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Incorporating Phenology to Estimate Species’
Population Trends from Snapshot

Citizen-Science Data
Emily B. Dennis , Byron J. T.Morgan , Colin A. Harrower ,

Nigel A.D. Bourn , and Richard Fox

Citizen-science data are increasingly used to contribute to our understanding of bio-
diversity change, but analysing such data requires suitable statistical methods, often to
deal with forms of bias. We develop a new approach for modelling data from a snapshot,
mass-participation citizen-science scheme for UK butterflies, the Big Butterfly Count
(BBC). Butterfly abundance varies throughout the year as one or more generations of
each species emerge and die off, and the timing (phenology) of emergences varies annu-
ally due to weather and climate. Thus, counts from the short 3-week BBC sampling
period are susceptible to bias due to this inter-annual variation in phenology. We adapt
the Generalised Abundance Index, drawing upon phenology estimates from standardised
monitoring scheme data, to account for phenological bias in the estimation of species’
abundance trends from BBC data. The method is demonstrated via application to empir-
ical and simulated data, revealing that not accounting for phenology leads to biased
trend estimates, particularly for summer-flying single-generation species. Drawing upon
phenology information, the new approach allows for the reporting of abundance trends
from a snapshot citizen-science scheme, creating the potential tomaximise available data
sources to increase our understanding of changes in butterfly populations, particularly
in urban environments.

Key Words: Big Butterfly Count; Concentrated likelihood; Generalised Abundance
Index; Mass participation; Phenology adjustment; UK Butterfly Monitoring Scheme.

1. INTRODUCTION

Expanded, reliable monitoring of species’ populations is vital to understand the severity
of the global biodiversity crisis. In many existing monitoring schemes, the underlying data
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are often collected by volunteer observers, and such biodiversity citizen science (CS; also
called community or participatory science), involving the participation of members of the
public in gathering scientific data, has increased rapidly in recent years (Pocock et al.
2017). There is a long history of ecological monitoring of various taxa through designed
surveys with standardised protocols undertaken by experienced and committed volunteers,
but recent growth in CS is mostly attributed to schemes based upon opportunistic or mass-
participation sampling with less strict protocols (Pocock et al. 2017). These schemes have
fewer barriers to participation and thus attract larger numbers of observers, many with little
or no prior experience of biodiversity monitoring. There is evidence for the benefits of CS to
the participants, for example, through increases in knowledge and benefits to well-being and
nature connectedness (Peter et al. 2021; Butler et al. 2024), but from a statistical perspective
there are outstanding challenges for analysing CS data for biodiversity monitoring, some of
which involve dealing with various forms of bias (Johnston et al. 2023).

The Big Butterfly Count (BBC; https://bigbutterflycount.org) launched in the UK in 2010
as an annual survey of widespread butterfly species, which encourages broad participation
particularly frommembers of the general public who are not already involved in biodiversity
monitoring. The scheme involves a minimal sampling protocol: participants simply note the
abundance of selected common species for 15min during bright weather at any UK location.

This contrastswith theUKButterflyMonitoringScheme (UKBMS),which began in 1976
and is considered the “gold standard” for butterfly population monitoring. It predominantly
consists of a national network of >2000 transects on which counts of butterflies are made
weekly, under standardised favourable weather conditions, from 1st April to 29th September
(Pollard and Yates 1993). UKBMS data are used to estimate population trends for 58 of
the 59 UK resident and regular breeding butterfly species (UKBMS 2023), to help monitor
population status (Fox et al. 2023), and contribute to Red List assessments (Fox et al.
2022) and official biodiversity indicators (JNCC 2022). The scheme requires a high level of
identification skills and commitment; thus, UKBMS participants are typically experienced
butterfly observers, whereas the BBC encourages and attracts broader participation (almost
95,000 participants in 2023). UKBMS sites are typically in semi-natural habitats, whereas
BBC sampling is mostly undertaken in gardens and urban areas (Dennis et al. 2017a).

