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A B S T R A C T

Indicators of habitat condition are essential for tracking conservation progress, but measuring biotic, abiotic and
landscape characteristics at fine resolution over large spatial extents remains challenging. In this viewpoint
article, we provide a comprehensive synthesis of the challenges and solutions for consistently measuring and
monitoring habitat condition with remote sensing using airborne Light Detection and Ranging (LiDAR) and
affordable Unmanned Aerial Vehicles (UAVs) over multiple sites and transnational or continental extents. Key
challenges include variability in sensor characteristics and survey designs, non-transparent pre-processing
workflows, heterogeneous and complex data, issues with the robustness of metrics and indices, limited model
generalizability and transferability across sites, and difficulties in handling big data, such as managing large
volumes and utilizing parallel or distributed computing. We suggest that a collaborative cloud virtual research
environment (VRE) for habitat condition research and monitoring could provide solutions, including tools for
data discovery, access, and data standardization, as well as geospatial processing workflows for airborne LiDAR
and UAV data. A VRE would also improve data management, metadata standardization, workflow reproduc-
ibility, and transferability of structure-from-motion algorithms and machine learning models such as random
forests and convolutional neural networks. Along with best practices for data collection and adopting FAIR
(findability, accessibility, interoperability, reusability) principles and open science practices, a VRE could enable
more consistent and transparent data processing and metric retrieval, e.g., for Natura 2000 habitats. Ultimately,
these improvements would support the development of more reliable habitat condition indicators, helping
prevent habitat degradation and promoting the sustainable use of natural resources.

1. Introduction

Habitat condition can be measured by quantifying the biotic, abiotic
and landscape characteristics of an ecosystem (Turner and Gardner,
2015). A good habitat condition allows species to meet their needs for
resources, shelter, and successful reproduction and promotes the con-
servation of habitats with their wild fauna and flora, including the di-
versity, distribution and abundance of a variety of animals, plants and
other organisms (Moeslund et al., 2019; Nagendra et al., 2013; Tews
et al., 2004; Turner and Gardner, 2015). Indicators of habitat condition
can be derived from measurements of vegetation structure, cover and
composition (Lorimer, 2024; Magee et al., 2019), topography (Assmann
et al., 2022; Davies and Asner, 2014; Moeslund et al., 2013),

microclimate (Zellweger et al., 2019), soil heterogeneity (Guerra et al.,
2021), hydrology (Rolls et al., 2018), biotic resources such as deadwood
(Seibold et al., 2015), dung, litter, carcasses and flower abundance
(Brunbjerg et al., 2017; Sookhan et al., 2024), and landscape elements
such as hedgerows, tree lines, stonewalls and flower strips (Albrecht
et al., 2021; Broughton et al., 2021). Habitat extent and condition
continue to decline at alarming rates, facing deteriorating trends from
changes in land use, eutrophication, unsustainable management prac-
tices and other human-induced pressures, which contributes substan-
tially to the ongoing loss of biodiversity (Díaz et al., 2019). While some
habitats show improvements, progress is generally not sufficient to meet
conservation targets and policy goals (European Environment Agency,
2020; Leclère et al., 2020; Moersberger et al., 2024). Effective
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monitoring is therefore key to capture these trends and inform restora-
tion and conservation programs (Dalton et al., 2023).

Remote sensing provides a promising tool for habitat monitoring
(Vanden Borre et al., 2011). In the context of global biodiversity change,
habitat measurements derived from satellite data offer synoptic
(regional to near-global) coverage with pre-defined temporal lags
(Skidmore et al., 2021). Openly accessible satellite remote sensing data
are therefore widely used to map the spatial extent and fragmentation of
habitats and vegetation types (Skidmore et al., 2021), but they are less
able to provide information on changes in habitat condition and fine-
scale habitat disturbances (Nagendra et al., 2013). Open-access
airborne Light Detection and Ranging (LiDAR) data and imagery from
affordable Unmanned Aerial Vehicles (UAVs) are increasingly becoming
available (Stankov et al., 2019; Stereńczak et al., 2020), offering an
additional source of spatially-explicit data for area-based conservation
and land management. For instance, LiDAR point clouds collected with
crewed aircraft through (sub)national airborne laser scanning (ALS)
surveys can be used to derive various biotic, abiotic, and landscape-level
characteristics (Table 1). Similarly, site-level flight campaigns with
UAVs or small fixed-wing aircraft offer an increasing range of spatially
detailed observations (Dronova et al., 2021; Zhang and Zhu, 2023;
Zlinszky et al., 2015), including multispectral, hyperspectral and ther-
mal imaging as well as LiDAR point clouds. The most affordable and
cost-effective UAVs record imagery in the Red, Green and Blue (RGB)
and Near-Infrared (NIR) spectrum at mm to cm resolution, enabling the
mapping of specific plant species, vegetation structure, and abiotic
characteristics (Table 1). Examples of habitat condition derived from
LiDAR point clouds and affordable UAVs include measurements of
vertical vegetation structure, tree species composition, deadwood,
linear landscape elements such as hedges and stonewalls, invasive
plants, woody encroachment, and plant biomass (Fig. 1). While these
technologies and sensor systems have the potential to transform site-

based habitat assessments, the lack of harmonized and standardized
approaches currently limits their consistent repeat use over large spatial
extents, e.g. for multi-site, transnational and continental-scale moni-
toring programs (Dronova et al., 2021; Koontz et al., 2022; Vanden
Borre et al., 2011).

In this viewpoint article, we provide a perspective on how to advance
habitat condition research and monitoring with ALS surveys and UAVs.
We first synthesize the challenges and potential solutions for consis-
tently measuring habitat condition with LiDAR point clouds and UAV
imagery across multiple sites and transnational or continental extents.
We then outline how a cloud-based virtual research environment (VRE)
could advance the consistent monitoring of habitat condition, e.g., by
providing the necessary services for data management and metadata
standardization and by enhancing the reproducibility of geospatial
processing workflows and the transferability of models. Throughout our
viewpoint, we emphasize the FAIR (Findability, Accessibility, Interop-
erability, and Reusability) guiding principles (Wilkinson et al., 2016)
and focus on the condition monitoring of natural and semi-natural
habitats. We illustrate this with examples from the EU Natura 2000
network of protected areas (European Commission Directorate-General
for Environment et al., 2008), but also include examples from non-
European studies (e.g., North America, China, Brazil, and Australia).
The European Natura 2000 network contains around 25,000 sites across
the EU’s member states and supports endangered, vulnerable, rare,
endemic and indicator animal and plant species across Europe. While
the EU member states regularly report the conservation status for hab-
itats and species with an emphasis on Natura 2000 sites, the methods for
habitat monitoring and reporting vary widely among EU member states,
often with a poor data quality, little harmonization and a lack of
accessible data (Ellwanger et al., 2018; Moersberger et al., 2024; Pereira
et al., 2022).

2. Materials and methods

Our synthesis of challenges for consistently measuring habitat con-
dition is based on our experience and expertise with processing LiDAR
point clouds and UAV imagery, especially in the context of ecology,
biodiversity research, habitat monitoring, and software and workflow
development. It should be considered as a viewpoint of the authors,
rather than a structured review. An early manuscript draft was compiled
as a deliverable for the MAMBO project (‘Modern Approaches to the
Monitoring of BiOdiversity’) funded by the European Commission (Høye
et al., 2023) in which the author team is responsible for developing
workflows delivering consistent and standardized habitat condition
metrics from airborne LiDAR or drone imagery for site-specific (e.g.
Natura 2000) EU habitat monitoring. We first developed an outline in
which the key challenges for consistently measuring habitat condition
metrics were identified, centring around six major topics: lack of stan-
dardized survey reporting, findability and accessibility of raw data,
interoperability and reusability of data, software and data processing,
availability of computational resources, and robustness and trans-
ferability of metric calculations. We then synthesized the ideas and in-
formation into the following sub-sections: (1) variation in sensor
characteristics and flight surveys, (2) transparency of pre-processing, (3)
heterogeneity and complexity of data, (4) robustness of metric calcula-
tions, (5) generalizability and transferability of models, and (6) big data
computing. Our synthesis was complemented by reviews on UAVs
(Barbieri et al., 2023; Dronova et al., 2021; Singh and Frazier, 2018;
Singh et al., 2024; Wyngaard et al., 2019; Zhang and Zhu, 2023), deep
learning (Diab et al., 2022; Reichstein et al., 2019; Yun et al., 2024),
LiDAR applications in animal ecology and forestry (Bakx et al., 2019;
Balestra et al., 2024; Davies and Asner, 2014; Hyyppä et al., 2008),
deadwood assessments (Marchi et al., 2018; Seibold et al., 2015), Natura
2000 habitat monitoring (Vanden Borre et al., 2011), and upscaling
methods (Ge et al., 2019). We also consulted technical papers on ALS
technology (Baltsavias, 1999; Wehr and Lohr, 1999), geospatial data

Table 1
Examples of quantifying habitat condition with Light Detection and Ranging
(LiDAR) point clouds and Unmanned Aerial Vehicle (UAV) imagery.

