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Abstract: Host genetics and environmental factors have been associated with effects on the mouse
fecal microbiome; however, the commercial source of mice remains the dominant factor. Increasing
evidence indicates that supplier-specific microbiomes confer differences in disease susceptibility in
models of inflammatory conditions, as well as baseline behavior and body morphology. However,
current knowledge regarding the compositional differences between suppliers is based on targeted-
amplicon sequencing data, and functional differences between these communities remain poorly
defined. We applied a multi-omic (metagenomic and metatranscriptomic) approach to biomolecules
extracted from murine feces representative of two U.S. suppliers of research mice, which differ
in composition, and influence baseline physiology and behavior as well as disease severity in
models of intestinal disease. We reconstructed high-quality metagenome-assembled genomes,
frequently containing genomic content unique to each supplier. Transcriptional activity and
pathway analyses revealed key functional differences between the metagenomes associated with
each supplier including carbohydrate, fatty acid, and sulfite metabolism. These data provide a
detailed characterization of the baseline differences in the fecal metagenome of mice from two U.S.
commercial suppliers, suggesting that these functional differences are influenced by differences
in the initial inoculum of colony founders, as well as additional taxa gained during growth of the
production colony.

Keywords: gut microbiome; metagenomics; metatranscriptomics; The Jackson Laboratory; Inotiv

1. Introduction

Host-associated microbiomes, such as the gut microbiome (GM), exert strong effects on
host physiology, susceptibility or resistance to various conditions, and response to treatment
and dietary challenges. Investigations at the population level suggest that differences in
the human GM are responsible for a large portion of the variability within individual host
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responses to a given dietary challenge [1,2] or medical treatment [3-5], implying that the
GM is an important consideration in precision health and medicine strategies. Similarly,
the GM of laboratory mice within the biomedical research community is highly variable
due to numerous covariates (e.g., diet, bedding) [6,7], and these compositional differences
have been associated with differences in host fitness in the context of uniform host genetics
and environment [8-12]. One of the dominant factors contributing to the population-
level variability in specific pathogen-free (SPF) mouse microbiomes is the commercial
source of mice [13-15]. Previous studies have demonstrated reproducible differences in
the GM richness and beta diversity, irrespective of host genotype (i.e., strain) within each
supplier [12,13]. Specifically, the GM of mice supplied by The Jackson Laboratory and
Inotiv (formerly Envigo) are characteristically of low and high richness, relative to each
other, and each comprises unique taxa, in addition to an apparent core population of
bacteria common to both sources. The latter includes members of the semi-standardized
altered Schaedler flora (ASF) [16,17], reflecting the common procedures used to establish
mouse production colonies on a commercial scale. Suppliers often surgically transfer
embryos of the desired genotype to a pseudopregnant surrogate dam colonized with
ASF, which then seeds the initial generation of offspring with that limited microbiome
comprising eight to ten cultivable bacteria [18]. These mice are then used to establish
multiple generations of filial mating to expand the colony, during which time mice are
housed in large open-top caging systems and allowed to become colonized with additional
bacteria from the environment. It is believed that subtle environmental differences are
responsible for the reported supplier-origin differences, as well as the differences between
multiple distribution facilities of the same supplier [13] or changes within a supplier over
time [19,20].

However, GMs with different taxonomic compositions may possess qualitatively
similar functional capacities [21,22]. It is therefore unclear whether the different GMs
colonizing mice from The Jackson Laboratory and Inotiv are functionally different. Owing
to the reported influence of these GMs in multiple mouse models of disease [23,24], we
hypothesized that the compositional differences result in substantial functional differences,
as evaluated by the metatranscriptome. Any detected differences in the functional capacity
of the fecal microbiome could therefore be due to differences in the ASF isolates maintained
by each institution, the environmental exposures during colony expansion, or both. As
researchers continue to leverage the inherent differential effects of these complex GMs as a
population-level model of human host-microbe interactions, it is important to understand
the differences in the metagenome and transcriptional activity of mice from these different
suppliers, and the origin of any detected differences. With those goals in mind, fecal
samples from healthy adult CD-1 mice colonized with a The Jackson Laboratory-origin or
Inotiv-origin GM (GMLow and GMy;gp, respectively) were collected and used as the source
of DNA and RNA for metagenomic and metatranscriptomic analyses using a re-iterative
co-assembly procedure. We report here the identification of 86 high- and medium-quality
novel and previously identified metagenome-assembled genomes (MAGs), analyzed and
compared in the context of the two source GMs, and a detailed description of the functional
differences between mice from these two commercial sources of SPF mice.

