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A B S T R A C T

Bloom-forming algae present a unique challenge to water managers as they can significantly impair provision of 
important ecosystem services and cause health risks to humans and animals. Consequently, effective short-term 
algae forecasts are important as they provide early warnings and enable implementation of mitigation strategies. 
In this context, machine learning (ML) emerges as a promising forecasting tool. However, the performance of ML 
models is heavily dependent on the availability of appropriate training data. Consequently, it is essential to 
determine the volume of data necessary to develop reliable ML forecasts. Understanding this will guide future 
monitoring strategies, optimize resource allocation, and set realistic expectations for management outcomes. In 
this study, we used 30 years of fortnightly measurements of 13 different parameters from a lake in the English 
Lake District (UK) to examine the impact of training data duration on the performance of ML models for fore
casting chlorophyll-a two weeks in advance. Once training data availability exceeded four years, a Random 
Forest model was found to consistently outperform naive benchmarks (mean absolute percentage error 16.4 % 
lower than the best-performing benchmark). With more than 5 years of training data, model performance 
generally continued to improve, but with diminishing returns. Furthermore, it was found that equivalent and, in 
some cases, better performance could be achieved by only using a subset of the most important input features. 
Additionally, it was found that reducing the sampling frequency had negative impacts on performance, both due 
to the reduced number of training observations available, and increased forecast horizon. Our findings 
demonstrate that for lakes ecologically similar to the study site, a consistent and regular sampling programme 
focused on monitoring a limited number of key parameters can provide sufficient observations for generating 
short-term algae forecasts after approximately five years of data collection. Importantly, this result provides 
justification for the initiation of new monitoring programmes for sites where algal blooms are a concern, and 
suggests that there are likely many pre-existing monitoring datasets which would be suitable for training algae 
forecast models.

1. Introduction

Excessive growths of algae in freshwater, commonly referred to as 
algal blooms, compromise the safety of drinking water sources (Brooks 
et al., 2016; Igwaran et al., 2024), endanger recreational water activities 
(Carvalho et al., 2013; Wolf et al., 2017), and threaten the stability and 
diversity of aquatic ecosystems (Amorim and Moura, 2021; Dolah et al., 
2001). Blooms can also impose significant economic impacts, affecting 
tourism, the fish industry, and even property prices (Hamilton et al., 
2014; Hoagland and Scatasta, 2006). The far-reaching effects of this 

issue underscores the urgency for effective management and mitigation 
strategies to protect public health and preserve ecological integrity 
(Chorus and Welker, 2021; Codd et al., 2005; D’Anglada et al., 2016).

Measures such as drinking water supply switching, chemical treat
ment, hypolimnetic syphoning, ultrasonic control, and use of artificial 
mixing systems can be effective to mitigate some of the negative effects 
of harmful algal blooms (Stroom and Kardinaal, 2016). However, many 
of these short-term measures are best used for only a brief period, due to 
cost, efficacy, or water resource management implications. For example, 
a drinking water supply may be switched to an alternate reservoir whilst 
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there is an algal bloom in the main supply reservoir, but the secondary 
reservoir may only have limited water supply capacity. Therefore, the 
implementation of these management measures may benefit from early 
warning systems that enable implementation in a timely way. 
Short-term algae forecasting (days to weeks ahead) is therefore needed 
to enable effective management of algal blooms (Cruz et al., 2021; 
Hamilton et al., 2014; Ibelings et al., 2016; Rousso et al., 2020; Stroom 
and Kardinaal, 2016).

In recent years, machine learning (ML) approaches have become 
popular for algae forecasting due to their ability to model non-linear 
dynamics using complex, and large datasets (Cruz et al., 2021; Franks, 
2018; Rousso et al., 2020; Xiao et al., 2024). ML models vary in 
complexity and form, and include linear regression models, 
decision-tree based approaches, and artificial neural networks (Sarker, 
2021a). Appropriate training data are crucial for ML algae forecasts. 
Selection of input variables, data frequency, and data collection 
methods have an effect on performance and this has been explored to 
some extent for algae forecasts (Bai et al., 2017; Bertani et al., 2017; Lin 
et al., 2023; Muttil and Chau, 2006; Rousso et al., 2020; Thomas et al., 
2018; Xiao et al., 2017). In contrast, there are very few studies which 
explicitly explore the effect of the length of training dataset on forecast 
performance. Understanding this would guide future monitoring stra
tegies and set realistic expectations for management outcomes, and 
therefore be of great value to water managers considering developing 
algae forecast systems.

Climate change, variations in weather, and factors such as changes to 
land-use or management practices present a further challenge when 
forecasting water quality. That is, we cannot expect that water systems 
will behave in an unchanging way year after year: they exhibit non- 
stationarity (Milly et al., 2008, 2015). Therefore, whilst it might be 
assumed that longer training datasets will always give better perfor
mance, it may be that if older data represent conditions which are no 
longer relevant to the present, this could hinder forecasts rather than 
improve them.

The length of time required to collect sufficient samples for training 
ML forecasts is likely to be a more considerable constraint for manually 
collected data than for sub-daily data generated by automated moni
toring platforms (Rousso et al., 2020). Consequently, it is particularly 
important to understand how the length of training data affects forecast 
performance for manually collected data. Importantly, sampling fre
quency influences forecasts in two ways. First, it limits how many ob
servations can be collected over time, directly affecting how quickly 
sufficient training data is accumulated for accurate ML forecasts. Sec
ondly, it establishes the lower boundary for the forecast horizon, how far 
ahead predictions can be made. The further ahead the prediction, the 
greater the uncertainty and errors (Derot et al., 2020).

In previous algae forecasting studies that used data sampled on 
weekly or longer intervals, the training dataset length has varied 
considerably, from less than four years (Teles et al., 2006; Torres et al., 
2011), to more than ten years training data (Lin et al., 2023; Recknagel 
et al., 1997a; Talib et al., 2008; Welk et al., 2008). Whilst there is 
considerable variation in performance between studies using different 
length datasets (Rousso et al., 2020), attributing this specifically to the 
length of training dataset is difficult due to differences in the perfor
mance metrics, forecast horizons, models, and study sites used.