Using data from four years (2011–2014), Dennis et al. (2017a) showed that estimates of
abundance change of common butterfly species could be obtained from the BBC that were
comparable to those estimated from UKBMS data. However, the study also showed that
the short, three-week sampling season “rendered BBC counts susceptible to bias caused by
inter-annual phenological variation in the timing of species’ flight periods” and that BBC
count totals were related to butterfly phenology and sampling effort. The abundance of adult
butterflies of each species varies throughout the year according to the emergence (and death)
of one or more generations, and phenological sampling bias has been identified as one of the
key challenges for drawing robust inference about insect populations. Didham et al. (2020)
refer to the “groundhog effect”—where a decline in population size may be falsely indicated
by a progressive phenological shift in insect activity in response to changing climate or other
factors. The UKBMS captures this seasonality by weekly sampling, and statistical methods
have been developed to account for missing data (Dennis et al. 2013, 2016). In contrast, the
short BBC sampling period captures just a small proportion of species’ flight periods, and

https://bigbutterflycount.org


Incorporating Phenology to Estimate Species’ Population Trends...

this will vary annually (Dennis et al. 2017a) as the timing of emergence changes each year
in response to weather and climate (Roy and Sparks 2000; Hodgson et al. 2011).

We present a new approach which accounts for the inter-annual variation in sampled
species’ phenology and can therefore be used to produce robust abundance indices and trends
from snapshot CS data. The approach draws upon phenology estimates from standardised
monitoring (UKBMS) data and is demonstrated via application to BBC and simulated data.

2. THE BIG BUTTERFLY COUNT

The BBC began in 2010 and takes places for 23–24 days from mid-July to early August,
to reflect the peak total abundance period for UK butterflies (Table S1 details the sampling
dates for each year and summarises the spatial coverage of the scheme). If counting from
a fixed position, the maximum number of each species seen at any time is recorded to
reduce the risk of double counting. No training is provided and minimal data verification
is undertaken. The BBC is restricted to counts of selected widespread butterfly (and some
day-flying moth) species, to minimise misidentifications.

We consider BBC data for 2011–2022 and restrict our analyses to the 17 widespread
butterfly species which have featured in the count throughout this time period. Table S2
provides species information, including scientific names, and summarises the quantity of
BBC data per species. We omit data sampled in 2010 when the sampling period was only
nine days. Technically, participants may submit counts undertaken throughout July and
August, but we restrict the analysis to counts undertaken only within the official sampling
period each year. Counts of more than 1000 individuals are large for the BBC and so are
also excluded to minimise potential errors. The data set analysed consists of almost 786,000
counts (including counts where no butterflies were seen) comprising almost 9.5 million
individuals counted. Figure S1 summarises the spatial distribution of BBC counts each
year.

To produce robust abundance indices and trends for BBC data, a method that accounts
for varying species’ phenology with respect to the short sampling period is needed. We will
adapt the Generalised Abundance Index (GAI, Dennis et al. 2016) for this purpose.

3. GENERALISED ABUNDANCE INDEX

The GAI is routinely used for estimating seasonal variation and accounting for missing
counts in UKBMS data, to produce annual indices of abundance. Counts made throughout
the UKBMS season vary according to the emergence of one or more generations of adult
butterflies and roughly 30% of potential counts in the 26-week season are missed (Dennis
et al. 2013), for example, due to unsuitable weather conditions or recorder unavailability.

In outline, suppose that counts aremade at S sites, each visited on atmost V occasions, for
a given species and year. Each count, ys,v , for site s and visit v is regarded as the realisation
of a random variable, such as Poisson, with expectation λs,v = Nsas,v,where the likelihood
takes the form
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L(θ; y) ∝
S∏

s=1

V∏

v=1

exp(−Nsas,v)(Nsas,v)
ys,v . (1)

Here Ns reflects a site parameter describing how abundant the species is at site s, and as,v
denotes a function modelled by parameters, θ , describing seasonal variation, for example,
a spline, mixture of normal densities, or stopover model (Dennis et al. 2016, 2022). The
product over visits in Equation (1) includes terms corresponding only to when visits were
actually made.

