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Abstract. This study evaluates the efficacy of bias correction
(BC) and data assimilation (DA) techniques in refining hy-
drological model predictions. Both approaches are routinely
used to enhance hydrological forecasts, yet there have been
no studies that have systematically compared their utility.
We focus on the application of these techniques to improve
operational river flow forecasts in a diverse dataset of 316
catchments in the United Kingdom (UK), using the ensemble
streamflow prediction (ESP) method applied to the (Génie
Rural à 4 paramètres Journalier) (GR4J) hydrological model.
This framework is used in operational seasonal forecasting,
providing a suitable test bed for method application. Assess-
ing the impacts of these two approaches on model perfor-
mance and forecast skill, we find that BC yields substantial
and generalised improvements by rectifying errors after sim-
ulation. Conversely, DA, adjusting model states at the start of
the forecast period, provides more subtle enhancements, with
the biggest effects seen at short lead times in catchments im-
pacted by snow accumulation or melting processes in win-
ter and spring and catchments with a high baseflow index
(BFI) in summer. The choice between BC and DA involves
trade-offs considering conceptual differences, computational
demands, and uncertainty handling. Our findings emphasise
the need for selective application based on specific scenar-
ios and user requirements. This underscores the potential for
developing a selective system (e.g. a decision tree) to re-
fine forecasts effectively and deliver user-friendly hydrologi-
cal predictions. While further work is required to enable im-
plementation, this research contributes insights into the rela-

tive strengths and weaknesses of these forecast enhancement
methods. These could find application in other forecasting
systems, aiding the refinement of hydrological forecasts and
meeting the demand for reliable information by end-users.

1 Introduction

Hydrological forecasts are a critical tool for water resource
management, flood forecasting, and drought mitigation. In a
warming world, we expect to see an increase in both high-
flow and low-flow extremes, which will cause a wide range
of impacts on society and the environment (Kreibich et al.,
2022). Therefore, the need for reliable hydrological forecasts
is more critical than ever, such that proactive action can be
taken to mitigate these impacts.

There are different approaches to operational hydrologi-
cal forecasting, ranging from process-based models to fully
data-driven approaches. In the United Kingdom (UK), the
Hydrological Outlook UK (HOUK) provides operational
forecasts which are used by a range of stakeholders to sup-
port their decision-making (Hannaford et al., 2019). The
HOUK uses three different approaches to produce its fore-
casts (Prudhomme et al., 2017). For the first approach, hy-
drological models are driven with seasonal weather forecasts
produced by the UK Met Office (UKMO) to derive river
flow forecasts (Bell et al., 2013). A second, dual approach,
which is purely data-driven and based on statistical meth-
ods, generates “persistence” forecasts using flow anomalies
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in the most recent month and “historical analogue” forecasts
using the most similar historical sequences (Svensson, 2016).
The third approach, which is the one we are focusing on in
this paper, is ensemble streamflow prediction (ESP), where
a hydrological model is driven by an ensemble of historical
climate time series to generate probabilistic streamflow fore-
casts (Harrigan et al., 2018). The operational ESP uses all
available years of historical meteorological data from 1961
onwards to generate forecasts, i.e. currently the period 1961–
2024. Each year, a new ensemble is added as more data be-
come available. The initial hydrological conditions (IHCs)
are calculated by driving the hydrological model (currently
GR6J; previously GR4J until November 2023) with observed
meteorological data from UKMO in near real time. These
data include provisional, non-quality-controlled precipitation
and temperature grids (HadUK; Hollis et al., 2019). Potential
evapotranspiration (PET) is calculated using the calibrated
McGuinness–Bordne equation as outlined by Tanguy et al.
(2018).

Alternative approaches include long-term average scenar-
ios, where catchment hydrological models are driven by rain-
fall scenarios assuming specific percentages of long-term
average rainfall (e.g. 60 %, 80 %, or 100 %). This method
is used in monthly water situation reports by the Environ-
ment Agency (e.g. Environment Agency, 2022). Addition-
ally, emerging approaches like the use of storylines and
large ensembles to explore plausible worst-case scenarios for
upcoming months are gaining popularity in water resource
management (e.g. Chan et al., 2024; Kay et al., 2024).

This study will focus on enhancing hydrological predic-
tions using the ESP method, which has long been used world-
wide and forms the basis for many operational seasonal fore-
casting systems (Wood et al., 2016). The UK provides a
test bed for application given the existence of the opera-
tional HOUK, but the results of this study could resonate
in many other settings. The ESP method, as utilised in this
paper, employs historical sequences of climate data (precip-
itation and potential evapotranspiration) to drive hydrologi-
cal models, generating a range of possible future streamflow
conditions. The source of the forecasting skill of the ESP
method is accurate estimation of the IHCs, which, depending
on the model, can include antecedent stores of soil moisture,
groundwater, snowpacks, and channel streamflow (Wood et
al., 2016; Wood and Lettenmaier, 2008), rather than skilful
atmospheric forecasts. ESP therefore offers an ideal envi-
ronment for testing forecast enhancement techniques since
it isolates the skill associated with IHCs from that stemming
from accurate meteorological forcings. The IHCs can be de-
tected up to a year in advance (Staudinger and Seibert, 2014),
depending on the catchment characteristics. Harrigan et al.
(2018) show that, in the UK, ESP is particularly skilful in
catchments with a long “memory” due to its great ground-
water influence. These catchments are concentrated in the
south-east of the country, where ESP shows forecasting skill
for lead times of up to 6 months. In the north-west of the

country, however, the skill of ESP is limited. This part of the
country is dominated by “flashy” fast-responding catchments
with steeper orography and little groundwater storage where
the IHCs have less predictive power, and it highlights the lim-
itations of the ESP method. Despite its simplicity, ESP out-
performs other hydrological forecasting approaches in many
cases and remains a hard-to-beat reference in terms of both
skill and value (Peñuela et al., 2020).

The ability of ESP to produce skilful forecasts, as with
any model-based forecasting approach, is also inherently
linked to the capability of the hydrological models used to
produce accurate streamflow simulations. Streamflow sim-
ulations produced by hydrological models contain multiple
sources of uncertainties, including the model structure, pa-
rameterisation, forcing data, and initial conditions (Renard
et al., 2010).

The GR4J (Génie Rural à 4 paramètres Journalier)1 hy-
drological model was used in this study and has been shown
to reliably simulate the hydrology of a diverse set of catch-
ments (Perrin et al., 2003), including the temporal transition
between wet and dry periods (Broderick et al., 2016). Smith
et al. (2019) demonstrated the good performance of the GR4J
model over 303 UK catchments, enabling historic stream-
flow data reconstruction. However, GR4J is a simple lumped
catchment with only four parameters: (i) a soil moisture ac-
counting reservoir, (ii) a water exchange function, (iii) a non-
linear routing store to represent baseflow, and (iv) rainfall-
runoff time lags controlled by two-unit hydrographs. This
simple model has the advantages of being very quick to run
and being computationally inexpensive, which are essential
criteria for an operational service, but it might not be able to
capture the complexity of some of the hydrological systems,
resulting in some biases, particularly towards the extremes.

While Lane et al. (2019) did not include GR4J in their
study, they demonstrated a common challenge in hydrologi-
cal modelling: systematic biases, which are particularly evi-
dent in regions with inadequate snowpack simulation, inter-
catchment groundwater exchange, or significant human in-
fluence on the basin. Figure 1a illustrates the scale of the
model bias for GR4J. Figures A4 and A5 show that the bias
is generally greater for low flows when measured as a per-
cent bias, whereas it is greater for high flows when consid-

1When this study was carried out, the GR4J model (Perrin et al.,
2003) was used in the HOUK to produce the ESP forecasts, having
been used operationally for 5 years. This was subsequently updated
to GR6J (Génie Rural à 6 paramètres Journalier; Pushpalatha et al.,
2011) in October 2023. However, the difference in skill between
the two model structures is minimal (Appendix Figs. A1–A3), ex-
cept for some catchments in the south-east for a short lead time.
The mean difference in skill (measured by the continuous ranked
probability skill score – CRPSS) between the two models is less
than 0.03. In this study, we used GR4J, but given the marginal dis-
crepancy in performance between the two models, we anticipate that
the findings and conclusions of this study will remain largely appli-
cable when employing GR6J.
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Figure 1. (a) Absolute percent bias (absPBIAS) in the 316 study catchments for streamflow simulated with the GR4J model, calculated based
on the current analysis. (b) Locations of the gauging stations for the 316 NRFA catchments used in this study and their categories based on
the amount of missing data and the value of the BFI.

ering raw bias values. To address this issue of hydrological
model biases impacting predictions, researchers have devel-
oped various approaches to refining forecasts. Two promi-
nent techniques are bias correction (BC; e.g. Bum Kim et al.,
2021) and data assimilation (DA; e.g. Piazzi et al., 2021).
While both methods share the common goal of enhancing
forecast accuracy, they diverge fundamentally in their ap-
proaches. BC is a statistically based post-processing step that
adjusts the forecast based on past performance, whereas DA
improves the IHCs and corrects the internal model states.
This fundamental difference may explain why there has been
no prior attempt to compare the efficacy of these approaches
in operational settings. However, from a user perspective,
where the emphasis lies on the reliability of the final product
to aid decision-making, such a comparison holds significant
value. Ultimately, it can lead to the creation of more reliable
end-products for users.