Habitat
condition

Examples References

LiDAR point clouds
Biotic
characteristics

Canopy height and cover,
vertical and horizontal
variability of vegetation,
understory density, forest
biomass, tree stem diameters

Bakx et al. (2019); Davies
and Asner (2014); Koma
et al. (2021a), Wieser et al.
(2017)

Abiotic
characteristics

Soil moisture, hydrology,
wetness, elevation, aspect,
slope, terrain texture

Assmann et al. (2022);
Davies and Asner (2014);
Moeslund et al. (2013);
Zlinszky et al. (2015)

Landscape
characteristics

Hedges & tree lines, stonewalls,
tree inventories, amount of
deadwood, open vegetation
patches, edge extent

de Vries et al. (2021); Duan
et al. (2017); Graham et al.
(2019); Lucas et al. (2019);
Marchi et al. (2018);
Martinuzzi et al. (2009); Suh
and Ouimet (2023); Wang
et al. (2018)

UAV imagery
Plant species
mapping

Invasive, rare, or protected
species

Bakacsy et al. (2023); Hill
et al. (2017); James and
Bradshaw (2020); Oldeland
et al. (2021); Zhang et al.
(2020)

Biotic
characteristics

Understory biomass, woody
plant distribution and biomass,
vegetation height, woody
encroachment, scrub
vegetation cover

Cunliffe et al. (2016);
Gonçalves et al. (2016);
Olariu et al. (2022); van
Iersel et al. (2018); Jordan
et al. (2024)

Abiotic
characteristics

Bare ground, micro-
topography, soil moisture and
wetness

Barnas et al. (2019);
Eischeid et al. (2021); Ikkala
et al. (2022); Lendzioch et al.
(2021)
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Fig. 1. Measuring and monitoring habitat condition with imagery and LiDAR point clouds obtained from UAVs and crewed aircraft, including examples from
European Natura 2000 sites. (a) General examples of characterising habitat condition (see Table 1 for relevant references). (b) Measurements of vegetation height
from point clouds. For metric calculations see Meijer et al. (2020), Kissling et al. (2022), and Kissling et al. (2023). (c) 3D mapping and segmentation of individual
trees in point clouds of woodland habitats (Natura 2000 habitat code N26). For methodology see Wang et al. (2018). (d) Linear landscape elements such as stonewalls
in agricultural habitats of Malta (Natura 2000 habitat code N27) mapped from LiDAR point clouds (35.870960 N, 14.569285 E). For methodological examples see
Lucas et al. (2019), Graham et al. (2019) and Suh and Ouimet (2023). (e) Invasive plant species mapping with UAV imagery in the Pannonic sand steppes of Hungary
(Natura 2000 habitat code 6260). Purple = true positive, green = false negative, and blue = false positive areas. See Bakacsy et al. (2023). (f) Mapping habitat
condition and degradation through woody encroachment using UAV imagery in Nardus grasslands (Natura 2000 habitat code 6230) and Atlantic wet heathlands
(Natura 2000 habitat code 4020). See Gonçalves et al. (2016). (g) Deadwood mapping by extracting windthrown trees from UAV images. See Duan et al. (2017). (h)
Monitoring changes in vegetation openness in the nature reserve ‘De Veluwe’ (Natura 2000 site code NL9801023) composed of heath and scrub (Natura 2000 habitat
code N08) and coniferous and mixed woodlands (Natura 2000 habitat codes N17 and N19). Shown are differences over two time periods (delta, Δ) in the pulse
penetration ratio (PPR) from two country-wide airborne LiDAR point clouds (Wang et al., 2022). Red indicates decreasing openness (e.g., denser vegetation through
re-growth or plantation) whereas blue shows increasing openness (e.g., tree cutting). Two examples are visually indicated with arrows in satellite images from
Google Maps.
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processing (Deibe et al., 2020; Kissling et al., 2022), open source LiDAR
and UAV software (Coetzee et al., 2020; Meijer et al., 2020; Pereyra Irujo
et al., 2023; Pirotti, 2019; Roussel et al., 2020), metadata catalogues
(Schindler et al., 2023; Zhao et al., 2021b), and reproducible workflows
(Hardisty et al., 2019; Kissling et al., 2022;Wang et al., 2022; Zhao et al.,
2022). Additionally, we compiled an overview of existing open-access
ALS point clouds from European countries (Appendix A), performed
an analysis on the robustness of LiDAR vegetation metrics to varying
point densities and spatial resolutions (Appendix B), and summarized
examples from different Natura 2000 habitats (Table 2). Based on this
synthesis, we present our view on how a cloud-based VRE could
contribute to advance habitat condition research and monitoring with
airborne LiDAR and UAV remote sensing.

3. Challenges and solutions for consistently measuring habitat
condition with airborne LiDAR and UAV imagery

3.1. Variation in sensor characteristics and flight surveys

For each flight survey with an UAV, decisions must be made about
the survey design and which platform and sensor to use (Fig. 2). The
different options and the rapidly developing technology of platforms
and sensors result in a large variation of flight parameters (e.g., flight
altitude, duration, and stability), different sensor characteristics (e.g.,
pixel resolution, frame rates, spectral bandwidth and spectral range, lens
types), and in a lack of compatibility between hardware and software of
different sensor generations and platforms (Singh and Frazier, 2018;
Zhang and Zhu, 2023). This is exacerbated by the short-lived mainte-
nance support by manufacturers for older sensor and platform genera-
tions, accelerating their obsolescence. Moreover, decisions about survey
designs vary widely because of differences in survey objectives (Dronova
et al., 2021) and the deployed platform and sensor technology (Koontz
et al., 2022; Zhang and Zhu, 2023). To our knowledge, there is currently
no standard approach or best practice for sensor use procedures
(Wyngaard et al., 2019), such as mounting requirements on different
platforms, sample rates, altitude, flight patterns and ground observa-
tions for calibration. To improve UAV survey standardization and pro-
visioning of FAIR data, a community-based development and adoption
of best practice guidelines for sensor use procedures and survey designs
is thus required (Barbieri et al., 2023). To support this, the Research
Data Alliance (RDA; Berman and Crosas, 2020) has setup a Small Un-
manned Aircraft Systems’ Data Interest Group in 2024.

For ALS surveys, differences in sensor characteristics and acquisition
specifications such as flight parameters (e.g., flight height, field of view,
beam divergence and swath overlap) and utilized sensor hardware (e.g.,
wavelength, frequency and scanning pattern) also vary widely. For
instance, different laser scanners with varying wavelengths, frequencies
and fields of view are used in forestry studies (Yun et al., 2024). Scan
angle differences can influence the density and distribution of returns,
with wider scan angles decreasing the possibility of laser pulses pene-
trating through dense canopies, thereby reducing the number of returns
from the understory and ground surface (Baltsavias, 1999). The power
of the laser scanner also determines the energy of each emitted pulse and
can affect the ability of LiDAR to detect small or distant objects. A
stronger laser power increases the probability of multiple returns and
thus leads to a more accurate representation of vegetation structure
(Wehr and Lohr, 1999). Furthermore, the pulse repetition frequency and
the flight altitude of LiDAR sensor system during data acquisition alters
the obtained point density and distribution (Hopkinson, 2007; Hyyppä
et al., 2008). Guidelines for standardizing flight attributes such as field-
of-view, swath overlap, pulse rate, scan rate, and flight speeds would
therefore be beneficial. Moreover, to improve the provisioning of FAIR
data, information about ALS surveys (e.g., dates of data acquisition) and
the equipment used (e.g., sensor characteristics) should be better re-
ported in the documentations of the ALS data providers.

Even if UAV and LiDAR surveys and sensor use procedures cannot be

Table 2
Examples of habitat condition assessments in Natura 2000 sites based on Light
Detection and Ranging (LiDAR) point clouds and/or Red, Green and Blue (RGB),
multispectral or hyperspectral imagery obtained with crewed aircraft or Un-
manned Aerial Vehicles (UAVs). This list is not intended to be exhaustive but to
show examples from different European Natura 2000 sites, including habitats
such as grasslands, heathlands, coastal dunes, wetlands, and forests. The Natura
2000 data (site network and habitat classification) are provided by the European
Environment Agency (https://www.eea.europa.eu/en/datahub/datahubitem-vi
ew/6fc8ad2d-195d-40f4-bdec-576e7d1268e4).

