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… catchment characteristics predict 
risk of E. coli in shellfish flesh:
-River flow
-River nitrate
-River turbidity

… CSO operation was associated 
with risk of contamination

In oysters and mussels …
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Highlights 22 

• Catchment models predict estuary risk but not levels of shellfish bed E. coli 23 

• High estuary E. coli correlates with high river flow, nitrate and turbidity 24 

• 64% of beds show a link between river flow and E. coli with 1 day lag 25 

• Combined sewer overflows (CSO) associate with high E. coli in shellfish 26 
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• Highly variable E. coli across and within estuaries prevents bed-level prediction  27 
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Abstract 28 

Sustainability of bivalve shellfish farming relies on clean coastal waters, however, high levels 29 

of faecal indicator organisms (FIOs, e.g. Escherichia coli) in shellfish results in temporary 30 

closure of shellfish harvesting beds to protect human health, but with economic consequences 31 

for the shellfish industry. Active Management Systems which can predict FIO contamination 32 

may help reduce shellfishery closures. This study evaluated predictors of E. coli concentrations 33 

in two shellfish species, the blue mussel (Mytilus edulis) and the Pacific oyster (Crassostrea 34 

gigas), at different spatial and temporal scales, within 12 estuaries in England and Wales. We 35 

aimed to: (i) identify consistent catchment-scale or within-estuary predictors of elevated E. coli 36 

levels in shellfish, (ii) evaluate whether high river flows associated with rainfall events were a 37 

significant predictor of shellfish E. coli concentrations, and the time lag between these events 38 

and E. coli accumulation, and (iii) whether operation of Combined Sewer Overflows (CSO) is 39 

associated with higher E. coli concentrations in shellfish. A cross-catchment analysis gave a 40 

good predictive model for contamination management (R2 = 0.514), with positive relationships 41 

between E. coli concentrations and river flow (p=0.001), turbidity (p=0.002) and nitrate 42 

(p=0.042). No effect was observed for catchment area, the number of point source discharges, 43 

or agricultural land use type. 64% of all shellfish beds showed a significant relationship 44 

between E. coli and river flow, with typical lag-times of 1-3 days. Detailed analysis of the 45 

Conwy estuary indicated that E. coli counts were consistently higher when the CSO had been 46 

active the previous week. In conclusion, we demonstrate that real-time river flow and water 47 

quality data may be used to predict potential risk of E. coli contamination in shellfish at the 48 

catchment level, however, further refinement (coupling to fine-scale hydrodynamic models) is 49 

needed to make accurate predictions for individual shellfish beds within estuaries. 50 

Keywords: Active management system; Public health risk; Sewage discharges; Shellfish 51 

contamination; Water quality  52 

 53 
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1  Introduction 54 

Bivalve shellfish aquaculture is considered a sustainable source of dietary protein and the 55 

industry continues to expand globally (Suplicy, 2020; Naylor et al., 2021; Krause et al., 2022;). 56 

Within the European Union, ca. 0.5 million tonnes of mussels and oysters are harvested per 57 

year with an estimated economic value of ca. €1 billion (EUMOFA, 2022). The industry, 58 

however, faces a number of interlinked threats to its sustainability including climate change, 59 

water pollution, loss of habitat, overharvesting, invasive species and shifting markets (Brown 60 

et al., 2020; Webber et al., 2021). Bivalve aquaculture farms are commonly located in sheltered 61 

estuaries and coasts, where the organically enriched waters provide an ideal food source for 62 

shellfish. However, increasing urbanisation and agriculture within coastal areas results in 63 

increased domestic wastewater discharge and surface runoff (eg agricultural pollution) to 64 

coastal water bodies, potentially containing high loads of faecal bacteria and pathogenic viruses 65 

which pose a risk to human health (Malham et al., 2014; Manini et al., 2022).  Similarly, the 66 

impact of diffuse and point source pollution affects the shellfish industry and has socio-67 

economic implications including potential loss of revenue and employment (Clements et al., 68 

2015). Because bivalves are filter feeders, shellfish may bioaccumulate pathogenic micro-69 

organisms from the surrounding environment which may ultimately enter the food chain and 70 

cause disease outbreaks (Potasman et al., 2002; Lee and Morgan 2003; Teplitski et al., 2009; 71 

Webber et al., 2021). Being able to predict in advance when the greatest risk of shellfish 72 

contamination with faecal organisms will occur therefore represents a major goal for the 73 

industry (Schmidt et al., 2018).  74 

Faecal indicator organisms (FIOs), such as Escherichia coli, typically enter the aquatic 75 

environment via human and animal faeces originating from urban wastewater discharges and 76 

agricultural runoff (Olivier et al., 2016; Malham et al., 2014). Although E. coli in humans can 77 

be considered relatively harmless, there are several strains which can be pathogenic to humans 78 

(Vásquez-García et al., 2019). Once in the water column FIOs can attach to flocculated 79 
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suspended sediment, organic material (Jago et al 2024) and plastics providing physical and 80 

chemical protection from biotic and abiotic stresses and increasing their likelihood of reaching 81 

shellfish areas (Oberbeckmann et al., 2014; Hassard et al., 2016; Garcia-Aljaro et al., 2017; 82 