Several previous studies have shown the advantages of us-
ing BC as a post-processing technique to enhance the skill
of hydrological forecasts (e.g. Chevuturi et al., 2023; Tiwari
et al., 2022). Some operational systems, such as the GE-
OGloWS ECMWF Streamflow Service, apply BC to gener-
ate their forecasts (Sanchez Lozano et al., 2021). Hashino
et al. (2007) conducted a study in which they compared
various BC methods for ensemble streamflow forecasts and
found that the quantile mapping (QM) method outperformed
other techniques, resulting in a significant improvement in
forecast skill. QM stands out as the most frequently em-
ployed approach in prior studies using bias correction to im-
prove streamflow simulations (e.g. Chevuturi et al., 2023;
Farmer et al., 2018; Usman et al., 2022). While some re-
searchers opt to bias-correct precipitation and temperature

prior to input into hydrological models, Tiwari et al. (2022)
found that directly bias-correcting streamflow leads to su-
perior results. Li et al. (2017) present a comprehensive re-
view of forecast post-processing methods. QM stands out
as one of the most popular options in hydrological forecast-
ing due to its simplicity and efficiency (e.g. Hashino et al.,
2007; Wood and Schaake, 2008). However, as an uncondi-
tional method, QM uses the cumulative distribution function
(CDF) to perform the correction, and so it does not preserve
the connection between each pair of simulated and observed
values. Thus, QM may adjust the raw forecasts in the wrong
direction for some forecast values (Madadgar et al., 2014).
Note that, in our study, we apply QM BC using flow duration
curves (FDCs) instead of CDFs. While statistically distinct,
FDCs are better suited to hydrology due to their focus on
flow exceedance probabilities. We view this as an extension
of the QM framework tailored to hydrological data and have
retained the term “quantile mapping” for consistency with
the broader QM literature.

Unlike BC, which is applied as a post-processing step, the
aim of DA is to improve the IHCs by combining models with
observed data to improve the estimation of the target variable
during the forecast period (e.g. Carrassi et al., 2018). In this
way, DA can be seen as an effort to provide a more physically
based improvement of the model predictions rather than as a
statistically based post hoc correction. DA has a long history
of application in meteorological (e.g. Navon, 2009) and hy-
drological (e.g. Liu et al., 2012) forecasting, but in the latter
case it has tended to be focused on short lead times (typically
of the order of days for flood forecasting applications; e.g.
Piazzi et al., 2021). There have been relatively few studies
of DA for sub-seasonal to seasonal forecasts in hydrology.

https://doi.org/10.5194/hess-29-1587-2025 Hydrol. Earth Syst. Sci., 29, 1587–1614, 2025



1590 M. Tanguy et al.: Optimising ensemble streamflow predictions with bias correction and data

DA can be performed sequentially, using observed data as
they become available, to update the model states and/or pa-
rameters. In this study, sequential DA of streamflow obser-
vations is performed during the model spin-up period to bet-
ter approximate the IHCs at the start of the forecast period
and to update the model parameter values. Previous research
has demonstrated the potential of sequential DA approaches
to improve model performance by reducing initial condition
uncertainty (e.g. Piazzi et al., 2021). Two of the most pop-
ular methods are Kalman filters (e.g. Maxwell et al., 2018;
Thiboult et al., 2016) and particle filters (e.g. DeChant and
Moradkhani, 2011; Jin et al., 2013).

Kalman filter approaches for non-linear systems, such as
the extended Kalman filter, are often limited by their high
computational demand, unbounded error growth, and insta-
bility in the error covariance equation (Evensen, 1992). En-
semble Kalman filter (EnKf) approaches can be used to over-
come some of these issues but rely on the assumption of
Gaussian errors (Evensen, 1994). In contrast, particle filters
do not make any assumptions regarding error distributions.
However, particle filters may struggle in high-dimensional
cases, requiring very large ensemble sizes to avoid “particle
weight collapse”, where most particles end up with similar
weights, failing to represent the full range of system states
(Snyder et al., 2008).

For hydrological forecasts, Piazzi et al. (2021) show the
potential effect of DA on skill improvement for a short lead
time (2 d). Other work has shown that the impact of data as-
similation and alternative approaches used to improve model
skill, such as precipitation forcing, varies with lead times.
However, the majority of the research in this area focuses
on short- to medium-range forecasts (1–31 d lead times; e.g.
Boucher et al., 2020; Clark et al., 2008; Piazzi et al., 2021;
Randrianasolo et al., 2014; Seo et al., 2009; Sun et al., 2015;
Thiboult et al., 2016). This is despite the improvements in
hydrological forecasting making the production of skilful
longer-term forecasts possible (e.g. Harrigan et al., 2018).
Only a handful of studies have investigated the impact of
initial condition estimates on longer lead times in hydro-
logical forecasts in the United States (DeChant and Morad-
khani, 2011; Shukla and Lettenmaier, 2011), showing gener-
ally improved seasonal predictions with DA but little added
value beyond a 1-month forecast. However, beyond this, re-
search into the potential of DA to improve seasonal and
sub-seasonal hydrological forecast skill is limited. Therefore,
there may be potential to improve skill at longer lead times
by updating model parameters and initial streamflow states.

Note that other approaches, such as multi-model blending,
have been used by others to improve forecasts (e.g. Chevuturi
et al., 2023; Roy et al., 2020; Shamseldin, 1997) but will not
be considered in this study.

The overall objective of this paper is to evaluate and com-
pare the utility and effectiveness of the BC and DA ap-
proaches for optimising hydrological forecast outputs over a
range of different lead times. This is achieved through appli-

cation to a dataset of 316 UK catchments, representing a di-
verse range of catchment properties. We aim to provide guid-
ance on the relative performance of these methods and how
this varies according to location and catchment type, lead
time, and time of year. As this is based on an operational
seasonal forecasting product, i.e. the Hydrological Outlook
UK ESP forecasts, it will enable users to make informed
decisions and will provide insights into the most effective
strategies for enhancing UK hydrological forecasting. More
generally, these results can find application in other hydro-
logical seasonal forecasting systems in other regions and can
underpin future research in improving operational hydrolog-
ical forecasts.

A glossary of the key abbreviations used in this study is
provided in Table 1 for reference.

2 Material and methods

2.1 Data

2.1.1 River flow data

Observed daily river flow data were obtained for 316 catch-
ments (Fig. 1) from the National River Flow Archive (NRFA,
https://nrfa.ceh.ac.uk/, last access: 18 March 2025) database.
For the full metadata of these catchments, see the Sup-
plement of Harrigan et al. (2018). The catchment observa-
tions were used to calibrate the model (see Sect. 2.2), bias-
correct the streamflow simulations (see Sect. 2.3), evaluate
the model performance evaluation (see Sect. 2.5), and assess
the forecast skill (see Sect. 2.6). The study period used was
from 1 January 1961 to 31 December 2015.

For the forecast skill assessment, complete observed time
series were needed (see Sect. 2.6), so gap-filling using sim-
ple linear interpolation was applied to the missing data in
the observed river flow time series (the limitations of this
method are discussed in Sect. 4.4). The gap-filled version of
the dataset was only used for the forecast skill assessment,
not for the other applications (model calibration, BC, and
model performance evaluation).

Considering the amount of missing data in the observa-
tional dataset and the diverse hydrological characteristics of
the catchments, we defined four different subsets of catch-
ments (see Fig. 1b):

i. The full set of catchments (316 catchments).

ii. Catchments with less than 5 % missing observed river
flow data (139 catchments).

iii. Catchments with a BFI greater than 0.6 (70 catchments).
The BFI is a measure of the proportion of the river
runoff that derives from stored sources: the more perme-
able the rock, superficial deposits, and soils in a catch-
ment, the higher the baseflow and the more sustained
the river’s flow during periods of dry weather (Gustard,
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Table 1. Glossary of the abbreviations commonly used in this study.