Understanding how many years of data are required for effective 
forecasting is only useful if coupled with an understanding of which 
input variables (features) should be measured. This is particularly 
important for managers in the early stages of initiating new water 
quality monitoring schemes for algal bloom management. There are 
some studies which found that blooms could be forecasted using only 
previous measurements of chlorophyll-a (chl-a), a common proxy for 
algal biomass (Muttil and Chau, 2006; Xiao et al., 2017). However, algal 
blooms are known to be caused by multiple drivers, for example water 
temperature, stratification, residence time and nutrient availability 
(Paerl and Otten, 2013; Sellner et al., 2003). Consequently, for some 

systems, these and perhaps other drivers will be necessary for training 
effective forecasts (Rousso et al., 2020). Therefore, understanding which 
features are most important, and how this couples with the length of 
training dataset available would be of great utility to water managers 
interested in forecasting algae.

Exploring how the performance of ML algae forecast models is 
influenced by the length of training data is crucial. This knowledge 
would enable evaluation of the applicability of ML models to existing 
data, thus guiding the development of algae forecasting systems for 
water bodies where monitoring is already being undertaken. Addition
ally, this understanding would inform the design of new monitoring 
programmes where forecasting algae is a specific objective. This would 
give an estimation of the number of years’ data required for viable ML 
forecasts, enabling better planning. This is particularly pertinent as 
many water managers may soon wish to implement more regular and 
thorough monitoring programs given that harmful algal blooms may 
increase in intensity and frequency due to anthropogenic climate change 
(Ho et al., 2019; Paerl and Huisman, 2009; Paerl and Paul, 2012).

Evidently, there is a need to understand the data requirements for ML 
forecasts of algae. In particular, the question of how long data must be 
collected for before they become useful for forecasting has not been 
investigated explicitly. Therefore, we study the following questions 
using 30 years of fortnightly monitoring data from a small, meso- 
eutrophic lake. 

1. What is the minimum number of years’ training data required to 
surpass the performance of naive benchmark models in forecasting?

2. As we extend the dataset over more years, do we observe diminishing 
returns in forecast performance improvements?

3. How does the impact of dataset duration on forecast performance 
vary across different ML models?

4. What is the minimum number of features required to achieve satis
factory performance from a model?

5. How does a reduction in the sampling frequency affect the impact of 
dataset duration on performance?

2. Material and methods

2.1. Study site

Blelham Tarn is a small, sheltered lake in the English Lake District. 
Located at 54◦ 23′ 44″ N, 2◦ 58′ 41″ W, it has a mean depth of 6.8 m, 
maximum depth of 14.5 m, surface area of 0.102 km2, and volume of 
693000 m3 (Ramsbottom, 1976). The lake has several significant 
external nutrient sources, including a sewage works for the nearby 
village of Outgate, and sheep grazing in the catchment. The lake is 
monomictic and is usually stratified from spring to late autumn 
(Atkinson, 1999). It is on the meso-eutrophic/eutrophic boundary and 
has diatom blooms (currently dominated by Asterionella formosa) in 
spring followed by algal blooms in the summer that presently include 
cyanobacteria (Dolichospermum sp.), green algae (Paulschulzia sp.), and 
cryptohytes (Cryptomonas sp.). The summer blooms in Blelham Tarn 
have been associated with hypolimnetic anoxia (Elliott and Thackeray, 
2004; Foley et al., 2012).

Thirty years of data (1987–2017) were collated including measure
ments from in-lake biogeochemical monitoring, nearby meteorological 
stations and river flow stations. The year 2001 was excluded from all 
analyses as there was no in-lake monitoring for most of that year due to 
an outbreak of foot and mouth disease.

The in-situ lake data used were from the extensive long-term moni
toring programme that was started by the Freshwater Biological Asso
ciation in 1945 and continued by the UK Centre for Ecology and 
Hydrology (UKCEH) since 1989. Details of the data collection procedure 
can be found in the dataset documentation (Feuchtmayr et al., 2021; 
Maberly et al., 2017). The fortnightly monitoring data used includes a 
large variety of variables, such as surface temperature, surface oxygen, 
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several water chemistry parameters, and phytoplankton chl-a. Initially, 
all the available variables were used, excluding those with continuous 
data gaps of more than two months (56 days) during the study period 
(see Table 1).

Daily meteorological data from the UK Meteorological Office (Met 
Office, 2019) were obtained from four relatively nearby weather sta
tions in the English Lake District (Walney Island, Shap, Newton Rigg, 
and Keswick). These data were down-sampled to fortnightly intervals by 
taking the mean from the two-week period of interest, and then the 
mean value from all four stations was used. These stations were chosen 
as they are all approximately equidistant (~30 km) from Blelham Tarn 
and therefore the mean should be representative of conditions at the 
lake itself. Additionally, this approach has the advantage of ensuring a 
weather data time series with very few missing values as it is rare for 
missing values to occur simultaneously at all four stations.

For catchment-specific rainfall measurements, catchment rainfall 
data from the two nearest stations to Blelham Tarn (Brathay and Rothay) 
were provided by the UK National River Flow Archive (NRFA) (NRFA, 
2023a, 2023b; Tanguy et al., 2021). The average from these two stations 
was used for analysis.

All data were processed by first linearly interpolating to daily sam
ples, and then down-sampling to generate data at regular fortnightly 
intervals with no missing values. All variables used are summarised in 
Table 1.

To explore any consistent changes that occurred in Blelham Tarn 
over the 30-year study period, we examined decadal trends in the input 
variables. This was done by linearly interpolating each variable to daily 
values and then averaging these over three ten-year periods 
(1987–1996, 1997–2007, 2008–2017), noting that 1997–2007 excluded 
the year 2001 because of the missing data then. This allowed for iden
tification of variables that have changed either in magnitude or seasonal 
timing during the study period.