Jago et al., 2024). FIO persistence and survival in estuarine and coastal areas is also dependent 83 

on the type of FIO strain and the physico-chemical properties of the environment, such as 84 

hydrodynamic flow regime, temperature, pH, turbidity, UV irradiation and salinity, as 85 

previously reviewed (Hassard et al., 2017). This inherent complexity makes prediction of FIO 86 

persistence in the environment and potential shellfish contamination difficult to achieve.   87 

Currently, public health protection monitoring for shellfish destined for human consumption 88 

in many countries is based on routine monthly sampling from specific points on the shellfish 89 

bed. The samples are tested for levels of the faecal indicator bacterium E. coli and faecal 90 

coliforms (FC) (Schmidt et al., 2018; Pinn and LeVay, 2023). The fixed monthly nature of the 91 

sampling regime carries risks both to human health and to viability of the shellfish industry. 92 

Due to short-term temporal and spatial variation in FIO presence in the coastal zone, monthly 93 

routine regulatory spot-sampling for FIOs may fail to capture episodes of high E. coli 94 

concentrations, thereby providing inadequate human health protection. The infrequent monthly 95 

repeat sampling regime may also extend closure periods unnecessarily, resulting in losses to 96 

the industry. These health and economic risks could be reduced by implementing an intelligent 97 

and reactive monitoring system which predicts likely episodes of high E. coli concentrations 98 

and predicts when concentrations are likely to reduce to a safe level (Qin et al., 2022; Campos 99 

et al., 2023).  100 

Early warning systems aim to use real-time data for risk management using statistical or 101 

deterministic models based on either simple relationships (e.g. rainfall and E. coli counts) or 102 

complex models (e.g. transport processes) (Gourmelon et al., 2010). Agencies in Australia, 103 

New Zealand, Canada and the USA utilise early warning systems, however, there is no 104 

standardised approach to detecting high FIO loads, with systems implemented differently both 105 

Jo
urn

al 
Pre-

pro
of



 

6 
 

within and between countries (Pinn and LeVay, 2023). In New Zealand for example, rainfall, 106 

river discharge and salinity are used to indicate potential faecal contamination of water using 107 

real time data collected in the catchment and compared to pre-determined criteria (Gourmelon 108 

et al., 2010). Such approaches have been primarily applied to prediction of bathing water 109 

quality on beaches, while prediction of E. coli concentrations in shellfish flesh (rather than 110 

water, e.g. Zimmer-Faust et al., 2018) and within estuaries is more challenging. Relationships 111 

between E. coli concentrations at shellfish beds and rainfall can be highly contingent on 112 

catchment and estuary characteristics (Robins et al., 2018), and location of shellfish beds 113 

(Campos et al., 2012), as well as season and tidal cycles (Lee and Morgan 2003). Estuary size, 114 

the speed that rainfall will traverse from land to sea, the presence and location of point sources 115 

(Sewage Treatment Works (STWs) and Combined Sewer Overflows (CSOs)) in addition to 116 

diffuse sources within the catchment, alongside seasonal aspects of catchment management, 117 

particularly livestock management, throughout the year, all contribute to variability in E. coli 118 

levels (Suslovaite et al., 2024; Younger et al., 2022; Hassard et al., 2016; Malham et al., 2014; 119 

Bougeard et al., 2011). Nonetheless, such predictions are possible for contaminants in shellfish. 120 

For example, Riou et al. (2007) show that viral contamination in shellfish can potentially be 121 

predicted from weather parameters and viral disease outbreaks in the human population. 122 

The aim of this study was to use a multi-scale approach to evaluate predictors of E. coli 123 

concentration in shellfish flesh of two species, the blue mussel (Mytilus edulis) and the Pacific 124 

oyster (Crassostrea gigas), at different spatial and temporal scales. Using a combination of 125 

long-term monitoring data and variables for diffuse and point sources and catchment 126 

characteristics across twelve estuaries in the UK, our aims were to: (i) identify consistent 127 

catchment-scale or within-estuary predictors of elevated E. coli levels in shellfish; (ii) evaluate 128 

whether high river flows associated with rainfall events are a significant predictor of E. coli 129 

concentrations in shellfish, and determine the time lags between these events and shellfish E. 130 
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coli accumulation, and (iii) whether operation of Combined Sewer Overflows (CSO) are 131 

associated with higher E. coli concentrations in shellfish.  132 

 133 

2. Methods 134 

2.1.Site selection 135 

Twelve river catchments and associated estuaries were selected to investigate the between- 136 

and within-estuary factors which influence E. coli levels in shellfish. All sites had commercial 137 

shellfishery operations and encompassed a range of geographic locations around England and 138 