A concentrated likelihood substantially reduces the number of parameters to estimate via
maximum likelihood (Dennis et al. 2016). In brief, the site parameters are estimated by

Ns = ys,.
as,.

, (2)

where we use the dot notation to indicate summation over visits made. The total observed
count for each site is rescaled to account for incomplete sampling within the season such
that Ns represents the expected total count for site s had the entire season been sampled.
If a site is sampled completely for that season, then Ns = ys,., since in this case as,. = 1.
Substitution of (2) into (1) results in a Poisson likelihood which can be maximised with
respect to only the parameters, θ , associated with a.

Following the fitting of theGAI to estimate site-level abundances for each year, an overall
relative abundance (collated) index can be obtained by fitting a Poisson generalised linear
model (GLM) toN, with site and year effects, and a weighting for the proportion of the flight
period sampled (Brereton et al. 2018). In doing so, annual turnover of sites is accounted
for. The estimated year effects are used to form an index of abundance over time, which is
typically presented on the log10 scale with a mean of 2.

3.1. UKBMS ANALYSIS

We apply the GAI to UKBMS data to inform upon the phenological bias in BBC using
flight periods estimated byUKBMSdata (Sect. 3.2) and later to produceUKBMSabundance
indices and trends for comparison with BBC outputs (Sect. 6.1).

To estimate flight periods for the 17 species sampled by the BBC, we applied the GAI
to UKBMS data for each species in each year 2011–2022. The flexible spline formulation
for a was used, implemented using generalised additive models (Wood 2017), to estimate
species’ flight period values, {av}, which are fixed across sites, and scaled to sum to unity,
for each year. UKBMS data consist of weekly transect visits, and so the GAI is often fitted
at the weekly scale. To explore flight periods with respect to the short BBC sampling period,
we instead treated visits, v, as the day of the year. Estimated annual flight period curves
for each species are shown in Figure S2. Error associated with the flight period curves was
estimated via nonparametric bootstrapping, based on 1000 replicates, which are used in
Sect. 6.

A relative abundance index was obtained for each species by fitting a Poisson GLM (see
Sect. 3). Abundance trends for 2011–2022 were estimated by applying linear regression to
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Figure 1. Proportion of each species’ annual flight period covered by the BBC sampling period each year (2011–
2022).

the abundance indices. 95% confidence intervals for indices and trends were produced from
nonparametric bootstrapping to account for variance propagation.

3.2. PHENOLOGICAL BIAS IN BBC

To visualise the potential phenological bias in BBC, the daily flight period estimates
obtained for each species from applying the GAI to UKBMS data were totalled for the BBC
sampling period for each year to determine the proportion of each species’ flight period
captured by the BBC annually—see Fig. 1. The proportion of the flight period sampled
showsvariation amongyears for all species, but summer-flyingunivoltine (single generation)
species, such as Marbled White and Ringlet, show particularly high inter-annual variability.
Figure S3 shows how theBBC sampling period captures different proportions of theMarbled
White flight period for four example years, with the proportion varying from 0.12 (in 2011
and 2014) to 0.59 in 2012. In contrast, species with two or more generations during the year,
such as SpeckledWood and Small Tortoiseshell, will usually have a longer total annual flight
period than univoltine species. The BBC sampling period captures a smaller proportion of
their total flight period; therefore, the phenological bias shows less variation from year to
year.
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4. PHENOLOGY ADJUSTMENT

The GAI was developed for standardised monitoring data, typically collected along tran-
sects, where sites are clearly defined and revisited repeatedly within and across years. CS
data such as from the BBC do not have such a structure; it consists of many locations, which
are often only sampled once. To adapt the GAI to produce abundance indices and trends for
BBC data, we define the discrete spatial scale of a BBC “site” to be a 1km x 1km square and
pool BBC counts within each year to this spatial scale. In doing so, in part due to the large
amount of participation, BBC sites obtain some replication across multiple days within the
BBC sampling period. Since BBC data consist of “checklists” of species seen, zero counts
are also formed. Exploration of alternative site sizes suggests broadly similar results, with
1km found to be the most appropriate choice (Section S1 of the supplementary material).