2.2. Algae forecasting

Chl-a was used as the forecast target, as it is commonly used as a 
proxy for phytoplankton biomass, and was the focus of many previous 
algae forecast studies (e.g. Lin et al., 2023; Luo et al., 2017; Mellios 
et al., 2020). Chl-a forecasts were made two weeks ahead to match the 
sampling frequency. The forecasting models developed in this study 
incorporate measurements from the four weeks leading up to the fore
cast date, equating to two sampling dates, or observations. This selection 
was strategic, prioritising recent changes in input features while 
avoiding an overly dimensional feature space. Such a constraint is 

crucial because a ML model’s effectiveness hinges on training with more 
observations than features (Koutroumbas and Theodoridis, 2008). 
Considering the fortnightly frequency of chl-a data collection, one year 
yields 26 observations. Thus, employing 26 features, derived from 13 
variables, across two separate observations, represents an upper limit to 
maintain model trainability with limited annual data.

A simple approach was used to simulate the integration of forecasted 
weather observations into the models, as these data would likely be 
readily available for operational forecasting. Specifically, the five 
meteorological variables were adjusted to reflect a two-week forward 
shift, meaning that for a given observation date, the meteorological 
input features correspond to the average conditions of the subsequent 
two weeks. Forecasting models are usually more effective at making 
predictions of a stationary time series, one that does not exhibit a trend 
or seasonality (Granger and Newbold, 1974). Therefore, the forecast 
target should have a constant mean and variance over time, and low 
autocorrelation. To convert a non-stationary time series into a stationary 
one, a common technique is to calculate the differences between 
consecutive data points, a process known as ‘differencing’ (Hyndman 
and Athanasopoulos, 2021). Preliminary research demonstrated that 
applying first-order differencing - subtracting the previous observation 
from the current one in a time series - successfully eliminated both the 
seasonal patterns and the overall trend in chl-a. Consequently, we 
trained our forecasting models to predict the changes in chl-a levels, 
rather than the absolute values.

2.2.1. Machine learning models
It is anticipated that models with different complexities and archi

tectures will require varying amounts of training data to perform opti
mally (Lones, 2024). Accordingly, several models were employed in this 
study to encompass a broad range of computational approaches. Spe
cifically, we used a Random forest (RF), Neural Network (multilayer 
perceptron: MLP), recurrent neural network with gated units (GRU), and 
a Support Vector Machine (SVM), all implemented through the Python 
package scikit-learn (Pedregosa et al., 2011). These models were chosen 
as they all use different model architectures and have been shown in 
previous studies to be effective for algae forecasting (Aláez et al., 2021; 
González Vilas et al., 2014; Harris and Graham, 2017; Hill et al., 2020; 
Izadi et al., 2021; Kim et al., 2022; Mellios et al., 2020; Park et al., 2015; 
Recknagel et al., 1997b; Talib et al., 2008; Velo-Suárez and Gutiérre
z-Estrada, 2007). Alongside these four non-linear machine learning 
models, a multiple linear regression model with L2 regularisation (ridge 
regression) was also used to provide a comparison against a more 
simplistic approach (Ahn et al., 2011; Fornarelli et al., 2013; Onderka, 
2007; Peretyatko et al., 2010; Soranno, 1997). Given that these ap
proaches have different underlying statistical models, they can be 
considered broadly representative of the classical ML learning land
scape. The MLP and GRU served as an initial test to determine the po
tential benefits of exploring more sophisticated architectures, such as 
long-short-term-memory (LSTM) neural networks. Advanced architec
tures, as noted by LeCun et al. (2015) and Sarker (2021b), demand 
extensive datasets for effective training. Therefore, the decision to 
expand our research to include more advanced models was contingent 
on the MLP and GRU’s performance. Specifically, we looked to deter
mine whether the MLP and GRU’s effectiveness was constrained by the 
size of the available data. If these models demonstrated robust perfor
mance despite potential data limitations, this would justify further 
exploration into more sophisticated network architectures. Our stepwise 
approach ensures that the extension of research into advanced models is 
predicated on empirical evidence of their potential efficacy under con
strained, real-world conditions.

Recurrent neural networks are designed to take advantage of data 
with inherent order, such as time series (Schmidt, 2019). Therefore, to 
take advantage of this, the GRU model was configured to use a longer 
series of inputs than the other models. An input series of four observa
tions (data from the last two months) was chosen to balance providing 

Table 1 
Summary of variables, and sources of data used in the study to train and test ML 
forecast models.

Variable Units Source

Ammonium μg L− 1 UKCEH
Nitrate μg L− 1 UKCEH
Surface oxygen saturation % Air 

Saturation
UKCEH

Soluble reactive phosphate (SRP) μg L− 1 UKCEH
Dissolved reactive silica μg L− 1 UKCEH
Surface water temperature ◦C UKCEH
Phytoplankton chlorophyll-a μg L− 1 UKCEH
Total phosphorus (TP) μg L− 1 UKCEH
Mean daily wind speed Knots UK Met 

Office
Mean daily relative humidity % UK Met 

Office
Mean daily cloud amount Oktas UK Met 

Office
Mean daily air temperature ◦C UK Met 

Office
Mean daily rainfall (average from Brathay and 

Rothay catchments)
mm NRFA
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sufficient data for the GRU to learn time series patterns whilst ensuring 
that the ratio of features to observations was not excessive.