Wales (Fig 1). The sites also encompassed a wide variation in catchment size and agricultural 139 

land use (Table 1). Specifically, the amount of improved grassland was deemed important as 140 

this represents the main land cover category for cattle and sheep grazing stock which are major 141 

contributors of diffuse catchment sources of E. coli (Kay et al., 2008). Estuaries with shellfish 142 

beds of hygiene class B and class C classifications (EC, 2015, 2019) were prioritised for 143 

selection as these reflect sites with historical issues of E. coli contamination, and are the areas 144 

where Active Management Systems would have the greatest benefit for the industry, and 145 

comprise ~85% of the monitored shellfish beds in Great Britain. However, some class A areas 146 

and some Prohibited areas were also included to ensure sufficient gradient in E. coli 147 

concentrations for analysis. The classification criteria for shellfish beds in England and Wales 148 

are: Class A ( 80% of sample results must be less than or equal to 230 E. coli per 100 g flesh; 149 

AND no results may exceed 700 E. coli per 100 g flesh), Class B ( 90% of samples must be ≤ 150 

4600 E. coli per 100 g flesh; AND all samples must be less than 46000 E. coli per 100 g flesh), 151 

Class C ( ≤ 46000 E. coli per 100 g flesh), and Prohibited (> 46000 E. coli per 100 g flesh)  152 

(EC, 2015, 2019; Malham et al., 2017; Ciccarelli et al., 2022). If E. coli levels exceed the 153 

threshold concentration of Class C, the bed is shut until levels drop below the regulation 154 

threshold for two subsequent months.  A value of 10,000 E. coli/100 g shellfish flesh is the 155 

trigger value for formal investigations with the B class classification.  Other risk factors for E. 156 

Jo
urn

al 
Pre-

pro
of



 

8 
 

coli loadings were considered, based on the literature, including rainfall and river flow, which 157 

are factors governing E. coli transport into river systems (Campos et al., 2013), and water 158 

chemistry variables (NO3
- concentrations, turbidity) which are implicated in the persistence 159 

and survival of E. coli in the environment (Campos et al., 2013; Malham et al., 2014; Malham 160 

et al., 2017).  161 

 162 

2.2. Data on E. coli concentration in shellfish flesh 163 

Data on E. coli concentrations in shellfish flesh (Maximum Probable Number (MPN), 164 

measured as E. coli per 100 g shellfish flesh; Walker et al., 2018) were collated from the routine 165 

monthly monitoring for regulatory sampling at Representative Monitoring Points (RMPs) on 166 

designated shellfish beds in the twelve estuaries. Data were collated for the eight-year period 167 

2010-2017 for E. coli levels in shellfish recorded by the national reference laboratory for 168 

shellfish hygiene (CEFAS, Weymouth, UK). The study focused on the two main shellfish 169 

species of commercial value, namely Blue mussel (Mytilus edulis) and the Pacific oyster 170 

(Crassostrea gigas). There were 131 beds sampled overall across the 12 sites (Fig. 1). The 90th 171 

percentile of E. coli counts in each year were calculated for each bed for the eight-year period 172 

between 2010 and 2017 (Mok et al., 2018; Tiwari et al., 2021; Suslovaite et al., 2024). 173 

 174 

2.3. Catchment, estuary and river characteristics 175 

Catchment areas were taken from the Water Framework Directive data held by Welsh 176 

Government for the sites in Wales and by the Department for Environment, Food and Rural 177 

Affairs for the sites in England. Catchments included the entire contributing catchment for the 178 

estuary, not just the catchment for the dominant river. Initial analysis of catchment 179 

characteristics considered the proportion of three key land cover types, obtained from CEH 180 

Landcover 2007 (Morton et al., 2011). Improved grassland was used as a proxy for cattle 181 

grazing, unimproved grassland was used as a proxy for sheep grazing, arable was used as a 182 
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proxy for sediment and fertiliser nutrient input into rivers. Following initial analysis, only 183 

improved grassland was retained as an explanatory variable. Potential urban and industrial 184 

sources were assumed to be captured in the variable ‘loading risk’ focusing on permitted 185 

discharges (see next section). Mean annual rainfall was taken from the nearest meteorological 186 

office rain gauge in the catchment. Annual river flows for the main rivers flowing into each 187 

estuary were obtained from the Environment Agency and Natural Resources Wales, and daily 188 

river flow data was obtained from the CEH National River Flow Archive (NRFA) database 189 

(https://nrfa.ceh.ac.uk/). The annual data on river flow were averaged to create a long-term 30-190 

year annual average flow, for comparison across estuaries. In addition, daily flow data were 191 

extracted for specific time periods corresponding to the monthly E. coli monitoring dates within 192 

the period 2010 – 2017 for analysis of E. coli concentrations relative to lagged daily river flow. 193 

Water quality data were obtained from the Environment Agency WIMS database which curates 194 

the Historic UK Water Quality Sampling Harmonised Monitoring Scheme, for nitrate-N and 195 

turbidity. Water quality data for the river Stour in the north Kent estuary was not available in 196 

the WIMS database, therefore data for Swalecliffe Brook was used as a proxy. While river-197 

specific data is preferable, water courses draining neighbouring catchments in areas where 198 

land-use cover and type is similar, particularly with respect to likely sources of E. coli, physical 199 

and chemical characteristics of the catchment, and consequent in-stream transport and 200 

processing, the additional uncertainty introduced is not likely to substantially alter the findings. 201 