The GAI typically assumes a single count, ys,v for site s and visit v (in a given year),
whereas by pooling BBC data for defined (1km square) sites, there is the potential for mul-
tiple “entries” (i.e. BBC 15-minute counts) for a given site and visit (day). To accommodate
these multiple entries, the likelihood now takes the form

L ∝
M∏

m=1

V∏

v=1

exp(−Nmam,vκm,v)(Nmam,v)
ym,v,. , (3)

where κm,v is the number of entries for sitem and visit v and ym,v,. = ∑
κ ym,v,κ is the sum

of the counts over those entries.
The number of sites, M , in a mass-participation CS data set such as BBC, is high; there-

fore, a concentrated likelihood approach is valuable for reducing the number of parameters
to estimate. Here, omitting an additive constant,

� = log(L) =
M∑

m=1

Nm

V∑

v=1

am,vκm,v +
M∑

m=1

V∑

v=1

ym,v,.log(Nmam,v),

leading to

∂�

∂Nm
= −

V∑

v=1

am,vκm,v + ym,.,.

Nm
,

and equating to zero we obtain

Nm = ym,.,.∑V
v=1 am,vκm,v

(4)

As in the original GAI, substitution of (4) into (3) results in a Poisson likelihood which can
be maximised with respect to only the parameters, θ , associated with seasonal variation, a.

However, since the BBC sampling period only represents a snapshot of most species’
flight periods, accurate flight period estimation from applying the GAI to BBC data is not
possible for all species. Furthermore, species’ phenology can already be estimated reliably
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from UKBMS data (Sect. 3.1). Thus, for each species and year, we produce estimates of
Nm for each BBC site (1km square) from Equation (4) using daily estimates of {av} from
the GAI applied to UKBMS data (Sect. 3.1). There is a risk of BBC counts being submitted
that fall outside a species’ flight period (for example due to misidentification), which would
result in very large estimates of Nm ; therefore, estimates of Nm based on

∑
v av < 0.001,

for sampled v, were omitted from analyses.
Since many BBC sites are not sampled in multiple years (see Table S5), estimating an

abundance index from BBC data using a GLM (as for UKBMS data) would result in a
proportion of the data not contributing to estimation of the index. Thus, following Dennis
et al. (2016), an overall measure of BBC abundance per year for a given species can be
measured by

G = 1

M

M∑

m=1

N̂m . (5)

There is substantial turnover in BBC sites (1km squares) each year, but the total number
of sites counted per year is high; therefore, G is unlikely to be biased by such turnover. In
Sect. 5, we describe a simulation study, where the suitability of the phenology adjustment
approach for varying numbers of sites is assessed.

We compare phenology adjustment outputs to resultswhich are unadjusted for phenology,
where the average BBC count per species and year is calculated by scaling the total count
(for the BBC sampling period) by the sampling effort (number of 15-minute counts made).

5. SIMULATION STUDY

We now assess the performance of the phenology adjustment approach via simulation.
Count data were simulated to resemble snapshot CS data based upon the BBC, andwe assess
the phenology adjustment approach for trend estimation over a 12-year period.