2. Materials and Methods
2.1. Mice and Sample Collection

Mice contributing fecal samples were eight-week-old, female, CD-1 mice produced
by breeding colonies maintained at the MU Mutant Mouse Resource and Research
Center (Columbia, MO, USA) in accordance with the Guide for the Care and Use of
Laboratory Animals approved by the University of Missouri Institutional Animal Care
and Use Committee (IACUC, protocol 9587). Mice colonized with GMLow or GMpigh [24]
were housed in microisolator polycarbonate cages on individually ventilated racks,
under positive pressure. All husbandry was performed in accordance with barrier
conditions, including the use of autoclaved, irradiated chow, autoclaved, acidified water,
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and autoclaved bedding. Biweekly cage changes occurred in a laminar flow hood using
bead-sterilized forceps to transfer mice between cages, by personnel wearing bleach-
disinfected latex gloves. Mice were on a 12:12 light/dark cycle and were determined
to be free of all known pathogens based on comprehensive quarterly sentinel testing
through IDEXX BioAnalytics.

Fecal samples were collected by placing each mouse into an empty, autoclaved, mi-
croisolator cage, allowing the mouse to defecate normally, and collecting the pellet into a
sterile 1 mL cryovial using an autoclaved wooden toothpick. Cryovials were then sealed
and flash-frozen in liquid nitrogen. Separate fecal pellets were collected from each mouse
for DNA and RNA extraction.

2.2. Power Analysis

A sample size of three mice per GM was selected to attain a power of 0.8 and a 5% alpha
error rate. There are currently no published data similar to the present study on which to
base sample size estimations; thus, we followed the recommendations of de Neis et al. [25]
which used a similar sequencing approach and study design. Additionally, we relied
upon previous targeted-amplicon sequencing analyses of GM[qw and GMp;g, Which have

revealed significant differences in beta diversity with a large effect size (w? = 0.467) [26].

2.3. DNA Extraction

Fecal DNA was extracted using PowerFecal kits (Qiagen, Hilden, Germany) per the
manufacturer’s protocol, with the exception that the initial sample disaggregation was
performed with a TissueLyser II (Qiagen), operated at 30 Hz. DNA yields were eluted in
50 pL sterile water, quantified using Qubit 2.0 fluorometer and Quant-iT dsDNA Broad
Range (BR) Assay kits, and diluted to a uniform volume and concentration.

2.4. RNA Extraction

Fecal RNA was extracted using MagMAX mirVana Total RNA Isolation kits (Thermo
Fisher, Waltham, MA, USA) per the manufacturer’s protocol. RNA yields were eluted in
50 pL sterile water, quantified using Qubit 2.0 fluorometer and Quant-iT RNA Broad Range
Assay kits, and diluted to a uniform volume and concentration.

2.5. Metagenomic Library Preparation

Metagenomic libraries were generated from genomic DNA (250 ng) per the manu-
facturer’s protocol with reagents supplied in the Illumina DNA Prep, Tagmentation Kit
(Ilumina, San Diego, CA, USA). The sample concentration was determined using the Qubit
dsDNA high-sensitivity (HS) assay kit (Thermo Fisher). Genomic DNA was fragmented,
and short adapter sequences ligated to the ends by bead-link transposomes. Tagmented
DNA was amplified using a minimum number of PCR cycles [5] to complete adapter
sequences required for cluster generation and the addition of unique dual indexes. Fi-
nal libraries were purified by addition of Axyprep Mag PCR Clean-up beads (Corning,
Tewksbury, MA, USA). The final construct of each purified library was evaluated using the
Fragment Analyzer, quantified using the Qubit HS dsDNA assay kit, and diluted according
to Illumina’s standard sequencing protocol.

