleball, 1989-2021. 
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Such a methodology avoids the requirement of a long-term monthly mean, and instead 
ranks the value for a current month against all previous reported storage values. This 
approach is more robust in handling extreme historical values, in that these will be 
ranked as ‘outliers’ as opposed to skewing the long-term mean in either direction, 
especially where data records are short. 
 

3.2 Summary: status metrics 

The DMM, RSI and rank percentile metrics are all useful indicators of reservoir status, 
given the provision of appropriate data. Whilst some thought needs to be given to the 
amount of good quality data available, their use in facilitating monthly storage updates 
without the need to provide actual volumes could help facilitate the dissemination and 
communication of data around reservoir storage and status. 
 

All metrics have the potential to be displayed in graphical, tabular or spatial (map) 
formats, and the choice of metric will therefore be determined by the needs of the 
stakeholder and availability of data. Whilst all metrics will tell a similar story, the unit 
given should be focussed around meeting the needs the target audience. For example, 
the RSI uses standard deviations away from a long-term average, which is ideal for 
showing general trends and indicating the rarity of the more extreme storage surpluses 
and deficits. However, it may be less useful for water users and practitioners wanting 
to know what this means in more relatable terms. In this situation, the DMM and rank 
percentile approach are more appropriate. 

Storage category Percentile range 

(%) 

  Notably high 87 – 100 

Above normal 72 - 87 

Normal range 28 - 72 

Below normal 13 - 28 

  Notably low 0 - 13 

Figure 6: Spatial output for the rank percentile method for selected UK 
reservoirs. 

Table 2: Categories assigned to 
percentiles. 
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Regardless of the metric being used, consideration should be given to how these data 
are presented. For example, spatial outputs such as Figure 5 are extremely useful for 
capturing the current status of a number of reservoirs, and an approach which places 
a current status into a category of historical occurrence is a useful visual to help place 
current conditions into context. This, alongside a timeseries approach for individual 
reservoirs, is both informative and practical for a variety of users, without the need to 
divulge absolute values which may be regarded as sensitive. 
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4. Exploring Forecasting 

In previous work several data-driven models were explored to scope their utility for 
forecasting reservoir status (Rickards and Baron, 2022). The aim of that study was to 
explore the skill of simple, data-driven methods for forecasting reservoir status at one 
to six month lead times. The SARIMAX (Seasonal Auto-Regressive Integrated Moving 
Average with eXogenous factors) and RF (Random Forest) models were selected 
since they are partially interpretable, relatively simple, and established in hydrological 
forecasting. Results from Rickards et al. (2022) showed that, while the SARIMAX 
model was relatively accurate, particularly at shorter lead times, the RF model likely 
requires more fine-tuning to produce a reliable forecast. 
 
This work builds on the previous study, with a more in-depth exploration of RF models 
for forecasting storage in several case-study reservoirs in the UK. The RF type models 
were chosen for this work for several reasons: they are relatively simple models which 
can be built and applied with an intermediate knowledge of machine learning methods; 
they are partially interpretable, providing feature importance scores which can be used 
as a sense-check of the model and to provide insight into the physical processes 
driving reservoir storage change; they are well established in the field of hydrological 
prediction (Wang and Wang, 2020; Sapitang et al., 2020; Hong et al., 2020) and have 
been shown to have some skill in forecasting reservoir storage with potential for 
greater accuracy (Rickards and Baron, 2022). 
 

4.1 Random Forests 

A RF is made up of a collection of decision trees. A decision tree can predict the value 
of a target variable by learning simple decision rules inferred from the data features 
(explanatory variables) (Li et al., 1984), see Figure 5 for an example decision tree. A 
RF model is an ensemble of decision trees (Figure 6), each of which learns from a 
random subset of features, with the final prediction being the average of each trees’ 
prediction (Criminisi, 2011). A RF model produces a more accurate forecast compared 
to an individual decision tree but is more complex and less interpretable than a single 
tree model. 

 
Figure 6: Example decision tree, with features X[i] for i=0 to 11, and continuous 
target value. 
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Figure 7: Visualisation of a Random Forest model. 
 
