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Abstract Geophysical methods have proven to be useful for investigating unstable slopes as they are both
non‐invasive and sensitive to the spatial distribution of physical properties in the subsurface. Of particular
interest are the links between electrical resistivity and near‐surface moisture content; recent work has
demonstrated that it is possible to calibrate hydrological models using geophysical measurements. In this
study we explore the use of in‐field electrical resistivity data for calibrating unsaturated soil retention
parameters and saturated hydraulic conductivity used for modeling unsaturated fluid flow. We study a
synthetic case study, and a well‐characterized site in the northeast of England and develop an approach to
calibrate retention parameters for a mudstone and a sandstone formation, the former being an actively failing
unit. Petrophysical relationships between electrical resistivity and moisture content (or saturation) are
established for both formations. 2D hydrological models are driven by effective rainfall estimations;
subsequently these models are coupled with a geophysical forward model via a Markov chain Monte Carlo
approach. For the synthetic case, we show that our modeling approach is sensitive to the moisture retention
parameters, while less so to saturated hydraulic conductivity. We observe the same characteristics and
sensitivities for the field case, albeit with a greater data misfit. Further hydrological simulations suggest that
the slope retained high moisture contents in the months preceding a rotational failure. Therefore, we propose
that coupled hydrological and geophysical modeling approaches could aid in enhancing landslide monitoring,
modeling, and early warning efforts.

Plain Language Summary The electrical properties of the ground can be particularly useful in
characterizing and monitoring landslides, as they are dependent on key physical properties including moisture
content, soil/rock composition and porosity (voids). First, different rock types in landslides have different
resistivity values, which helps map weak geology at depth. Second, as moisture content in the ground increases
it becomes less electrically resistive; this means that the resistivity of the ground changes with the addition of
water, usually from rainfall. In this research, we use the relationships between electrical resistivity and soil
moisture to calibrate models of fluid flow in the subsurface for a known landslide. The issue with unstable slopes
is that failure is often associated with increased moisture content, therefore modeling fluid flow in the
subsurface is important for assessing slope stability. In this study the electrical properties of the ground were
measured using electrodes physically inserted into the landslide surface. We ran several thousand simulations of
fluid flow to calibrate our modeling parameters against electrical measurements. We found that the moisture
content of the slope was sustained at high levels prior to recorded failure events. Hence, we suggest that
electrical measurements on landslides could be useful for landslide early warning systems.

1. Introduction
Most landslides are moisture‐induced, and represent a significant geohazard resulting in socioeconomic impacts
across the globe (Gibson et al., 2013). Increases in pore pressure are known to trigger landslides (Duncan
et al., 2014). Furthermore, landslides are likely to become more pervasive due to climate change and the greater
prevalence of extreme rainfall events (Fischer & Knutti, 2016). In saturated conditions the resistance to shear is
classically considered to be a function of effective stress, rock cohesion and friction angle, where the effective
stress is a function of positive pore pressure (Terzaghi, 1936). This concept of pore pressure controlling the stress
conditions is also true for unsaturated materials (Bishop, 1959), where pore pressures are negative and linked to
the level of moisture in the ground (van Genuchten, 1980). Numerous studies have considered the role of moisture
within unstable slopes, citing the importance of estimating the near‐surface pore pressures in developing models
of unsaturated ground stability (or instability) (Fredlund et al., 1978, 1996; Lu & Godt, 2008; Lu & Likos, 2006).
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While slope hydrology clearly influences slope stability, the slope geometry and distribution of geological ma-
terials in a slope are equally important. In slope stability modeling, knowledge of the subsurface structure is
required, which is conventionally derived from boreholes. On the other hand, geophysical techniques offer a non‐
invasive, spatially sensitive means to rapidly characterize the subsurface and inform ground models (Bichler
et al., 2004; Merritt et al., 2013; Moradi et al., 2021). In particular, the sensitivity of geoelectrical properties of the
ground to changes in moisture content has made electrical resistivity tomography (ERT) a primary geophysical
technique for studying landslides (Pazzi et al., 2019; Perrone et al., 2014; Whiteley et al., 2019). Relationships
between the resistivity of rocks and corresponding saturation levels have been understood and explored for
decades (Archie, 1942, 1947; Glover et al., 2000; Montaron, 2009; Shah & Singh, 2005; Waxman & Smits, 1968).
Consequently, many studies have focused on directly translating electrical images of the ground into hydro‐
mechanical properties, namely moisture content (Boyd et al., 2024; Holmes et al., 2022; Moradi et al., 2021;
Uhlemann et al., 2017). This is done by developing a material‐specific petrophysical transfer function, either
using field samples that have subsequently been studied under laboratory conditions (Holmes et al., 2020; Merritt
et al., 2016), or through infield calibration using point sensors (Crawford & Bryson, 2018). However, translating
electrical images into spatial distributions of moisture content does not immediately inform parameters needed for
slope stability analysis, such as flow parameters, pore pressures, or shear strengths. Hence there is a growing body
of works that has studied translating electrical properties of geological materials into other geotechnical pa-
rameters such as negative pore pressure (or matric potential) (Cardoso & Dias, 2017; De Vita et al., 2012; Holmes
et al., 2022) and ultimately relating resistivity directly to shear strength (Crawford & Bryson, 2018). An alter-
native approach is to couple electrical and hydrological flow models to better estimate hydrologic properties of
subsurface materials (Binley et al., 2002; Hinnell et al., 2010); in such an approach one does not solve for the
electrical properties of the subsurface, but rather the hydrological parameters controlling moisture content in the
subsurface.

1.1. Hydrogeophysical Modeling

Given the established links between electrical resistivity and water saturation states in geological materials,
electrical geophysics can be used to constrain processes occurring in the unsaturated portion of the near‐surface.
One of the first such reported studies is that of Binley et al. (2002), where cross borehole ERT and ground
penetrating radar are used to constrain hydraulic conductivity in near‐surface sandstones by comparing multiple
hydrological simulations to geophysical inversions. Subsequently, the term “hydrogeophysical inversion” has
been applied to studies where both geophysical and hydrological parameters are solved. There is not a formal
workflow coupling the geophysical and hydrological response, but this is typically achieved by widely sampling
the parameter space via multiple realizations of hydrological models (Hinnell et al., 2010; Mboh et al., 2012;
Pleasants et al., 2022; Tso et al., 2020). Regardless of the coupling mechanism, some statistical values such as root
mean square (RMS) error or likelihood value are used to quantify the level of fit between the hydrological and
geophysical inputs. The goal of hydrogeophysical inversion is to find a distribution of electrical and hydrological
parameters consistent with the observed data. In the context of landslides, it is the hydrological parameters that are
most relevant for slope stability modeling.