We simulated counts from a Poisson distribution with expectation λm,v,k = Nm,kav,k,

where k denotes the year, and {av,k} are daily flight period estimates from UKBMS data
for each year (Sect. 3.1), for three species selected to have varying phenology patterns with
respect to the BBC sampling period (Marbled White, Gatekeeper and Holly Blue). In year
k = 1, {Nm,1} were sampled from all estimates of N from the actual BBC data (for all
species and years, see Sect. 6) for a given total number of sites M . Values of {Nm,k} for
years k = 2, . . . , 12 were then generated based upon two trend scenarios: (i) 0% change
over 12 years (thus fixing values of N across years for each site), (ii) a decline of 25% over
12 years. This was an idealised linear decline without variability added.

Simulations were performed for M = 1000, 2500, 5000, 10000, 50000, where M is the
total number of sites (across all years), but sites are then sampled to account for the fact
that most are not revisited in multiple years (based upon BBC data, defining a site by a
1km square). For each site and year combination, a number of visits (days with a count
made) were then simulated, as well as the number of 15-minute counts made on each day,
based upon sampling frequencies in BBC data. Full details are given in Section S2 of the
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Figure 2. Boxplots summarising trends estimates from 1000 simulations per scenario applied (i) without (NPA)
and (ii) with (PA) phenology adjustment. Horizontal dashed lines indicated the true percentage change over 12
years of (a) -25% or (b) 0%. Outliers have been omitted: across all 60 scenarios, which each summarise 1000
simulation replications, on average 2.9% of the replications were omitted .

supplementarymaterial, including summaries of the number of sites sampled per year across
simulations.

Having simulated the counts, abundance indices and trends were calculated either with
or without applying phenology adjustment. 1000 simulations were undertaken for each
scenario (0% or -25% trend over 12 years, three species’ phenologies, five values of M).
To account for uncertainty in phenology estimation, bootstrapped estimates of the flight
periods (from UKBMS data) were used, such that they vary among iterations. We consider
the statistical power of detecting a trend for various scenarios, based on the significance (at
the 5% level) of the linear regression through the simulated indices.

5.1. SIMULATION RESULTS

Trends estimated from simulated data without phenology adjustment show considerable
bias (Fig. 2(i)), particularly for the scenarios based on the phenology of Marbled White, a
species for which the proportion of the flight period captured by the BBC sampling period
varies greatly year to year (Fig. 1). For both trend scenarios (-25% and 0% change over
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Figure 3. Power (percentage of simulated trends significant at the 5% level) to detect a decline of 25% over 12
years for three species’ phenology scenarios and total numbers of sites, M , when phenology adjustment has been
applied.

12 years), estimated trends without phenology adjustment for Holly Blue and Gatekeeper
were consistently more positive, whereas for Marbled White they were more negative than
the true trend. When phenology was not accounted for, the fluctuations in the simulated
abundance indices resembled the underlying annual proportions of the species’ flight period
covered by the snapshot sampling period (comparing Figs. 1 and S4(i)). Power to detect
trends is low (less than 3%) for all scenarios when phenology adjustment is not applied
(Table S3).

In comparison, applying the phenology adjustment results in generally unbiased abun-
dance indices (Figure S4(ii)) and trend estimates across a range of scenarios (Fig. 2(ii)).
Scenarios with fewer sites show some loss of accuracy and greater variation in trend estima-
tion. More simulation summaries are provided in Table S3. Power to detect a decline of 25%
over 12 years is greater than 80% across phenology scenarios when data were simulated
from 10,000 or more sites (Fig. 3). Sampling levels for actual BBC data exceed that of the
M = 10, 000 scenarios (see Tables S4 and S8).

6. APPLICATION

Phenology adjustment (Sect. 4)was applied toBBCdata for 17 species, usingflight period
estimates from UKBMS data (Sect. 3.1). For each species, the annual average abundance
estimates, G, from BBC data were converted to an index on the log10 scale with a mean of
2, for comparison with UKBMS abundance indices. Phenology-adjusted BBC abundance
trend estimates for 2011–2022 were produced by applying linear regression to the indices.
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Figure 4. Relative abundance indices produced from BBC data using phenology adjustment (green) and from
UKBMS data (black). Indices are on the log10 scale with a mean value of 2 (indicated by the horizontal dashed
lines).