RF type models are not specifically time series models, so lagged variables are 
generally used as input features. Multi-step forecasts can be made using either a direct 
method (i.e. a different model is developed for each lead-time), or a recursive 
approach (i.e. using a single model, with prior forecasts used as input for the next lead-
time). 
 
Method 

The following steps were taken to produce a RF type model for forecasting, using the 
Python package Scikit-learn v1.3.0 (Pedregosa et al., 2011): 
 

• Reservoir selection: six reservoirs were chosen from the 39 time-series datasets 

of reservoir storage that were available. These reservoirs cover a range of 

geographies and characteristics, as detailed in Table 3.  

• Data selection: monthly storage was available for each reservoir from 1988 to 

present day1. This was supplemented with monthly precipitation and temperature 

from the HadUK gridded climate data (Met Office et al., 2018), chosen to match 

the climate data used in the UK hydrological forecasting (UK Centre for Ecology & 

Hydrology, 2023). These data series were then split into a training and testing set 

for the model to learn and predict on respectively, with the initial 75% of data points 

in the training set and the final 25% in the testing set. 

• Model selection: a range of RF and related model types were tested on subsets of 

the training data, with the best performing model for each reservoir chosen. The 

full set of trialled models are detailed in Table A1 in the Appendix.  

• Feature engineering and selection: various lagged and averaged variables were 

produced from the monthly storage, precipitation and temperature data series, the 

most influential of these (as determined by the feature importance property of the 

model) were then taken forward for each reservoir model. For more detail on this 

step see Table A2 and Table A3 in the Appendix. 

• Hyperparameter tuning: the hyperparameter space for the selected model was 

explored using a random search method, with training and testing scores 

 
1 Reservoir storage were sourced from the representative water authority via the NRFA (2024). 
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inspected to check for overfitting. Overfitting is where the model fits the training 

data too well, so performs well on the training data but not the test data, and can 

be a risk when the training data is small (as it is in this study). 

• Prediction and model evaluation: for each reservoir, the selected model with the 

chosen hyperparameters predicted reservoir storage for the testing period at one, 

three, and six month lead times, using a recursive approach for multi-step 

prediction. These predictions were evaluated against the observed storage, and 

compared to a baseline ARIMA model with the structure ARIMA(1,0,1)(2,1,0)12. 

• Forecast: using the historical analogue method employed in the UK hydrological 

forecasting, the models produced an ensemble of forecasts for reservoir storage 

over one and three month periods.  
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Table 3: Summary of reservoirs considered. 
 

Reservoir 

Name 

Latitude Longitude Catchment 

area (km2) 

Capacity 

(hm3) 

Mean 

depth 

(m) 

Reservoir 

type 

 Year 

opened 

Description 

Ardingly 51.04  -0.09 22.77 5 6.1  Impounding 

 

1977 In West Sussex, operated by South East Water; provides water 

and regulates water flows in the River Ouse. 

Wimbleball 51.07 -3.47 28.79  21 13.1  Impounding 

 

1978   On Exmoor; shared between South West Water (river regulation 

for abstraction) and Wessex Water (direct supply). Impounds the 

Haddoe; tributary of the Exe.  

 Clywedog 52.47 -3.60 48.92  45 20.1  Impounding 

 

1956 Tallest concrete dam in UK. Outflows; for regulation of the 

Severn; via Clywedog. 

Grafham  52.29 -0.28 15.92 55 9.7  Non-

impounding 

 

1964   Operated by Anglian Water; abstracts from River Great Ouse. 

Rutland 52.66 -0.61 72.76 117 10.9 Non-

impounding 

 

1975 Largest surface area of any UK reservoir. Abstraction from 

Welland at Tinwell/Stamford and from Nene at Wansford. 

Kielder 

Water 

55.18  -2.46 242.42 199 18.3 Impounding 

 

 

1982 Largest capacity reservoir in UK. England's largest HEP plant; 

generating power from the compensation flow to the North Tyne. 