Hydrogeophysical inversions leverage either uncoupled or coupled mechanisms. In the former case, geophysical
measurements are inverted conventionally using a geophysics inverse code (e.g., Binley & Slater, 2020; Johnson
et al., 2010; Loke et al., 2013). Geophysical and hydrological models are linked via a petrophysical function to
derive fitting statistics (Binley et al., 2002). In contrast, in a coupled approach no conventional inversion of
geophysical data takes place, rather the statistical fits of simulated and measured geophysical responses are used
to optimize any modeling parameters (e.g., Hinnell et al., 2010; Pleasants et al., 2022; Tso et al., 2020). In the case
of Mboh et al. (2012), a global optimizer is used to progressively iterate through different realizations of hy-
drological modeling parameters until an optimum RMS value is achieved. Whilst both mechanisms (coupled and
uncoupled) have merits (Binley et al., 2002; Camporese et al., 2015; Hinnell et al., 2010; Pleasants et al., 2022),
the consensus is that coupled modeling approaches are generally superior and therefore solely considered
henceforth. Both Hinnell et al. (2010) and Pleasants et al. (2022) report that hydrogeophysical inversions using
coupled approaches yielded tighter constraints on resulting hydrological parameters, provided that the hydro-
logical model is appropriate. In this study when testing a synthetic problem to determine saturated hydraulic
conductivity, we also found that coupled approaches provided results more consistent with the known
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hydrological parameters. It is likely that uncoupled approaches inherently suffer from artifacts in the inversion of
geophysical data (due to regularization) (e.g., Carey et al., 2017).

1.2. Motivation and Aims

We study coupled modeling of electrical resistivity and unsaturated flow to determine the posterior distributions
of a series of hydraulic parameters, conditioned on time‐lapse geophysical data. The motivating factors are
twofold: first, the unsaturated soil parameters control the matric potential observed at a given moisture content
(Lu & Likos, 2006; van Genuchten, 1980), which in turn controls the shear strength available to the subsurface
(Bishop, 1959; Fredlund et al., 1996); second, the selected parameters are necessary for unsaturated flow
modeling and determining the pore pressure response of a geological body to rainfall events. Research has shown
that deriving unsaturated parameters, via hydrogeophysical coupling, for individual formations is possible (Mboh
et al., 2012; Tso et al., 2020). While there has been research into hydrogeophysical modeling of slopes (Pleasants
et al., 2022), work has focused on determining singular properties (e.g., density, hydraulic conductivity).
Therefore, our research question is whether hydrogeophysical modeling is sensitive to hydrological parameters
that could ultimately be used be slope stability modeling. The van Genuchten unsaturated soil parameters, α
(alpha) and n, as well as the saturated hydraulic conductivity. We discuss the feasibility of deriving these pa-
rameters for synthetic case study where two formations of interest are present and a well‐characterized landslide,
Hollin Hill (Merritt et al., 2013). Given the importance of these hydrological parameters to slope stability, we
further show how these hydrogeophysical outputs may affect models of slope stability, thus demonstrating how
geophysical data may have a role in assessing the risk of failure of a slope.

2. Field Site
Hollin Hill (Figure 1) is located approximately 11.5 km west of the town of Malton, in North Yorkshire, UK
(latitude/longitude: − 0.959586, 54.110784). It has been the subject of long‐term geophysical and geotechnical
studies (Boyd et al., 2021, 2024; Chambers et al., 2011; Gunn et al., 2013; Merritt et al., 2013, 2016, 2018; Peppa

Figure 1. Overview map of field site. (a) Instrument enclosures, sample locations, upper surface of resistivity distribution, as
imaged in May of 2016, overlain on a hill shade map of the slope and (b) geographic location (coordinates are given in British
National Grid). (c) Shows a 2D resistivity section (also from May 2016) with interpretation for the highlighted electrode
array (in yellow). Elements of this Figure have been created using QGIS.
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et al., 2019; Uhlemann et al., 2015, 2016, 2017; Whiteley et al., 2020) and is an active slow‐moving landslide. The
slope is located on the south facing side of a glacial valley of the Howardian Hills and is underlain by Lias Group
rocks of the early Jurassic. Toward the top of the slope, which is actively failing, outcrops the Whitby Mudstone
Formation (WMF), which is associated with amongst the highest density of landslides of any UK formation
(Hobbs et al., 2005). In this case the WMF is actively failing through rotational, translational, and creeping failure.
According to the nomenclature of Varnes (1978), the landslide is considered to be complex and slow‐moving.
Elements of the slope have moved by several meters since 2008 (Boyd et al., 2021; Uhlemann et al., 2017).

2.1. Slope Hydrogeology

As a result of several geophysical and geotechnical studies, Hollin Hill is well‐characterized from a geological
perspective (Figure 1) to ∼10 m below ground level. The upper part of the slope is composed of WMF, a
mudstone unit, which according to particle size analysis is almost entirely composed of clay (63.7%) and silt
(36.1%). The lower part of the study area comprises the Staithes Sandstone Formation (SSF), which although
named a sandstone is still relatively fine grained, composed of clay (42.0%), silt (41.7%), and finally sand and
gravels (16.3%). The SSF is a competent rock and is well‐cemented in core samples. The boundary between the
WMF and SSF is approximately mid‐slope, located below a central plateau. On the other hand, much of the SSF
outcrop is concealed by clay‐rich earthflow material originating from the WMF further upslope (Figure 1). Above
the WMF lies the Dogger Formation, a calcareous sandstone unit that outcrops at the top of the valley and north of
the WMF. At the WMF‐SSF boundary, a thin layer of ironstone can be observed in borehole records. Below the
SSF is the Redcar Mudstone Formation (RMF), which is known to outcrop further south into the valley. The exact
depth of the SSF‐RMF boundary in the monitoring area is unknown. Geophysical images (Merritt et al., 2013;
Uhlemann et al., 2017) a decrease in resistivity at∼10 m below the SSF (Figure 1). This could be indicative of the
underlying RMF, the water table, or both.

The ground model developed for the site, in terms of subsurface structure and lithology, contributes to the current
understanding of slope hydrology. Toward the top of the slope, moisture levels remain relatively high in the near‐
surface, suggesting the presence of a perched water table around the WMF‐SSF boundary (Boyd
et al., 2021, 2024; Gunn et al., 2013; Uhlemann et al., 2017). The SSF, in contrast, appears to be free draining, and
during the winter months a natural spring occurs at the SSF‐RMF boundary downslope of the study area, which
suggests a significant negative contrast in hydraulic conductivity between the SSF and RMF. An infiltration
experiment at Hollin Hill, by van Woerden et al. (2014), reported that the SSF had a hydraulic conductivity an
order of magnitude greater than the WMF. In borehole records, ∼1 cm size sand‐filled fissures were observed in
the SSF unit; hence it is likely that these act as hydrological pathways and allow the SSF to drain freely. Water
levels measured in boreholes, close to the central line of the monitoring array (Figure 1), during autumn 2022
show that the water table was maintained at 5–6 m below the ground surface at both the top and bottom of the
slope.

2.2. Instrumentation

There are two types of instrumentation at Hollin Hill that are of interest to this study. First, in 2014 a weather
station equipped with COsmic‐ray Soil Moisture Observing System (COSMOS) instrumentation (Stanley
et al., 2019; Zreda et al., 2012) was installed on site. The station records relative humidity, wind speed, and local
volumetric moisture content (VWC). This allows the computation of potential evapotranspiration via the Penman‐
Monteith method (Allen et al., 2006). As such, consistent rainfall records for the site exist from April 2014
onwards. Potential evapotranspiration estimations are available for the slope at daily intervals (Stanley
et al., 2019).