Natura 2000 habitat
description (habitat code)

Example and description References

Grasslands
Species-rich Nardus
grasslands on silicious
substrates in mountain
areas (code 6230)

Mapping the spatial extent
and arrangement of grassland
and heath habitat types with
RGB images and digital
surface models from UAVs,
evaluating habitat
degradation through heath
encroachment caused by
decreased grazing pressure

Gonçalves et al.
(2016)

Pannonic sand steppes
(code 6260)

Mapping of areal cover and
shoots and flowers of two
invasive plant species in open
sandy grasslands, using RGB
images obtained with UAVs

Bakacsy et al.
(2023)

Pannonic salt steppes and
salt marshes (code 1530)

Mapping of grassland
conservation status on
alkaline soils, based on LiDAR
point clouds obtained with
crewed aircraft and derived
raster products (e.g., digital
terrain model, surface
roughness, and point
reflectance)

Zlinszky et al.
(2015)

Heathlands
Dry sand heaths with
Calluna and Genista (code
2310) and European dry
heaths (code 4030)

Assessing habitat condition of
heathlands with hyperspectral
and RGB images from UAVs
by mapping Calluna coverage,
stand structural diversity, and
a species index (occurrence
and coverage of key species)

Schmidt et al.
(2017)

Northern Atlantic wet
heaths with Erica tetralix
(code 4010) and dry sand
heaths with Calluna and
Genista (code 2310)

Mapping heathland habitat
types using airborne
hyperspectral images
obtained with crewed aircraft,
and assessing habitat
condition through measuring
the percentage of tree and
grass cover per patch

Haest et al. (2017)

Coastal dunes
Coastal sand dunes, sand
beaches, machair (code
N04)

Mapping and classification of
coastal dune habitats
(including littoral sediment,
sand beach, dune scrub, dune
grasslands, and dune forest)
with multispectral UAV
imagery and data derived
from airborne LiDAR point
clouds (digital terrain model,
intensity values)

Agrillo et al. (2023)

Coastal sand dunes, sand
beaches, machair (code
N04)

Mapping of native and alien
invasive shrub species in
coastal dunes using
multispectral aerial
photographs and canopy
surface height derived from
LiDAR point clouds, both
obtained with crewed aircraft

Hantson et al.
(2012)

Wetlands
Reedbed habitats, included
in the habitat class ‘Bogs,
Marshes, Water fringed

Mapping habitat condition
and structure of reedbeds
from national LiDAR point
clouds obtained with crewed

Koma et al. (2021b)

(continued on next page)
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fully standardized, a standardized reporting of their metadata would
already improve the consistent measurement of habitat condition
(Fig. 2). For instance, for UAVs there is a lack of standards and guide-
lines for generating metadata describing calibration, training and vali-
dation procedures during the flight campaign and how to report the
flight parameters in a standardized way (Barbieri et al., 2023; Dronova
et al., 2021; Koontz et al., 2022). The lack of standardized metadata for
observations and calibration can significantly affect the comparability of
UAV surveys (Singh and Frazier, 2018). For instance, the parameters set
by the pilot for the flight (e.g., flight line overlap, flight height, direction
and speed, and terrain following) or other characteristics during the
flight survey (e.g., wind speed, sun light, flight time, humidity, and
cloud cover) can have large implications for multi-site and multi-

temporal comparisons. To allow a better comparison among datasets,
metadata of survey variables, sensor information, and the date and time
should therefore be reported in a standardized and machine-readable
way (Table 3).

3.2. Transparency of pre-processing pipelines

The use of proprietary software during UAV data pre-processing re-
sults in little software transparency and interoperability (Fig. 2, right).
Provenance information (i.e., lineage and processing history) and
workflow metadata from the pre-processing are often not available
(Wyngaard et al., 2019). For LiDAR point clouds collected with UAVs,
each LiDAR sensor manufacturer stores the data on the instrument in its
own way, which is then converted to a standard format (such as LAS)
using the company’s own software. In case of RGB imagery, structure-
from-motion algorithms (when many highly overlapping image frames
are combined to deliver 2-dimensional image mosaics and 3-dimen-
sional point clouds) use photogrammetric data contained within UAV
images to generate digital terrain models (DTMs) and digital surface
models (DSMs) with high spatial resolution. Many different algorithms
are available for generating DTMs, parameter choices and uncertainties
are often not well documented, and the use of proprietary software
makes pre-processing workflows and photogrammetry pipelines not
very transparent (Jiang et al., 2020; Zhang and Zhu, 2023). However, an
increasing number of open-source software tools is becoming available
for UAVs, including image processing and data management (Jiang
et al., 2020; Jordan et al., 2024; Pereyra Irujo et al., 2023). Some of these
open-source software packages (e.g., ColMap) allow reproducible open-
source workflows for structure-from-motion pipelines, including feature
extraction, feature matching, geometric verification, and structure and
motion reconstruction. Such open source software and workflows for
UAV data (Pereyra Irujo et al., 2023) are needed for a more transparent
and interoperable pre-processing of UAV imagery (Table 3).

In contrast to UAV-collected data, national and subnational LiDAR
point clouds are collected with airplanes through ALS surveys, usually
by specialized companies and service providers (e.g., geospatial
surveying firms), and then made publicly available via a website, a
geoportal, or an institutional repository within a country (see examples
from European countries in Appendix A Fig. A1 and Table A1). The point
clouds are typically provided in a standard open file format (LAS or
compressed LAZ files) which has been designed for the interchange and
archiving of LiDAR point clouds (ASPRS, 2019). This provides

Table 2 (continued )

Natura 2000 habitat
description (habitat code)

Example and description References

vegetation, Fens’ (code
N07)

aircraft, separating water
reed, structurally poor land
reed, and structurally rich
land reed

Various peatland habitats,
especially blanket bogs
(code 7130) and active
raised bogs (code 7110)

Mapping plant functional
types and microforms to
derive habitat distribution
(ecotopes) and habitat
condition (peat accumulation
status) for five Irish peatlands,
with RGB imagery and digital
terrain models obtained with
UAVs

Steenvoorden et al.
(2024)

Forests
Coniferous woodland (code
N17) and mixed
woodland (code N19)

Individual tree segmentation
using airborne LiDAR point
clouds (acquired by a
helicopter) and multispectral
aerial imagery, differentiating
coniferous trees (e.g., pines),
deciduous trees (e.g., birch
and alder), standing dead
trees with crowns, and snags

Briechle et al.
(2021); Hell et al.
(2022)

Broad-leaved deciduous
woodland (code N16)

Measuring diameter at breast
height (DBH) in alluvial
forests with LiDAR point
clouds derived from laser
scanners on board of an UAV

Wieser et al. (2017)

Fig. 2. Key aspects of unmanned aerial vehicle (UAV) operation (grey boxes) and related challenges for standardization (blue boxes) during data collection, (meta)
data generation and pre-processing.
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standardized data and metadata on various point cloud properties such
as the coordinate reference system (CRS) of the dataset, the attributes
(X, Y, and Z values) of each point, intensity values (i.e., the magnitude of
the pulse return), the pulse return number etc. (ASPRS, 2019). A clas-
sification field is also provided with information on whether a point

belongs to the ground, vegetation, building, water etc. (Appendix A
Fig. A1). However, the pre-processing of the LiDAR point clouds is
usually not well documented because it is done by companies and not
described in scientific publications. Information on the accuracy and
methodology of the pre-processing of (sub)national LiDAR point clouds
should therefore be better reported (Table 3) to increase the FAIRness of
these datasets.