Estimates of uncertainty in the BBC indices and trends were calculated using a bootstrap
with 1000 replicates. The bootstrapped daily flight period estimates (Sect. 3.1) were used
in combination with resampling of the BBC counts at the site (1km square) level; thus,
estimates of Nm (Eq. 4) were produced for each bootstrap replicate and combined to produce
1000 estimates of the index G for each year (Eq.5), from which confidence intervals were
produced by taking quantiles. Confidence intervals for the difference between BBC and
UKBMS abundance trends were similarly calculated using bootstrapping.

Unadjusted species results were also calculated from BBC data for each year for com-
parison with phenology-adjusted outputs. The indices without phenology adjustment were
similarly rescaled to the log10 scale for comparison with UKBMS indices.

Results presented here are based upon using UKBMS data from the full sampling period
(April-September), but in practice, annual reporting of BBC data, which typically occurs
in late August, precedes the completion of the UKBMS sampling season. Thus, timely
reporting of BBC results may require phenology adjustment based on only partial UKBMS
data for the current year. Section S3 tests this scenario by applying phenology adjustment
to BBC data based on UKBMS data up to mid-August only for the most recent year (2022).
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Figure 5. Comparison of Euclidean distances between BBC and UKBMS abundance indices without (NPA) and
with (PA) phenology adjustment. Dashed line indicates 1–1 line.

6.1. RESULTS

Figure4 compares phenology-adjusted abundance indices from BBC data to abundance
indices produced from UKBMS data. In general, the BBC indices show a similar pattern
to UKBMS indices, reflecting the inter-annual variability in butterfly populations. In terms
of euclidean distance, phenology-adjusted BBC indices were closer to UKBMS indices
than BBC indices produced without phenology adjustment for 13 out of 17 species (Fig. 5).
Similarly, Pearson correlations with UKBMS indices were larger (when phenology adjust-
ment had been applied) for 12 out of 17 species (Figure S5). Improvements from phenology
adjustment are greatest for species with higher variation in the proportion of the flight period
sampled by BBC each year, rather than whether a small or large proportion of the flight
period is typically captured (Figure S6). Thus, summer-flying univoltine species, such as
Marbled White and Ringlet, benefited most from phenology adjustment, which is also evi-
dent from comparing with the indices without phenology adjustment (Figure S7). Applying
phenology adjustment based on UKBMS data up to mid-August only for the most recent
year was also effective, but additional scaling of flight period estimates is recommended for
later-flying species (see Section S3 of the supplementary material).

Abundance trends for 2011–2022 estimated fromBBC data (with phenology adjustment)
were lower than trends from UKBMS data for 14 out of 17 species (Fig. 6a). The 95% con-
fidence intervals for the difference in trends (BBC-UKBMS, Fig. 6b) only overlapped zero
for three species, suggesting significantly lower BBC trends for 12 species and significantly
more positive BBC trends for two species (Small Copper and Small Tortoiseshell). Trend
estimates for Painted Lady, a migrant species, were positive and large in magnitude from
both BBC and UKBMS and are shown in Figure S8. Overall the BBC trends varied in
direction across species; trends were significantly (based on 95% CI) negative for 6 species
and significantly positive for 6 species. In comparison, UKBMS trends for 2011–2022 were
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Figure 6. Comparison of (a) and difference between (b) abundance trend estimates for 2011–2022 from UKBMS
(using the GAI approach) and BBC (with phenology adjustment approach). Error bars represent 95% confidence
intervals produced using nonparametric bootstrapping. The dashed line represents the 1–1 line and dotted lines
represent zero. Painted Lady was excluded (see Figure S8 for same figure with Painted Lady included).

significantly positive for 12 out of 17 species, with significant declines for this time period
for two species (Green-veined White and Small Tortoiseshell).