Second, in 2008 a geoelectrical monitoring system was installed on the slope (Figure 1a), an automated time‐lapse
electrical resistivity tomography (ALERT) instrument (Kuras et al., 2009; Ogilvy et al., 2009), monitoring over a
5 by 32 grid array of electrodes. The longest axis of the array is parallel to the slope (Figure 1). Dipole‐dipole
(DD) measurement configurations (Binley & Slater, 2020) are used to record transfer resistance (TR) and take
place every 2 or 3 days during normal operation of the instrument. TR measurements are made remotely on an
automated schedule and uploaded to a long‐term data storage solution via telemetry. The full specification and
justification of the DD arrays are documented in Merritt et al. (2018) and Uhlemann et al. (2017). The ALERT
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system ran until 2018, albeit with significantly reduced data quality toward the end of its operational lifetime
(Boyd et al., 2021), and was replaced by a successor system in 2020.

3. Modeling and Calibration
To perform a coupled hydrogeophysical inversion a mechanism to model both the hydrological and geoelectrical
responses of the ground is required. Because unsaturated conditions are present in the near‐surface of the field
site, the variably saturated flow simulator SUTRA (Provost & Voss, 2019) has been employed. Additionally,
SUTRA is open source and a self‐contained program with a proven history for use within research, which is
beneficial to manipulating the program for coupled modeling. Likewise, for the resistivity modeling component
of this paper the R2 code (Binley & Slater, 2020) is used. It is closed source, but the program is freely available,
self‐contained, and a well‐established code for modeling ERT data.

For the purposes of this study the investigation is 2D (two‐dimensional), however the hydrological and
geophysical modeling computations have a pseudo 3D component to them. While a full 3D study is theoretically
viable, the computation time and complexity required in the conceptual hydrological model are far greater than in
2D, which was deemed not to be practical. The 2D section of interest is the center line of the monitoring array
(highlighted in Figure 1), as this does not intersect parts of the slope moving regularly.

3.1. Physical Property Calibrations

To couple the hydrological and geophysical response of the ground with respect to rainfall, we employ petro-
physical relationships between electrical resistivity and saturation, a hydrological state which is computed by
SUTRA. Additionally, as the resistivity of geological materials is sensitive to temperature, we apply a seasonal
temperature correction to the modeled resistivities.

3.1.1. Petrophysical Relationships

Petrophysical relationships for the rocks of Hollin Hill are complex. Clay minerals introduce an electrically
conductive “double layer” to the rock matrix, which conduct electricity in addition to any pore fluid (Waxman &
Smits, 1968). Moreover, the shrink‐swell properties of the mudstones means that porosity is variable, increasing
with higher moisture content. We collected borehole samples from the WMF and SFF (Figure 1) and measured a
range of gravimetric moisture contents and resistivity directly. An additional complexity is the anisotropy of the
resistivity response of samples in relation to sedimentary structures (Boyd et al., 2024; Merritt et al., 2016).
Porosity changes with moisture content were measured with a SHRINKiT system (Hobbs et al., 2010), which
allowed us to convert measurements made in gravimetric moisture content (GMC) to saturation (see Supporting
Information S1, Section A). We found that a power law adequately described the relationship between resistivity,
ρ, and saturation, S, for the purposes of this study, where

ρ =
1

(a[Sb])
+ c. (1)

Here a, b, and c are fitting parameters found through a least squares approach (Virtanen et al., 2020). Given the
high clay content of the material, the equations put forward by Waxman and Smits (1968) and those by Mon-
taron (2009) were explored, but ultimately a generic power‐law fit best described the measured data. It could be
that physical processes are occurring in the material that are not captured by published petrophysical relation-
ships, hence a variable porosity was accommodated in our Waxman Smits formulation, although the result was
unsatisfactory for the SSF. The fitting parameters used for the petrophysical relationships are shown in Table 1
and Figure 2. Testing was completed in a temperature‐controlled laboratory at 20°C, and the water used to wet
samples was de‐aired and de‐ionized to best simulate rainwater infiltration (given the allowed equilibration within
the sample).

We retrieved samples from ∼1.5 m depth in the SSF (borehole 1901 in Figure 1a) and made resistivity mea-
surements both parallel and perpendicular to the bedding. Our objective was to find a petrophysical relationship
that could be used in coupled modeling and represented field conditions as best as possible. Fitting petrophysical
relationships individually to the parallel and horizontally aligned measurements yielded better fitting statistics
than a combined fit, but we found the magnitude of apparent resistivities in the field closely matched that of a
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combined fit. This suggests that infield resistance measurements are sensitive
to a mix of electrical currents flowing in both the vertical and horizontal
orientation. Given this hypothesis, we used a combined fit as the petro-
physical relationship to describe SSF's response to various moisture levels
(Figure 2).

Regarding the WMF, we retrieved samples from borehole cores at 1, 4, and
6 m depths (denoted 1902 in Figure 1a). We found that the samples retrieved
from 4 to 6 m depth exhibited anisotropy and are generally more resistive
when current is passed vertically across bedding planes. However, the sample
retrieved from 1 m depth was more resistive still, even at higher moisture
contents, and isotropic regarding measured resistivities and orientation of
current flow. Chemical weathering and shallow movements have likely

removed any sedimentary structures from the shallow WMF resulting in isotropic electrical properties. Hence, a
different petrophysical relationship was applied to the WMF in the upper 1 m of the modeling domain in the field
case study. For the “deep” WMF (>1 m depth) we chose to use electrical resistivity measurements made when
current flows horizontally to bedding planes to form our petrophysical relationship, as we found these best match
in‐field measurements of apparent resistivity made over the WMF.

A critical petrophysical parameter is the formation porosity, which (as previously mentioned) is challenging to
quantify in materials from Hollin Hill. A prior hydrological study (van Woerden et al., 2014) found the porosity of
the WMF to be 48% and residual VWC of 10%; equivalent values for the SSF were 38% and 6%, which are
adopted for hydrological simulation. However, the porosity measurement in shrink swell‐prone clays merits
further discussion.

3.1.2. Unsaturated Moisture Retention Curve

In SUTRA we used a van Genuchten (1980) curve to describe the relationship of effective saturation to matric
potential (negative pore pressure),

Table 1
Fitting Parameters Used in Equation 1 for the Relationship Between
Saturation and Resistivity (Ωm) for Hollin Hill Samples

Formation a b c χ2 r n Samples

SSF 0.10 3.58 29.34 187.05 0.50 55 2

WMF 0.42 2.14 4.11 4.35 0.95 66 2

WMF (shallow) 1.53 17.51 14.61 4.91 0.95 66 2

Note. Parameters a, b, and c are unitless. The number of measurements,N, for
each formation type is shown, Chi‐squared and Pearson's correlation coef-
ficient r are also shown.