Underpins Kielder Transfer Scheme which can transfer water to 

Wear & Tees catchments in times of drought. 
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The predictions for each model were compared to the observed data, and model 
performance was assessed using the coefficient of determination (R2), defined as: 
 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂ )

2𝑛

𝑖̇=1

∑ (𝑦𝑖 − 𝑦̅ )2𝑛

𝑖̇=1

 

 
Where 𝑦𝑖 are observed values, 𝑦𝑖̂ are predicted values, 𝑦̅ is the mean of the observed 

values. For R2, the closer the value is to one, the better the model is performing.  
 
Results and discussion 

The prediction skill of the RF models at 1, 3 and 6 month lead time for the various 
reservoirs is presented in Table 3, along with the baseline ARIMA model. Predicted 
reservoir storage at a 1 month lead time is compared to observed storage for the test 
period in Figure 7. 
 
The RF models perform better for almost all reservoirs at all lead times compared to 
the baseline ARIMA model (see Table 4), although this gap is reduced somewhat if 
the ARIMA predictions are capped at 100% reservoir storage (as the ARIMA model 
has a tendency to predict above 100% during high storage periods). The ARIMA 
models perform best on reservoirs with a clear seasonal storage pattern, such as 
Ardingly and Wimbleball, but perform poorly on reservoirs where this pattern is less 
pronounced, such as Clywedog. The RF models performs well for most of the 
reservoirs, even when the seasonal pattern is not strong, but demonstrate lower 
predictive skill for Kielder Water compared to the other reservoirs, possibly due to the 
erratic storage pattern exhibited in that reservoir. Kielder Water is the largest of the 
selected reservoirs, and has a high level of artificial management (see Table 4). 
 
There are several periods of low reservoir storage that are evident across all the 
reservoirs (except Kielder Water): the autumns of 2018 and 2022, a result of 
particularly dry summers in 2018 and 2022 (see Figure 7). While the dry period of 
2018 is well captured by both RF and ARIMA models, the ARIMA models in particular 
overpredict storage for most reservoirs in the 2022 dry period, and the RF models 
overpredict for Ardingly, Wimbleball, and (to some extent) Grafham. During localized 
dry periods such as autumn 2020 in Ardingly, RF models tend to overpredict, 
whereas ARIMA performs better. This may be due to the localised nature of the 
models employed here, i.e. the RF models only receive information on climatic 
conditions over their catchment area, but in reality reservoir operations will depend 
on regional and national conditions. It may also be due to the limited number of low 
storage events available for the model to train on, for example, storage at Wimbleball 
drops to 17.8% in the October of 2022, while the minimum storage in the training 
data for Wimbleball is 26% (October 1995). Both of these limitations may be 
addressed by combining all the reservoir data, along with static catchment 
characteristics, into a universal model. This approach has shown promise for data-
driven rainfall-runoff modelling (Kratzert et al., 2019). 
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All models perform better at shorter lead times, with a greater decrease in skill 
between 1 and 3 months, compared to 3 and 6 months for most reservoirs. The RF 
models perform well for most of the example reservoirs at 1 month lead time (except 
perhaps Kielder Water), and about half of the reservoirs at a longer lead time. 
 
 
Table 4: Performance of the RF and ARIMA models for reservoir storage 
prediction at 1, 3 and 6 month lead time. 
 

Reservoir 1 month 3 months 6 months 

RF R2 ARIMA R2 RF R2 ARIMA R2 RF R2 ARIMA R2 

Ardingly 0.875 0.801 0.782 0.400 0.734 0.307 

Wimbleball 0.908 0.796 0.852 0.655 0.808 0.615 

Clywedog 0.843       0.476 0.708 0.338 0.688 0.334 

Grafham 0.802 0.527 0.535 0.095 0.355 -0.191 

Rutland 0.778 0.718 0.420   0.438 0.180   0.477 

Kielder 

Water 

0.529 0.363 0.311 0.064 0.257 0.009 
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Figure 7: Reservoir storage: observed (solid blue); RF model (dashed green); 
ARIMA model (dotted pink), 1 month ahead predictions. 
 