2.6. Metatranscriptomic Library Preparation

Metatranscriptomic libraries were generated from total RNA (800 ng) per the man-
ufacturer’s protocol with reagents supplied in NEBNext® rRNA Depletion Kit (Bacteria;
New England Biolabs, Ipswich, MA, USA) followed by fragmentation and synthesis of
cDNA using the Illumina Stranded mRNA Prep, Ligation Kit. The sample concentration
was determined using the Qubit RNA HS assay kit, and the RNA integrity checked using
the Agilent Fragment Analyzer automated electrophoresis system. The rRNA was first
removed from total RNA by hybridization probes using the NEBNext kit instead of poly-A
RNA enrichment. The rRNA-depleted samples were then precipitated and fragmented,
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and double-stranded cDNA was generated from fragmented RNA, and short adapter
sequences ligated to the ends. The cDNA constructs were amplified using a minimum
number of PCR cycles [10] to complete adapter sequences required for cluster generation
and the addition of unique dual indexes. The final libraries were purified by addition
of Axyprep Mag PCR Clean-up beads. The final construct of each purified library was
evaluated using the Fragment Analyzer, quantified using the Qubit HS dsDNA assay kit,
and diluted according to Illumina’s standard sequencing protocol. Paired-end 150 base
pair-length reads were sequences using an Illumina NovaSeq 6000 instrument (Illumina,
San Diego, CA, USA). All six metagenomic and six metatranscriptomic libraries were
pooled to yield approximately 40 Gb per metagenomic library and 190 million paired end
reads per metatranscriptome library.

2.7. Meta-Omic Preprocessing, Assembly, Binning, and Analyses

For processing metagenomic sequence data, we used the Integrated Meta-omic
Pipeline (IMP) workflow [27] to process paired forward and reverse reads using ver-
sion 3.0 (commit# 9672c874; available at https://git-r3lab.uni.lu/IMP /imp3; Accessed on
15 January 2021). IMP includes pre-processing, assembly, genome reconstructions, and ad-
ditional functional analysis of genes based on custom databases in a reproducible manner.
Briefly, adapter trimming was followed by filtering the reads against the mouse refer-
ence genome (GRCm38, https:/ /www.ncbi.nlm.nih.gov/assembly/GCF_000001635.20/;
Accessed on 15 January 2021) to remove any reads mapping to the host, i.e., mice.
Thereafter, an iterative co-assembly of both the metagenomic and metatranscriptomic
reads using MEGAHIT v1.2.9 [28] was performed. Concurrently, MetaBAT2 v2.12.1 [29],
MaxBin2 v2.2.7 [30], and binny [31] were used for binning the assembly, for reconstruct-
ing metagenome-assembled genomes (MAGs). Upon completion of binning, we used
DASTool [32] to select a non-redundant set of MAGs using a recommended threshold
score of 0.7. Furthermore, CheckM v1.1.3 [33] was used to assess the quality of the
MAGs, and the GTDB-toolkit [34] was used to assign the taxonomy per MAG. To es-
timate the overall abundances of eukaryotes, EUKulele v1.0.5 [35] was used on the as-
semblies, with both the MMETSP and the PhyloDB databases. Each of the databases
were run separately to confirm the detected eukaryotic profiles, whereby conflicts in
assigned taxonomy were resolved by selecting the best hit score. To understand the
overall metabolic and functional potential of the metagenome and reconstructed MAGs
we used MANTIS [36] which annotates both assemblies and MAGs alike using several
databases such as KEGG [37,38], PFAM [39], and CAZyme [40]. All the parameters,
databases, and relevant code for the analyses described above are openly available at
https:/ /github.com/susheelbhanu/mice_multiomics_mmrrc (Accessed on 15 January
2021) and included in the Code availability section.

2.8. Phylogenomics, Pangenome Construction and Differential Analyses

To perform the pangenome analyses, bins with the same level of taxonomic resolu-
tion, i.e., genus or family level, were collected. They were subsequently subjected to the
pangenome workflow as described here http://merenlab.org/2016/11/08/pangenomics-
v2 (Accessed on 15 January 2021), by Meren et al. within the anvi’o [41] ecosystem. For the
Saccharibacteria pangenome analysis, two existing genomes (accession IDs: CP040003 and
CP040004.1) from Genbank were downloaded. The pangenome was run using the --min-bit
0.5, -mcl-inflation 10, and --min-occurrence 2 parameters, excluding the partial gene calls.
A phylogenomic tree was built using MUSCLE v3.8.1551 [42] and FastTree2 v2.1.10 [43] on
all single-copy gene clusters in the pangenome that were present in at least 30 genomes and
had a functional homogeneity index below 0.9, and geometric homogeneity index above
0.9. The phylogenomic tree was used to order the genomes, the frequency of gene clusters
(GC) to order the GC dendrogram. For the Saccharibacteria phylogenetic tree, we used
the Entrez Direct tools available at https:/ /www.ncbi.nlm.nih.gov/books/NBK179288/
(Accessed on 15 January 2021), to fetch all genomes labelled as ‘Saccharibacteria’, within
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NCBI. Following this, the genomes were input to the GToTree v1.5.51130 [44] pipeline with
the -D parameter, allowing us to retrieve taxonomic information for the NCBI accessions,
where the tree was built using ‘Bacteria and Archaea” marker genes. Briefly, HMMER3
v3.3.2 [45] was used to retrieve the single-copy genes after gene-calling with Prodigal
v2.6.3 [46] and aligned using TrimAl v1.4.rev15 [47]. The entire workflow is based on GNU
Parallel v20210222134.