Figure 2. Petrophysical calibration of saturation and resistivity, showing fitted curves for Whitby Mudstone Formation
(WMF) and Staithes Sandstone Formation (SSF) as well as measured data points for the 6 samples documented in Table 1.
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Se =
S − Sr
Ss − Sr

= (1 + [αh]n)− m, (2)

where: h is matric potential in m; Se is effective saturation; α and n are fitting
parameters and we setm= 1 − 1/n (van Genuchten, 1980); Ss is the maximum
saturation value (1); Sr is the residual saturation. Sr can be approximated by
dividing the residual VWC value by the formation porosity (which is assumed
constant in SUTRA). We compute relative hydraulic conductivity (or
permeability), kr, as function as of Se (van Genuchten, 1980),

kr (Se) =
̅̅̅̅̅
Se

√
· (1 − [1 − Se

1
m]
m
)

2
. (3)

3.1.3. Temperature Correction

Electrical conductivity (the inverse of resistivity) is affected by temperature, and increases by approximately 2%
per one degree increase in temperature when above 0°C (Hayley et al., 2007). Previous geophysical investigations
of Hollin Hill (e.g., Boyd et al., 2021) used a seasonal temperature‐depth model documented by Uhlemann
et al. (2017) whereby the temperature at a given depth and day during the year is based on the diffusive heat
equation (Brunet et al., 2010),

Tmodel(z,t) = Tmean +
∆T
2

exp(−
z
d
) sin(

2tπ
365

+ φ −
z
d
). (4)

Here Tmean is the average annual air temperature, ∆T is the difference between the largest and smallest annual
temperatures, φ is a phase offset to bring surface and air temperature into phase, d is characteristic depth and
defined as the depth where ∆T has decreased by 1/e (Brunet et al., 2010), t is the day during the year and z is depth
of the barycenter of each cell in the modeling mesh. Uhlemann et al. (2017) found the relevant parameters for
Hollin Hill to compute Equation 5 and we list them in Table 2. Normally resistivity is corrected according to a
ratio model (Ma et al., 2011). In the above studies, inverted resistivities were corrected to a reference value
(usually 20 or 25°C); by contrast in our case resistivities need to be corrected from a reference value of 20°C to a
modeled temperature. We “corrected” our resistivity according to the following relation,

ρ0 =
ρref

[1 + ct
100(Tref − Tmodel)]

, (5)

where ρref is the resistivity (in Ωm) at reference temperature Tref in °C; ct is the percentage change in resistivity per
degree, set at − 2%/°C; ρ0 is the corrected resistivity.

3.2. Forcing Data

Our hydrological forcing (or driving) data is recorded by the weather station on the slope, which is publicly
available (Stanley et al., 2019). The infiltration rate is effective rainfall, that is, measured rainfall minus the effects
of evapotranspiration. We followed the suggestions of Allen et al. (1998) for computing our effective rainfall
estimations (See Section B of Supporting Information S1). We used a 2.5‐year‐long rainfall data series, spanning
June 2014 to December 2016 (Figure 3). We also extracted time‐lapse DD measurements from January 2015 to
December 2016 from the central, downslope, array of the geoelectrical monitoring (ALERT) system (highlighted
in Figure 1a). This monitoring period includes good quality ERT data that overlaps with COSMOS data avail-
ability; additionally significant movements were observed on the slope in April 2016 (Boyd et al., 2021), and
hence this period is interesting for investigating slope dynamics. We ran our SUTRA models at a 1 day temporal
resolution for 3 years and started modeling respective geophysical responses after 1 year. For the first 6 months of
modeling the infiltration rate was set at the average effective rainfall, 0.4 mm/day. The following 6 months are
real hydrological data, thus allowing the hydrological model time to “warmup” prior to hydrogeophysical
coupling.

Table 2
Parameters Used for Correcting Forward Modeled Resistivities From a
Reference Temperature

Parameter Tmean (°C) ∆T (°C) d (M) φ Tref (°C)

Value 10.03 15.54 2.26 − 1.91 20

Note. Adapted from Uhlemann et al. (2017).
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We rejected TR measurements with a contact resistance over 5 kΩ or reciprocal error greater than 5%. Mea-
surement error estimations are made by fitting a reciprocal error model (Blanchy et al., 2019) to each TR set.
Geophysical responses were modeled only when a measurement set was available for a given day in the modeling
period, a total of 184 time‐lapse DD surveys (Figure 3).

3.3. Hydrogeophysical Coupling

To perform the hydrogeophysical inversion one must generate numerous realizations of hydrological models.
This can be done via global optimization (Mboh et al., 2012), a grid search (Pleasants et al., 2022) or Monte Carlo
approaches (Hinnell et al., 2010; Tso et al., 2020). However, some of these approaches do not scale well with
additional model parameters, as these increase the number of realizations required exponentially. In this case, we
are attempting to constrain the van Genuchten (1980) α and n parameters and hydraulic conductivity for the WMF
and SSF. We therefore used an adaptive Markov chain Monte‐Carlo (McMC) approach (Hastings, 1970) to search
the parameter space in six dimensions. Briefly, Markov chains explore the parameter space by proposing new
parameters which are drawn (at random) from a prior probably density function (PDF). Each proposed model is
compared against the measured data to compute a likelihood value; at each step, if the likelihood is greater than
that of the current model parameters, the new parameters are accepted with a probability of 100%, otherwise, the
model is accepted with a probability which is the ratio of the proposed and current likelihood (see Section C of
Supporting Information S1 for further details). Often many iterations are required to get to part of the parameter
space with the desired likelihood value; these iterations are usually referred to as “burn in.” In this case, the model
output and data are a time series of TR data. To initiate our McMC chains we randomly sampled the entire
parameter space for the first proposed model. If the proposed model was unstable (i.e., did not converge), then
another model was proposed until a stable set of parameters was found.

To propose a model, parameters were drawn (randomly) from a normal distribution about the currently accepted
model parameters, whereby the step size describes the standard deviation associated with the distribution. Ideally,
the step size used in the model proposals is calibrated via multiple and completed McMC runs to get the desired
acceptance rate. However, as individual simulations can take several minutes finding an appropriate step size
through trial and error would be prohibitive. Hence the Metropolis‐Hastings algorithm (Hastings, 1970) was
adapted to target an acceptance rate of 23.4%, as this is generally considered to be optimal (Gelman et al., 1997;
Roberts & Rosenthal, 2001); see Equations S9 and S10 in Supporting Information S1 (Supporting Information S1,

Figure 3. Measured rainfall and estimated evapotranspiration for the period of interest in this study as measured by the weather station located on Hollin Hill (Stanley
et al., 2019). Gray lines show the temporal position of electrical resistivity tomography (ERT) surveys.
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Section C). Each Markov chain was allowed to run for 1,000 iterations; we ran 12 chains in parallel on a multicore
processor for a total of 12,000 model proposals. Note that the results of McMC approaches do not yield model
parameters specifically, but rather a posterior PDF of parameter proposals that maximize the likelihood. To test
the normality of our McMC results we employ the Shapiro‐Wilk test statistic (Shapiro & Wilk, 1965); which
scales between zero and one, the former rejects any normality whilst the latter indicates normality. Studies
indicate that the Shapiro Wilk test is a reliable test of normality (Razali & Wah, 2011) and coded implementations
are readily available (Virtanen et al., 2020).

3.3.1. Computation Specifics

The base version of SUTRA 3.0 requires the software to be recompiled by the user for different unsaturated soil
parameters. This enables users to define their own relationships between saturation, matric potential, and relative
hydraulic conductivity, although in this case compiling SUTRA for each hydrological model realization would
create significant computational overhead. Hence, we modified the SUTRA source code to accept unsaturated soil
parameters as a dynamic input. The geoelectrical modeling code, R2, was unmodified. To couple R2 and SUTRA,
we created a custom object‐orientated approach in Python (Van Rossum et al., 2009). We ran our problem on a
Windows 11 Pro operating system, which spawned Markov chains in parallel. Each parallel McMC run would
take several days to run on an AMD 5900x processor.