3.3. Heterogeneity and complexity of data

To our knowledge, there is currently no overview available about the
type of UAV imagery that is collected in protected areas and European
Natura 2000 sites. Some examples for different habitats are provided in
Table 2. Most data acquisition is probably done with small, relatively
inexpensive, and flexible UAVs that collect imagery in the visible spec-
trum (RGB), as it is done in Natura 2000 grasslands (Bakacsy et al.,
2023; Gonçalves et al., 2016) and wetland habitats (Dronova et al.,
2021; Steenvoorden et al., 2024). RGB imagery already results in het-
erogeneous data because sensor characteristics and flight surveys are not
standardised (see above) and various factors will influence the spectral
characteristics, including weather conditions (e.g., sun and shading),
camera characteristics (e.g., lens imperfections and uneven illumina-
tion), and season of data acquisition (e.g., plant phenology in spring
versus summer). A solution is to standardize image values (Table 3), e.g.,
through normalizing the RGB values or applying radiometric calibration
to produce reflectance values. However, the latter is not trivial and both
are currently not widely applied in ecological applications of UAV
remote sensing (e.g., in invasive plant species mapping; Singh et al.,
2024). Long-term monitoring with multi-temporal UAV imagery and
regional multi-site applications would therefore require a systematic
inter-calibration (Dronova et al., 2021; Singh and Frazier, 2018). Be-
sides RGB cameras, additional sensor types such as NIR, multispectral,
hyperspectral, and thermal cameras can add valuable information for
habitat condition monitoring. By providing additional spectral bands
they can improve the identification of vegetation, plant species, open
water bodies and soil features (Agrillo et al., 2023; Schmidt et al., 2017;
Steenvoorden et al., 2024; Zhang and Zhu, 2023) or measure surface
temperatures and heat anomalies (Lendzioch et al., 2021). However,
they are also more costly and are thus not yet as widely used as RGB
imagery (Dronova et al., 2021; Singh et al., 2024). Nevertheless, cam-
eras with NIR are increasingly becoming available and affordable. The
added NIR band is essential to derive the commonly used normalized
difference vegetation index (NDVI) which is linked to vegetation pro-
ductivity, stress, and cover. NIR also helps to increase the spectral
separability of certain vegetation types, plant species and open water
bodies. This makes NIR sensors attractive for the large-scale UAV-based
monitoring of certain habitats such as peatlands (Steenvoorden et al.,
2024; Steenvoorden and Limpens, 2023) and other Natura 2000 habitats
such as forests, wetlands, grasslands and coastal dunes (Agrillo et al.,
2023; Šímová et al., 2023). Other types of UAV sensors such as hyper-
spectral cameras and LiDAR are more costly, result in additional data
heterogeneity and complexity (e.g., tens to hundreds of spectral bands),
and strongly increase the computational requirements. Nevertheless, the
fusion of multi-sensor UAV data is promising, and applications will
likely increase in the future. For instance, the fusion of 3D point clouds
with RGB/NIR, multispectral, or hyperspectral data can improve indi-
vidual tree or crown segmentation, aboveground biomass, canopy
height, and vegetation structure derivation, tree species identification,
and the mapping of various Natura 2000 habitats (Agrillo et al., 2023;
Balestra et al., 2024; Haest et al., 2017; Shi et al., 2018; Šímová et al.,
2023).

For LiDAR points clouds from ALS surveys, the LAS/LAZ format
already provides a good basis for the standardization of (meta)data and
the provisioning of FAIR data. However, ALS datasets from different
countries or multiple time periods are heterogeneous because they are
obtained with different budgets and requirements, for different

Table 3
Summary of challenges and potential solutions for consistently measuring and
monitoring habitat condition metrics from airborne LiDAR and UAV remote
sensing.

Challenges Future needs Potential solutions

Variation in sensor
characteristics and
flight surveys

• Development of
standards and best
practices for sensor use
procedures and survey
designs

• Best practice guidelines,
community engagement,
training workshops

• Standardized and
machine-readable meta-
data of survey variables
and sensor characteristics

• Metadata standards and
formats, data
integration, data
management education

Transparency of pre-
processing

• Transparent and
interoperable UAV data
pre-processing pipelines

• Open source software
and workflows for UAV
pre-processing

• Detailed information on
methodology for pre-
processing airborne laser
scanning point clouds

• Documentation of pre-
processing and prove-
nance of (sub)national
LiDAR point cloud
datasets

Heterogeneity and
complexity of data

• Standardization and
normalization of image
reflectance

• Radiometric calibration,
normalization of
reflectance values,
systematic inter-
calibration

• Multi-sensor data
integration (e.g., RGB,
NIR, hyperspectral and
LiDAR)

• Open-source workflows
for fusing multi-source
data

• Seasonal information
from LiDAR point clouds
and UAV imagery

• Laser scanning in leaf-on
and leaf-off seasons,
multiple UAV surveys
during growing season

• Consistent classification
of vegetation in (sub)
national LiDAR point
clouds

• Open-source methods for
semantic segmentation
and classification

Robustness of metric
calculations

• Comparable and robust
metrics for habitat
condition assessments (e.
g., textural, spectral,
spatial patch and
topographical metrics,
vegetation indices, LiDAR
metrics)

• Testing metric
robustness to parameter
settings in pre-processing
steps and varying point
densities, spatial resolu-
tions, habitats, etc.

Generalizability and
transferability of
models

• Transferability of
machine and deep
learning models across
space and time (e.g.,
random forests, support
vector machines,
convolutional neural
networks)

• Multi-site and multi-
dataset testing of the ac-
curacy and trans-
ferability of algorithms
for habitat condition
mapping

• Large amounts of
accessible data for model
training and evaluation
(e.g., benchmarking
datasets, ground-
reference data)

• Open-access training and
validation datasets with
manually labelled point
clouds (including trees,
shrubs, stonewalls,
deadwood etc.)

Big data
computing

• Efficient processing of
multi-terabyte LiDAR and
UAV datasets

• Reproducible, scalable,
and distributed, open-
source processing
workflows

• Computing resources and
services on remote cloud
infrastructures

• Big data storage,
computing resources,
and easy-to-use tools for
data and workflow
management
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purposes, with different sensors, and with different end products in
mind. Hence, a major challenge for the consistent transnational or multi-
temporal analysis of such datasets is that they come with a wide variety
of characteristics (Fig. 3). For instance, some countries only provide leaf-
on data and others only leaf-off (Appendix A Table A1). This can
complicate the consistent calculation of habitat condition metrics with
different LiDAR datasets, e.g., for measuring structural characteristics of
herbaceous plants and understory vegetation below tree canopies. Col-
lecting LiDAR point clouds and UAV imagery for both the growing (leaf-
on) and non-growing (leaf-off) season or different phenological seasons
(spring, summer) (Table 3) could, for instance, increase the accuracy of
machine and deep learning algorithms from UAV LiDAR point clouds
(Chen et al., 2022), improve the mapping of Natura 2000 habitats from
UAV multispectral and RGB imagery (Šímová et al., 2023), and help
quantify which collection scenario (leaf-on, leaf-off or both) for UAV
LiDAR surveys is more suitable for the accurate derivation of terrain
properties, plant biomass, vegetation structure, or other abiotic, biotic
and landscape characteristics (Lin et al., 2021). Moreover, the level of
detail in the provided point classification varies widely among different
datasets (Fig. 3d). Two of the classes (‘ground’ and ‘unclassified’) are
almost always provided (Fig. 3d) because most national and subnational
LiDAR acquisition efforts are focused on the ground surface, with
specifications and operations designed to provide an acceptable density
of ground points suitable for terrain mapping, rather than for measuring
vegetation. Other classes (e.g., vegetation, building, noise, and water
points) are provided in only ~ 50 % of the datasets (Fig. 3d). Especially
the classification of vegetation points varies widely, e.g., Finland cate-
gorizes vegetation into low, medium, and high; Estonia identifies tall
vegetation; and Switzerland includes only a general vegetation class
(Appendix A Table A1). Other countries do not provide any vegetation
class at all (e.g., Scotland, Belgium, and the Netherlands; see Appendix A
Table A1). When vegetation points are not provided in a separate class,
they are typically included in the class ‘unclassified’. ‘Unclassified’ can
also contain points from other objects such as transmission towers,
traffic signs, trucks, and cars (Fig. 3e), introducing potential un-
certainties and biases that need quantifying when measuring vegetation
structure with the ‘unclassified’ class (Kissling et al., 2023; Shi and
Kissling, 2023). A consistent classification of vegetation in (sub)national
LiDAR point clouds is therefore needed (Table 3). New methods are
emerging, such as point-based deep learning methods for semantically
labelling point clouds into vegetation classes such as grass, shrub, tree,
or low/medium/high vegetation (Wen et al., 2021;Widyaningrum et al.,
2021; Zhao et al., 2021a).

3.4. Robustness of metric calculations

The reliability of habitat condition indicators will depend on the
robustness of features derived from UAV imagery and LiDAR point
clouds. For instance, a large number of textural metrics (Eischeid et al.,
2021; Park and Guldmann, 2020), vegetation indices and band ratios
(Gonçalves et al., 2016; Xue and Su, 2017) and spectral heterogeneity
metrics (Torresani et al., 2024) are derived from imagery captured by
optical sensors (including RGB and NIR imagery from UAVs). UAV im-
agery (with structure-from-motion algorithms) and LiDAR point clouds
from ALS surveys are also used to generate high spatial resolution DTMs
and from these a range of topographical metrics such as topographic
position, topographic wetness, terrain ruggedness, aspect, and slope
(Assmann et al., 2022; Eischeid et al., 2021; Ikkala et al., 2022; Jiménez-
Jiménez et al., 2021). The robustness and sensitivity of such features can
be influenced by decisions during UAV imagery capture and pre-
processing (Fig. 4a–c). For instance, when using UAV RGB imagery to
map peatland microforms such as wet hollows and dry hummocks or
plant functional types such as peat moss, shrubs, and lichens
(Steenvoorden et al., 2023; Steenvoorden and Limpens, 2023; Steen-
voorden et al., 2022), the metrics used as classification input variables
can strongly dependent on parameters such as minimum ortho-mosaic

segment size (Steenvoorden et al., 2023), UAV image resampling reso-
lution (Steenvoorden and Limpens, 2023), or the window size for
detrending DTMs (Steenvoorden et al., 2024). Assessing the sensitivity
and robustness of metrics to various pre-processing steps is thus needed
(Table 3) and essential for achieving consistent accurate vegetation
mapping (Steenvoorden and Limpens, 2023) and reliable habitat con-
dition indicators (Steenvoorden et al., 2024; Steenvoorden et al., 2022).