Confidence interval widths were generally similar for UKBMS andBBC trends, although
BBC trend estimates were typically more precise for the species with greater levels of
sampling, for example, Gatekeeper, and correspondingly, species sampled less by BBC had
reduced precision, such as Small Copper.

7. DISCUSSION

We have proposed an approach to adjust for the phenological bias that a snapshot CS
scheme, such as the BBC, may be susceptible to. In doing so robust abundance indices and
trends may be obtained. The simulation study demonstrated that not accounting for varying
phenology led to biased trend estimates, particularly for summer-flying univoltine species
where the proportion of the flight period captured by the BBC was particularly variable.

7.1. LIMITATIONS

The new approach relies upon phenology estimation from a secondary source, in this case
fromUKBMSdata. Futurework could explore alternatives,whichwould be necessarywhere
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standardised monitoring data are not available, which is typically the case. For example,
phenology may be estimable from opportunistic data sources (Bishop et al. 2013; Clarke
and Dennis 2020), and/or modelled directly through climate information, or other known
drivers of phenological variation. Here a bootstrap was used to account for uncertainty in
phenology estimates from UKBMS data, but consideration may be needed where this is not
possible and uncertainty of the phenology information is not available.

Species’ flight periods were assumed to be the same across sites, but in practice these
could vary, for example, with respect to climate region or growing degree days (Hodgson
et al. 2011; Schmucki et al. 2016). This could be particularly important for a species such
as Common Blue, which exhibits spatial variation in voltinism (number of generations)
within the UK (see Dennis et al. 2022), and was one of the few species for which phenology
adjustment did not seem to improve the BBC abundance index.

Minimal validation of BBC data is undertaken, andmisidentifications and/or errors could
potentially bias results. Sufficient sample sizes would be expected to overcome this issue,
but it could be explored in future. Future work could also consider producing finer scale
BBC outputs, for example, at country level within the UK—as for UKBMS trend reporting
(UKBMS 2023; Fox et al. 2023). The simulation results may be used to inform upon a
minimal sampling level needed to produce reliable trend estimates at smaller spatial scales.

7.2. HABITATS

Phenology-adjusted BBC trends were predominantly lower than corresponding trends
from UKBMS data. This contrasts with previous findings (Dennis et al. 2017a), but in that
case trends covered a short time period (2011–2014) and were based on UKBMS data
from only the BBC sampling period. Here the UKBMS trends were estimated from data
across the entire flight season; therefore, differences compared to BBC trends could arise
for multivoltine species if the generation(s) not captured by the BBC sampling period have
different population growth trajectories from the generation sampled by the BBC. However,
our results do not indicate the difference in trends to be greater for multivoltine species. A
more likely explanation is that the two schemes sample different habitats in which species’
populations may be responding differently.

UKBMS transect locations are typically self-selected and biased towards sites that are
managed for nature conservation (Brereton et al. 2011). TheBBCsamplesmoreurbanhabitat
than theUKBMS (Dennis et al. 2017a); thus, the lower BBC trends found here could support
findings that UK butterfly population declines are stronger in urban areas than rural areas
(Dennis et al. 2017b). Furthermore, an assumption of the phenology adjustment approach
is therefore that species’ flight periods are the same in rural and urban habitats, which could
warrant further investigation, for example, see Dennis et al. (2017b).

Dennis et al. (2017a) also reported that 65% of BBC counts are undertaken in gardens.
Plummer et al. (2024) produced abundance trends for butterflies in UK gardens which were
comparable or even more positive than trends for the wider landscape. However, the gardens
sampled were predominantly located in suburban and rural areas, rather than in heavily
urbanised areas which are typically detrimental to butterfly and other insect biodiversity
(Piano et al. 2020). Further research could assess the spatial coverage in BBC sampling
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locations to better understand why differences between BBC and UKBMS trends were
found, and thus explore how population changes may be varying across the landscape.