2.9. Data Analyses and Figures

The heatmaps were generated using the ggplot2 package while the volcano plots
were built using the EnhancedVolcano package found at https://github.com/kevinblighe /
EnhancedVolcano (Accessed on 15 January 2021). The correlation matrices were generated
using the corrplot package. Furthermore, for the differential analyses, we used DESeq?2 [48]
with FDR and multiple-testing adjustments to assess enriched KOs, pathways, and expres-
sion levels. For the Saccharibacteria tree visualization the following packages from the R
environment were used: ape, ggree, ggtreeExtra, and treeio.

3. Results
3.1. Metagenomic, Metatranscriptomic, and Taxonomic Summary

To establish a taxonomic and functional profile, using IMP [49] (v3, commit #9672c874;
available at https:/ /git-r3lab.uni.lu/IMP/imp3; Accessed on 15 January 2021), 2.09 x 10°
metagenomic and metatranscriptomic reads were co-assembled and binned into MAGs.
Subsequently, the completeness and contamination were assessed using CheckM. Per estab-
lished criteria in the field [50], 29 high-quality (>90% completion and <5% contamination)
MAGs were identified in the entire dataset (Figure 1A). An additional 35 medium-quality
(>80% completion and <10% contamination) MAGs, 22 medium-quality MAGs with com-
pleteness >50%, 17 low-quality (partial) MAGs with between 31% and 49% completeness,
and 25 MAGs with >50% completeness but >10% contamination were identified (Figure 1A).
A complete list of the 128 identified MAGs is provided as Supplementary Table S1. Over
75% of MAGs contained greater than 20 tRNA-encoding genes, with over half encoding 30
or more tRNA genes (Figure 1B). Over 75% of the 128 assembled MAGs had an average
coverage of 10x or greater (median 24.4 x, range 2.1 to 1540 x; Supplementary Table S1)
and roughly 65% of MAGs (including the majority of high-quality MAGS) were assembled
from less than 200 scaffolds (Figure 1C). Comparison of metagenomic composition and
the metatranscriptome revealed a strong correlation, suggesting transcriptional activity
of the majority of detected genes (Figure 1D). As expected, there was also a strong corre-
lation between the number of genes detected and the total size of the assembled MAGs
(Supplementary Figure S1).

Of the 64 high- and medium-quality MAGs with >80% completion and <10% contami-
nation listed in Supplementary Table S1, over one third (23/64) were identified as members
of the Gram-positive family Lachnospiraceae (phylum Bacillota). The second most common
family was the Gram-negative Muribaculaceae, within the phylum Bacteroidota. Other MAGs
within the phylum Bacillota included several members of the Ruminococcaceae, Clostridiacae,
Bacillaceae, and Lactobacillaceae, among others. Additional MAGs within the Bacteroidota
included members of the genera Alistipes, Bacteroides, Parabacteroides, Odoribacter, and Pre-
votella. Six of the high- and medium-quality 64 MAGs in Supplementary Table S1 were
external to either of those two dominant phyla, including one identified as Parasutterella
excrementihominis (Burkholderiaceae within phylum Pseudomonadota), and five identified as
members of the family Saccharimonadaceae (phylum Patescibacteria).
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Figure 1. Dot plot showing the completeness (%) and contamination (%) among the 128 metagenome-
assembled genomes (MAGs) recovered from all six samples, legend in inset, dot size correlates to
the number (1 to 6) MAGs represented (A); bar charts showing the number of tRNAs found in low-,
medium-, and high-quality MAGs (B), and the number of contigs used to construct MAGs (C); and
dot plot showing the number of expressed genes in relation to total detected genes in each MAG (D).