3.3.2. Boundary Conditions and Meshing

In R2 all external boundaries of the mesh are treated as Neumann boundaries, that is, electrical current may not
flow in or out of the model at the boundaries of the mesh (Binley & Slater, 2020). To characterize electrical
current flow accurately in an unconstrained half‐space, the mesh boundaries are treated as pseudo‐infinite. We
used a triangular mesh for geoelectrical modeling as it allows for efficient discretization of the mesh near
electrodes and at external mesh boundaries, reducing computational overhead. For SUTRA we used a quadri-
lateral mesh (Figure 4a), both the synthetic and field case study had the same boundary conditions. The base of the
mesh was held at a minimum pore pressure to set the water table at ∼5 m below the ground surface (as shown by
borehole investigations) and prevent the pooling of fluid in the domain. The vertical downslope edge was set as a
seepage boundary, allowing for fluid to leave the model. Furthermore, the top surface of the mesh was set as a
source/sink boundary from which fluid enters the mesh, in this case, the fluid input (infiltration) was effective
rainfall. We also found that allowing seepage (fluid to exit at atmospheric pressure) at the top of the modeling
domain improved model stability. By using different modeling domains for the geoelectrical and hydrological
modeling, we were able to minimize the overhead associated with solving the forward problem for both scenarios
respectively and ensure the boundary conditions are sufficient for both modeling approaches. A linear interpolator
(Virtanen et al., 2020) maps geoelectrical properties in the hydrological modeling domain. We set up SUTRA to
output per‐element saturation calculations at each time step in the hydrological model, which can be directly
converted into resistivity via Equation 1.

3.4. Other Field Data

Boreholes at Hollin Hill facilitate water level logging and slug tests. In borehole 1901 (Figure 1), which intersects
the SSF, the water table is logged at 5.7 m below ground level (bgl) and the measured hydraulic conductivity is
0.64 m/day. At borehole 1902 (Figure 1) the water table is logged at 5 m bgl, unfortunately the borehole casing
has been warped by slope movements and is not suitable for slug tests. However, surface infiltration experiments
at Hollin Hill show that the near‐surface WMF has a hydraulic conductivity of 0.013 m/day (van Woerden
et al., 2014). Some limited testing of WMF core samples in a HYPROP 2 device (METER Group Inc.) is also
available, which provides laboratory‐derived values of the unsaturated soil parameters. Five samples are taken
from the flow lobes and exposed backscarp for this investigation. Through curve fitting (Equation 2) of matric
potential and GMC measurements (2,218 useable for analysis), using an McMC approach, we found the estimated
n and α values are 1.61± 0.11 (–) and 0.040± 0.029 m− 1 respectively for the WMF (See Figure S1 in Supporting
Information S1). The SSF is not exposed at the surface, making retrieving physical specimens for that formation
more difficult. A borehole sample was run through the HYPROP but cavitated early in the experiment, hence the
results were unreliable for curve fitting.
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4. Analysis
4.1. Synthetic Case

A synthetic case was designed to confirm that the hydrogeophysical modeling is sensitive to the van Gen-
uchten (1980) α and n parameters as well as hydraulic conductivity,K. We used the same hydrological forcing and
measurement schemes as those at Hollin Hill but using a simplified hill slope geometry. In this model there is an
upper layer with a hydraulic conductivity of 0.013 m/day and a lower layer with 0.64 m/day analogous to the
sandstone present at Hollin Hill. We converted hydraulic conductivity to permeability for simulation inside of
SUTRA (Section B of Supporting Information S1). Figure 4 shows the setup of the hydrological modeling domain
and boundary conditions. In SUTRA, fluid input is defined at source nodes in terms of kg/s (Equation S5 in
Supporting Information S1); we used generalized flow nodes (Provost & Voss, 2019) to allow seepage on the left‐
hand side, and at the source/sink nodes at the top, of the modeling domain (Figure 4a). A minimum pore water
pressure is forced along the bottom of the domain to prevent pooling. Note that the right‐hand side of the slope is
an inactive (or no flow) boundary.

We ran a warmup period for the model over 6 months to get a starting distribution of stable pore pressures and then
ran hydrological forcing for 2.5 years using the effective rainfall as input. Finally, we simulated the resistivity
response for 2 years as in the real scenario and used the same petrophysical transfer functions between saturation
and resistivity. For the DD schedule, we use the same measurement sets as the filtered data and simulate the data for

Figure 4. Modeling domain for SUTRA (a) and R2 (b) in the case of modeling a synthetic scenario. Note that for (b) the
modeling domain extends beyond the edges of the image.
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same time increments (Figure 3). The parameters for the sandstone and mudstone analogues are shown in Table 3.
For computing our likelihood values at each McMC iteration we assume 2% data error in synthetic TR values,
which is comparable to the level of error we observed for transfer resistances measured by ALERT.

The van Genuchten water retention parameters, α and n values, can vary significantly between similar small‐
grained soil and rock types (Thakur et al., 2005; van Genuchten, 1980). Hence, we selected parameters in a
way that would encourage the SSF analog to remain at a low water content, as implied by ERT processing (Boyd
et al., 2021; Uhlemann et al., 2017), while the WMF analog remains at relatively high water content during
SUTRA simulations. It is important to note that for the synthetic model setup we did not need to apply any
temperature corrections and can assume that all resistivities are taken at their reference value (20°C) Furthermore,
values of α and K can vary by orders of magnitude, hence they are sampled in log10 space. K is allowed to vary by
an order of magnitude smaller and larger about the known values.

4.1.1. Results

The results of the McMC runs are 6‐dimensional (3 parameters × 2 formations), hence we visualize the results in
three different panels for the two zones in the modeling domain (Figure 5). Means and standard deviations are
calculated for resulting McMC samples (Table 4), however we observed a mix of bimodal and normally
distributed posterior PDFs that must be considered additionally and merits further discussion. Indeed allowing for
bimodal distribution was required for obtaining a stable curve fit in some cases (Figure 5). The results show that
the part of the parameter space that maximizes the likelihood corresponds to the actual known values (Table 4).
We filter “burn in” on successful chains such that only the last 750 iterations of each chain can be considered for
PDF analysis, furthermore curve fitting, and statistics, are calculated in the log domain in the case of α and K.
McMC chains appear to converge reasonably well for the van Genuchten parameters, but not in the case of
hydraulic conductivity.

4.2. Field Case

The general setup of the model is the same as the synthetic case but with different geometry (Figure 6) and an
additional layer to represent the RMF. We extracted surface topography from an appropriate digital elevation
model of Hollin Hill (Boyd et al., 2021). The subsurface geometry is derived from 2D geophysical sections of the
slope (Figure 1c).

The hydraulic parameters for the WMF and SSF used in the hydrological modeling are presented in Table 5. Little
is known about the hydraulic properties of the RMF, however the resistivities resemble those of the WMF in
geoelectrical images, therefore we assume that the unsaturated soil properties, and petrophysical relationships, are
the same for the RMF as the WMF. The exception is the hydraulic conductivity of the RMF, which is set to the
same value as that of the SSF (0.64 m/day); we found this necessary for numerical stability in SUTRA and to drive
realistic changes in near‐surface saturations in the upper part of the modeling domain. Likewise, HYPROP ex-
periments on WMF samples (recovered from the backscarp area) were used to populate the unsaturated soil
retention parameters for the RMF (Table 5) as these are necessary for hydrological modeling, although practically
the formation is mostly below the water table so retention parameters will have little impact on the results. Once
more, sampling of α and K are performed in the log domain (to the base of 10).