Like processing UAV imagery, various characteristics of LiDAR point
clouds derived from ALS surveys can influence the consistent and robust
calculation of habitat condition metrics. One of the most important
factors is the variation in point cloud density which varies widely in
publicly available LiDAR datasets (e.g., ranging from 1 to 30 points/m2,
Fig. 3a) due to differences in ALS flight parameters, scanning geometry,
utilized sensor hardware, and season of data acquisition (leaf-on or leaf-
off). Since laser scanner technology is rapidly improving, point densities
also vary between ALS surveys from different time periods in the same
country (i.e., higher scanning frequencies resulting in higher point
densities). This can potentially affect the calculation of biotic, abiotic
and landscape characteristics and the monitoring of habitat condition
over time. To demonstrate the effect of varying point densities, we
calculated 25 LiDAR vegetation metrics in selected Natura 2000 sites in
the Netherlands (i.e., woodlands with Natura 2000 habitat codes N16,
N17, N19 and N20) using the original point density of the Dutch AHN4
dataset (20–30 points/m2) as well as six systematically down-sampled
point clouds, i.e., keeping 5 %, 10 %, 20 %, 40 %, 60 % and 80 % of
the points in the original point clouds (see details of methodology in
Appendix B). Since the volume geometry used for metric calculation (e.
g., grid cell spatial resolution) can also influence metric robustness
(Meijer et al., 2020), we performed this analysis for 1 × 1 m, 2 × 2 m, 5
× 5 m, and 10 × 10 m grid cells (see Appendix B Fig. B4–B7). Our
analysis revealed that metrics of canopy height (e.g., Hp95) and vege-
tation openness (e.g., PPR) are largely robust to varying point densities,
even when calculated with strongly down-sampled point densities of <
10 points/m2 (Fig. 5). However, other metrics such as understory den-
sity are less robust and tend to become more variable at finer spatial
resolutions (i.e., 1× 1m, 2× 2m and 5× 5m), i.e., when point densities
are < 20 vegetation points/m2 (see BR_2_3 in Fig. 5). Moreover, vertical
variability metrics such as the Shannon index (a measure of foliage
height diversity) can strongly vary with changing point densities at all
grid cell spatial resolutions (Fig. 5). These examples from Natura 2000
woodlands show that comprehensively testing the robustness of LiDAR
metrics is essential to ensure that measuring and monitoring habitat
condition with ALS point clouds is consistent across time and space.

3.5. Generalizability and transferability of models

Since in-situ data collection is often limited to a few locations and
small areas, it is common in the Earth sciences to apply upscaling al-
gorithms to predict geospatial information over a large spatial extent
(Ge et al., 2019). This typically involves models (e.g., regression, ma-
chine learning, geostatistical methods) that combine in-situ measure-
ments (e.g., of biotic, abiotic and landscape characteristics, Table 1)
with auxiliary information (e.g., remotely sensed data from satellites,
UAVs and crewed aircraft). Among the most widely used approaches are
machine learning methods such as Random Forest (RF) and support
vector machines (SVMs) which are, for instance, applied with airborne
LiDAR data and imagery from UAVs or crewed aircraft to map invasive
plant species (Hantson et al., 2012; Singh et al., 2024), ground cover
(Eischeid et al., 2021), condition of wetland habitats such as reedbeds
and peatlands (Dronova et al., 2021; Koma et al., 2021b; Steenvoorden
et al., 2024), or woody plant encroachment in grasslands and heathlands
(Gonçalves et al., 2016; Olariu et al., 2022). Most recently, deep learning
models such as Convolutional Neural Networks (CNNs) have emerged as
a transformative machine learning method for data-driven Earth Science
(Diab et al., 2022; Reichstein et al., 2019; Yun et al., 2024). While a large
variety of different types of deep learning models can be applied to
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Fig. 3. Variation in characteristics of LiDAR point clouds collected through (sub)national ALS surveys in Europe (see details in Appendix A Table A1). (a) Range of
available point densities; (b) Season of data acquisition (leaf-on vs. leaf-off); (c) Available information on LiDAR and simultaneously collected imagery in the Red,
Green and Blue (RGB) and Near-Infrared (NIR) spectrum; (d) Available point classifications following the ASPRS standard point classes. (e) Example of a LiDAR point
cloud (AHN4 dataset from the Netherlands) in which vegetation and non-vegetation objects (e.g., trees, transmission towers, traffic signs, trucks, and cars) are
included in the same class (‘unclassified’, olive). The ‘ground’ class (green) includes ground points (i.e., terrain), but also short-stature vegetation (e.g., grasses).
White areas indicate areas with no data (e.g., building fronts, below trees). The image depicts an area in the southwest of the ‘De Veluwe’ (Natura 2000 site code
NL9801023) which is in the center of the Netherlands (52.0875278 N, 5.9507778 E). The nature reserve is mainly composed of heath and scrubs (Natura 2000
habitat code N08) and coniferous and mixed woodlands (Natura 2000 habitat codes N17 and N19), but highways and an overhead powerline are crossing.
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LiDAR point clouds and UAV imagery (Diab et al., 2022; Yun et al.,
2024), CNNs in particular have revolutionized the field of object
detection, useful for measuring various aspects of habitat condition.
Good examples already exist from forest studies (Yun et al., 2024), e.g.,
tree species mapping from 2D RGB imagery and classification and in-
dividual tree mapping from 3D LiDAR point cloud segmentation
(Table 4). Other examples of deep learning applications with UAV im-
agery include mapping of plant communities and individual plant spe-
cies in grasslands (Pöttker et al., 2023; Zhang et al., 2020), monitoring
flower abundance and invasive plant species in urban and agricultural
areas (Singh et al., 2024; Sookhan et al., 2024), and classifying vege-
tation cover types in peatlands (Palace et al., 2018). However, the
transferability of machine learning models across multiple sites and
national, regional, or continental extents is often limited because large
amounts of data for model training and evaluation are not available or
not easily (or openly) accessible.

The transferability of machine learning models to other sites can be
impaired if the vegetation structural or habitat and terrain conditions of

unmeasured sites are not sufficiently captured in the training and
ground reference samples (Fekety et al., 2018; Steenvoorden et al.,
2024; Steenvoorden and Limpens, 2023; Yun et al., 2024). Classical
machine learning methods such as RF and SVMs performwell with small
to moderately sized datasets and are generally quicker to train, but their
capacity to capture deep or complex relationships is limited. This can
limit the spatial transferability of UAV-based vegetation mapping across
multiple sites, e.g., if the size, shape and configuration of vegetation
characteristics varies among sites (Steenvoorden and Limpens, 2023) or
if the ground-reference data are too coarse or imprecise (Steenvoorden
et al., 2024). Vegetation mapping and indicator calculation can also be
influenced by various decisions during the training and validation of
machine learning methods, e.g., the choice of the classifier, the ratio of
training/testing samples, the number of folds for cross-validation, values
for hyperparameters, the choice of accuracy metrics etc. (Fig. 4d–f). In
contrast to RF and SVMs, deep learning models such as CNNs consist of
numerous layers and a vast number of parameters (weights), and are
thus highly flexible, capable of modelling intricate relationships and

Fig. 4. Example of a workflow for processing UAV imagery into indicators of habitat condition. (a,b) Details and decisions during data collection and pre-processing,
(c,d) examples of feature extraction and modelling, and (e,f) mapping of vegetation and indicator calculation. The figure synthesizes details of a workflow that has
been applied to the monitoring and mapping of peatlands in Ireland (Steenvoorden et al., 2023; Steenvoorden et al., 2024; Steenvoorden and Limpens, 2023;
Steenvoorden et al., 2022). These peatlands especially represent blanket bogs (Natura 2000 habitat code: 7130) and active raised bogs (Natura 2000 habitat
code: 7110).