4.2 Forecasting 

The RF model for Wimbleball was driven with climate forecasts using the historical 
analogue method employed in the UK hydrological forecasting to produce monthly 
and seasonal storage forecasts (UK Centre for Ecology & Hydrology, 2023). The 
seasonal climate forecasts consist of 10 resamples of 51 realizations, resulting in an 
ensemble of 510 climate forecasts that are each deemed equally likely. The seasonal 
climate forecasts for 2015 over the Wimbleball catchment are presented in Figure 8, 
with the distribution of the ensemble members represented by a violin plot and actual 
values shown as horizontal dashes. The reservoir storage forecast by the RF model 
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is shown in Figure 9, against the historic storage percentile bands as used in the UK 
Water Resources Portal (Barker et al., 2022). 
 

 
Figure 8: Seasonal climate forecasts over the Wimbleball catchment for 2015 
(MAM: March April May; JJA: June July August; SON: September October 
November), with average air temperature in red and total rainfall summed over 
the catchment in blue. Actual values for average air temperature and total 
rainfall over the catchment are shown by horizontal dashes. 
 
 

 
Figure 9: Seasonal forecasts of reservoir storage at Wimbleball for 2015 (MAM: 
March April May; JJA: June July August; SON: September October November), 
plotted above the historic storage percentile bands. Actual storage values are 
shown by horizontal dashes. 
 
From Figure 9, it can be seen that the RF model for Wimbleball provides a good 
seasonal storage forecast for 2015, with the observed values falling within the 25th 
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and 75th forecast percentiles. Comparing Figure 9 and Figure 8, it is interesting to 
note that a high variability in climate forecasts does not always translate to a high 
variability in storage forecasts. For instance, the MAM storage forecast has low 
variability while the rainfall and air temperature have high variability. This is likely due 
to the reservoir being close to maximum capacity in February which limits the range 
of future forecasts in the MAM season. 
 
The monthly climate forecast ensemble consists of 140 members, 10 resamples of 
14 realizations, with results for total rainfall and average air temperature over the 
Wimbleball catchment for 2015/2016 shown in Figure 10. For this period the 
precipitation forecasts are relatively accurate over the Wimbleball catchment: actual 

precipitation always falls within the ensemble of forecasts and within the 25th – 75th 
percentiles for 5 out of 9 months. Temperature forecasts are reasonable for most of 
the months, but fail to accurately forecast a particularly warm November and 
December in 2015. 
 
The monthly reservoir storage forecast by the RF model is shown in Figure 11, 
against the historic storage percentile bands as used in the UK Water Resources 
Portal (Barker et al., 2022). The monthly storage forecasts are not as accurate as the 
seasonal ones for the same period: although the actual storage values are generally 
within the ensemble storage forecasts, they fall outside of the 25th – 75th percentiles 
for 7 out of the 9 months. This analysis should be extended to other reservoirs and 
longer time periods for a more robust assessment of model forecast skill, but is 
currently somewhat limited by the availability of climate hindcast data, which only 
extends to May 2016. 
 

 
 
Figure 10: Monthly climate forecasts over the Wimbleball catchment for 
2015/2016, with average air temperature in red and total rainfall summed over 
the catchment in blue. Actual values for average air temperature and total 
rainfall over the catchment are shown by horizontal dashes. 
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Figure 11: Monthly forecasts of reservoir storage at Wimbleball for 2015/2016, 
plotted above the historic storage percentile bands. Actual storage values are 
shown by horizontal dashes. 
 
Summary: forecasting 

Initial results suggest that RF methods can be successfully employed to predict 
monthly reservoir storage in many UK reservoirs, with good model performance at 5 
out of the 6 case study reservoirs, and reasonable predictive skill extending even up 
to a 6 month lead time in 3 of the reservoirs. However, one limitation of data-driven 
methods is that they are less accurate when predicting out of the range seen in the 
training period, and this was evident in the poor model performance seen in the 
extreme low-storage periods. Future steps include the creation of a universal model, 
combining all reservoir storage time series along with static catchment 
characteristics, which should improve the model performance in these extreme low-
storage periods. 
 
These models have been combined with forecast climate data to produce monthly 
and seasonal storage forecasts in one example reservoir. These results look 
promising, and can be extended to the universal RF model. 
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5. Conclusions 

• Three different status metrics were calculated for the Wimbleball reservoir to 

assess their suitability for outputs such as the UK Hydrological Summary and 

Outlooks, and the WMO HydroSOS. These metrics were displayed via 

graphical, tabular and spatial formats. 