Site characteristics are summarised in Table 1. 202 

 203 

 204 

2.4. Within-estuary point sources of E. coli 205 

Two variables were calculated to assess the influence of within-estuary point source 206 

inputs of E. coli. The first, ‘Loading risk’ was based on point sources for which permitted 207 

bacterial discharge loadings were available (e.g. urban sewage treatment works). The second, 208 

Jo
urn

al 
Pre-

pro
of

https://nrfa.ceh.ac.uk/


 

10 
 

‘Source count’ summarised the number of potential point sources, including those where 209 

bacterial discharge loads were not known. Data for both variables were obtained from the 210 

sanitary surveys for each estuary (CEFAS sanitary surveys https://www.cefas.co.uk/data-and-211 

publications/sanitary-surveys/). Loading risk was calculated for each RMP as an inverse 212 

distance-weighted loading from all continuous sewage treatment works (STWs) with known 213 

loading rates.  The ‘loading risk’ (LR) was calculated as: 214 

LR = ∑
𝑛𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎

𝑑2𝑖         (Eqn. 1) 215 

where nbacteria is the estimated bacterial loading (cfu day-1) at a given STW, and d is the linear 216 

distance (m) between that STW and the RMP. All STWs in a single estuary that had an 217 

estimated bacterial loading were used to calculate the ‘cumulative risk factor’. Where inland 218 

STWs were known to discharge to the estuary, but the exact discharge point was unknown, this 219 

was estimated based on the most likely position. 220 

Source count was calculated as the number of all potential sewage outflow points 221 

(continuous, intermittent and private sources, including Combined Sewer Overflows (CSOs)), 222 

within a 1 km radius of each RMP. 223 

 224 

2.5. Time-series data  225 

For the time-series analysis of river flow for each estuary, data for the main gauged river 226 

entering each estuary was used. Where river gauge data was not available, flow data for a 227 

similar nearby gauged river was used, on the assumption that rainfall patterns are broadly 228 

consistent geographically.  229 

 230 

2.6. Influence of CSO discharges on shellfish E. coli levels (Conwy catchment case study) 231 

For analysis of the Conwy catchment case study, rainfall data for the Conwy estuary was 232 

taken from the nearest UK Meteorological Office station at Rhyl, situated at sea level and 25 233 

km east of Conwy. River flow data was taken from the Llanrwst gauge. Welsh Water/Dŵr 234 
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Cymru provided the locations of CSOs in the Conwy estuary, and the timing of their operation 235 

from Event Monitoring Data which records when CSOs are releasing sewage. Welsh 236 

Water/Dŵr Cymru also provided estimates of CSO discharge volumes while operating. These 237 

estimates are derived from the InfoWorks ICM sewer model (Autodesk Inc., San Francisco, 238 

CA), run by the consultancy Arup Ltd, London, UK. Analysis focused on two of the 35 CSOs 239 

which might be considered as possible influences on E. coli numbers in mussels in the Conwy 240 

estuary, based on their position in the catchment (closest to the mouth of the estuary where the 241 

shellfish beds are located). 242 

 243 

2.7. Data preparation and analysis 244 

All statistical analyses were carried out using the program R version 3.3.1 (R 245 

Development Core Team 2016). Statistical analysis was undertaken on the 12 selected 246 

catchments and associated 131 nearshore mussel and oyster beds. To test for the effects of 247 

between-estuary and within-estuary factors, annual E. coli data were averaged over the eight 248 

years to give an average annual 90th percentile E. coli value for each bed. Values were log-249 

transformed to reduce the influence of outlier values. A linear mixed effects model (LMM) was 250 

used to test for significant effects, including both catchment-level characteristics and within-251 

estuary variables. Estuary was included as a random effect to account for nesting of ‘bed’ 252 

within ‘estuary’. Initial explanatory and response variable data were assessed for outliers in the 253 

response and collinearity among the explanatory variables. The LMM was fitted by first scaling 254 

the selected explanatory variables. Significant relationships between each of the main effects 255 

on E. coli log abundances was assessed via permutation tests (Chihara et al., 2018). The full 256 

model is: log(bac90) ~ catchment area + improved grassland + flow + turbidity + nitrate + 257 

loading risk + source count + species + (1|estuary).  Each permutation test consisted of first 258 

calculating the log-likelihood ratio between the model with the main effect (full model) and 259 

the model with the main effect removed (reduced model). We then compared this ratio to the 260 
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respective null distribution, which was determined by permuting the main effect N=1000 times. 261 

If the log-likelihood ratio for full model vs reduced model was greater than the log-likelihood 262 

of the permuted model vs reduced model for at least 95% (i.e. p ≤ 0.05) of the permutation 263 

outcomes the main effect was deemed significant. This modelling approach was used to 264 

develop a predictive relationship for E. coli concentrations in shellfish flesh based on 265 

catchment characteristics. 266 

In a separate analysis, possible lagged flow effects on E. coli counts were assessed, 267 

using 2012 as an example year. Regression analyses of logged E. coli counts on logged daily 268 

river flows included ‘no lag’ and lag periods of 1 to 7 days. Paired plots were used to examine 269 

within-estuary variability of E. coli concentrations between RMP monitoring locations. Plotted 270 

pairs correspond to a day on which a sample was taken at each of the sites being compared. In 271 

some cases, there was no overlap in sampling days so no basis for a paired plot. The paired 272 

plots also include comparison of concentrations with daily mean flow in the associated river. 273 