Prior to training, input features to the GRU, MLP, SVM, and ridge 
regression models were scaled to improve convergence, and reduce bias 
towards larger magnitude variables. All data were standardized by 
removing the mean and scaling to unit variance using the following 
equation: 

z =
x − u

s
(1) 

where x is the sample of interest, u the mean of the training sample, and s 
the standard deviation of the training sample. RF models generally do 
not require scaling of the input features as decision thresholds for each 
feature are learnt independently of other features (de Amorim et al., 
2023; Werther et al., 2022). As there was potential for models to predict 
negative values of chl-a, for example if the test data contained values 
outside the typical ranges of the training data, any negative values were 
set to a very small positive number (1 × 10− 12 mg/m3). This is a 
reasonable theory-guided adjustment, as a negative value of chl-a is 
meaningless (Karpatne et al., 2017).

2.2.2. Hyperparameter optimization
The selected ML models expose several hyperparameters that were 

optimized using a randomized parameter search with 5-fold cross vali
dation (Table 2). Optimization was undertaken once for each model 
using 20 years of training data from 1987 to 2007, excluding 2001 due 
to the lack of data from that year. The data from 2008 onwards were set 
aside as test data and therefore not used for hyperparameter optimiza
tion. In the random search, the layer sizes for both the MLP and GRU 
were constrained to a maximum of 100 to avoid excessive over- 
parameterisation.

2.2.3. Benchmark models
Naive models are important for benchmarking more complex fore

cast models, as they provide a minimum baseline level of performance 
that should be achieved (Hyndman and Athanasopoulos, 2021; 
McLaughlin, 1983). For this study, two different benchmarks were used, 
chosen for their ubiquity in the forecasting literature, and previous use 
in algae and other water management forecasting studies (Hyndman and 
Athanasopoulos, 2021; Jackson-Blake et al., 2022; Page et al., 2018; 
Thomas et al., 2020). 

1. Persistence Forecast – chl-a persists over time and does not change 
since the last time it was measured

2. Seasonal Naive Forecast – chl-a measurements are linearly interpo
lated to daily values and the value from the same day and month, but 
previous year to the forecast date used as the prediction.

2.3. Statistical analysis of performance

For testing purposes, the dataset’s most recent decade, spanning 
from 2008 to 2017, was selected. To assess how the duration of the 
training dataset impacts model performance, we conducted experiments 
varying the number of training years from 1 to 20 for each year under 

test. This setup was designed to mimic a real-world forecasting context, 
where training is performed using the most recent data available before 
the year being forecasted. For instance, in forecasting the year 2008, we 
developed 20 separate models using the RF algorithm. These models 
began with a minimal approach, utilising only 2007 as the single year of 
training data, and incrementally added more years, culminating in a 
model trained on a 20-year span from 1987 to 2007 (excluding 2001). 
For each subsequent test year, models were retrained using the years 
directly prior to the test year. For example, forecast models for 2009 
were at first trained only with data from 2008, then 2008 and 2007, and 
so on. Considering each number of training years separately, every test 
year was used as a fold in a non-randomized ten-fold cross validation, 
ensuring a systematic evaluation of model performance. To identify 
significant performance variations across the models, we applied a 
Friedman test (Demšar, 2006; Derrac et al., 2011). Following the 
Friedman test, a post-hoc test using Holm’s procedure for p-value 
adjustment was used to make multiple comparisons between the 
benchmark and machine learning models (Holm, 1979).

The criterion for determining the minimal requisite training data 
duration was established at the juncture where all model-specific p- 
values for a given performance metric fell below 0.1, with over half also 
under 0.05, indicating statistical significance. This procedure was 
repeated for two different performance metrics: the root mean square 
error (RMSE) and mean absolute percentage error (MAPE). These met
rics were chosen for their prevalent use in forecasting tasks, and for the 
differences in their properties: RMSE penalises errors equally regardless 
of the magnitude of the true value, whereas MAPE scales errors ac
cording to the magnitude of the true value (Bowerman et al., 2005; Chai 
and Draxler, 2014). Performance metrics were calculated excluding data 
from the winter months (December, January, and February). This 
adjustment accounts for the natural absence of algal blooms during 
these periods in Blelham Tarn, documented by Atkinson (1999). This 
prevents over-ranking of any conservative models that tend to predict 
minimal changes in chl-a, something which is pertinent in the context of 
algal bloom forecasting, a key application of this work.

2.4. Importance of model features

Following the initial investigation, which used all available input 
features, the models were re-trained using the same train-test splits. 
However, this time, we systematically varied the number of input fea
tures. This approach allowed us to assess the impact of feature selection 
on model performance explicitly, providing insights into the optimal set 
of features for effective predictions (Breiman, 2001). To avoid the need 
for a fully exhaustive evaluation of all possible feature combinations, the 
relative importance of the input features was first established using the 
permutation feature importance. This method evaluates a trained 
model’s dependency on specific features by randomly shuffling the 
values of each feature in isolation and observing the resultant decrease 
in model performance. To capture some of the variability in feature 
importance as the number of training years varied, feature importances 
from two scenarios were evaluated – “low-data availability” with five 
years training data, and “high-data availability” with fifteen years 
training data. For both scenarios, the permutation importance of all ML 

Table 2 
Hyperparameters obtained from randomized cross validation search for the models used in this study. Parameter naming follows the scikit learn v1.3.2 convention 
(Pedregosa et al., 2011).

Random Forest Support Vector Machine Multilayer Perceptron Ridge Regression Gated Recurrent Neural Network

max depth 84 C 43 activation relu alpha 117 units 4
max features 0.43 epsilon 0.21 alpha 1.76e-3 ​ ​ activation relu
min samples leaf 3 kernel linear Hidden layer sizes [16, 36] ​ ​ dropout 7.4e-5
min samples split 7 ​ ​ Learning rate adaptive ​ ​ recurrent activation sigmoid
n estimators 1845 ​ ​ solver sgd ​ ​ batch size 100
oob score True ​ ​ Early stopping True ​ ​ ​ ​
​ ​ ​ ​ validation fraction 0.10 ​ ​ ​ ​
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models was evaluated for the ten test years 2008–2017, using the years 
directly prior to these for training. Given that we were most interested in 
the importance of specific variables rather than the associated mea
surement lag of two or four weeks, the permutation importances were 
averaged for each variable to give a hierarchy of 13 permutation im
portances. This hierarchy was subsequently used to assess scenarios in 
which only the top n most critical variables were accessible for analysis. 
Therefore, the permutation importances for all models were averaged, 
and an overall order of feature importance was established by ranking 
the importances from the averages of the two scenarios. The RMSE 
metric was used for this ranking as it is more stable than MAPE for 
evaluating performance where the target is close to zero (Makridakis, 
1993). This characteristic of RMSE minimises the likelihood of gener
ating misleading feature importances.