• The suitability of these metrics ultimately depends upon the needs of the end 

user e.g. whether they are interested in the current % of storage capacity, or 

identifying how current storage values compare to what is considered to be a 

‘normal’ range for that particular month, season etc. 

• Although the metrics have only been applied to current reservoir status here, 

they could also be used in the context of monthly to seasonal forecasting 

where deemed appropriate. 

• Random Forest (RF) type models were applied to individual reservoirs: trained 

on monthly historic storage data, catchment temperature and rainfall, and 

used to predict reservoir storage at 1, 3, and 6 month lead time. 

• These RF models showed model skill for 5 out of 6 of the selected reservoirs 

at 1 month lead time, and 3 out of 6 reservoirs at 6 month lead time. 

• One model (at Wimbleball reservoir) was driven with monthly and seasonal (3 

month) climate forecast ensembles, and showed promising results for 

reservoir storage forecasting. 

• Model skill might be improved by combining storage data for multiple 

reservoirs with static catchment characteristics to create a “global” storage 

model. 
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7. Appendix 

This appendix includes additional details on the Random Forest models built for 
reservoir storage prediction and forecasting in Section 4. 
 
Table A 1: Summary of the machine learning models that were explored for 
each reservoir. 
 

Machine 

learning Models 

used 

Details Advantages Disadvantages Hyper 

parameters 

KNeighbors 

Regressor 

Instance-based 

regression algorithm 

where predictions 

are made based on 

the k-nearest 

neighbors 

-Simple to 

understand and 

implement 

- Robust to noisy 

training data 

-Computationally 

expensive for 

large datasets  

 - sensitive to the 

choice of optimal 

number of 

neighbors  

‘n_neighbors’  

  

Decision Tree 

Regressor 

Builds a regression 

model in the form of 

a tree structure, 

where each internal 

node represents a 

decision based on a 

feature 

Intuitive, simple to 

use, ML algorithm 

that can detect highly 

non-linear 

relationships in 

datasets. Decision 

trees are fast to train, 

and easy to explain. 

Prone to 

overfitting, 

sensitive to small 

variations in data 

‘max_depth’ 

‘min_samples

_split’ 

‘ccp_alpha’ 

Extra Tree 

Regressor 

Similar to Decision 

Trees, but it 

randomly selects 

feature splits, 

leading to a broader 

exploration of the 

feature space 

Less prone to 

overfitting compared 

to Decision Trees 

May not work 

well with noisy 

data 

‘max_depth’ 

‘min_samples

_split’ 

‘min_samples

_leaf’ 

‘max_feature

s’ 

Support Vector 

Regression 

Support Vector 

Regression uses 

support vector 

machines to perform 

regression 

- Performs well in 

Higher dimension, 

- Best algorithm when 

classes are separable 

- Outliers have less 

impact 

- Slow for large 

datasets 

- Poor 

performance with 

overlapped 

classes 

‘C’ 

‘epsilon’ 

‘kernel’ 

‘gamma’ 
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- Sensitive to 

choice of kernel 

parameters. 

Ada Boost 

Regressor 

Boosting ensemble 

method that 

combines multiple 

weak learners to 

create a strong 

learner 

-Resistant to 

overfitting,- 

-Handles outliers well 

-Sensitive to 

noisy data,  

- can be slow to 

train 

‘n_estimators’ 

‘learning_rate

’ 

‘base_estimat

ors’ such as 

max_depth or 

min_samples

_split 

Bagging  

Regressor 

Ensemble averaging 

method that builds 

multiple base 

models on 

bootstrapped 

samples and 

averages their 

predictions 

-Works best with 

strong and complex 

models 

- Doesn't 

improve 

performance if 

the base model 

is biased 

‘max_sample

s’ 

‘max_feature

s’ 

‘bootstrap’/ 

‘bootstrap_fe

atures’ 

Random Forest 

Regressor 

Ensemble learning 

method that 

constructs a 

multitude of decision 

trees and averages 

their predictions 

-Robustness to 

overfitting 

 -Easy to use 

-The default 

parameters often give 

very good results 

-Parameter tuning is 

straightforward. 