Time-series data for the Conwy were analysed for relationships of E. coli with river flow, and 274 

with CSO operation. Analysis of variance was used to compare E. coli counts when there was 275 

no CSO activity at Deganwy pumping station or Llanrwst Road, with counts for periods when 276 

the CSO had been active during the previous week. 277 

 278 

3. Results 279 

Median values of the 90th percentile of E. coli concentrations in shellfish flesh in each year 280 

show considerable variation among the 12 estuaries (Fig. 2). The Fal and the Taw sites, both 281 

in south-west England show the highest concentrations of E. coli in shellfish flesh (ca. 500-282 

3000 E. coli/100 g). The lowest levels were in the Blackwater estuary in eastern England and 283 

Menai in Wales (<250 E. coli/100 g). However, there is no consistent national geographical 284 

pattern to the variation in shellfish E. coli concentrations with the results appearing to be highly 285 

estuary-specific.  286 
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Analysis of the factors contributing to high shellfish E. coli concentrations across the 12 287 

estuaries revealed a significant positive relationship with increasing river flow (p ≤ 0.001), 288 

river water nitrate concentration (p = 0.042) and turbidity (p = 0.002). In addition, E. coli 289 

concentrations were also found to be significantly greater in mussels compared to oysters (p < 290 

0.05). We found no significant effect of the proportion of improved grassland (i.e. livestock 291 

areas) in the catchment (p = 0.178), or catchment area (p = 0.207), or of variables summarising 292 

risk from within-estuary sources: loading risk (p = 0.542), source count (p = 0.232) and E. coli 293 

levels in shellfish.  Overall, the predictive model of shellfish E. coli concentrations performed 294 

well against our observed data, with an adjusted R2 value of 0.514 (Fig. 3) 295 

The model described above tested if significant general relationships existed across 296 

catchments with long-term river flow. In addition, relationships with river flow for multiple 297 

mussel bed sites in each estuary were also tested. Across the twelve estuaries, this analysis 298 

showed that 64% of all beds showed a significant relationship with river flow in the preceding 299 

week. For most significant relationships, there was a time lag in the response, with a one-day 300 

lag being the most common, with the next most common being no time lag between high river 301 

flow events and shellfish contamination (Fig. 4). Some beds also showed significant 302 

relationships at a range of lag times (Table S1) illustrating that relationships with river flow 303 

are not straightforward. Lag times up to seven days between high flow and E. coli 304 

contamination were tested, however, we found no significant relationships with time lags 305 

greater than 3 days. Only the Crouch and the Wash estuaries, both on the east coast of England, 306 

showed a significant lag at three days, and even then, it was only observed for some shellfish 307 

beds. There was often a considerable variation in lag times among beds in the same estuary, 308 

including beds showing no relationship with flow (Table S1). In addition, in no estuary was 309 

there a consistent response of all beds to flow (Table S1). 310 

Paired plot analysis among shellfish beds within each estuary demonstrated a weak 311 

relationship between flow and E. coli concentration in mussels (Fig 5).  Further analysis of the 312 
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log scaled data indicated a relationship at low to medium river flow and low to medium E. coli 313 

counts but little association between high river flows and high bacterial counts. Analysis of 314 

variation of E. coli levels within estuaries showed that at a particular point in time beds often 315 

had widely varying E. coli concentrations in shellfish flesh. Figure 5 shows these relationships 316 

for six selected estuaries. Barrow estuary in north-west England and the Wash estuary in 317 

eastern England both showed weak correlations of E. coli levels among beds within the estuary. 318 

By contrast, the Taw estuary in southwest England and the Conwy estuary in north Wales 319 

showed reasonably strong correlations in values among beds, while the Frome estuary in the 320 

south and the Fal estuary in southwest England, showed a mix of strong and weak correlations 321 

among beds. 322 

Analysis of time series data for mussel beds in the Conwy estuary showed complex 323 

relationships with daily mean flows (see example year 2014 in Fig. 6). Modelled CSO release 324 

did not always coincide with high rainfall, and individual beds did not show consistently high 325 

E. coli counts. Nevertheless, when split into periods before and outside of a modelled CSO 326 

event, E. coli counts were consistently higher when the CSO had been active the previous week 327 

(Fig.7). 328 

 329 

4. Discussion 330 

4.1. Development of predictive models for E. coli contamination in shellfisheries 331 

Our findings suggest that catchment level characteristics can be used to predict the type of 332 

estuaries in England and Wales and prevailing factors under which shellfish may be at greater 333 

risk of high E. coli loads and subsequent contamination. Estuaries at greater risk are those 334 

containing rivers with high flow volumes, high nitrate, and high turbidity. Local permitted 335 

discharges within estuaries (e.g. from wastewater treatment plants) do not appear to be a risk 336 

factor when they are operating normally. However, a more detailed analysis of one estuary 337 

with more extensive data suggests that there is an association between operation of CSOs which 338 
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release untreated sewage and high E. coli levels in shellfish. We note that this is not necessarily 339 

causal and further work would be required to validate this. In all the estuaries studied here, we 340 

observed a high variability in shellfish E. coli levels among individual beds within an estuary. 341 