We assume that the values of α and n have a uniform prior PDF, values shown in Table 5. Model proposals are
drawn from a Gaussian distribution with a step length set at 0.1 for all parameters (the same step length is used in
the log domain).

Table 3
Hydrological Modeling Parameters Used in SUTRA; Hydraulic Conductivity (K), Residual and Saturated Moisture Content
Values (θr and θs Respectively), Alpha (α), and n

Unit K (m. day− 1) θr (–) θs (–) α (m− 1) n (–)

Sandstone 0.640 (0.0064–6.4) 0.06 0.38 0.2 (0.002–2.0) 1.9 (1.1–2.5)

Mudstone 0.013 (0.0013–0.13) 0.10 0.48 0.1 (0.002–2.0) 1.5 (1.1–2.5)

Note. The bracketed values indicate the parameter space range Markov chain Monte‐Carlo chains were able to draw model
parameter proposals from.
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4.2.1. Results

Multiple McMC chains converged on discrete parts of the parameter space, showing the coupled approach is
sensitive to the α and n parameters (Figure 7), but less so to K. We observe a mix of normal and bimodal PDFs in
the results however, which merit further discussion. Mean and standard deviation statistics are presented in
Table 6 (where parameters were sampled in the log domain then the statistics are computed likewise). As with the
synthetic case, “burn in” is filtered for the purposes of fitting a PDF.

Figure 5. Results of Markov chain Monte Carlo (McMC) chains for a synthetic case study showing the intensity and
likelihood values for (a) a sandstone analog and (b) a mudstone analog. Black circles indicate the position of known
parameter values. Plots (c)–(h) shows the probability density histograms of the 6 fitted parameters. Red lines show the
probably density functions which are a mix of Gaussian and bimodal curves. Black lines indicate the position of known
values and dashed lines indicate the means of the McMC parameter samples.
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4.3. Further Analysis

4.3.1. Hydro‐Mechanical Modeling

To interrogate how the hydrogeophysical modeling outputs relate to reality we ran 1,000 further realizations of
the hydrological model of Hollin Hill presented in Section 4.2. Given that the McMC sampling is apparently
insensitive to hydraulic conductivity, the posterior PDF curves shown in Figure 7 were used to randomly sample α
and n parameters, while the values of 0.64 and 0.013 m/day are used for K in the SSF and WMF respectively. Of
1,000 simulations, 791 yielded stable results.

Table 4
Means and Standard Deviations for the Sampled Parameters Shown in Figure 5

Unit log10 (K (m. day− 1)) W (K) log10 (α (m− 1)) W (α) n (–) W (n)

Sandstone − 0.15 ± 0.55 0.95 − 1.15 ± 0.60 0.95 1.98 ± 0.38 0.94

Mustone − 1.64 ± 0.48 0.96 − 1.36 ± 0.43 0.98 1.74 ± 0.34 0.97

Note. W refers to the normality statistic according to Shapiro and Wilk (1965) for K, α, and n respectively. The sample size is
3,342.

Figure 6. Modeling domains for (a) SUTRA and (b) R2 for purposes of developing a coupled hydrogeophysical model of
Hollin Hill. Note that for (b) the modeling domain extends beyond the edges of the image. Also, a sampling point is indicated
in the mudstone formation, which is cited later in this manuscript.

Water Resources Research 10.1029/2023WR036319

BOYD ET AL. 13 of 23

 19447973, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036319 by B

ritish G
eological Survey, W

iley O
nline L

ibrary on [04/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Due to the critical links between rainfall infiltration, slope hydrology and
shear strength, studies exploring coupled geomechanical and hydrological
modeling have become increasingly widespread in recent years (e.g., François
et al., 2007; Tacher et al., 2005; Yang et al., 2017), to the point that such
approaches are available in commercial software (Galavi, 2010). The aim of
such modeling is to solve for geotechnical states, such as shear strength, and
hydrological parameters simultaneously. In this case, we briefly discuss hy-
drological modeling properties in terms of their Atterberg limits. The plastic
limit of a clay‐rich material is the moisture content at which it undergoes
permanent deformation if put under external stresses; additionally, the limit is

associated with the point at which a clay material exhibits residual shear strength (rather than peak strength). We
estimated the GMC of the WMF from the saturation values shown in assuming a dry density of 1.3 g/cm3, which
we derived from borehole core in the WMF taken at 1.65 m below ground surface. We also found that the plastic
limit of WMF material from borehole samples has a value of 34% with laboratory testing. Moreover Merritt
et al. (2013) found that the plastic limit of clay‐rich Hollin Hill material ranges from ∼33% to 42%.

Figure 8a shows a comparison of estimates of GMC and plastic limits to slope movements; these were measured
on a grid of marker pegs installed on the slope for the purposes of tracking movement (Boyd et al., 2021;
Uhlemann et al., 2015), via periodic real‐time kinematic global positioning surveys. Isolating the peg movements
to those in the vicinity of a rotational backscarp that developed during late spring of 2016 (Figure 8a), we observe
that meter‐scale movements were measured after the WMF apparently reached its plastic limit (of 34%) for 100%
of simulations in the winter period between 2015 and 2016 (Figure 8b). High moisture contents are sustained into
spring, spiking prior to the date of recorded movement and development of the rotational backscarp feature
(Figure 8c).

4.3.2. Resistivity Modeling

As a point of comparison between the hydrogeophysical model and field conditions, we inverted simulated data
for the best performing hydrological modeling parameters and measured data (transfer resistances). Peaks in PDF
curves indicate that the α values for the SSF and WMF are 0.018 and 0.016 m− 1, respectively, and likewise n
values are 1.24 and 1.91. Figure 9 shows an inverted model from the real data and a corresponding model from
data simulated with the stated hydrological parameters. There is a strong correlation between simulated and
measured transfer resistances (Figure 9a), with a Pearson correlation coefficient of 0.88.

5. Discussion
5.1. Synthetic Case Study

The McMC chains encountered the part of the parameter space with the maximum likelihood corresponding to the
known values in the synthetic case for α and n. Modal model values correspond to a normalized likelihood value
of∼0.7, which is relatively high as the theoretical maximum value is 1 (and can only be achieved when the sum of
residuals is equal to 0). Parameter densities are high close to the known parameters of the synthetic case study; for
example, the mean n parameter for the sandstone formation is 1.99 ± 0.37, while the known value is 1.90.
Normality tests of the McMC samples indicate normality, having a Shapiro‐Wilk statistic of ≥0.9. However, the
resulting distributions are multimodal and there is an apparent insensitivity to K; therefore, mean and standard
deviation statistics do not fully capture the nature of the coupled modeling results. However, peaks in PDF curves
compare favorably to known n values, but in the case of the α parameter it is difficult to quantify the uncertainty
due to sampling in log space (and spanning an order of magnitude) but it does overlap with the known α.