- slower to train 

and score  

-difficult to 

predict complex, 

large or sparse 

datasets 

 

 

‘n_estimators’ 

‘min_samples

_split’ 

‘ ‘max_featur

es’ 

Extra Trees 

Regressor 

Ensemble learning 

method similar to 

RandomForest, but 

with random splits 

for each decision 

tree 

Reduces variance 

and overfitting, faster 

training 

May require 

more trees to 

achieve optimal 

performance 

‘n_estimators’  

‘max_depth’ 

‘min_samples

_split’ 

‘min_samples

_leaf’ 

‘max_feature

s’ 

‘bootstrap’ 

Gradient 

Boosting 

Regressor 

Boosting ensemble 

method that that 

tries to combine 

many weak 

learners into a 

stronger whole 

-currently best-in-

class in terms of 

performance for 

structured ML 

problems.  

-a lot of 

parameters to 

consider 

-little worse in 

overfitting. 

‘n_estimators’ 

‘learning_rate

’ 

‘max_depth’  

‘gamma’ 

‘subsample’ 
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- handle 

sparse/sparse data 

much better 

‘max_feature

s’ 

  

 

Table A 2:  Features used for predicting reservoir storage at time t. 
 

Features Description 

rainfall Monthly rainfall over the catchment for current month 

tas Monthly mean air temperature over the catchment for current month 

percent_full{i} for i=1 to 12 Reservoir storage as a percentage of total capacity at time t-i 

rainfall{i} for i=1 to 6 Monthly rainfall over the catchment at time t-i 

tas {i} for i=1 to 6 Monthly mean air temperature over the catchment at time t-i 

mean_month Long-term mean reservoir storage for each month 

rf{quart, half, yr} Mean of catchment rainfall over the last {3,6,12} months (including 

current month) 

tas{quart, half, yr} Mean of average air temperature over the last {3,6,12} months 

(including current month) 

datesin, datecos Cyclical calendar variables 

 
Table A 3: Reservoirs and model parameters used for Random Forest 
 

Reservoir Importance 

Threshold 

Parameters 

Ardingly 0.006 'percent_full1', 'percent_full2', 'mean_month', 'datesin', 'rainfall', 

'tas', 'rainfall1', 'tas1', 'tas2', 'tas3', 'tas6', 'rfquart', 'rfhalf', 'rfyr', 

'tasquart', 'tashalf' 

Wimbleball 0.004 'percent_full1', 'percent_full2', 'percent_full3', 'datesin', 

'datecos', 'rainfall', 'tas', 'rainfall1', 'tas1', 'tas2', 'tas5', 'tas6', 

'rfquart', 'rfhalf', 'rfyr', 'tasquart', 'tasyr' 

 Clywedog 0.015 'percent_full1', 'percent_full2', 'mean_month', 'datesin', 

'datecos', 'rainfall', 'tas', 'tas2', 'tas3', 'tas5', 'rfquart', 'rfhalf', 

'tasquart', 'tashalf' 
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Grafham 0.007 'percent_full1', 'percent_full2', 'percent_full3', 'percent_full10', 

'percent_full11', 'mean_month', 'datesin', 'tas', 'tas1', 'tas2', 

'tas6', 'rfquart', 'rfhalf', 'tasquart', 'tashalf', 'tasyr' 

Rutland 0.008 'percent_full1', 'percent_full2', 'mean_month', 'datesin', 'tas', 

'tas1', 'tas2', 'tas3', 'tas6', 'rfquart', 'rfhalf', 'rfyr', 'tasquart', 

'tashalf' 

Kielder Water 0.011 'percent_full1', 'percent_full2', 'percent_full3', 'percent_full12', 

'mean_month', 'datesin', 'rainfall', 'rainfall1', 'rainfall5', 'tas1', 

'tas2', 'tas6', 'rfquart', 'rfhalf', 'rfyr', 'tasquart', 'tashalf', 'tasyr' 
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