3.2. Candidate Phyla Radiation Taxa Demonstrate Strain-Level Differences Between Vendors

As newly recognized epibionts within the candidate phylum radiation (CPR), the
Saccharimonadaceae were of particular interest since their reports in laboratory mouse strains
are limited. MAGs identified as Saccharimonadaceae have been found in diverse environmen-
tal samples including deep sea hydrothermal vents, glacial-fed stream biofilms [51], and
petrochemical plant sludge [52]. Regarding host-associated samples, Saccharimonadaceae are
most commonly identified in human oral cavity samples [53,54], although a handful of ru-
men [55] and fecal [56] samples have also yielded MAGs. A thorough search of the National
Center for Biotechnology Information Sequence Read Archive found 321 MAGs within
this phylum, including four MAGs from mouse feces. Comparison of the phylogenetic
relationship of the newly generated five MAGs within Saccharimonadaceae revealed similar-
ity to other host-associated isolates, and particularly the mouse-origin MAGs (Figure 2A).
Construction of a Saccharimonadaceae pangenome from the current data revealed portions
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of highly conserved core genomic content, and regions of genomic material specific to
MAGs from either of the two supplier-dependent microbiomes (Figure 2B), suggesting
that the vendors each harbor distinct strains of this taxonomy, with distinct functional
capacities. These data also suggested the co-evolution and transfer of genetic material
between bacterial strains within each source.
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Figure 2. Phylogenetic tree (ignoring branch lengths) showing the relationship between the newly
identified Saccharimonadaceae MAGs and 321 MAGs within the NCBI Sequence Read Archive (SRA)
annotated to the Saccharimonadaceae family, asterisk (*) represents gut-associated samples (A); and
pangenome of novel Saccharimonadaceae MAGs showing genomic content specific to MAGs from
each source (B). Black arrow identifies clustering of novel Saccharimonadaceae MAGs with murine-

associated MAGs in NCBI.
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3.3. Distinct Source-Dependent MAGs Within Multiple Taxonomies

To further investigate the genomic heterogeneity within other common taxonomies,
separate pangenomes were created for various members of the Gram-negative phylum Bac-
teroidota, including Alistipes spp. (10 MAGs, Figure 3A), Prevotella spp. (9 MAGs, Figure 3B),
and family Muribaculaceae (17 MAGs, Figure 3C). As in the Saccharimonadaceae pangenome
comparison, each genus or family revealed regions of genomic content conserved between
multiple MAGs from each of the supplier-origin microbiomes, along with conserved core
genomic content encoding for single copy gene (SCG) clusters, suggesting that the transfer
of genetic material is an ongoing process within each of these taxonomies, at each pro-
duction source. Similarly, pangenomes from members of the phylum Bacillota revealed
conserved genomic content as well as source-dependent differences in the genomic content
of MAGs, which may be interpreted as evidence of distinct lineages of taxonomies in mice
from each supplier. Collectively, these data indicate the presence of substantial differences
in the functional capacity of the dominant bacterial families detected in the microbiome of
mice from different suppliers.

B

Genomic Content

GMLow
GMHigh
Core

Figure 3. Pangenomes of Alistipes (A), Prevotella (B), and family Muribaculaceae (C) constructed from
the present data, each showing the conserved core genomic content, and additional genomic content,
common to multiple MAGs from each supplier.
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3.4. Functional Differences Between Source-Dependent GM