This highlights the challenge in developing predictive models for E. coli contamination for 342 

shellfisheries and probably reflects differences in hydrodynamic flow which can change both 343 

seasonally, across tidal cycles and in response to lateral and longitudinal shifts in sediment 344 

dynamics (Dunn et al., 2015; Matte et al., 2017; Robins et al., 2019). Similarly, we found 345 

different time lags for relationships with river flow and E. coli accumulation in shellfish, even 346 

within the same estuary. Hence, the use of fine-scale hydrodynamic and sediment transport 347 

catchment-to-coast models could be applied to improve E. coli predictions (e.g., Bashawri et 348 

al 2020; Huang et al. 2022). Whilst such models capture estuarine tidal and density-driven 349 

circulation and sediment transport (e.g. Huybrechts et al 2022), advancements in this field will 350 

lead to improved model simulations of turbulent mixing, various aggregation and settling 351 

processes including flocculation of organic material (Bi et al. 2020) and binding of suspended 352 

materials with bacteria (Shen et al. 2024), bottom boundary layer dynamics in tidal settings 353 

(Davies et al. 2023), and the response of bacteria to fluctuating environmental conditions such 354 

as water temperature, salinity, turbidity, and sunlight (Carneiro et al. 2018; Garcia-Garcie et 355 

al. 2021).  356 

 357 

4.2. Prediction of E. coli contamination risk at a catchment level 358 

The catchment characteristics which were predictors for long-term high E. coli loadings 359 

in shellfish for an individual estuary reflect the range of factors which broadly contribute to 360 

elevated risk. For example, livestock and particularly dairy cattle, are a known source of 361 

microbial contaminants to water courses (Vinten et al., 2004; Oyafuso et al., 2015). The 362 

significant relationship between high nitrate levels and bacterial loadings suggests that runoff 363 

from intensively used agricultural land may have been a source of E. coli. Sustained turbidity, 364 
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as opposed to episodic high turbidity levels during storm events, may be a feature of catchments 365 

with relatively little riparian vegetation or bank protection allowing the easy transport of soil 366 

and agricultural waste into water courses (Cole et al., 1999). High levels of suspended 367 

particulate matter also acts as surfaces for adherence of faecal coliforms (Perkins et al., 2016; 368 

Hassard et al., 2017) and can increase their survival time in the environment (Poomepuy et al., 369 

1992; Alkan et al., 1995). Hence, pathogens in turbid water are likely to be more persistent and 370 

to be transported further than they would in less turbid conditions (Fries et al., 2008). Land use 371 

type was not a good predictor of E. coli in shellfish. Future models should therefore focus on 372 

more direct measures of livestock contributions of E. coli in watercourses, including stocking 373 

density, distance of livestock to watercourses and farm waste management practices (e.g. slurry 374 

spreading) (Oliver et al., 2018). There are some potential limitations to the modelling. With 375 

only twelve estuaries, it was not possible to test all possible factors. For example, urban-376 

dominated catchments might differ from rural-dominated catchments due to the different 377 

balance of point vs diffuse sources. This aspect could be explored in further work. Future 378 

models could also test a range of modelling approaches, including GAMs and machine 379 

learning. 380 

 381 

4.3. Relationships between E. coli in shellfish and river flow 382 

Relationships with river flow in this study were complex. While other studies have 383 

shown strong relationships with flow volume (Campos et al., 2011; Campos et al., 2015), the 384 

time series analysis here showed only weak relationships, and mainly at intermediate rather 385 

than high flows. The first flush phenomenon may explain why high flow alone is not a good 386 

predictor of FIO loading. The first flush of heavy rainfall washes surface material including 387 

livestock faeces and other contaminants into waterways, but subsequent rainfall which 388 

maintains high river flows will carry much lower sediment and contaminant load (Bach et al., 389 

2010). It should also be noted that many previous modelling studies have had a focus on water 390 
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quality for bathing (Huang et al., 2017), and the shellfish hygiene aspect has had less coverage 391 

(Bougeard et al., 2011; Schmidt et al., 2018). In this multi-estuary analysis we found the most 392 

common lag time with river flow was only 1 day, or there was no lag. Our results broadly 393 

confirm the range of lag times of river flow or rainfall with E. coli response reported by other 394 

authors, from 0 to 3 days (Campos et al., 2011; Schmidt et al., 2018). There are also temporal 395 

delays in peak E. coli loads in shellfish compared with E. coli loads in water due to timescales 396 

of accumulation and depuration in situ (Campos et al., 2011; Sharp et al., 2021), as well as 397 

effects mediated by longer-term persistence within the estuary and in sediment (Campos et al., 398 