Subsequently, the training and testing process, which varied the 
training duration from 1 to 20 years for the test period spanning 2008 to 
2017, was applied to scenarios where the ML models had access to only 
the n most critical variables. Here, n was adjusted from one, representing 
a single variable, up to the full set of thirteen variables.

Additionally, the Pearson correlation between all input variables was 
calculated to identify any strongly correlated features which might be 
redundant. Then, pairs of highly correlated features (correlation coef
ficient >0.7) were selected for further testing. To check these for 
redundancy the train-test routine was run first with all features 
excluding one of the pair, and then ran again with the exclusion of the 
other.

2.5. Sampling frequency

Adequate machine learning performance is contingent on there 
being a sufficient number of training observations available. Therefore, 
the frequency at which data is collected can be expected to influence 
how long data would need to be collected for before the desired per
formance is reached. Additionally, sampling frequency dictates the 
minimum forecast horizon (number of days ahead) that a model can be 
trained to predict over, which is expected to have a strong effect on 
performance. For these reasons, the effect of reducing the sampling 

frequency from fortnightly to monthly (28 days) was investigated. Four 
different scenarios were compared. Firstly, the standard train test pro
cedure was used as a baseline (fortnightly observations used to make 
predictions two weeks into the future). Then to isolate the effect of 
increasing the forecast horizon, the same fortnightly data was used to 
make predictions 28 days into the future. Following this, the data was 
down sampled to monthly (28 day) observations by removing every 
other observation. This monthly data was used to make forecasts 28 days 
into the future. Finally, 14 day ahead forecasts were trained using input 
data sampled at 28 day intervals. This isolates the effect of reducing the 
sampling frequency without changing the forecast horizon or number of 
observations available in a given training year. For each of these sam
pling scenarios, the number of training years made available to the 
models was varied from 1 to 20 years, and performance tested for each 
of the 10 training years (2008–2017).

3. Results

3.1. Historical patterns and non-stationarity

There have been some shifts in the timing and behaviour of chl-a 
blooms. In the two most recent decades, the summer chl-a bloom 
generally starts in July, but in the earliest decade (1987–1996) this 
occurs approximately one month later. Furthermore, this earliest decade 
shows a more distinct “clearwater” phase, where the chl-a levels 
decrease between the spring and summer blooms (Fig. 1a). Additionally, 
nutrient levels (nitrate, total phosphorus, ammonium) in the most recent 
decade are generally lower than in the two previous decades (Fig. 1b, c, 
d).

3.2. Effect of training data on model performance

With less than ten years training data, the RF and ridge regression 
models outperformed all other models. With just five years training data 
the RF had an RMSE of 7.9 μg L− 1, and MAPE of 39.4 %. This is 1.0 μg 
L− 1 (11.4 %) and 16.4 % lower than the respective values for the better 
performing of the two benchmarks, the persistence forecast. With 

Fig. 1. Decadal means of (a) Chl-a, (b) nitrate, (c) total phosphorus, and (d) ammonium obtained by interpolating the time-series to daily values and averaging these 
over three ten-year periods: 1987–1996, 1997–2007 (excluding 2001), 2008–2017. The shaded margins indicate standard error.
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sufficient training data, all ML models achieved similar performance, 
but the ridge regression achieved the lowest RMSE of 7.6 μg L− 1 (which 
represents a 15.5 % improvement over the better of the benchmarking 
estimates) with fourteen years of training data, and the SVM achieved 
the lowest MAPE of 36.8 % (which represents a 22.0 % improvement 
over the better of the benchmarking estimates) with nineteen years 
training data. The MLP was generally not competitive with the best 
performing models.

The bulk of the improvement in the performance of the most 
competitive models was obtained with the first five years of training 
data, and whilst the addition of more years of training data did further 
improve performance, this was generally with diminishing returns 
(Fig. 2).

For a given number of training years, the Holm adjusted p-values 
from the post-hoc tests indicate if the differences in performance be
tween the machine learning models and benchmarks are statistically 
significant. It was found that the RF and ridge regression models had 
much lower requirements in terms of the number of training years for 
statistical significance than the other models (Table 3, Fig. 3b and. c). 
The MLP never consistently outperformed the benchmarks in a statisti
cally significant way.

With a low number of training years (<3), SVM performance is close 
to being statistically significantly worse than the persistence forecast, 
which is why the p-values are initially low (Fig. 3d). However, all other 
models achieved similar performance to the persistence forecast even 
with only one year of training data (Figs. 2 and 3).

The seasonal naive forecast had the poorest performance overall, and 
accordingly the number of years training data needed for statistically 
significant differences was lower for all models.

3.3. Feature importance

In both the five- and fifteen-year training scenarios, chl-a was the 
most important feature, followed by surface water temperature and air 
temperature (Fig. 4). Although there was some variation in the order of 
importances between the two scenarios, they follow very similar pat
terns. Notably, the most obvious difference is that the average change in 
RMSE from shuffling chl-a was 0.6 μg L− 1 higher than the next most 
important feature, water temperature, in the higher data availability 
scenario. Comparing this with the lower data availability scenario, 
where the difference was 0.3 μg L− 1, suggests that on average, given 
more training data, models were less reliant on lower ranking features.