Abbreviation Meaning Definition or comments

BC Bias correction Technique to adjust model outputs to account for systematic errors or
biases

BFI Baseflow index A measure of the proportion of river runoff that derives from stored
sources (catchments with long hydrological memory have a high BFI)

CRPSS Continuous ranked probability
skill score

Forecast skill score used in this study

DA Data assimilation Methodology which integrates observed data into models to improve
the accuracy of predictions by updating model states and parameters

ESP

– OR-ESP

– BC-ESP

– DA-ESP

Ensemble streamflow prediction

– Original ESP

– Bias-corrected ESP

– ESP with data assimilation

Streamflow forecasting method used in this study, involving the use of
a hydrological model driven by an ensemble of historical climate data
to generate probabilistic streamflow forecasts

FDC Flow duration curve This provides the distribution of flow rates used to apply the quantile
mapping bias correction method.

HOUK Hydrological Outlook UK Operational service providing seasonal forecasts and assessments of fu-
ture hydrological conditions across the United Kingdom

IHCs Initial hydrological conditions The state variables of the hydrological system at the beginning of the
forecasting period (i.e. the initial values of the model parameters)

PF Particle filter DA method for estimating the state of a system by representing the
probability distribution with a set of samples (particles) that evolve over
time based on observations and model dynamics

QM Quantile mapping BC technique for correcting model biases by aligning the quantiles of
model output with observed data

1992). In other words, the higher the BFI, the longer the
catchment memory, and therefore improving the IHCs
in these catchments has the potential to improve the hy-
drological forecasts for longer lead times.

iv. Catchments with a BFI greater than 0.6 and missing ob-
served river flow data of less than +5 % (29 catchments).

2.1.2 Meteorological data

To run the hydrological model (see Sect. 2.2), precipita-
tion (P ) and PET data are needed. For the P data, we used
CEH-GEAR daily rainfall data (Keller et al., 2015; Tanguy
et al., 2019). For the PET data, we used the CHESS-PET
data (Robinson et al., 2017, 2020) for the UK and the His-
toric PET dataset (Tanguy et al., 2017) for Northern Ireland,
where CHESS-PET is not available. Tanguy et al. (2018)
describe how the Historic PET dataset was derived using a
temperature-based PET equation calibrated using CHESS-
PET. Consequently, these two datasets can be regarded as
almost equivalent and sufficiently similar for our purposes.
The meteorological data used also covered the period from
1961 to 2015.

2.2 Hydrological model, river flow simulations, and
ESP hindcasts

2.2.1 Simulated observed river flows

The hydrological model used to simulate river flow was the
GR4J model (Perrin et al., 2003), which served as the op-
erational model for producing ESP forecasts in the HOUK
until September 2023. The calibration approach adopted was
consistent with Harrigan et al. (2018), where the modi-
fied Kling–Gupta efficiency (KGEmod; Gupta et al., 2009;
Kling et al., 2012), applied to root-squared transformed flows
(KGEmod[sqrt]), was used as the objective function for au-
tomatic fitting. This approach places weight evenly across
the flow regime rather than focusing on high or low flows, a
decision made considering that ESP forecasts are generated
throughout the year, encompassing both dry and wet condi-
tions.

Daily river flow simulations were produced for the period
1 January 1964 to 31 December 2015. The initial 3 years
(1961–1963) served as a spin-up period to allow the internal
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stores to transition from an initial state of unusual conditions
to one of equilibrium (Rahman et al., 2016).

2.2.2 ESP hindcasts from the historical climate

Three versions of ESP hindcasts were used for the period
1964–2014: (i) the hindcasts produced by Harrigan et al.
(2018), referred to as the “Original ESP” (OR-ESP) in the
rest of the paper; (ii) a bias-corrected version of these hind-
casts using the method described in Sect. 2.3, referred to as
the “Bias-corrected ESP” (BC-ESP); and (ii) new hindcasts
where the initial conditions at the start of the forecast are cor-
rected using the DA method described in Sect. 2.4, referred
to as the “Data assimilation ESP” (DA-ESP). Note that what
we call “Original” (OR) is the model simulations with no
correction (neither BC nor DA); this is often referred to as
an “open loop” in the literature related to DA (e.g. Boucher
et al., 2020).

Each set of hindcasts comprised a 51-member ensem-
ble of streamflow predictions initiated on the first of each
month. These predictions were generated by forcing GR4J
with 54 historic climate sequences (P and PET pairs) ex-
tracted for each historic year from 1961 to 2014 and pro-
jected out to a 12-month lead time at a daily time step. As
in Harrigan et al. (2018), to ensure that historic climate se-
quences did not artificially inflate skill (Robertson, 2016),
we used a leave-3-years-out cross-validation (L3OCV) ap-
proach, whereby the 12-month forecast window and the 2
succeeding years were not used as climate forcings, resulting
in a final count of 51 ensembles. This was done to account
for persistence from known large-scale climate–streamflow
teleconnections such as the North Atlantic Oscillation with
influences lasting from several seasons to years (Dunstone
et al., 2016). Each of the 51 generated hindcast time series
(54 years minus 3 years for model spin-up) was then tem-
porally aggregated to provide a forecast of mean streamflow
over seamless lead times of 1 d to 12 months, resulting in 365
lead times per forecast (leap days were removed). Following
the convention in the HOUK, “lead time” in this paper refers
to the streamflow (expressed as the mean daily streamflow)
over the period from the forecast initialisation date to n days
(or months) ahead in time. So, for example, a January ESP
forecast with a 1-month lead time is the mean daily stream-
flow from 1 January to the end of January and a January ESP
forecast with a 2-month lead time is the mean daily stream-
flow from 1 January to the end of February. A total of 612
forecasts (51 years× 12 initialisation dates) with simulations
for 365 d were therefore generated for our analysis.

The main differences between the operational ESP and ex-
perimental set-ups in this paper are that (i) the ESP model in
the experimental set-up is constructed from 54 years of his-
torical meteorological data (1961–2014), whereas the opera-
tional ESP currently uses 1961–2024, with a new ensemble
added every year; (ii) the GR4J model is used in our analy-
sis, as it was the operational model at the time, whereas the

operational ESP has used GR6J since November 2023; and
(iii) in our experiments, PET is derived from the Penman–
Monteith CHESS-PE, except in Northern Ireland, where the
McGuinness–Bordne PET was used due to its data availabil-
ity. For the operational ESP, the McGuinness–Bordne PET
is used over the whole of the UK. Since the McGuinness–
Bordne equation is calibrated against CHESS-PE, we do not
expect significant biases between the two PET calculation
methods.

2.3 Bias correction

The BC methodology applied in this study is a QM approach
similar to that employed by Farmer et al. (2018). This method
was selected for its simplicity of implementation and its pop-
ularity in hydrological applications. QM BC is applied by
Sanchez Lozano et al. (2021) to operationally bias-correct
the GEO Global Water Sustainability (GEOGloWS) stream-
flow forecasts. Farmer et al. (2018) recommend 14 complete
years of observed data to apply this method. This condition is
satisfied in our dataset, where the shortest record has 23 years
of complete data.

BC was applied separately to each of the 12 months us-
ing the observed distribution specific to that month, aiming
to capture seasonality in flow. The decision to apply BC on
a monthly basis was motivated by the seasonal variability in
the UK Hydrological System with wet winters, drier sum-
mers, and transitional spring and autumn periods. Monthly
BC effectively captures these seasonal changes while avoid-
ing overfitting to short-term fluctuations. While more fre-
quent corrections could improve short-term forecasts, the
high variability in the UK climate suggests that weekly or bi-
weekly BC might introduce noise rather than enhance accu-
racy. Monthly BC provides a balanced approach by adjusting
for seasonality without overreacting to short-term extremes.

Figure 2 shows a conceptual diagram of how QM BC
works. Each flow value on the simulated FDC is replaced
with the flow value of the observed FDC for the correspond-
ing non-exceedance level.

2.4 Data assimilation

DA is a group of mathematical methods which can be used
to combine information from a numerical model (here a hy-
drological model) with available observations to generate an
improved estimate of the system’s state and, consequently,
more accurate forecasts. DA methods can account for uncer-
tainties associated with model structures, initial conditions,
and observations and provide a probabilistic representation
of the hydrological state. Here we used a particle filter (PF)
technique, which uses a set of computational particles (rep-
resenting possible states of the hydrological system) to esti-
mate the most likely current state of the system.