7.3. TIME PERIODS

It is also important to note that the trends estimated here were based on a relatively short
period of 12 years (2011–2022). Long-term monitoring is important for insects such as
butterflies due to high inter-annual variability in populations which can mask underlying
population trends if data are not analysed over a sufficiently long time frame (White 2019;
Didham et al. 2020). Fox et al. (2019) demonstrated the sensitivity of 10-year population
trends to the start year for butterflies and macro-moths. Despite this, our simulation study
suggested that sampling at the current high levels achieved by BBC is sufficient to detect
a decrease of 25% in abundance over 12 years, and the power to detect changes would be
expected to increase with more years of data. The BBC therefore has the potential to reveal
greater insights into butterfly population changes as longer-term trends become possible.

Due to the extended sampling period (April–September), as well as detailed data colla-
tion, verification processes and analysis, there is a lag in reporting of UKBMS results until
spring the following year; hence, rapid reporting of BBC results has the potential to provide
an early signal of how butterfly populations are faring in a given year. Phenology adjustment
was still effective when using UKBMS data from an incomplete sampling season in themost
recent year, meaning that adjusted BBC results could be produced at the end of the summer.

Despite this, snapshot mass-participation sampling such as BBC should be seen as a
complement rather than replacement of standardised monitoring such as the UKBMS. Stan-
dardised monitoring schemes are vital for validation and testing of statistical methods for
other citizen-science data sets (Johnston et al. 2023). Moreover, by sampling semi-natural
habitats, theUKBMSprovides data on theUK’s, often threatened, habitat-specialist butterfly
species, whereas BBC only produces trends for common species.

However, trends of common, widespread species are still of importance. The decline of
formerly abundant species may underlie the global insect decline phenomenon (van Klink
et al. 2024), and such species play important rôles in ecosystem functioning and in delivering
ecosystem services (Winfree et al. 2015). UK populations of widespread butterfly species
have declined by 17% on average since 1976 (Fox et al. 2023), and decreases have been
reported elsewhere (Van Dyck et al. 2009; Wepprich et al. 2019). The drivers of declines
in common species are generally not well understood, making effective conservation action
difficult. Sampling a wider variety of habitats, such as garden and urban areas from BBC
data, has the potential to provide further insights on population changes of theUK’s common
butterflies. This may be realised by combining data sources such as BBC and UKBMS in an
integrated analysis (Besbeas et al. 2002; Schaub andKéry 2021), for example, building upon
the recently developed extended GAI (Dennis et al. 2024), to achieve more representative
trends (Boyd et al. 2023).
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7.4. WIDER POTENTIAL

The approach presented here may be relevant to other scenarios liable to the “groundhog
effect” (Didham et al. 2020), in particular other snapshot schemes such as the RSPB Big
Garden Birdwatch or the Fourth of July Butterfly Count in North America. Various taxa
are likely to be susceptible to variable and/or shifting phenology and associated sampling
biases, such as birds (Cooper 2014; Massimino et al. 2021), plants (Chen et al. 2013), and
many invertebrates (Møller 2019; Gardiner and Didham 2020), which may then lead to
biased population trend estimates without suitable modelling. Phenology adjustment may
also be useful for butterflies beyond the UK: for example, 15-minute timed butterfly counts
have been introduced across Europe (Schmucki et al. 2020). Although not restricted to such
a short sampling period, the need to account for species’ phenology is still relevant when
only single or minimal sampling visits are made and the flight period may not be sufficiently
sampled.

There is an ongoing need for the development of suitable statistical methods for analysing
CS data (Johnston et al. 2023). By using external information on species’ phenology, the
new approach addresses the phenological bias that counts from snapshot CS sampling are
susceptible to, and thus provides a basis for suchdata to contributemeaningfully to enhancing
our understanding of biodiversity change.
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