W. Daniel Kissling et al. Ecological Indicators 169 (2024) 112970 

9 



Fig. 5. The effect of grid cell spatial resolution and varying point densities on the robustness of LiDAR vegetation metrics derived from airborne ALS point clouds.
LiDAR vegetation metrics were calculated at four spatial resolutions (i.e., 1 × 1 m, 2 × 2 m, 5 × 5 m and 10 × 10 m) with six systematically down-sampled point
clouds (i.e., keeping 5 %, 10 %, 20 %, 40 %, 60 % and 80 % of the points from the original Dutch AHN4 dataset ‘100 %’). Mean point densities are given for each
percentage of points used. Metrics were calculated using randomly located woodland plots in the Netherlands (n = 94). See Appendix B for methodological details,
Appendix Fig. B4–B7 for additional metrics, and Appendix B Table B1 for metric abbreviations and definitions.
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hierarchies within the data. However, to effectively train such complex
models without overfitting, substantial computational resources and a
large amount of diverse data are necessary. Consequently, most deep
learning applications for mapping habitat characteristics have so far
been done at single sites or with single datasets (e.g., examples in
Table 4), and only few models have been trained and evaluated with
datasets from multiple sites or across large spatial extents (e.g., Xiang
et al., 2024). The generalizability of deep learning models can be further
influenced by the specific properties of the implemented method, e.g.,
whether multilayer perceptrons, graph neural networks, or multi-view
neural networks are used (Yun et al., 2024). Moreover, data acquired
with different sensor platforms —such as airborne, mobile, terrestrial or
UAV laser scanners— have very different point of views and differ in
data properties (e.g., point densities, level of details captured from trees)
and acquisition time. Deep learning models trained with LiDAR data
from one sensor platform (e.g., ALS) may thus not necessarily be
transferable to data obtained from another sensor platform (e.g.,
terrestrial or UAV laser scanners). However, using different combina-
tions of input training data may even allow to train sensor-agnostic deep
learning models that can handle diverse laser scanning data (Wielgosz
et al., 2024).

A major difference among deep learning models for applications to
LiDAR point clouds is whether they can handle 2D or 3D data (Fig. 6).
Point-based models (e.g., PointCNN, LayerNet or FR-GCNet) can directly
use the 3D point clouds, but they need large amounts of manually
labelled training and testing points. This requires open-access training
and validation datasets for benchmarking and testing model

performance (e.g., Diab et al., 2022; Singer and Asari, 2021; Varney
et al., 2020). Currently available LiDAR benchmarking datasets are
mainly suited for point classification or object segmentation and thus
not necessarily applicable to habitat condition mapping. Moreover,
publicly available datasets for deep learning applications often represent
urban environments, parks and plantations (Yun et al., 2024), but data
from protected areas and nature reserves, relevant for habitat condition
monitoring, are lacking. In contrast to point-based models, the
projection-based models are computationally less demanding but need
to project the 3D data onto a 2D plane (e.g., Silvi-Net, Deep CNN, Faster
R-CNN or YOLO) or into voxels (e.g., VoxelNet). The LiDAR data must
therefore be regularized by projecting the 3D point cloud into 2D pixels,
voxels, or side-view images (Fig. 6). Projection-based models lose spatial
and geometry information from the 3D point cloud (Diab et al., 2022;
Yun et al., 2024), and the choice of the pixel or voxel size (which de-
pends on available point densities) can affect the accuracy of the deep
learning models when applied to other datasets (Xi et al., 2020). Hybrid
methods that integrate both 2D grid-based and 3D point-based methods
(Shi and Kissling, 2023) or the fusion of deep learning and machine
learning concepts (Yun et al., 2024) are alternatives that can be
computationally efficient. Hybrid methods are also an option for inte-
grating UAV data with other remotely sensed data, for example, using
2D or 3D UAV data (RGB, multispectral, thermal, LiDAR etc.) to train,
validate and calibrate coarser resolution aerial and satellite imagery (e.
g., Landsat imagery, radar from Sentinel-1, or optical imagery from
Sentinel-2). Example applications are invasive plant species mapping
(Singh et al., 2024) or estimating biomass and tree densities in wetlands
(Dronova et al., 2021).

3.6. Big data computing

Deriving biotic, abiotic and landscape characteristics over large
spatial extents from airborne and UAV data involves processing massive
datasets. UAV data volumes from single sites vary widely depending on
camera resolution, flight altitude, sensor type, area covered, image
overlap, and data compression formats. As an example, the 45 UAV
datasets available from OpenDroneMap (https://www.opendronemap.
org/odm/datasets/, accessed 10 October 2024) have on average 392
± 1,042 images (range: 16–7,169 images) with a volume of 1,907 ±

4,195 MB (range: 14–28,434MB). Resampling UAV imagery to a coarser
spatial resolution (e.g., from 2–3 cm to 0.25–0.5 m) can help reduce data
volumes and processing times without impacting site-level mapping
accuracies (Steenvoorden and Limpens, 2023). However, establishing
which resampling resolution has minimum impact on classification ac-
curacy is key and this can vary substantially among sites and vegetation
classes, even within the same habitat type (e.g., peatlands; Steenvoorden
and Limpens, 2023).

Processing LiDAR point clouds from country-wide ALS surveys in-
volves handling much larger data volumes, typically> 5 TB (Appendix A
Table A1). Consequently, processing is computationally demanding
(Assmann et al., 2022; Kissling et al., 2023) and may require collabo-
rations with software engineers to implement parallel and distributed
processing (Meijer et al., 2020). For example, processing the country-
wide LiDAR data (AHN3) of the Netherlands (>33,000 km2 land area)
involved ~16 TB of data containing ~700 billion points (Kissling et al.,
2022). Processing this dataset into 25 vegetation structure metrics at 10
m resolution across the whole Netherlands took 294 days of total central
processing unit (CPU) time (i.e., 14 days total wall-time), using a high-
throughput workflow on a cluster of virtual machines (VMs) with fast
CPUs and high memory nodes within the Dutch national IT infrastruc-
ture ‘SURF’ (Kissling et al., 2022). Such processing can be reduced if the
area of interest is smaller than a whole country. For instance, focusing
only on all Dutch Natura 2000 sites, the total data volume from the latest
country-wide LiDAR survey (AHN4) amounts to < 0.8 TB (115 billion
points). For a single 56 km2 large Natura 2000 site in the Netherlands
—i.e., the Oostvaardersplassen nature reserve (Natura 2000 site code

Table 4
Examples from forestry showing deep learning algorithms applied to LiDAR
point clouds and Red, Green and Blue (RGB) imagery obtained from UAVs and
crewed aircraft. Most of the studies have been conducted in production forests,
plantations or urban environments, and not in Natura 2000 sites or other types
of nature reserves. A more comprehensive review of deep learning applications
in forestry studies, including satellite remote sensing and mobile or ground-
based terrestrial laser scanning, is provided in Yun et al. (2024).

Deep learning
algorithm

Application Reference

LiDAR point clouds
LayerNet Classification and 3D segmentation of

individual birch and larch trees
Liu et al. (2021)

PointCNN Classification and 3D segmentation of four
tree classes (coniferous, deciduous,
standing dead tree with crown, and snag)

Hell et al. (2022)

ForAINet 3D segmentation of trees and automated
retrieval of tree parameters (height, crown
diameter, crown volume, DBH, and
location) and stand structure (digital
terrain model and stand density)

Xiang et al.
(2024)

Point
Transformer

Individual tree segmentation in conifer and
mixed forest

Zhang et al.
(2023)

FR-GCNet Point cloud classification (semantic
labelling of tree, grass, soil, and other
points)

Zhao et al.
(2021a)

Silvi-Net Classification of individual pine, birch,
alder, and dead trees

Briechle et al.
(2021)

YOLO 2D mapping of individual tree crowns Sun et al. (2022)
UAV/aircraft RGB imagery
U-Net 2D mapping of herbaceous vegetation

communities, a shrub species, and a tree
species

Kattenborn et al.
(2019)

DeepLab 2D mapping of individual tree crowns of
three Amazonian palm species

Ferreira et al.
(2020)

ResNet 2D mapping of woody vegetation
distribution

Cheng et al.
(2023)

DenseNet 2D mapping of five species of trees Wang et al.
(2023)

GoogLeNet 2D mapping of dead pine trees Tao et al. (2020)
YOLO Detection of tree crown locations Wu et al. (2022)
Faster-RCNN Detection of planted pine seedlings Pearse et al.

(2020)
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NL9802054) which is dominated by marshes (Natura 2000 habitat code
N07) and dry and humid grasslands (Natura 2000 habitat codes N09 and
N10)— the data volume is 2.6 GB (~0.55 billion points) and 9.3 GB
(~1.4 billion points) for the AHN3 and AHN4 surveys, respectively.