The PF works by simulating multiple potential scenarios
(particles) of the hydrological system based on the underly-
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Figure 2. Conceptual diagram of quantile mapping bias correction
(QM BC), showing the percentage of non-exceedance against the
streamflow rate for observed (blue) and simulated (red) streamflow
for GR4J an example catchment (NRFA catchment ID 12001) for
the month of May. The purple arrows show the steps involved in
the bias correction process: (1) for a given native simulated flow,
the point on the simulated FDC (red line) is identified; (2) the non-
exceedance corresponding to that simulated flow is determined; and
(3) the observed flow for that same non-exceedance is determined
from the observed FDC (blue line), and this value corresponds to
the bias-corrected flow.

ing model but with different sets of model parameters. The
method then assigns probabilities to these scenarios based
on how well they match the observed data. As new observa-
tions become available, the PF updates the particle set, giv-
ing more weight to scenarios that align with the most recent
data. We updated the model parameters (production store,
routing store, unit hydrograph-1 level, and unit hydrograph-2
level) in GR4J, following the implementation of Piazzi et al.
(2021). We applied the particle filter approach to daily data
throughout the model spin-up period (4 years) in order to
improve the IHCs for the seasonal forecast. A sequential im-
portance sampling approach was used to assign weights to
individual particle states according to their likelihoods. This
method is explained in more detail in Piazzi et al. (2021). We
chose a PF method over a Kalman filter approach to avoid
the restriction of assumed Gaussian errors and so that no
mass constraints needed to be applied (see e.g. Piazzi et al.,
2021). To generate the simulated observed river flows, the
PF was applied once a day during the full evaluation period
(1964–2015), i.e. using daily streamflow observations. Then
the IHCs produced in this way at the start of each month were
used to run our 612 ESP forecasts (DA-ESP).

2.5 Model performance evaluation

To assess the model performance and in particular compare
the improvement in the simulated observed flows provided
by BC and DA, we computed a range of performance metrics

detailed in Table 2. These are all metrics commonly used in
hydrological assessments (e.g. Hannaford et al., 2023).

2.6 Forecast skill assessment

Forecast skill refers to the relative accuracy of a set of fore-
casts with respect to some set of standard reference fore-
casts (Wilks, 2019). Even if the model performance metrics
(presented in Sect. 2.5) improve with BC and DA, this is
not necessarily going to translate into direct improvement in
forecasting skill. This is because the enhancement achieved
through DA focuses on improving IHCs, whose impact de-
cays over lead times. Conversely, while BC is expected to
enhance simulations across all lead times, its effectiveness is
constrained by the inherent limitations linked to the lack of
skill in the meteorological forcings, particularly in the case
of ESP, which relies on climatological data.

The continuous ranked probability skill score (CRPSS;
Hersbach, 2000) was used in our study to evaluate the prob-
abilistic skill of OR-ESP, DA-ESP, and BC-ESP, using the
climatology as our reference forecast like in Harrigan et al.
(2018).

The CRPSS measures the relative skill of the forecast com-
pared to a benchmark, in this case climatology. It is defined
as

CRPSS= 1−
CRPSforecast

CRPSclimatology
.

– CRPSforecast is the continuous ranked probability score
(CRPS) of the forecast ensemble, calculated by compar-
ing the cumulative distribution function (CDF) of the
forecast to the observed data over the evaluation period.

– CRPSclimatology is the CRPS of the climatology (our
benchmark), calculated by comparing the CDF of the
climatology (our benchmark) to the observed data over
the same period.

The CRPSS values are interpreted as follows:

– CRPSS= 1 – the forecast has perfect skill.

– CRPSS= 0 – the forecast has no skill compared to the
climatology (the forecast is as good as using the clima-
tology).

– CRPSS< 0 – the forecast is less accurate than the cli-
matology (the forecast is misleading and has no skill).

The CRPSS penalises biased forecasts and those with low
sharpness (Wilks, 2019). The Ferro et al. (2008) ensemble
size correction for the CRPS was applied to account for
differences between the number of members in the hind-
casts (51 members, corresponding to the historic period from
1961 to 2015 with the L3OCV approach) and the benchmark
(47 members, corresponding to the period of 1965–2015 with
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Table 2. List of performance metrics calculated with their corresponding equations. Qi and qi are observed and modelled flows for day i of
an n daily record. Q and q are the mean observed and modelled flows.

Metric Abbreviation Equation Range and optimum Focus

Root mean square
error

RMSE RMSE=
√

1
n

∑n
i=1(Qi − qi)

2 The optimum is 0 (perfect fit). Lower
values are better. The range depends on
the scale of the observations.

Measures the accuracy of the model
predictions.

Pearson’s correla-
tion

Correlation or r r =

∑
(Qi−Q)(qi−q)√∑
(Qi−Q)

2∑(qi−q)2 Ranges from−1 to 1, where 1 indicates
a perfect positive correlation, −1 indi-
cates a perfect negative correlation, and
0 indicates no correlation.

Measures the linear relationship be-
tween observed (Qi ) and predicted (qi )
values.

Bias ratio Bias or β β =
µ√q

µ
√
Q

µ is the mean flow (here the square root
of the modelled and observed flows as
indicated by the suffix).

Can be positive or negative. The opti-
mum is 0, indicating no bias.

Measures the systematic overestimation
or underestimation of the model.

Absolute percent-
age bias

absPBIAS absPBIAS=

∣∣∣∣∣∣∣
n∑
i=1
(Qi−qi )

n∑
i=1

Qi

100

∣∣∣∣∣∣∣ Percentage values, where lower values
are better. The optimum is 0, indicating
a perfect fit.

Measures the total percentage differ-
ence between observed (Qi ) and pre-
dicted (qi ) values.

Mean absolute
percentage error

MAPE MAPE=

(
1
n

n∑
i=1

∣∣∣Qi−qiQi

∣∣∣)100 Percentage values, where lower values
are better. The optimum is 0, indicating
a perfect fit.

Measures the average percentage differ-
ence between observed (Qi ) and pre-
dicted (qi ) values.

Modified Kling–
Gupta efficiency

KGE2 KGE2= 1−√
(r − 1)2+ (β − 1)2+ (γ − 1)2,

where r is the correlation coefficient,
β is the bias ratio, and γ is the variabil-

ity ratio
CV√q
CV√q

or
σ
√
q/µ√q

σ√Q/µ
√
Q

.

Here, µ, σ , and CV are the mean,
standard deviation, and coefficient of
variation of the flow (here the square
root of the modelled and observed
flows as indicated by the suffix).

Ranges from −∞ to 1, where higher
values are better, with 1 indicating a
perfect fit.

Comprehensive metric considering cor-
relation, variability, and bias

Absolute percent-
age error in Q95
(flow exceeded
95 % of the time)

Q95_APE Q95APE =
∣∣∣Q95−q95

Q95

∣∣∣100
Q95 and q95 are the 95th percentile ex-
ceedances for the observed and mod-
elled flow (or 5th percentile).

Percentage values, where lower values
are better. The optimum is 0, indicating
a perfect fit.

Specifically targets errors in predicting
low-flow events.

Absolute percent-
age error in Q05
(flow exceeded 5 %
of the time)

Q05_APE Q05APE =
∣∣∣Q05−q05

Q05

∣∣∣100
Q05 and q05 are the 5th percentile ex-
ceedances for the observed and mod-
elled flow (or 95th percentile).

Percentage values, where lower values
are better. The optimum is 0, indicating
a perfect fit.

Specifically targets errors in predicting
high-flow events.

the L3OCV approach and with 4 years removed for the spin-
up period), as done in the evaluation of hydrological ensem-
ble forecasting elsewhere (e.g. Crochemore et al., 2017). Cal-
culation of the skill scores was undertaken using the open-
source easyVerification package v0.4.2 in R (MeteoSwiss,
2017).

To construct the time series for the CRPSS calculation, the
model forecast is initialised on the first day of each month, af-
ter which the model runs freely for a lead time of up to 365 d,
producing a forecast for each subsequent day at progressively
longer lead times. For that month, no further initialisations
are performed beyond the first day. Thus, all lead times (e.g.
1 d, 3 d, or 7 d) are calculated relative to the first day of the
month. The CRPSS is then calculated based on the accumu-
lated flow over the full forecast period rather than point val-
ues on specific days. For example, for the 7 d forecast hori-

zon, the skill score is based on the total flow accumulated
over the first 7 d of the forecast, not the streamflow value
at precisely day 7. This approach better reflects the overall
forecast performance for each lead time by considering the
cumulative discharge over the given period.