Models trained exclusively with the four most significant parameters 
or fewer exhibited reduced performance, despite being trained over the 
maximum duration of years available. Generally, using a larger number 
of input features had a positive effect on the performance of most models 
(Fig. 5), but there was little benefit to including more than six features 
(Fig. S1). For example, all ridge regression models trained with more 

than four input features had very similar RMSE curves, indicating that 
for this model, the addition of the least important features (total phos
phorus, ammonium, SRP, cloud amount, nitrate) had little benefit to 
performance (Fig. 5e). The SVM models trained with just the six most 
important features reached lower RMSE values with fewer training years 
than the same model trained with the maximum number of features 
(Fig. 5g, Fig. S1). The benefit of including the five least important fea
tures is more apparent in the MAPE curves but is still minimal (Fig. 5b–d, 
f, h).

The only two input features with a high correlation (>0.7) were air 
temperature and surface water temperature, which had a correlation 
coefficient of 0.93. For the best performing model with five years of 
training data, the RF, the removal of air temperature reduced the RMSE 
by 0.05 μg L− 1 (0.60 %) and increased the MAPE by 0.40 %. Similarly, 
the removal of surface water temperature increased the RMSE by 0.01 
μg L− 1 (0.14 %) and increased the MAPE by 0.33 %. For the best per
forming model with 20 years training data, the SVM, the removal of air 
temperature increased the RMSE by 0.05 μg L− 1 (0.69 %) and increased 
the MAPE by 1.2 %. Likewise, the removal of surface water temperature 
increased the RMSE by 0.02 μg L− 1 (0.2 %) and increased the MAPE by 
0.28 %. Therefore, given the low performance changes observed, there is 
a degree of redundancy in these two variables.

3.4. Sampling frequency

For all models, increasing the forecast horizon from 14 to 28 days 
incurred a larger performance reduction than reducing the sampling 
frequency alone (Fig. 6). The performance of 14 day ahead forecasts 
made using data sampled at 28 day intervals were largely very similar to 
those made with a 14 day sampling period. In general, 28 day ahead 
forecasts with 14 day samples had lower RMSE than those made with 28 
day samples. However, there were only two models (SVM and GRU) for 
which the MAPE of 28 day ahead forecasts made with 14 day samples 
was generally lower than those made with 28 day samples (Fig. 6h–j). 
For the SVM model, the performance of 28 day ahead forecasts made 

Fig. 2. Performance metrics, (a) RMSE, and (b) MAPE plotted against number of training years. Lines indicate mean values. Blue solid line is MLP, orange dashed line 
is RF, green dotted line is ridge regression, red dash-dot line is SVM, purple horizontal dash-dot line is persistence forecast, and brown horizontal dash-dot line is 
seasonal naive forecast. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 3 
Minimum number of years training data needed to outperform the persistence 
forecast in a consistent and statistically significant way, defined as the number of 
years training data beyond which all p-values were <0.1, and over half of these 
<0.05.

Minimum number of years for consistent performance difference

Model RMSE MAPE

MLP – –
RF 4 3
Ridge 4 3
SVM 10 12
GRU 20 8
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with more than 15 years’ training data were approximately equivalent 
in performance regardless of the sampling frequency (Fig. 6g and h). In 
contrast, with less than 10 years’ training data, 28 day ahead SVM 

forecasts made with 14 day samples performed better than those made 
with 28 day samples (Fig. 6g and h).

4. Discussion

4.1. How many years of data are needed?

With the full input parameter set and four or more years’ training 
data, we found that the RF and ridge models were able to consistently 
outperform both benchmarks in terms of RMSE and MAPE. This suggests 
that ML can be effective for algae forecasting even when the number of 
years’ training data available are limited, with the obvious caveat that 
some models may be more suitable than others. Furthermore, the RF, 
GRU and ridge regression models always had mean RMSE and MAPE 
lower than both benchmarks. Therefore, it can be argued that certain ML 
approaches would be effective, or at least no-less effective than naive 
models, even with only one year of training data. However, the best 
RMSE (ridge regression with fourteen years training data) was only 4.6 
% lower than the RF with five years training data, and the best MAPE 
(SVM with nineteen years training data) was only 2.6 % lower than the 
RF with five years training data. Ultimately, we have shown that for this 
study site, only a low number of training years are required for ML to be 
useful for forecasting, but that there is not very much to be gained from 
the inclusion of additional years’ training data. For the management of 
fortnightly sampled lakes which are ecologically-similar to Blelham 
Tarn, we would therefore encourage managers to implement ML fore
casts even when the length of the available data is limited, and to 
continue data collection for at least five years before making judgements 
about the utility of the data for forecasting. For lakes with a significantly 
different sampling approach or ecology from Blelham Tarn, we would 
encourage repetition of the workflow that has been presented. In short, 
this would involve examining the forecast performance of multiple 
models over several test years whilst varying the number of training 
years.

In a review of forecasting models for cyanobacterial blooms in 
freshwater lakes, Rousso et al. (2020) found that of the reviewed 90 
data-driven studies using similar input data to the present study (i.e. 
algal concentrations estimated through microscopy or pigment anal
ysis), 90.0 % used at least one year of monitoring data to develop 
data-driven prediction models. Of the same group of studies, 55.6% used 
more than four years, 26.7 % used more than 10 years, and 8.9 % used 
15 or more years of data. Importantly, this distribution is likely to reflect 
the general availability of long-term monitoring data: datasets of less 
than 10 years are much more common than those with longer time series 
than this. Therefore, placed alongside our findings, this suggests that 
numerous existing datasets are suitable for ML forecasts of algal con
centrations, if a similar level of predictability and sampling frequency to 

Fig. 3. Performance comparisons of persistence forecast against (a) MLP, (b) 
RF, (c) ridge regression, and (d) SVM. All plots show p-values from Holm 
multiple comparisons procedure for both RMSE (solid blue lines) and MAPE 
(dashed orange lines). Dotted horizontal lines indicate 0.05 and 0.1 significance 
levels. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)

Fig. 4. Overall average permutation feature importances (evaluated through a performance change in RMSE) with (a) five years, and (b) fifteen years training data.
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Blelham Tarn is assumed. It is likely that some systems, for example 
those which do not experience algal blooms every year, would require 
more training years’ training data than this (Shyalika et al., 2023). 
However, Blelham Tarn can be considered a typical example of a fertile 
temperate lake. It consistently has spring diatom blooms succeeded by 
cyanobacteria in the summer, and therefore our findings are likely 
widely applicable to the many lakes that share similar seasonal behav
iour (e.g. Bailey-Watts, 1981; Rose et al., 2021; Wei et al., 2020). 
Furthermore, for monitoring routines where automated high frequency 

sensors are not used, fortnightly or monthly lake sampling is common 
(Dubelaar et al., 2004; Marcé et al., 2016; Spaulding et al., 2024), and so 
there are likely many existing datasets for which these findings are 
applicable.