The consistent monitoring of habitat condition would benefit from
reproducible, scalable, and distributed, open-source workflows that can
handle the efficient processing of massive amounts of data across mul-
tiple sites (Table 3). For example, workflows for LiDAR point cloud
processing require various compute-intensive steps, such as re-tiling,
normalization, feature extraction and rasterization (Fig. 7). To
perform an efficient processing, the raw point clouds (usually hundreds
to thousands of LAZ files with an individual data volume of up to several
gigabytes) first have to be downloaded from national repositories and
then split and re-tiled into ten thousands of tiles with smaller size (e.g., 1
km × 1 km) (Kissling et al., 2022). This requires IT-infrastructures with
big data storage, sufficient computing and engineering resources, the
scheduling of virtual machines, and parallelization and distribution of
tasks (Kissling et al., 2022; Meijer et al., 2020; Wang et al., 2022). A
challenge is that specialized knowledge of input data, workflow imple-
mentation, and remote infrastructure scheduling is usually needed. For
instance, deploying a LiDAR processing workflow with a cluster of VMs
on a national IT-infrastructure requires defining how the tasks are
distributed among workers of the cluster (Kissling et al., 2022). When
deploying the same workflow on a remote cloud infrastructure, addi-
tional functionality such as splitter and a merger modules might be
needed to avoid performance bottlenecks (Wang et al., 2022; Zhao et al.,
2022). Different IT-infrastructures will also provide different computing
capacity and resources, for instance in terms of number of workers/VMs,
available cores per worker/VM, and memory capacity. Configuration
adjustments must be made based on the input data (e.g., volume),
required output (e.g., spatial resolution, number of metrics), and the
availability of computing resources within a given IT infrastructure.
Implementing high-throughput workflows for habitat condition assess-
ments would therefore benefit from remote cloud infrastructures, ser-
vices for big data storage, and easy-to-use tools for data and workflow
management.

4. Towards a cloud-based virtual research environment

The above synthesis summarizes challenges and potential solutions
for consistently measuring habitat condition from LiDAR point clouds
and UAV imagery over large spatial extents. We suggest that many of the
potential solutions (summarized in Table 3) could be addressed and
supported by developing a collaborative cloud VRE for habitat condition
research and monitoring using airborne LiDAR and UAV remote sensing
data (Fig. 8). Such a VRE would include tools for the discovery, access,
management, and standardization of data and processing workflows
(Zhao et al., 2022) and thus enable a more consistent data processing
and metric retrieval for habitat condition information. Below we discuss
the VRE components in more detail with a specific focus on LiDAR point
clouds and UAV imagery.

4.1. Data management

An important step for developing a more consistent habitat condition
monitoring is to make existing LiDAR point clouds and UAV imagery and
related training and validation data easier to find and access. This re-
quires improved data repositories, data exchange APIs, and metadata
catalogues (Fig. 8). At a global scale, a network for ALS data has recently
been established to collect metadata from data providers (Stereńczak
et al., 2020). However, this is far from being extensive, and a large
amount of ALS data is not yet captured. For Europe, a recent European
Commission report listed the available ALS LiDAR point clouds and
DTMs (Kakoulaki et al., 2021). However, since its publication, more
flight campaigns have been conducted and more countries published
their (sub)national datasets (see overview in Appendix A Table A1).
Also, there is currently no central data repository in place for LiDAR
point clouds. Instead, all national datasets are stored on separate geo-
portals and websites, usually without machine-readable access to their
interfaces, i.e., no standardized communication protocols such as REST-
APIs (Representational State Transfer Application Programming In-
terfaces) can be used. National websites are usually in the local language
and poorly documented which generates additional barriers for data re-
use in a European context. There are also only few domain-specific

Fig. 6. Two major types of deep learning models that can be useful for habitat condition applications, exemplified with Convolutional Neural Networks (CNNs). (a)
Point-based models can directly manage 3D data. (b) Projection-based models first need to project point clouds of 3D objects onto multiple view planes.
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repositories available (national or global) for sharing raw and pre-
processed UAV imagery. One example is OpenAerialMap (https://
openaerialmap.org/) which provides access to openly licensed imag-
ery. Much UAV data, however, are only available in generalist open
repositories such as Zenodo (https://zenodo.org/) and therefore often
hard to find. More broadly, there is currently no overview or inventory
of UAV datasets and their ground-reference data available for habitat
condition monitoring.

A metadata catalogue with human- and machine-readable metadata
is needed to improve the provisioning of FAIR data, i.e., to increase
findability and accessibility (Hardisty et al., 2019; Wilkinson et al.,
2016). A range of metadata catalogue technologies are already available
for organizing, discovering, and managing geospatial and environ-
mental data. The SpatioTemporal Asset Catalogs (STAC) is promising as
it is optimized for geospatial indexing, retrieval, and metadata repre-
sentation of massive remote sensing data (https://stacspec.org/). It
therefore offers several key advantages over other cataloguing systems
(e.g., CKAN, Dataverse, and GeoNetwork) when dealing with LiDAR
point clouds, drone imagery, and satellite data (Schindler et al., 2023;
Zhao et al., 2021b). STAC allows a fast and efficient search using
bounding boxes, geometries, and date ranges, is optimized for cloud-

native storage, and makes it easy to discover specific data types such
as spectral bands in UAV imagery. When describing metadata in a
catalogue, existing standards should be used and extended to capture
key information on the datasets (e.g., general info, geographic and
temporal information, flight information), how data are stored (data-
bases, single files, file formats, etc.), and how they can be accessed (e.g.,
via open data platforms, institutional repositories or websites). The LAS/
LAZ format (ASPRS, 2019) already provides a good basis for the stan-
dardized description of LiDAR raw data (e.g., point clouds from national
ALS surveys), but it currently does not capture flight attributes (e.g.,
field-of-view, swath overlap, pulse rate, scan rate, and flight speeds).
Once LiDAR point clouds are processed, the derived LiDAR metrics are
typically made available as geospatial raster files (Assmann et al., 2022;
Kissling et al., 2022; Roussel et al., 2020) for which metadata can be
described using standards such as INSPIRE, ISO, and EML (Hardisty
et al., 2019). For datasets captured with UAVs, there is currently no
standardized way of describing the metadata, but the development of a
Minimum Information Framework (MIF) has been suggested to describe
UAV platforms and flight plans (Barbieri et al., 2023), including best
practice protocols for campaign flying and data pre-processing.

Fig. 7. Example of a high-throughput LiDAR workflow for generating geospatial data products of vegetation structure from national ALS point clouds. Handling the
number, sizes and volumes of files creates various challenges in terms of big data storage, computing resources, parallel and distributed processing, and open data
and methods. The example illustrates the processing of a country-wide ALS dataset of the Netherlands. See details in Kissling et al. (2022).
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4.2. Processing workflows

Like for data, existing processing workflows and scripts for habitat
condition research and monitoring are not easy to find and access.
Nevertheless, several general workflow registries and repositories exist.
For instance, WorkflowHub (https://workflowhub.eu/) is a workflow
registry that aims to facilitate discovery and re-use of workflows in an
accessible and interoperable way. Similarly, machine learning models
can be stored and shared on open-source platforms such as Hugging Face
(https://huggingface.co/). These registries and repositories are domain-
agnostic, and no workflows or machine learning models for habitat
condition metrics from LiDAR and UAV imagery are so far included.
Generalist repositories such as Zenodo can also store processing work-
flows, but those are hard to find as they are not documented in a stan-
dardized way. For software that has been developed in the Python
programming language, the Python Package Index (PyPI) provides a
software repository. The workflow management in a VRE should
therefore provide a workflow and model repository or APIs to harvest
metadata from existing workflow registries and model repositories
(Fig. 8). This should include relevant R and Python scripts and other
open-source software tools for processing LiDAR point clouds and UAV
imagery, e.g., for pre-processing and feature extraction of UAV imagery
(Fig. 4) or for re-tiling, normalization, feature extraction and raster-
ization of ALS point clouds (Fig. 7). Reproducible and FAIR workflows
for training and validating machine learning models should be made

available. This would enhance and facilitate the re-use of code for the
consistent calculation of habitat condition metrics from airborne LiDAR
and UAV data.