Generally, other studies have found that synthetic case studies perform well, due to the hydrological model being
well realized (Hinnell et al., 2010; Pleasants et al., 2022). Conversely, the synthetic data errors are simulated at
only 2% and synthetic modeling does not indicate how well the approach will perform when aspects of the
hydrological modeling are more uncertain (as in the field case). There are two further discussion points regarding
the coupled modeling shown here that deserve attention. First, several (12) Markov chains were required to
explore the parameter space appropriately. Second, the coupled modeling for this problem shows relative weak
sensitivity to hydraulic conductivity (K). This is likely due to this study having most sensitivity to the unsaturated
near surface where the α and n parameters of van Genuchten are a dominant control on saturation and, by

Table 5
Hydrological Modeling Parameters Used in SUTRA and Parameter Ranges
of Markov Chain Monte Carlo Parameters

Unit K (m. day− 1) θr (–) θs (–) α (m− 1) n (–)

SSF (0.064–6.4) 0.06 0.38 (0.002–2.0) (1.1–2.5)

WMF (0.0013–0.13) 0.10 0.48 (0.002–2.0) (1.1–2.5)

RMF 0.64 0.10 0.48 0.012 1.44

Note. Values in brackets show the parameter space limits.
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Figure 7. Results of Markov chain Monte Carlo (McMC) chains for the field case study showing the intensity and likelihood
values for (a) the Staithes Sandstone Formation (SSF) and (b) the Whitby Mudstone Formation (WMF). Plots (c)–(h) show
the probability density histograms of the 6 fitted parameters. Red lines show the PDFs which are a mix of Gaussian and
bimodal curves. Black dashed lines indicate the means of the McMC parameter samples.

Table 6
Results of Finding Mean and Standard Deviations for the Sampled Parameters Shown in Figure 7

Unit log10 (K (m. day− 1)) W (K) log10 (α (m− 1)) W (α) n (–) W (n)

SSF − 0.22 ± 0.58 0.95 − 1.46 ± 0.58 0.98 1.52 ± 0.37 0.94

WMF − 1.93 ± 0.50 0.97 − 1.45 ± 0.46 0.98 1.91 ± 0.29 0.99

Note. W refers to the normality statistic according to Shapiro and Wilk (1965) for K, α, and n respectively. The sample size is
7,003.
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extension, resistivity. It should be noted that unsaturated pore pressures, as well as saturation, also depend on
hydraulic conductivity, but the coupled modeling in this study is less sensitive to this parameter. Other studies
have shown that coupled approaches can be sensitive to hydraulic conductivity on slopes (Pleasants et al., 2022),
and therefore the sensitivity to K could be helped by fixing other parameters like α and n in the McMC sampling.

5.2. Field Case Study

For the field case, the McMC chains appear to converge on a discrete parts of the parameter space. It should be
noted that the parameter space is constrained by model stability, which restricts models into a certain part of the

Figure 8. (a) Plan view showing an aerial image of the backscarp at Hollin Hill that developed in the spring of 2016 (Peppa et al., 2019). The box shows the location of
monitoring pegs downslope of the backscarp, used here to quantify slope movements. (b) Time series shows gravimetric moisture content estimate in the sampled
Whitby Mudstone Formation (WMF) (see Figure 6) and plastic limits found as part of this study and a prior study of Hollin Hill (Merritt et al., 2013). (c) Percentage of
simulations exceeding the plastic limit for a given date.
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parameter space even without McMC sampling. The modal/dominant values correspond to a likelihood value of
∼0.026, which is over an order of magnitude smaller than that used in the synthetic modeling. We anticipated that
the field results would be challenging to optimize, as other recent studies suggest, field data and (particularly
hydrological) models have greater uncertainties associated with them compared to synthetic studies (Pleasants

Figure 9. (a) Simulated versus measured transfer resistances (log scale) and (b) point density. Inverted sections of
(c) measured transfer resistances (field data) and (d) simulated transfer resistances from hydrogeophysical modeling. Both
measured and simulated sets relate to April 2015. The lower part of the model has been masked by the relative sensitivity of
the electrical resistivity tomography solution.
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et al., 2022; Tso et al., 2020). Data errors are relatively small (reciprocal measurements suggest that most are
<5%) and the assessment of forward modeling errors in the geophysical simulator (R2) is easy to assess.
However, the potential for high modeling errors in SUTRA is significant and difficult to fully quantify. The
realism in the hydrological model is uncertain, but as Linde et al. (2015) remark, the value in hydrogeophysical
modeling is to better inform any conclusions or decisions under uncertainty. As with the synthetic case we find
distributions with more than one modal value (Figure 7). Although Shapiro‐Wilk tests strongly suggest that the
samples are normal; as with the synthetic case, mean and standard deviation statistics do not capture the full
details of the McMC sampling. Peaks can be observed in the resulting PDF analysis of McMC samples that do not
correspond to the mean. Once more, hydraulic conductivity is drawn from a prior distribution an order of
magnitude above and below empirically found values, but the McMC sampling is unable to further constrain this
distribution for reasons cited in the discussion about the synthetic case.

Generated apparent resistivity pseudosections simulated by the modal hydrological model and those measured at
the field site are comparable (Figure S2 in Supporting Information S1), which is promising as it shows the ge-
ometry and magnitude of the resulting resistivity distributions from hydrological models are representative.
Additionally, we inverted simulated data from the hydrogeophysical modeling and measured data, the resulting
modeling responses are similar (Figure 9). Comparing the results to laboratory‐derived n and α values shows there
is overlap, although the range of possible n parameters predicted by the hydrogeophysical modeling is large, PDF
curves suggest that the n parameter derived from coupled modeling, is 1.91 ± 0.31 which overlaps with the value
of predicted by curve fitting (1.61 ± 0.11). The α parameter predicted by curve fitting is 0.040 ± 0.030 m− 1,
whereas hydrogeophysical modeling predicts the most likely α values (once anti‐logged) to be 0.016 and
0.080 m− 1, with a mean value of 0.035 m− 1. Therefore, the coupled modeling has constrained the unsaturated soil
retention parameters.

5.2.1. Further Modeling

For each timestep in the hydrological model we computed an average saturation for a sample point in the WMF
(Figure 6) and a standard deviation. It is possible to visualize a range of saturations present on the slope for
multiple hydrological model realizations with differing soil‐water retention parameters over time (Figure 8b). It
was not possible to additionally simulate the role of hydraulic conductivity on these models as PDFs could not be
reliably generated from the McMC samples. We observe that saturation values of the near‐surface WMF and SSF
respond to rainfall events and evapotranspiration as high frequency events. High frequency responses to rainfall
are replicated in VWC measurements made by the COSMOS station at Hollin Hill which indicates that the
saturation changes modeled by SUTRA are reflective of reality. We computed a Pearson correlation coefficient of
0.6 between the modeled saturation values for the WMF and COSMOS VWC measurements; this shows mod-
erate correlation. Notably several peaks in saturation are not as apparent in the year prior to the movement (2015),
whilst the sustained high saturation in the WMF at Hollin Hill in the late winter/early spring of 2015/2016
proceeds the development of a rotational failure (Figure 8). This suggests that these higher saturation (or GMC)
values reduced shear strength in the slope and encouraged movement. Indeed, peaks in GMC can be observed
prior to recorded movements (Figure 8).

We argue that the hydrological model, calibrated with geophysical measurements, provides context for the slope
movements observed at Hollin Hill and could be conceivably expanded to calibrate a coupled hydro‐
geomechanical model (as modeled saturation levels in the near surface are sensitive to the van Genuchten soil
retention parameters).