Rousso et al. (2020) also found that almost half (44.4 %) of the 
reviewed studies with similar input data to the present study used less 
than five years data. This could be an indication that these studies were 
able to achieve good performance with fewer training years than in the 
present study, or it might indicate that some of these models were not 
performing significantly better than naive benchmarks would have. 
Whilst benchmarking against naive models is not a new concept in the 

Fig. 5. RMSE (left column) and MAPE (right column) plotted against the 
number of training years with the number of input features varied for MLP: (a), 
(b); RF: (c), (d); ridge regression: (e), (f); SVM: (g), (h); and GRU: (i), (j). Blue 
lines indicate the mean performance of models trained with the 1–4 most 
important features (i.e. 1: only chl-a; 2: chl-a and water-temperature; 3: chl-a, 
water temperature and air temperature; 4: chl-a, water temperature, air tem
perature and oxygen saturation). Orange dashed lines indicate models trained 
with the 5–8 most important features, and green dotted lines indicate models 
trained with the 9–13 most important features. Shaded margins indicate stan
dard error around the mean centre line. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.)

Fig. 6. RMSE (left column) and MAPE (right column) plotted against the 
number of training years for two different forecast horizons of 14 (blue lines) 
and 28 (orange lines) days. Sampling frequencies of 14 days are indicated by 
solid lines, and 28 days dashed lines. Results are shown for all five ML models: 
MLP: (a), (b); RF: (c), (d); ridge regression: (e), (f); SVM: (g), (h); and GRU: (i), 
(j). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)
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wider field of forecasting (McLaughlin, 1983), the authors of the present 
study are aware of only a handful of studies which use naive benchmarks 
for algae forecasts (Jackson-Blake et al., 2022; Matthews, 2023; Page 
et al., 2018). Our results demonstrate that some relatively sophisticated 
forecasts, such as the MLP, may not be guaranteed to be significantly 
better than a naive model, unless provided with much more training 
data than is available for most lakes. Therefore, we strongly suggest the 
use of naive benchmarking for algae forecasting.

Many studies have found that ML performance improves with 
diminishing returns as the training dataset size increases (Frey and 
Fisher, 1999; Last, 2007; Mahmood et al., 2022). In the present study, 
this was likely caused by several factors. Changes in the sampling 
approach and improvements to measurement methods over the duration 
of the data collection period may affect the utility of older training data. 
For example, there have been organizational changes, sampling fre
quency variations, and upgrades to the lab equipment used for analysis 
of samples (Maberly et al., 2017). Alongside this, nutrient loads and 
associated phytoplankton dynamics in Blelham Tarn have changed over 
the 30-year study period (Fig. 1). These have been accompanied by 
many other changes including an earlier onset and longer duration of 
stratification; increased mean surface water temperature; and increased 
occurrence of hypolimnetic anoxia (Foley et al., 2012). Evidently this is 
a non-stationary system, which likely means that older training years are 
less representative of the conditions being modelled in a given test year. 
Globally, lakes are experiencing rapid warming and changes to mixing 
patterns due to anthropogenic climate change (Maberly et al., 2020; 
O’Reilly et al., 2015; Woolway and Merchant, 2019). This is likely to 
have a profound effect on phytoplankton species composition and 
biomass, and is expected to lead to increased cyanobacterial dominance 
in many water bodies (Carey et al., 2012; Huisman et al., 2018). 
Therefore, if warming rates further increase, it may be that historic data 
becomes increasingly less relevant to modelling short-term fluctuations. 
Investigating this explicitly would be of great value in understanding 
how the performance of near-term ML algae forecasts could be affected 
by a rapidly changing climate.

The use of ML approaches does improve our ability for modelling 
forecasts over benchmarking forecasts, but the observational sampling 
approach is likely to have a limiting effect on performance. During the 
summer growing season, phytoplankton dynamics are complex and 
influenced by many factors, including grazing, effects from higher tro
phic levels, and physical factors such as flushing (Sommer et al., 2012; 
Stockwell et al., 2020). Whilst some of these drivers may be correlated 
with the input features, we cannot expect a monitoring program to fully 
capture all the complexities of a dynamic ecosystem. Additionally, the 
horizontal movement of algae, particularly cyanobacteria, will also have 
some influence on the observed chl-a, which is only measured at a single 
location at Blelham Tarn (Feuchtmayr et al., 2021; Maberly et al., 2017; 
Xue et al., 2023). Therefore, given this complexity, and potential for 
rapid changes, certain aspects of the summer bloom dynamics will not 
be sufficiently captured by the sampling efforts (Pobel et al., 2011). In 
other words, limitations of the monitoring approach contribute uncer
tainty to the forecasts, regardless of the length of data used to train the 
model.