2013) after high load events. It is also possible that different species may exhibit varying lag 399 

times of response due to their different feeding behaviours and filtration rates.  400 

 401 

4.4. Relationship of E. coli in shellfish and the release of sewage from CSOs and other point 402 

sources 403 

The within-estuary routine discharges from permitted effluent sources under normal 404 

operating conditions do not appear to be a predictor of high E. coli. Either these sources do not 405 

release large quantities of E. coli, or they are sufficiently diluted by mixing in seawater, or the 406 

degree of pre-treatment of any released effluent is sufficient to reduce the risk of accumulation 407 

in shellfish flesh in the study estuaries. However, the case-study analysis suggested a strong 408 

association with CSO operation, and this is potentially a much greater source since these flows 409 

are untreated. This is consistent with other UK studies (Campos et al., 2013; Garcia-Garcia et 410 

al., 2021), but does not necessarily indicate causality. While it is certainly possible that CSOs 411 

are a major source, the data provided for use in this study are outputs of sewerage network 412 

modelling of the conditions likely to lead to CSO. Combined sewage overflow events also 413 

correspond with when contaminants are most likely to be washed off agricultural land and into 414 

watercourses, making direct causal inference difficult. There is also the possibility that 415 
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unrecorded discharges from CSOs may be contributing to E. coli in coastal waters (Hammond 416 

et al., 2021). 417 

 418 

4.5. Within estuary variability in shellfish E. coli contamination 419 

The high variability of E. coli concentrations among individual shellfish beds within 420 

estuaries, and the variability in lag times, or complete lack of relationship with river flow 421 

represents a major problem for predictive modelling. These findings suggest that individual 422 

shellfish beds may be highly context-dependent, with very specific local sources, or that the 423 

patterns and timings of water movement within estuaries are highly complex (Van Niekerk et 424 

al., 2019; Alabyan et al., 2022). Taken together, these make the prediction of water quality for 425 

shellfish hygiene more challenging than for bathing water quality. Water movement within 426 

estuaries is influenced by tidal cycles, wind speed and direction, river flows, and estuary 427 

morphology (Garcia-Garcia et al., 2021; Chao, 1990; Burningham, 2008). Hydrodynamic 428 

modelling could therefore greatly help understand how risk from different contaminant sources 429 

will affect individual beds and support and refine the models developed here (de Brauwere et 430 

al., 2011; Robins et al., 2019). In addition, there is high variability in the measurement 431 

technique of E. coli using the MPN method (Lee and Murray, 2010; Walker et al., 2018), and 432 

this large uncertainty gives a low signal-to-noise ratio, reducing the accuracy of predictive 433 

modelling. Analysis of the statistical properties of the MPN method and an additional ISO 434 

accredited method, the Pour Plate method demonstrated differences in the statistical properties 435 

of the two methods, with the pour plate method exhibiting lower intrinsic variability, further 436 

tested using a spiking experiment. Overall, the Pour Plate method was more reliable over 437 

crucial classification boundaries (Cooper et al., 2024). The use of Pour Plate data for regulatory 438 

testing may improve accuracy of the classification system, in turn improving the explanatory 439 

power of predictive models. Further research is required into its potential use in Active 440 

Management programmes.   441 
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 442 

5. Conclusions 443 

Utilising statutory reporting data collected from shellfish classification areas and from 444 

environmental databases it was possible to predict risk at an estuary level , with reasonably 445 

good model fit (R2 value = 0.514).  Significant positive explanatory variables included river 446 

flow, river water nitrate and turbidity. Under normal operating conditions, consented 447 

discharges from sewage treatment works within estuaries did not appear to be a major source 448 

of E. coli in shellfish. However, the case-study analysis suggests that the operation of CSOs 449 

within the Conwy catchment was associated with an elevated risk of E. coli in shellfish. This 450 

association does not indicate causality, since common factors can lead to both CSO operation 451 

and overland flow potentially confounding attempts to apportion sources to the FIOs detected. 452 

For example, high intensity rainfall during summer storms, particularly when falling onto 453 

saturated ground, would be associated with surface runoff which could flush E. coli into 454 

watercourses, and would lead to surface drainage in urban systems which would overload 455 

sewerage systems and trigger CSO operation. Further analysis would be required to determine 456 

whether this association is found in other areas and where the attribution lies.   457 

The data analysed in this study across multiple estuaries indicate that the relationships with 458 

environmental factors and E. coli concentrations appear to be estuary-specific, and indeed 459 

shellfish bed-specific, and exhibit a high level of both spatial and temporal variation.  460 