In addition to a workflow and model repository, a VRE could provide
additional services for workflow management (Fig. 8). For instance, the
workflow management system of the VRE would help to design new
application-specific workflows, to configure specific parameters in
workflows (as well as input and output), and to execute the processing
(Zhao et al., 2022). A provenance explorer can provide an interface for
more technically oriented users to monitor the progress of the whole
process, to interactively explore the system logs and workflow pro-
cessing history, and to identify anomalies and reproduce workflows or
problems when scheduled in the cloud (Zhao et al., 2022). When
developing the workflow management system of the VRE, notebook
environments (e.g., R-Studio and Jupyter) and popular programming
languages (e.g., Python, R, C++ and Julia) should be considered to
ensure the ease of use and friendliness of the system (Zhao et al., 2022).
Also, a range of free and open-source software tools for LiDAR and UAV
image processing are already available and should be considered. For
UAV imagery, this includes open-source software such as Open-
DroneMap (https://www.opendronemap.org/) and QGIS with its UAV
Toolbox and Orfeo Toolbox plugins (https://www.qgis.org/) which
support RGB, multispectral and thermal images, georeferencing, DTM
generation, orthomosaic creation, and geospatial data analysis. Other
examples include Meshroom (https://alicevision.org/) which is a free,

Fig. 8. A simplified illustration of a virtual research environment that enables the creation of application-specific virtual labs for habitat condition research and
monitoring. This includes data management, processing workflows, computing and web services for processing airborne LiDAR or UAV remote sensing data to extract
biotic, abiotic and landscape characteristics of habitats. Existing research infrastructures (with examples from the EU) can provide services, storage, and
computing resources.
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open-source 3D reconstruction software that provides photogrammetry
pipelines for structure-from-motion, and various other open source
hardware and software tools for UAVs (Pereyra Irujo et al., 2023). For
data obtained with LiDAR, open-source software for 3D point cloud
processing such as CloudCompare (https://www.danielgm.net/cc/), the
Point Data Abstraction Library (PDAL, https://pdal.io/en/2.6.0/), the
Geospatial Data Abstraction Library (GDAL, https://gdal.org/), the R
package LidR (Roussel et al., 2020), the Python tool Laserchicken
(Meijer et al., 2020), and Jupyter Notebooks of the high-throughput
Laserfarm workflow (Kissling et al., 2022) is available. For less-
programming oriented users, simplified and user-friendly interfaces
should be available for workflow execution, e.g., by encapsulating
different workflow steps as dockerized services with file-based input and
output (Zhao et al., 2022).

4.3. Computing services

Running workflows with UAV images and LiDAR point clouds in a
cloud-based VRE offers several advantages over personal computers,
particularly for processing, storage, and collaboration. For instance,
cloud-based VREs can automatically scale resources (compute, memory,
storage), allow to adjust processing power based on workload, and can
dramatically reduce the overall processing time by facilitating distrib-
uted computing (with advanced computational clusters, often equipped
with GPUs) and parallel processing (splitting larger datasets into smaller
chunks and process them in parallel). They also allow users to access
data and workflows from anywhere with an internet connection, making
collaboration between geographically distributed teams easy. However,
this also requires various computing services (Fig. 8), such as tools for
cloud automation that enable the execution of workflows on remote
infrastructures, including planning, automation and configuration of
VMs and computing clusters, and the scheduling of workflow execution
(Zhao et al., 2022). With such computing services, users can flexibly
adjust the configurations of the cloud environment (e.g., the number of
VMs, the number of cores per VM, the scheduled wall-time etc.), based
on the input data characteristics, data volume and the deployed work-
flow. This allows using computing resources in an efficient way.

The computing services in the VRE should utilize services and re-
sources from existing research infrastructures (Fig. 8). For instance, in
the case of Europe, LifeWatch ERIC is an e-Science European infra-
structure for biodiversity and ecosystem research, which provides
various ICT tools and services, including functionalities for VREs (https:
//www.lifewatch.eu/). The European Open Science Cloud (EOSC) is a
virtual environment for hosting and processing research data to support
EU open science, e.g., with open and seamless services for storage,
management, analysis and re-use of research data (https://eosc.eu/).
The European Grid Infrastructure (EGI) provides access to high-
throughput computing resources across Europe using grid computing
techniques, including high-throughput and cloud computing, storage,
and data management (https://www.egi.eu/). Other cloud-based host-
ing and processing solutions such as public clouds (Amazon, Microsoft
Azure, Google cloud etc.) can also be considered. Hence, basic IT ser-
vices could come from existing research infrastructures whereas the
specific services of a VRE supporting habitat condition monitoring
would have to be developed, taking already existing tools into account.

4.4. Web services

A VRE needs to be supported by an interactive, engaging, and user-
friendly web interface that gives users access to data, processing work-
flows, models, available training and validation datasets, and other
relevant tools and services (Fig. 8). This requires various digital tools for
the secure sharing and dissemination of knowledge, such as online
dashboards, web viewers, a semantic search engine, authentication and
authorization procedures for federated and distributed systems, and
automatic translation functions for different languages. Online

dashboards and web viewers would visualize the key information of the
assets (e.g., data, models, processing workflows), show the progress of
workflow execution, and provide a view on geospatial data (e.g., via a
map viewer), graphics, and summary statistics. A semantic search en-
gine could provide a web interface to search internal and external cat-
alogues (e.g., for LiDAR point clouds, UAV imagery, derived geospatial
data products, training data, workflows, scripts etc.), and also an API for
the application to invoke via Jupyter (Zhao et al., 2022). A knowl-
edgebase in the VRE could also include best practice guidelines (e.g.,
how to design UAV surveys and which metadata to record), suggestions
and templates for metadata standards and formats, and tutorials for data
management education. Finally, users from different institutions should
be able to securely access information that is distributed on different
web servers, e.g. through an authentication and authorization infra-
structure (AAI) that address the requirements of federated and distrib-
uted systems (e.g., EOSC-hub AAI in the European Union).

4.5. Research, collaboration and funding

First steps, developing some of the VRE components, have already
been made. For instance, the creation of a RDA interest group (Berman
and Crosas, 2020) with focus on ‘Small Unmanned Aircraft Systems’
Data’ will help to discuss and develop UAV data collection standards,
and a minimum information framework for collecting metadata for UAV
datasets has been described (Barbieri et al., 2023). Moreover, an effi-
cient, scalable and distributed high-throughput workflow for processing
multi-terabyte LiDAR point clouds on remote infrastructures has been
developed (Kissling et al., 2022) and a notebook-based cloud VRE in the
Jupyter environment has been implemented on the LifeWatch infra-
structure (Zhao et al., 2022). However, a much larger effort is needed to
develop a VRE that can supporting habitat condition monitoring in the
EU (Høye et al., 2023). A crucial aspect is to have support from research
infrastructures such as LifeWatch ERIC for VRE development and
maintenance and sustainable long-term funding that goes beyond the
budgets of short-term research projects. VRE development further re-
quires interdisciplinary collaborations between potential scientific users
of the virtual labs (i.e., domain scientist with expertise in ecology,
remote sensing, and geoprocessing) and computer scientists who
develop the VRE (e.g., data scientists, machine learning engineers, and
software developers). Scientific users of the VRE should also collaborate
closely with monitoring practitioners and nature conservation agencies
to ensure that the derived knowledge facilitates policy-supporting ap-
plications such as the implementation of the EU Habitats Directive and
the Natura 2000 network (Vanden Borre et al., 2011). For instance, in-
teractions with governmental agencies, community initiatives, farmers,
private landowners, environmental consultancies, and UAV and LiDAR
survey service providers are required to better understand which LiDAR
and UAV remote sensing data and tools are most relevant for a cost-
effective habitat condition monitoring. This input is key to identify
relevant habitat condition metrics that require upscaling and to develop
user friendly survey protocols, metadata tools and protocols, workflows,
and cloud-based data storage and processing services dedicated to a
standardized LiDAR and UAV data acquisition and processing. These
interactions and collaborations require an improved coordination, an
increase in financial resources, and enhanced capacity building and
stakeholder engagement (Moersberger et al., 2024). Support from
existing European research infrastructures (e.g., LifeWatch, EOSC, EGI)
together with funding from the European Commission and the estab-
lishment of a European Biodiversity Observation Coordinating Centre
(EBOCC) could help to achieve these goals (Høye et al., 2024; Liquete
et al., 2024). A close collaboration with the European Environment
Agency (EEA) is also crucial, especially to provide FAIR (meta)data
through their SDI geospatial data catalogue (https://sdi.eea.europa.eu/
), to include the European Environment Information and Observation
Network (Eionet) representing member and cooperating countries
(https://www.eionet.europa.eu/), and to interact with the European
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Topic Centre on Biodiversity and Ecosystems (ETC BE) with its thematic
expertise for the implementation of EU directives, including ecosystem
assessments (https://www.eionet.europa.eu/etcs/etc-be).

5. Conclusions

In this viewpoint article, we synthesized the challenges and potential
solutions for consistently measuring and monitoring habitat condition
from airborne LiDAR and UAV remote sensing over large spatial extents.
We propose the development of a VRE to enhance data discovery,
sharing, access, and standardization, as well as workflow reproducibility
and model transferability. This will require the application of open
standards and best practices for data collection and pre-processing, the
compilation of standardized, richly described and machine-actionable
metadata, the development of free and open-source software and FAIR
geospatial processing workflows, targeted investments and sustainable
long-term funding. The adoption of open science principles (open data,
open source, and open methods) and FAIR guiding principles, together
with close collaborations with monitoring practitioners, nature conser-
vation agencies, and national and EU bodies, and the uptake of new
data, workflows, models, and tools will substantially improve indicator
calculation and the tracking of progress towards conservation targets
and policy goals. This will ultimately help to reverse the degradation
and unsustainable use of natural resources.
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