5.3. Limitations and Scope

Multimodal distributions are apparent for the unsaturated soil retention parameters, nevertheless, likely values for
these parameters have been further constrained by the coupled modeling over their respective prior PDFs.
Regarding the bimodal nature of the α parameter distribution in the WMF (Figure 7d), the permeability of this
formation is relatively low compared to the SSF. In field monitoring suggests that the WMF remains at a relatively
high moisture content throughout seasonal cycles and therefore wetting fronts are muted in the resistivity sections.
Hence the geophysical signal against which the coupled modeling can be calibrated is limited. The calibration
would be more reliable in a scenario where the formation experiences a wider range of saturations; nevertheless,
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decreases in resistivity are observed in the shallow WMF over years related to rainfall events (Boyd et al., 2021;
Uhlemann et al., 2017) and the apparent agreement with laboratory‐derived values is promising.

With the field array setup being a surface arrangement of electrodes, the sensitivity of the array is constrained to
the near surface where the subsurface is likely to be unsaturated, and where the α and n parameters play a
dominant role in modeling saturation levels within SUTRA. Moreover, a saturated formation will have other
factors driving changes in its resistivity, namely pore fluid conductivity and temperature. In saturated conditions
tracer injection tests coupled with resistivity monitoring would be a more appropriate input for hydrogeophysical
models (e.g., Tso et al., 2020). That said, our ultimate aim, which has been achieved, is to derive a posteriori
distributions of hydraulic parameters that can be used to aid slope stability modeling.

Tso et al. (2019) highlight that errors in the petrophysical calibration of geoelectrical data can have profound
effects on moisture content estimates. Hollin Hill is a heterogeneous environment and therefore spatial dis-
crepancies in the petrophysical relationship are likely, particularly regarding porosity (which in part is why we
avoid fitting a petrophysical relationship where porosity is a key parameter). Moreover, the formations of Hollin
Hill exhibit some degree of anisotropy (Figure 2) that additionally makes petrophysical calibration require
appreciation of electrical current flow orientation, though anisotropic current solutions exist (e.g., Herwanger
et al., 2004) they are not implemented here.

We have assumed that the samples analyzed are representative, and their temperature correction is accurate.
Uncertainties in the petrophysical transfer function, real world geometrical boundaries and heterogeneity are
likely to contribute to modeling errors. Moreover, shrink swell processes on Hollin Hill merit some further
discussion. At the macro scale shrink‐swell processes and slope movements result in tension cracks; this would
account for the apparent reduction in volume in the material at lower moisture contents. Cracks would invariably
increase local hydraulic conductivity, effective porosity, and electrical resistivity (Bièvre et al., 2012); as such
they pose a challenge regardless of whether one attempts geophysical or hydrological modeling. Modeling such
mechanics is not possible with SUTRA 3.0 without significant modification that is beyond the goals of this paper,
but formulations of unsaturated flow in media with a variable porosity do exist (e.g., Camporese et al., 2006). On
the other hand, cracking is only present in the near‐surface of the WMF (Peppa et al., 2019), and we attempt to
account for the higher resistivity of near surface WMF in this study with its own petrophysical relationship. In
addition to cracking, Hollin Hill is subject to slope movements. In this study it is assumed that slope movements
over the 2‐year monitoring period are inconsequential to the geophysical or hydrological modeling. Over longer
periods of time, however, accounting for the placement of geophysical sensors and topography is important for
accurate geophysical modeling (Boyd et al., 2021; Whiteley et al., 2020) and would therefore need considering if
attempting to model parameters for a longer time period. Regarding hydrological modeling, changing the external
geometry of the modeling domain during simulations is not possible with SUTRA 3.0, hence assuming topog-
raphy is invariable is a necessity.

In this study the modeling domain was restricted to 2D due to its relative simplicity to define formation
boundaries and significantly reduced computation time versus modeling in 3D (which would require significantly
more elements in the modeling domain). Conversely 2D geoelectrical models (of Hollin Hill), for example,
compare favorably to their 3D counterparts as the slope features are prominently orientated parallel to the strike of
the slope. But Hollin Hill is an inherently 3D environment, so future work should include 3D hydrogeophysical
modeling efforts that capture electrical and unsaturated fluid flow in four dimensions. With that said, the McMC
method can be prohibitive regarding computation time; we ran our 2D scenario on a dual processor system (two
Intel Xeon E5‐2637V3) initially for testing our parallel Python code and it took several weeks to complete. We
opted to use relatively modern computing hardware for our production runs, which improved our run times; hence
it is inevitable that as computer processors and resources become more efficient, the time required for running
coupled hydrogeophysical models (even in 3D) will become more tenable.

6. Conclusion
We tested the feasibility of our coupled geophysical and hydrological modeling via an McMC algorithm for a
synthetic case study, where all relevant modeling parameters are known for a two‐layer system. We found that the
McMC chains are sensitive to the van Genuchten n and α parameters, given that the highest likelihood values
observed in the parameter space correspond to the known values of n and α. However, the McMC sampling is
apparently insensitive to hydraulic conductivity in this case, and therefore the coupled approach presented here
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cannot be used to constrain this parameter. Furthermore, resulting parameter distributions can be multimodal,
hence simple fitting statistics like mean and standard deviation do not fully capture the information the McMC
samples provide.

Regarding the field case Hollin Hill landslide site, McMC chains maximize likelihood reasonably well (as found
in the synthetic case). Tests of normality suggest the parameter distributions are largely normal, but distributions
of results are skewed toward modal values. Conversely, the maximum normalized likelihood value for the modal
soil retention parameters (found from the posterior PDFs) is an order of magnitude lower than in the synthetic
case; we attribute this to significant modeling errors in the hydrological model that are hard to quantify. There are
other limitations, such as our assumption that the petrophysical relationships, seasonal temperature models and
2D modeling domain are adequate for our purposes. Furthermore, as with the synthetic case study the McMC
sampling was unable to constrain hydraulic conductivity values.

Nevertheless, we contend that the coupled hydrogeophysical model is sensitive to soil retention parameters for
measurements made at Hollin Hill and have been able to assign PDFs which describe a range of possible α and n
parameters for the mudstone and sandstone formations. We find promising overlap with van Genuchten pa-
rameters determined through conventional curve fitting for the WMF. Monte‐Carlo simulations imply that high
soil moisture contents were maintained in the near‐surface WMF (the actively failing unit) prior to an observed
rotational failure, this occurred in 100% of simulations and the GMC of the material apparently exceeded its
plastic limit. Furthermore, we find that the calibrated hydrological modeling simulated several instances of
elevated moisture contents prior to other slope movements. This work demonstrates hydrogeophysical modeling
can be used to generate hydromechanical models for several parameter combinations. We therefore suggest that
future studies could incorporate geophysical measurements as a means to understand uncertainties in slope
stability models under various scenarios in landslide monitoring and early warning systems.

Data Availability Statement
The rainfall (and evapotranspiration) data on which parts of this manuscript are based, are derived from the (open
access) COSMOS‐UK data set for the years between 2013 and 2017, see Stanley et al. (2019). The topography of
the field site is derived from laser ranging and drone studies (Boyd et al., 2021; Peppa et al., 2019). The code, and
data, required to complete the work shown in this manuscript have been added to a Github repository
(Boyd, 2023a), likewise modified version of SUTRA 3.0 can also be found on Github (Boyd, 2023b).
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