Based on the above observations and our original hypothesis, the metatranscriptome
was compared between GM profiles to determine if the detected differences in metagenomic
content were also associated with differences in transcriptional activity. Transcripts were
compared to (and cross-referenced against) multiple databases, including the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [37,38], the Protein family (Pfam) database [39],
and the CAZy database [40] of carbohydrate active enzymes and accessory molecules.
Figure 4A shows KEGG-identified microbial-associated pathways comprising a multitude
of differentially expressed KEGG orthologs (Figure 4B). A list of differentially expressed
KEGG-identified host-associated pathways is shown in Supplementary Figure S2. Similarly,
comparison of the bulk metatranscriptome annotations against the Pfam (Figure 4C) and
CAZy (Figure 4D) databases resulted in many differences, with greater transcriptional
activity of different genes in each GM. Supplementary File S1 lists all significantly differing
KEGG, Pfam, and CAZyme annotations as determined by DESeq?2 [48] (p < 0.05).
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Figure 4. Heat map of differentially expressed select KEGG pathways (A) and volcano plots of
individual KEGG (B), Pfam (C), and CAZyme (D) IDs between GM ,, and GMHigh microbiomes.
Red dots indicate Log2FC > 1 and p < 0.05. Blue dots indicate Log2FC < 1 and p < 0.05. Green dots
indicate Log2FC > 1 and p > 0.05. Gray dots indicate Log2FC < 1 and p > 0.05 Differential abundance
testing was performed using DESeq2 with p < 0.05 considered significant.
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Source-dependent differences within the KEGG annotations included several GMp -
and GMp;g-specific genes involved in a wide range of functions. To increase our ability
to discern biologically meaningful differences in the function of these GMs, the top 25%
most significant KEGG IDs (lowest p values identified by DESeq2) found to significantly
differ between GMow and GMpy;gn were manually reviewed and curated to identify
multiple KEGG IDs within a pathway, and thus likely representing true differences in the
functional activity of that pathway (Figure 4A,B). Several GM ., -specific genes involved
in diverse metabolic functions were identified including starch and sucrose (CBH1, K01225;
SI, K01203), fructose and mannose (algG, K01795; mtlK, K00045), arachidonic acid (EPHX2,
K08726), and phenylalanine (mhpF, K04073; DDC, K1593) metabolism.

Source-dependent differences within the KEGG annotations also included several
GMHign-specific genes involved in numerous functions, including flagellar assembly (flgH,
K02393; flgl, K02394, flgA, K02386), quorum sensing (srfATE, K15657), lipopolysaccharide
biosynthesis (IpxC, K02535; lpxI, K09949), and sulfur metabolism (dsrA, K11180). Pfam
annotations also identified increased expression of genes within the dissimilatory sulfite
reduction pathway (DsrC, DsrD, and FdhE) and chemotactic responses (CheZ, TarH) by
bacteria within GMpjgn. Among the many genes found to be differentially expressed,
patterns emerged suggesting increased activity of certain pathways in GMpjgp, including
the tricarboxylic acid (TCA) cycle and cytochrome c oxidase activity. Increased TCA
cycle activity is suggested by increased expression of enzymes within the TCA cycle
(succinate dehydrogenase D; sdhD); enzymes involved in acetyl-CoA production (malonyl-
CoA/succinyl-CoA reductase; mcr); three different ccb-type cytochrome c oxidase subunits
(L, 11, and III) and the fixS cytochrome c oxidase maturation protein; and the cytochrome
c-type biogenic protein ccemE. Additionally, GMp;gh had increased expression of enzymes
associated with acetate (acetoacetate decarboxylase, adc), propanoate (methylmalonyl-CoA
mutase, mcmA1l), and butanoate production (mcr) using TCA cycle compounds, suggesting
that the increased release of stored energy by the GM may be associated with increased
production of compounds beneficial to the host such as short chain fatty acids (SCFAs).

Lastly, numerous source-dependent differences in carbohydrate active enzymes
(CAZymes) and accessory molecules were identified (Figure 4D). The glycoside hydrolase
(GH) family 48 (GH48.hmm), including chitinase and cellulobiohydrolases enzymes was
differentially expressed in GM oy, using both CAZyme and Pfam (Glyco_hydro_48) an-
notations. Other GM] ,w-associated CAZyme molecules included the auxiliary activities
(AA) of multicopper oxidases (AAl.hmm) and glycosyltransferase (GT) families that bind
the LPS inner core polysaccharide [57] (GT99.hmm) and the host-produced extracellular
polysaccharide heparan [58] (GT64.hmm). GMp;gn-associated CAZymes included mul-
tiple non-catalytic carbohydrate binding motifs (CBMs) with diverse targets including
3-1,3-glucan and LPS (CBM39.hmm), cyclodextrins (CBM20.hmm), lactose (CBM71.hmm),
and fucose (CBM47.hmm). CBMs specific to cellulose and chitin were identified in both
GMLow (CBM2.hmm, CBM72.hmm) and GMp;g, (CBM28.hmm). Collectively, these data
demonstrate extensive differences in the baseline transcriptional activity at the enzyme and
pathway levels of supplier-origin gut microbiomes.