Therefore, predicting risk at the level of the shellfish bed still represents a major problem for 461 

the industry. Although this study revealed no simple risk factors underlying shellfish 462 

contamination, the findings suggest that a focus on catchment locations, hydrological 463 

conditions and their interactions with meteorology i.e. the factors which govern rainfall-464 

induced runoff or discharge into river systems would be more fruitful than a focus on permitted 465 

discharges. Therefore, it may be possible using a combination of higher frequency data 466 

collection under a range of rainfall and tidal conditions, and modelling approaches including 467 
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hydrodynamic modelling within an estuary, to develop an effective predictive tool at shellfish 468 

bed-level. with sufficient accuracy to underpin an Active Management System. Installing 469 

telemetered sensors at key locations, allowing both real-time monitoring and linking to 470 

meteorological forecasting would facilitate development of a predictive warning system.    471 
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Table 1. Characteristics of the 12 estuaries across England and Wales used in the analysis of E. coli concentrations in shellfish. River flow, water 

turbidity and nitrate-N concentrations are average values for the main river entering each estuary. Loading risk and Source count are averaged for 

all Representative Monitoring Points (RMPs) within each estuary. # Data presented in this table for Loading risk, Source count and RMP E. coli 

are averages across beds within an estuary (see Section 2.4 for more details). ## Helford shares flow and water chemistry data with the river Fal 

since the catchments adjoin, have similar land use, and only the Fal is flow gauged.  

Estuary 

name 

Catchment area 

(km2) 

Improved 

grassland (%) 

Flow 

(m3 s-1) 

Turbidity 

(NTU) 

NO3-N 

(mg L-1) 

Loading 

risk# 

Source count# 

(within 1 km) 

RMP E. coli# (90th 

percentile) 

Barrow 1,296 38.7 5.2 1.39 0.64 5,269,860 2.8 413 

Blackwater 1,263 17.6 1.4 6.89 6.98 3,610,051 0.5 1,319 

Burry 486 38.5 2.2 13.07 1.00 499,274 1.5 1,175 

Conwy 672 27.9 19.8 1.67 0.51 595,772 2.4 1,281 

Crouch 370 23.4 0.3 12.28 4.11 623,874 0.3 1,492 

Fal 701 27.3 2.0 20.30 3.93 162,192 0.5 19,672 

Helford## 147 29.3 2.0 20.30 3.93 425,059 1.0 1,578 

Kent 193 21.1 3.1 5.60 2.76 686,675 0.8 1,049 

Menai 577 33.4 4.7 1.70 0.48 839,536 2.0 253 

Poole 826 31.2 6.6 8.25 5.72 509,953 0.4 1,379 

Taw 2,107 50.5 18.3 8.26 2.14 29,888 1.4 4,084 

Wash 15,992 14.8 3.4 8.88 5.95 6,742,788 0.1 954 
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Fig. 1. Map showing the location of the 12 estuaries across England and Wales used in the 

analysis of catchment-scale or within-estuary predictors for elevated E. coli concentrations in 

shellfish. All sites have mussel beds, site names followed by # contain oyster beds in addition 

to mussels. 
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Fig. 2. Boxplots showing the 90th percentile E. coli values (E. coli/100 g) in shellfish (mussels 

and oysters) from 12 different estuaries in England and Wales. Note: 3 extreme outlier values 

of 190,000 and 43,097 in the Fal, and 15,000 in the Taw are not presented. Each box plot shows 

the Bac90 distribution for each estuary with the whiskers representing the 1st and 3rd quartile 

range and the points showing points outside this range. 

 Jo
urn

al 
Pre-

pro
of



 

 

Fig. 3. Log(observed 90th percentile) actual measures of E. coli concentrations in shellfish 

(oysters and mussels) versus model fitted values for E. coli loads in 12 different estuaries in 

England and Wales. The line is the fitted linear model with the shaded area showing the 95% 

CI.  
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Fig. 4. Number of shellfish beds (RMPs) where E. coli concentrations in shellfish (mussels 

only) were significantly related to river flow, at varying lag times (days) since high flows. 

Some RMPs showed significant lags at more than one interval. Lags were tested to 7 days, but 

none were significant beyond 3 days. n.s. = RMPs with no significant lags. See Table S1 in 

Supplementary Material for more detail. 
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Fig. 5. Correlations among E. coli concentrations in shellfish at representative monitoring 

points (RMPs) within shellfish beds (mussels only) in 6 different estuaries across England and 

Wales: (a) Barrow, (b) Wash, (c) Taw, (d) Conwy, (e) Frome/Poole, (f) Fal. First column/row 

shows flow, subsequent columns/rows are RMP locations within each estuary.  
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Fig. 6. Annual time series of E. coli counts in mussel flesh in the Conwy estuary, daily flow in 

the river Conwy, daily rainfall at Rhyl, and daily combined sewer overflow (CSO) discharge 

at Llanrwst (approximately 20 km upstream from the mussel beds), for 2014. Coloured dots 

represent data from individual beds; red line represents 10,000 cfu trigger for Class B 

investigations. 
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Fig. 7. Average annual values for E. coli concentrations in mussels at representative monitoring 

points (RMPs) during periods with no combined sewer overflow (CSO) release (blue bars) and 

during the week after a CSO release in the Conwy estuary (orange bars). 
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Highlights 

• Catchment models predict estuary risk but not levels of shellfish bed E. coli 

• High estuary E. coli correlates with high river flow, nitrate and turbidity 

• 64% of beds show a link between river flow and E. coli with 1 day lag 

• Combined sewer overflows (CSO) associate with high E. coli in shellfish 

• Highly variable E. coli across and within estuaries prevents bed-level prediction 
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