The calculation of the CRPSS requires selection of a
benchmark against which the forecasting system is evalu-
ated. A forecasting system is considered “skilful” if its per-
formance surpasses that of the chosen benchmark. Common
benchmarks for hydrological forecast evaluation include cli-
matology (long-term average flows), persistence forecasts
(assuming the current state remains constant and commonly
used for short-range forecasts), and gain-based benchmarks
(using simpler models to quantify the added value of more
complex models; Pappenberger et al., 2015). In this study,
we selected climatology as the benchmark for evaluation, as
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Figure 3. Model performance metrics for river flow simulations produced by the GR4J model with no additional processing (dark pink),
GR4J with BC (blue), and GR4J with DA (orange) for all 316 catchments (Fig. 1b). For almost all of the performance metrics, the GR4J
with BC and GR4J with DA differ significantly from GR4J model with no additional processing at the 5 % significance level, based on a
Student’s t test.

it is a widely used reference for assessing sub-seasonal to
seasonal forecasts.

Unlike Harrigan et al. (2018), who employed simulated
observed river flows as the “truth” for skill evaluation, our
study relies on observed flows. This choice ensures a fair
comparison between OR-ESP, DA-ESP, and BC-ESP. Con-
sidering DA’s objective of using observations to enhance
models, using simulated observed data as the reference
would have adversely affected the skill assessment of DA.

The performance metrics (Sect. 2.5) were calculated for
the simulated observed flows produced by the three meth-
ods (OR, BC, and DA), and skill scores (Sect. 2.6) were
calculated for all three versions of the hindcasts (OR-ESP,
BC-ESP, and DA-ESP). To assess whether the differences in
performance metrics and forecast skills are statistically sig-
nificant, we applied a paired t test to the performance met-
rics and CRPSS values calculated across the 316 catchments.
In all of the cases, we compared the OR simulations with
the DA and BC simulations to evaluate the overall improve-
ments introduced by the new approaches relative to the orig-
inal method and to determine whether these differences are
statistically significant.

We have also calculated other skill scores, i.e. the mean ab-
solute error skill score (MAESS) and the mean square error
skill score (MSESS). However, these are deterministic skill

scores and therefore less suited than the CRPSS to ensemble
forecast verification. Hence, we only show CRPSS results in
the following sections for brevity. The results were very sim-
ilar to the ones presented here when using alternative skill
scores.

3 Results

3.1 Model performance

BC and DA both improve the overall model performance in
the simulated observed flows (Fig. 3), though in DA the im-
provement is only marginal and not for all metrics, whereas
for BC the difference is more substantial and is generalised
for all of the metrics considered.

The greater impact on model performance observed in BC
compared to DA is unsurprising given the fundamental dif-
ferences in their approaches. In BC, observations serve as
the absolute truth, guiding adjustments to align simulations
with the observed FDCs. As its name implies, BC is explic-
itly designed to rectify predictions by conforming them to
observations, thus naturally yielding improvement in overall
performance. Conversely, DA endeavours to enhance predic-
tions through a mechanistic, physically informed approach
during model simulation. In DA, both model-generated and
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Figure 4. (a) CRPSS for all stations with < 5 % missing observations for OR-ESP (red) and DA-ESP (orange) simulations over lead times.
(b) CRPSS for all stations with < 5 % missing observations and BFI> 0.6 for OR-ESP (red) and DA-ESP (orange) simulations over lead
times. (c) CRPSS for all stations with < 5 % missing observations for OR-ESP (red) and BC-ESP (blue) simulations over lead times.
(d) CRPSS for all stations with < 5 % missing observations and BFI> 0.6 for OR-ESP (red) and BC-ESP (blue) simulations over lead
times. The solid lines show the median CRPSS, whereas the shaded areas show the catchment spread of the 5th–95th percentiles. The black
plus markers indicate the lead times where BC-ESP or DA-ESP differs significantly from OR-ESP at the 5 % significance level, based on a
Student’s t test.

observed values are weighed, aiming to refine the model’s
alignment with observed data while preserving the hydrolog-
ical model’s structural integrity. Consequently, it is expected
that DA may exhibit comparatively lower performance due to
the complex interplay between model fidelity and alignment
with observed data.

3.2 Forecast skill improvement with data assimilation

Figure 4a shows the evolution of the skill score (CRPSS)
with lead times for OR-ESP and DA-ESP for all catchments
with less than 5 % missing data. We can see in this figure
that, overall, there is no big improvement in skill with DA
(no difference in the median skill score). However, the en-
velope is wider at the top end, especially for very short lead
times, suggesting that DA does make a difference for some
catchments.

If we look at the same comparison for catchments with
BFI> 0.6 only (Fig. 4b), the improvement with DA is more
notable. This improvement is observed for lead times of up
to a season (∼ 3 months). After that, the effect of improved
initial conditions diminishes.

Figure 5a–f show differences in skill (comparing skill for
the OR-ESP on the x axis and skill for the DA-ESP on the
y axis) in more detail for different types of catchments (low
and high BFI values) and different lead times. The improve-
ment in skill with DA is more apparent for higher-BFI catch-
ments, especially for lead times of 3 to 30 d (as there are
more green triangles above the 1 : 1 line). We also observe
that catchments with a high BFI exhibit greater overall skill,
which is reflected in higher CRPSS values for both OR-ESP
and DA-ESP, which is in line with findings of Harrigan et al.
(2018). Figure 5g–l show results for high-BFI catchments
only and with a breakdown between seasons: winter (green
triangles) and summer (brown dots), with forecasts initialised
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Figure 5. (a–f) Scatterplots of the CRPSS between OR-ESP and DA-ESP for all catchments with less than 5 % missing observation data,
broken down according to the BFI of the station, with a low BFI < 0.6 (brown dots) and a high BFI> 0.6 (green triangles). (g–l) Scatterplots
of the CRPSS between OR-ESP and DA-ESP for all stations with < 5 % missing observations and a BFI> 0.6, broken down according to
season: December, January, and February start months (DJF, winter; green triangle) and June, July, and August start months (JJA, summer;
brown dots). (m–r) Same as panels (a–f) but for BC-ESP instead of DA-ESP. (s–x) Same as panels (g–l) but for BC-ESP instead of DA-ESP.
Forecasts are initialised on the first day of each month. The subplots within each category show increasing lead times (d).

on the first day of each month within these seasons. We can
see that the improvement brought by DA is much stronger in
summer, especially at short lead times.

3.3 Forecast skill improvement with bias correction

In the case of BC, the improvement in skill is longer-lasting
and more generalised (Fig. 4c). Moreover, there is not such
a clear difference in improvement between catchments with
BFI> 0.6 and the rest (Fig. 4c versus Fig. 4d). Notably, BC
improves the skill of even the most poorly performing catch-
ments, as evidenced by the upward shift of the lower bound
of the skill envelope (Fig. 4c), ensuring that all catchments
achieve positive skill scores, in contrast to the performance
of DA.

Figure 5m–x mirror Fig. 5a–l but focus on BC instead
of DA, comparing the skill of OR-ESP and BC-ESP across
various catchment types (Fig. 5m–r) and seasons (Fig. 5s–
x). In this case, no discernible difference in skill improve-
ment between high- and low-BFI catchments is evident with
BC (Fig. 5m–r). However, we can see that the improvement
in skill is greater for catchments with poor original perfor-
mance. When narrowing our focus to high-BFI catchments
alone (Fig. 5s–x) and investigating the seasonal effect, we
observe that, similarly to DA, skill enhancements are more
prominent in summer with BC as well, although to a lesser
extent than with DA. This general tendency of better skill in
summer is also true for all catchments in the case of BC (not
shown).
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Figure 6. CRPSS values of OR-ESP, BC-ESP, and DA-ESP forecasts at different lead times and initialisation months for catchments
with < 5 % of missing data and BFI> 0.6. Grey stars indicate where BC-ESP or DA-ESP differs significantly from OR-ESP at the 5 % sig-
nificance level, based on a Student’s t test. The “initialisation month” here refers to the month when the forecast was launched. This month
marks the beginning of the forecast period, and it coincides with the start of the forecast time series data. The equivalent figure for all
catchments with < 5 % of missing data can be found in Appendix Fig. A6.