3.5. Supplier-Origin GMs Indicate Variable Levels of Enzymatic Activity Associated
with Eukaryotes

While most studies focus on bacterial abundances and differences, we observed eu-
karyotic organisms present within each GM (Methods). The largest portion of the eukaryotes
identified belonged to the phylum Ochrophyta, followed by Dinoflagellata and Chlorophyta,
all within the kingdom Protista (Supplemental Figure S3). Eukaryotes identified within the
kingdom Fungi were constrained to the phylum Ascomycota with limited taxonomic resolu-
tion. No significant differences in the relative abundance of eukaryotic phyla were observed
between GMs. Interestingly, while no differences in the relative abundance of eukaryotic
phyla were observed between GMLq and GMpy;e (Supplemental Figure S3), glycoside
hydrolase CAZyme expression was negatively correlated with GMp,, eukaryotes, while
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it was positively correlated to GMp;gh eukaryotes (Supplemental Figure S4). Lastly, we
identified several genes with increased expression in GMj oy, previously associated with a
wide range of host metabolism and disease pathways (Supplementary Figure S2); however,
the biological significance of the differential expression of these pathways remains unclear.

4. Discussion

GMLow and GMpjg, influence many host phenotypes including intestinal inflamma-
tion [10], colonization resistance [23], and behavior and body morphology [26]. The robust
taxonomic differences between these supplier-origin GMs influencing phenotypic differ-
ences have previously been identified using targeted amplicon (e.g., 165 rRNA) sequencing.
However, this approach yields limited taxonomic resolution of detected amplicons, and
a complete lack of information regarding functional capacity or transcriptional activity.
Using an iterative co-assembly procedure, we combined metagenomic and metatranscrip-
tomic sequencing of the fecal microbiome of laboratory mice to provide a valuable resource
describing the baseline metagenomic and transcriptional differences of GM oy and GMpigh-
The current data build upon earlier reports of differences in the composition of the GM in
mice from different suppliers [23,24,59] by providing a more detailed assessment of those
differences as well as functional differences.

Many of those functional differences were attributable to differences in bacteria associ-
ated with the ancestral ASF used in the colony founders, including Lactobacillus murinus
(ASF361) and L. intestinalis (ASF360). These differences could therefore ostensibly be
controlled or changed during the initiation of new production colonies. An additional
notable aspect of the source-dependent differences in Lactobacillus function is the growing
body of evidence supporting Lactobacillus spp. as a source of psychobiotics [60], or live
organisms capable of conferring benefits to mental health when ingested. Recent studies
have demonstrated differences in anxiety-related behavior and spontaneous locomotor
and exploratory behavior between isogenic mice harboring GMLow or GMpigh [26] and
L. intestinalis and related species have both been shown to confer vagus nerve-dependent
effects on behavior [61-63]. Differences in the genomic content of these MAGs provides
one possible explanation for the host phenotypic differences.

Numerous differentially expressed KEGG orthologs representing several microbial- and
host-associated pathways were identified between the supplier-origin GMs (Figure 4A,B,
Supplemental Figure S2). Consistent with the previously reported differences in Pseudomon-
adota [13] of GMLo relative to GMpjgh, GMLow was associated with decreased expression
of genes related to lipopolysaccharide biosynthesis and flagellar assembly. Low richness
microbiomes have been associated with increased body weight, growth [64], and intestinal
inflammation [10]. Here we have identified that, in addition to fatty acid degradation,
multiple carbohydrate metabolic pathways including starch and sucrose, galactose, and
fructose metabolism were increased in the low-richness GM. The differential expression of
these metabolic pathways may increase energy availability to the host, likely contributing
to the GM oy, -associated increase in body weight and growth [26] and increased intestinal
inflammation in models of intestinal disease [10,65,66].

A differentially expressed KEGG pathway in GMp;g that can be linked to previously
recognized compositional differences is the dissimilatory sulfite reduction pathway, ex-
pressed by sulfate-reducing bacteria such as Desulfovibrio and Bilophila spp. These taxa,
identified as unique GMp;gn-associated features [67], are responsible for the production of
H,S, a compound with biphasic effects on inflammation, hypertension, and tumorigenesis
depending on its intra- and extracellular concentrations [68-74]. Thus, augmentation of
intracellular H,S production by luminal sulfate-reducing bacteria may result in the low
levels adequate to confer protective effects in certain scenarios, or sufficiently high to
adversely influence disease susceptibility in others.

These data are also of interest from an evolutionary perspective, as they provide
a glimpse of the short-term evolutionary landscape within the GM at each supplier.
Pathogenic bacteria frequently undergo rapid evolution within a host organism through
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recombination and mutation [75,76], and the same events occur between and within com-
mensal members of the microbiota [77,78]. Moreover, pathobionts can arise from commen-
sal organisms through the same mechanisms [79]. In the data presented here, the consistent
finding of source-specific genomic content within genera suggests separate evolutionary
trajectories at each supplier, occurring in all dominant taxonomies with multiple closely
related members. Notably, this feature was particularly evident in the relatively small
pangenome of Saccharimonadaceae. These findings are in agreement with the recent study
from Yilmaz et al. demonstrating the long-term evolution of microbiota and development
of multiple co-existing substrains of bacteria within individual taxonomies [80].

Lastly, we were surprised to recover a large number of high-quality MAGs associated
with the family Saccharimonadaceae (formerly known as TM7), epibionts [81,82] which were
unrecognized until their identification using molecular methods. Successful culture re-
quires co-culture with the cognate host bacteria, including Actinomyces odontolyticus and
other members of the human oral cavity [82,83]. That being said, these highly auxotrophic
epibionts with extremely limited genomes are found in virtually all environmental condi-
tions while being surprisingly scarce in metagenomic data from fecal microbiomes. Our
analysis agrees with that by Dinis et al. [84], which demonstrated that the vast majority of
host-associated MAGs from this phylum were from human oral cavity samples or rumen
contents, with much fewer fecal samples represented. It is unclear which bacteria serve as
the host for fecal members of Saccharibacteria.

Despite these valuable findings, this work is not without limitation. These data were
generated using untargeted metagenomic and metataxonomic sequencing of three female
CD-1 mice colonized with one of two vendor-origin microbiomes. The sample size was se-
lected based on the previously observed differences in beta diversity observed between the
two communities using 165 rRNA sequencing [26], and indeed, we observed many robust
differences in gene expression between these microbiomes (Figure 4). Future investigations
will incorporate both sexes to account for potential sex-associated effects on microbial gene
content or expression. However, given that the vendor-origin microbiomes are consistent
between the sexes, similar differences in functional capacity and transcriptional activity are
expected between them [26]. These data were also captured at a single timepoint in adult
mice. Future investigations may incorporate longitudinal data to characterize the functional
maturation of the host gut from birth to adulthood associating microbial metabolic features
with key periods of host development.

5. Conclusions

Detecting differences in microbial diversity and composition between GMj,, and
GMHigh has previously relied upon targeted amplicon sequencing of the 165 rRNA gene [13,26].
While informative, this approach is limited by taxonomic resolution and does not provide
the baseline functional capacity or transcriptional activity of these GMs. Our metagenomic
and metatranscriptomic sequencing of GMp o and GMp;gn has established that distinct
differences in both the functional capacity and baseline transcriptional activity at the gene
and metabolic pathway levels exist amongst the dominant taxa within supplier-origin
GMs. Pursuing the contribution of the microbial functional differences associated with
vendor-origin microbiomes may reveal novel microbiome-mediated mechanisms influ-
encing animal models of health and disease. In doing so, these communities could be
leveraged to discover novel microbiome-mediated therapeutics that may ultimately be
translated into humans. Collectively, these data will serve as a valuable resource to leverage
the host-microbiome relationship in mouse models of disease and behavior in future.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /applmicrobiol4040109/s1: Supplemental Figure S1. Dot plot
representing the significant correlation between the number of detected genes and assembled MAG
size (Mb). Supplementary Figure S2. Heatmaps of host-associated pathways differentially expressed
in fecal metatranscriptomic data in Jackson (GMpy)- and Inotiv (GMyjgp)-origin microbiomes.
Supplementary Figure S3. Relative abundance heatmaps of phyla representing greater than 1% of
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eukaryotes in Jackson (GM[ oy )- and Envigo (GMHigh)-origin microbiomes. Supplementary Figure S4.
Heatmaps demonstrating correlations between classes of CAZyme molecules and detected eukaryotes
in GMLow and GMy;g. Supplementary File S1. Tables of differentially expressed KEGG, Pfam, and
CAZyme genes. Supplementary Table S1. Complete list of 128 metagenome-assembled genomes
detected in this study. Supplementary Table S2. List of BioSample accession IDs for each sample.
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