The greater predictive ability of the bias-corrected fore-
cast compared to the climatology can be attributed to the role
of initial conditions in hydrological forecasting. The GR4J
model is initialised using hydrological simulations driven by
observed meteorological data, providing a strong foundation
for the forecast. This accurate initialisation, combined with
the hydrological memory of the system, enhances forecast
skill, even at longer lead times. In contrast, climatological
forecasts do not adjust initial conditions and lack this model-
based foundation, which is why the bias-corrected model
outperforms the climatology despite being driven by the his-
torical meteorology.

3.4 Data assimilation versus bias correction

In comparing forecast skills for DA and BC at different lead
times and seasons for catchments with BFI> 0.6 (Fig. 6),

distinctive patterns emerge: in summer, up to a 1-month lead
time, DA-ESP outperforms OR-ESP and BC-ESP, whereas
BC exhibits higher improvement in skill over winter and at
longer lead times. The notable suitability of DA for summer
months in high-BFI catchments (i.e. with a high hydrological
memory) underscores the importance of accurate IHCs dur-
ing drier periods. During such periods, precipitation tends to
be closer to the climatology, which is what is used to drive
ESP. Getting IHCs right through DA in these situations will
have a long-lasting effect.

Figure 7 (which displays all 316 catchments) shows spatial
differences, notably with DA showing better performance in
snow-dominated catchments during winter and spring, espe-
cially for short lead times in north-eastern Scotland (Fig. 7a).
Figure A7 shows the fraction of precipitation falling as snow
for catchments across the UK. The version of GR4J used in
this study lacks the capability to model snow accumulation
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Figure 7. Each catchment showing the best-performing method (OR-ESP in red, BC-ESP in blue, and DA-ESP in yellow) based on the
CRPSS for each month at lead times of (a) 3 d and (b) 30 d.

and snowmelt processes, making it less reliable in catch-
ments affected by them. DA is especially effective at ad-
justing the IHCs during seasons influenced by snow, such
as winter accumulation and spring melting, when errors in
IHCs can be large. However, for longer lead times (Fig. 7b),
while no distinct patterns emerge, BC generally exhibits bet-

ter performance across the majority of the catchments over
most months. This observation suggests a nuanced interplay
of factors influencing forecast skill, with BC showing a more
consistent advantage in extended lead times across diverse
catchment conditions. As mentioned previously, this can be
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attributed to the fundamental differences in both methodolo-
gies.

It is also interesting to note that there are cases where
OR-ESP is better than both DA-ESP and BC-ESP (magenta
points in Fig. 7), especially in autumn, in winter, and at the
beginning of spring (October to March) in the western part
of the country for short lead times (Fig. 7a) and in spring for
longer lead times (Fig. 7b) with no clear spatial pattern.

Figure 8 presents a series of histograms illustrating the dif-
ferences in the CRPSS across various versions of ESP for all
316 catchments, showcasing the extent and variations in im-
provement offered by BC and DA across different seasons
and lead times. Examining the first two columns of subplots
(the first column comparing BC-ESP and OR-ESP and the
second column comparing DA-ESP and OR-ESP), we ob-
serve some similarities: (i) the range of differences between
the corrected (BC or DA) and original (OR) ESPs is nar-
rower in winter (dark blue) and widest in autumn (orange);
(ii) spring (light blue) exhibits the most cases where OR-
ESP outperforms both BC-ESP and DA-ESP (indicated by
the negative values in the histograms); (iii) for both meth-
ods (BC and DA), the greater gains in skill are achieved
in summer and autumn; and (iv) for lead times longer than
3 months, the differences between the different ESP versions
are minimal, with absolute values < 0.08 for BC-ESP versus
OR-ESP and < 0.03 for DA-ESP versus OR-ESP, suggest-
ing negligible improvement beyond this point. Therefore,
the gain achieved beyond 3 months using either technique
is marginal.

Focusing now on the differences between DA and BC, we
can see that, in general, BC presents fewer negative instances
compared to DA, indicating that BC-ESP outperforms OR-
ESP more frequently than DA-ESP. However, the magnitudes
of improvement are typically comparable for lead times of
less than 3 months for both methods. Directly comparing the
CRPSS of DA-ESP and BC-ESP (third column of subplots in
Fig. 8), we observe a skew towards negative values, indicat-
ing more instances where BC outperforms DA. Nonetheless,
beyond a 2-week lead time, the absolute differences are neg-
ligible (< 0.08), suggesting that both methods yield similar
outcomes.

4 Discussion

4.1 Bias correction versus data assimilation

Despite their shared goal of enhancing forecast accuracy, it is
important to recognise the fundamental and conceptual dif-
ferences between the DA and BC methodologies. As already
mentioned, BC operates as a post-processing technique, rec-
tifying model errors after simulations, while DA intervenes
during model initialisations, adjusting model internal states
to nudge simulations towards observed data. DA, as used
here, primarily focuses on refining initial conditions and

hence yields more significant impacts on catchments with
a high BFI due to the extended hydrological memory. DA
also proves superior at short lead times for snow-dominated
catchments, where the IHCs can be widely wrong due to
the lack of explicit representation of snow accumulation and
snowmelt processes in the hydrological modelling used in
this study. Although the GR4J model does not include a ded-
icated snow module, snowmelt and accumulation processes
are likely captured indirectly through other model dynam-
ics. Data assimilation updates the model state, improving the
simulation of these processes even without explicit represen-
tation. As Cooper et al. (2021) note, updated parameters in
models like JULES can implicitly correct for processes not
directly included in the model, such as groundwater dynam-
ics. Similarly, GR4J may implicitly account for snow-related
processes through data assimilation, provided there are suf-
ficient observational signals. One future improvement would
be to explicitly include snow processes, e.g. by using GR4J-
CemaNeige. This would enable a comparison of updated pa-
rameters and provide insight into how snow processes influ-
ence parameter values.

In contrast to these enhancements at short lead times
yielded by DA, BC extends its improvement beyond the
initial conditions, improving the quality of the simulations
throughout the entire time series. However, it is notewor-
thy that the DA and BC methods also fundamentally differ
in their handling of uncertainties. DA methodologies based
on Bayesian statistics, such as PF, account for uncertain-
ties associated with model structures, initial conditions, and
observations, providing a probabilistic representation of the
hydrological state. This probabilistic nature enables a more
thorough understanding of the forecast, acknowledging the
inherent uncertainty in predicting natural systems. Addition-
ally, DA offers the advantage of maintaining the structural
integrity of the hydrological model. In other words, a model
with DA-updated initial conditions preserves the relation-
ships between the model state and the target variable, while
BC can alter them. Moreover, BC, while effectively aligning
model outputs with observations, may inadvertently mask
or underestimate the uncertainties in the hydrological model
and observational data. The deterministic nature of BC can
oversimplify the complex interplay of factors influencing
streamflow predictions and uncertainties in observations, po-
tentially leading to an overconfident representation of fore-
cast accuracy.

While the handling of uncertainties distinguishes DA from
BC, it is imperative to consider the associated computational
demands and implementation complexities, especially if they
are to be implemented operationally. This introduces a prag-
matic dimension into the comparison, as the choice between
DA and BC necessitates a nuanced evaluation of their distinct
features and trade-offs. DA’s computational demands and im-
plementation complexity starkly contrast with the simplic-
ity and ease of implementation offered by BC, positioning
the latter as an accessible “easy win” for swiftly enhancing
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Figure 8. Histogram showing the difference in CRPSS values across 316 catchments between BC-ESP and OR-ESP (first column), DA-ESP
and OR-ESP (second column), and DA-ESP and BC-ESP (third column) for various lead times (rows) and seasons (colours). Positive values
indicate that the CRPSS value of the first ESP version in each pair is greater than the second (indicating higher skill).

forecasting products. Our results reveal an absence of uni-
versal superiority of one method over another, underscoring
their dependency on catchment characteristics, seasonal dy-
namics, and lead times. Interestingly, there are cases where
the uncorrected OR-ESP outperforms both DA-ESP and BC-
ESP, even at shorter lead times (Fig. 7). Therefore, based on
our findings, for the UK, we recommend selectively apply-
ing DA for short lead times in summer and catchments with a
high BFI and for catchments affected by snow accumulation
and snowmelt in winter and spring at short lead times, which
is where the greatest benefit of DA was observed (Fig. 6). In
the rest of the cases, BC is the recommended method. Al-
ternatively, the exclusive use of BC is advocated as a prag-
matic, efficient solution, particularly where computational
costs pose a limitation. Figure 8 shows that, even in the rare
cases where OR-ESP outperforms BC-ESP, it does so with
only marginal differences in the CRPSS. This ensures that
the hydrological post-processing is not “doing any harm” to
the inherent skill of the raw model outputs (Hopson et al.,
2020).

It should be noted that applying both BC and DA simul-
taneously to harness their combined effect is not straightfor-
ward. This complexity arises from the fact that the FDC used
for quantile mapping relies on observed flow data without in-
corporating data assimilation. Thus, introducing data assimi-
lation would disrupt the established relationships that under-
pin the quantile mapping method. However, the two meth-
ods are not mutually exclusive, and combining them could
be evaluated in future work. This would require a different
experimental setting to ensure the applicability of QM BC in
simulations that have undergone data assimilation.

4.2 Model improvements versus practical needs: a fine
balance

Many argue that science should focus on enhancing hydro-
logical models rather than correcting their errors by post-
processing (BC) or “nudging” their parameters through data
assimilation (Refsgaard et al., 2023). While such advance-
ment is undoubtedly crucial for deepening our comprehen-
sion of the physical world (Beven, 2019), this type of re-
search is much slower to conduct, and incremental improve-

https://doi.org/10.5194/hess-29-1587-2025 Hydrol. Earth Syst. Sci., 29, 1587–1614, 2025



1602 M. Tanguy et al.: Optimising ensemble streamflow predictions with bias correction and data

Table 3. “Best” method and recommended implementation based on the available resources.

OR-ESP DA-ESP BC-ESP

Where and when is each method
recommended?

For a few cases, OR-ESP outper-
forms the other methods, but gen-
erally only marginally compared to
BC-ESP.

Best method for the following two
cases

1. High-BFI (> 0.6) catchments:

– summer;

– lead times up to
1 month.

2. Catchments where snowpack
and snowmelt processes are
important:

– winter and spring;

– lead time up to a few
days.

General improvement for all sea-
sons:

– Lead times up to 6 months in
summer and autumn and 1–
3 months in winter and spring.

Recommended imple-
mentation depending
on the available
resources for develop-
ment and implementa-
tion
(UKHO as an example
operational forecasting
system)

Limited
resources

Not used Not used Applied everywhere

Development needed: minimal.

– Plug in the BC code to the end of the current UKHO operational workflow.

– Optional: implement a time-varying reference period for constructing the FDC.

Running cost: minimal. The BC is cheap and quick to run.

Unlimited
resources

Develop a system which will select the best method (OR-ESP, DA-ESP, or BC-ESP) for each catchment
depending on the season and lead time (e.g. a decision tree), where the user clicks on their selected
catchment and receives a single, user-friendly “best possible” answer. This might need a “seamless” toggle
option using a single method for all lead times if step changes are to be avoided.
Developments needed:

– Development of the decision tree.

– Development of the seamless toggle option.

– New design and deployment of a web interface delivering the forecasts, with careful consideration of
how to communicate the underlying methods to users. This would require stakeholders’ engagement
to make sure that the new product is intuitive and understandable by end-users.

Running cost:

– Running DA operationally will have a substantial cost and might require the use of high-performance
computing facilities in order to deliver forecasts in time.

ments take time to translate into impact for users. We could
even argue that no model will ever perfectly simulate the
physical world. For example, human influence is notoriously
difficult to account for in hydrology. This slowly evolving
advancement of the models is asynchronous with the ur-
gent need of end-users to have reliable outputs that they
can trust to base their decision-making on (e.g. Cassagnole
et al., 2021; Li et al., 2019; Pappenberger, 2024). It is worth
noting the practical implications of improving hydrological
forecasts (Lopez and Haines, 2017; Neumann et al., 2018),
particularly in the context of operational use by decision-
makers, whereby the difference between correcting or not
correcting a forecast – regardless of the method being used –
can determine whether they are deemed useful and conse-
quently used by stakeholders or not (Hopson et al., 2020).
The Hydrological Outlook UK, which is the subject of this
case study, serves as a pertinent example of the real-world
application of forecast products.

Moreover, incremental refinements in hydrological models
often result in only marginal enhancements to forecast skill,
as illustrated by plots in the Appendix comparing the GR4J
and GR6J models (Fig. A1). Notably, the difference in fore-
casting skill between these models is minimal, highlighting
the challenge of achieving substantial gains through model
enhancements alone. In contrast, our assessment demon-
strates that methods like BC yield more significant and im-
mediate improvements in forecast accuracy. Therefore, in
parallel with the ongoing efforts to enhance the cores of hy-
drological models, exploring methods – such as BC and DA –
to refine existing forecasting products becomes justified. This
paper consistently assesses and compares two of these meth-
ods, offering evidence of the benefits they deliver and provid-
ing a pragmatic solution to refine existing forecasting prod-
ucts, meeting the pressing demand from end-users for reli-
able outputs that inform their decision-making.
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4.3 Post-processing methods in hydrological
forecasting

In the broader context of hydrological research, our study’s
exploration of BC and DA methods contributes to the
ongoing dialogue surrounding hydrological forecast post-
processing techniques. While machine learning (ML) meth-
ods like convolutional neural networks (CNNs) and support
vector regression (SVR) have shown promise in enhancing
forecast accuracy (Liu et al., 2022), their computational de-
mands present challenges. Notably, our study employs QM
for BC, a computationally efficient method, distinguishing it
from more resource-intensive ML approaches.

In similar work, Matthews et al. (2022) adopt a post-
processing method derived from the Multi-Temporal Model
Conditional Processor (MT-MCP; Coccia and Todini, 2011).
They find a pronounced impact in catchments with a long
hydrological memory. A key difference with our work lies
in their use of numerical weather prediction (NWP) as the
driving data, contrasting with our reliance on climatological
weather input for the ESP method. This distinction implies
that their hydrological forecasts, particularly in dynamic or
“flashy” catchments, are sensitive to the skill of NWP in-
put, potentially diminishing the relative effectiveness of post-
processing compared to our experimental setting in those
catchments. In that sense, ESP serves as an ideal test case
to isolate the value of the DA and BC methods given the ab-
sence of skill from the meteorological forecast to “take over”
from the IHCs.

Additionally, we acknowledge the challenge of non-
stationarity in QM, a concern highlighted by Ceola
et al. (2014). To address this, in an operational setting, incor-
porating real-time updates by dynamically adding the newest
observed data would be done, allowing the FDC to adapt
monthly. A potential refinement could be explored by chang-
ing reference periods, such as the most recent 30-year period,
offering a dynamic approach to account for non-stationarity,
albeit with the associated risk of overlooking rarer extreme
events.

To the best of our knowledge, no prior study has under-
taken a direct comparison between BC and DA, a gap that
might be attributed, in part, to the inherent disparities be-
tween these two methodologies, as mentioned already. Nev-
ertheless, from a users’ standpoint, such a comparative anal-
ysis holds significant value. It facilitates the selection of the
optimal forecasting product tailored to distinct situations, of-
fering valuable insights for decision-makers seeking to en-
hance the reliability of their hydrological forecasts.

4.4 Limitations and future work

The present study naturally has some limitations given the
practicalities of applying multiple approaches across many
catchments, lead times, and seasons. Firstly, the gap-filling
approach employed to address missing data in the observed

river flow time series is quite rudimentary, relying on a sim-
ple linear interpolation method. While this method is com-
monly used for gap-filling (Niedzielski and Halicki, 2023), it
comes with inherent limitations, such as its sensitivity to out-
liers and oversimplification of the underlying hydrological
processes, especially when gap-filling longer time periods.
Note that both techniques (BC and DA) can be applied even
if the observed data have some missing data (DA is not ap-
plied where no data are available, and BC uses whatever data
are available to construct the FDC). Full time series were
only needed to calculate the CRPSS used to carry out the
comparative analysis. While more sophisticated techniques
for handling missing data, such as data-driven methods or
advanced statistical approaches, could have been considered
to enhance the accuracy of the reconstructed time series (e.g.
Dembélé et al., 2019; Luna et al., 2020), such methods would
have significantly increased the complexity of the analysis.
To mitigate this limitation, the study has focused much of
its analysis on a subset of the dataset, where less than 5 %
of the data were missing (Fig. 1b), minimising in that way
the effect of the gap-filling (Arriagada et al., 2021). Conse-
quently, using an alternative gap-filling method would likely
have yielded comparable conclusions.

Secondly, the DA methodology implemented in this study,
the PF technique, is used in a deterministic manner (where
we have used the PF ensemble mean to avoid having an en-
semble of ensembles) to ensure comparability with BC re-
sults. However, the PF method inherently provides valuable
information on uncertainty associated with the hydrological
state (e.g. Moradkhani et al., 2012). In the current study, this
information on uncertainty is not fully exploited, as the anal-
ysis primarily focuses on the comparison with BC. Future
investigations could explore more sophisticated approaches
within DA that capitalise on the uncertainty estimates pro-
vided by the PF technique.

Building on our analysis of the comparative strengths of
DA and BC, our study identified the specific scenarios where
each method improves the forecasts the most. Depending on
the resources available for implementation, we summarise
our recommendations based on our findings in Table 3. This
lays the groundwork for a prospective user-friendly hydro-
logical forecasting system in the future that could be im-
plemented in the operational HOUK setting. Recognising
that end-users and non-specialists often prioritise a simpli-
fied and trustworthy message (Hannaford et al., 2019), we
envision the implementation of a flexible, combinatory (e.g.
decision-tree-based) forecasting system that would dynami-
cally choose the most effective method based on specific fac-
tors such as catchment characteristics, time of year, and lead
time. For end-users seeking “the best answer” without delv-
ing into the intricacies of the methodology, this streamlined
approach aims to provide the most reliable forecast available
in a clear and simple manner. While this concept would re-
quire rigorous testing and development first, it highlights a
potential avenue for future research in tailoring hydrologi-
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cal forecasts to meet the practical needs and expectations of
end-users. The cheaper, more immediate solution would be
to blanket-apply BC to improve all catchments indiscrimi-
nately.

Furthermore, future studies could explore alternative post-
processing methods (Li et al., 2017), such as copula-based
approaches and machine learning techniques (Liu et al.,
2022), or statistical and empirical post-processing methods,
such as using the Hydrological Uncertainty Processor (HUP;
Krzysztofowicz, 1999) and its variants such as the Model
Conditional Processor (MCP, Todini, 2008). All of these op-
tions, while potentially offering improved forecast accuracy,
come with varying computational expenses. Investigations
into diverse post-processing methodologies can enhance our
understanding of their applicability and effectiveness in dif-
ferent hydrological contexts, providing valuable options for
refining forecasting products in the future.

5 Conclusion

In this study, we have explored the effectiveness of quantile
mapping (QM), bias correction (BC), particle filter (PF), and
data assimilation (DA) techniques in enhancing hydrologi-
cal model performance and forecast skill, specifically focus-
ing on improving hydrological forecasts using the ensemble
streamflow prediction (ESP) method with the GR4J model
for the Hydrological Outlook UK operational service. Our
findings reveal that both BC and DA contribute to improve-
ments, yet their impacts vary across different metrics and
catchment characteristics.

BC, operating as a post-processing method, demonstrates
substantial and generalised improvements across various per-
formance metrics. It rectifies model errors after simulations,
extending its positive influence beyond initial conditions
throughout the entire time series. However, while QM BC ef-
fectively aligns statistical properties, it may oversimplify the
complexity of hydrological systems by neglecting to capture
the physical processes and interactions, consequently leading
to an underestimation of uncertainties.

On the other hand, DA, which adjusts model internal states
during initialisations to align simulations with observed data,
exhibits more subtle and marginal improvements. The posi-
tive effects of DA are particularly notable in catchments with
a high baseflow index (BFI) and up to the seasonal scale, and
DA often yields more improvement than BC at short lead
times (up to 1 month) in summer. DA also outperforms BC
for catchments where snow processes are important, mainly
in north-eastern Scotland in winter (snow accumulation) and
spring (snowmelt) at short lead times. The probabilistic na-
ture of DA, considering uncertainties associated with model
structures, initial conditions, and observations, provides a
comprehensive representation of the hydrological state.

The choice between BC and DA involves trade-offs,
considering their conceptual differences, computational de-

mands, and handling of uncertainties. While DA offers a
more sophisticated approach, BC presents a pragmatic and
computationally efficient solution, especially when compu-
tational costs pose a limitation. The absence of universal
superiority of one method over another emphasises the im-
portance of selectively applying these techniques based on
specific scenarios, user requirements, and operational con-
straints. Future work could explore the combined use of both
techniques, though it would need to first address the chal-
lenge of constructing the flow duration curve used in the QM
method for flow simulations modified by data assimilation.

In the broader context of hydrological research, our study
contributes valuable insights to the body of literature on fore-
cast enhancement techniques. Our findings can pave the way
for a more objective, on-the-fly selective forecasting system
tailored to catchment characteristics, time of year, and lead
time, which would be a step towards user-friendly and prac-
tical hydrological forecasting systems.

In conclusion, this research provides a novel intercom-
parison of QM BC and PF DA, offering an assessment of
their strengths and limitations when applied to UK stream-
flow forecasting. By recognising the diverse contexts where
each method excels, hydrologists and decision-makers can
make informed choices to refine forecasting products, align-
ing with the ever-growing demand for reliable and actionable
hydrological information.

Hydrol. Earth Syst. Sci., 29, 1587–1614, 2025 https://doi.org/10.5194/hess-29-1587-2025



M. Tanguy et al.: Optimising ensemble streamflow predictions with bias correction and data 1605

Appendix A: Additional figures

Figure A1. Change in forecasting skill (CRPSS) at different lead times when transitioning from GR4J to GR6J to produce ESP forecasts
in the different UK hydroclimate regions. Blue signifies improved forecast skill with GR6J compared to GR4J, while orange represents the
reverse.

Figure A2. Boxplots showing the range of the CRPSS for all catchments used in the UKHO at different lead times in ESP forecasts generated
using GR4J (in red) and GR6J (in blue).
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Figure A3. Map of the difference in skill (CRPSS) between ESP forecasts generated using GR6J and GR4J at (a) a 1-month lead time and
(b) a 3-month lead time. Blue shades signify improved forecast skill with GR6J compared to GR4J, red shades represent the reverse, and
white shades signify negligible differences (source: https://hydoutuk.net/about/methods/river-flows, last access: 18 March 2025).
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Figure A4. Percent bias for each season for low flows (Q95) and high flows (Q05) in streamflow simulated by GR4J. The percent bias is
calculated as (q−Q)/Q×100 for the low flows (Q95) and high flows (Q05), where q is the simulated flow andQ is the observed flow. The
percent bias can be negative when the simulated flow is lower than the observed flow.
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Figure A5. Bias (m3 s−1) for each season for low flows (Q95) and high flows (Q05) in streamflow simulated by GR4J. The bias shown here
is the raw bias, defined as (q−Q), for the low flows (Q95) and high flows (Q05), where q is the simulated flow and Q is the observed flow.
The bias can be negative when the simulated flow is lower than the observed flow.
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Figure A6. The CRPSS of OR-ESP, BC-ESP, and DA-ESP forecasts at different lead times and initialisation months for catchments
with < 5 % of missing data. The grey stars indicate where BC-ESP or DA-ESP differ significantly from OR-ESP at the 5 % significance
level, based on a Student’s t test.

https://doi.org/10.5194/hess-29-1587-2025 Hydrol. Earth Syst. Sci., 29, 1587–1614, 2025



1610 M. Tanguy et al.: Optimising ensemble streamflow predictions with bias correction and data

Figure A7. Fraction of precipitation falling as snow for catchments
across the UK, where a value of 0.15 indicates that 15 % of the
catchment precipitation falls on days when the temperature is below
zero (source: Lane et al., 2019).

Code and data availability. All the code used in this
study was based on open-source libraries. The hydro-
logical model GR4J was based on R package airGR
(https://cran.r-project.org/web/packages/airGR/index.html,
Coron et al., 2025). Verification was done with R pack-
age easyVerification (https://cran.r-project.org/web/packages/
easyVerification/index.html, MeteoSwiss et al., 2025). The
data used in this study are also from open-source datasets:
river flow is from the NRFA at https://nrfa.ceh.ac.uk/data (last
access: 18 March 2025), and precipitation from the GEAR
dataset is downloadable at https://catalogue.ceh.ac.uk/documents/
dbf13dd5-90cd-457a-a986-f2f9dd97e93c (Tanguy et al., 2021).
Potential evapotranspiration from CHESS for the UK and the histor-
ical PET for Northern Ireland are downloadable at https://catalogue.
ceh.ac.uk/documents/9116e565-2c0a-455b-9c68-558fdd9179ad
(Robinson et al., 2020) and https://catalogue.ceh.ac.uk/documents/
17b9c4f7-1c30-4b6f-b2fe-f7780159939c (Tanguy et al., 2017).
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