4.2. Model selection

Appropriate model selection is critical, particularly in data-limited 
scenarios. With the full input parameter set, the GRU, MLP and SVM 
both required more than three times the number of years training data 
required by the RF to consistently outperform the benchmarks in a 
statistically significant way (Fig. 2, Table 3). The model dependence of 
this result likely has several reasons: firstly, the MLP and GRU are higher 
complexity models than the RF and ridge regression models as they have 
a larger number of parameters (weights) to learn. This may be the reason 
that several studies which used similar datasets also found decision tree 
models to perform better than neural networks at algae forecasting 

(Aláez et al., 2021; Fornarelli et al., 2013; Harris and Graham, 2017). 
The result that the more complex models performed poorly in 
data-limited scenarios is not surprising but highlights the importance of 
using naive forecasts for benchmarking, as some ML models may not be 
able to outperform these. Secondly, as the hyperparameters were tuned 
using 5-fold cross validation with twenty years training data, there was 
some inherent bias towards larger numbers of training years, which may 
have resulted in some overfitting in scenarios where a lower number of 
training years were available. This is a plausible explanation for the very 
poor performance of the SVM models trained with the full feature set 
and a low number of training years. This issue was alleviated by 
removing some of the less important input features which indicates that 
it was at least partly a result of overfitting to spurious correlations be
tween chl-a and the less important input features. Often, it is argued that 
more complex ML models have the advantage of being able to effectively 
model non-linear dynamics (Cruz et al., 2021), however our findings 
suggest that multiple linear regression with regularisation may be all 
that is required to model algal concentrations using fortnightly data. 
This finding also suggests that more complex ML architectures which 
would be expected to outperform linear regression given sufficient 
training data are likely not appropriate unless datasets are available for 
several decades or at higher than fortnightly resolution.

4.3. Importance of input features

As well as only a few years’ training data being sufficient to optimize 
model performance, only a handful of lake measurements were neces
sary. We found that excluding the seven least important predictor var
iables generally gave similar performance to using the full parameter set 
(Fig. 5, Fig. S1). Furthermore, the SVM model’s performance was 
actually improved by removing these parameters (Fig. S1). Several of 
the more important parameters were meteorological variables taken 
from weather stations up to 37 km from the lake, data that are 
commonly available from regular meteorological stations or weather 
forecasts (Fig. 4). Furthermore, it was found that the air and surface 
water temperature variables were highly correlated, and that therefore 
either one of these could be excluded with a minimal performance 
impact. Therefore, for fortnightly sampled lakes ecologically similar to 
Blelham Tarn, only a relatively small amount of in-lake monitoring 
would be necessary to provide a basis for using ML approaches. 
Nevertheless, unlike Muttil and Chau (2006) and Xiao et al. (2017), we 
found that using chl-a alone was not effective, despite this variable 
standing out as the most important predictor. This difference in outcome 
is likely due to differences in sampling frequency and study site: Xiao 
et al. (2017) used daily monitoring data, and Muttil and Chau (2006)
used data from a large estuarine harbour.

Several of the features which we found to be least important to ML 
forecasts are those often considered to be strongly linked with algal 
blooms: ammonium, SRP, and nitrate (O’Neil et al., 2012; Paerl and 
Otten, 2013). This indicates that for Blelham Tarn, the fortnightly 
fluctuations of these variables are not useful for predicting chl-a. This is 
likely because nutrient concentrations are often at limiting values during 
the summer, where most of the large chl-a fluctuations occur (Fig. 1). 
Page et al. (2018) identified that difficulties in modelling SRP fluxes in 
Esthwaite Water was a significant hindrance to chl-a forecast perfor
mance, and suggested that monitoring nutrients more regularly than 
fortnightly could ameliorate this issue. Given the geographic proximity, 
and similarity in trophic status between Blelham Tarn and Esthwaite 
Water, this could likely explain why we did not find fortnightly nutrient 
measurements to be particularly useful for forecasting. Whilst there are 
many other studies which found that water temperature and other 
physical parameters were generally stronger predictors of algal con
centrations than nutrient measurements (Li et al., 2021; Rousso et al., 
2020; Wang et al., 2019), there are also many studies which identify 
nutrients as key predictors. For example, Rousso et al. (2020) found that 
30.5 % of the reviewed cyanobacterial bloom forecast studies identified 
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either phosphorus or nitrogen as the most important predictor in their 
models. This indicates that the optimal set of features for forecasts is 
likely to be highly variable across different study sites and monitoring 
schemes. Where possible, monitoring a broad suite of water quality 
parameters is advantageous because this will likely cover statutory 
monitoring requirements; provide data useful for other scientific and 
management investigations; and importantly, provide a degree of flex
ibility in forecast models should the system change in such a way that 
the feature importance hierarchy is modified. For example, forecasts of 
cyanobacterial blooms in a temperate lake might initially be highly 
reliant on water temperature measurements. However, if over a number 
of years, the lake was to warm to the point where summer temperatures 
were consistently optimal for cyanobacteria growth, then nutrient 
availability could become a more important predictor than temperature 
(Bonilla et al., 2023; Carey et al., 2012; Paerl and Huisman, 2009; 
Reynolds, 2006; Richardson et al., 2018). Critically, this highlights that 
whilst automated high frequency monitoring platforms are increasingly 
being adopted for water quality monitoring applications, the ability of 
manual sampling approaches to measure a wide range of parameters in a 
consistent and reliable way is a compelling argument for their contin
uation (Marcé et al., 2016; Park et al., 2020).

4.4. Sampling frequency

It has been previously demonstrated that increasing sampling fre
quency has a positive impact on the performance of phytoplankton 
forecasts (Derot et al., 2020; Lin et al., 2023), and our results corrobo
rate this. Specifically, we found that the strongest way in which sam
pling frequency affected performance was through limiting the 
minimum forecast horizon possible. However, with this effect removed, 
comparisons with 28 day ahead forecasts still showed that higher fre
quency data generally gave lower errors and, for the SVM, converged to 
peak performance with fewer years’ training data. That this effect was 
either not present, or much more subtle, for the comparisons made with 
14 day ahead forecasts is a reflection of the number of observations 
available for training in each of these scenarios. Both 14 day ahead 
forecast scenarios were trained with the same number of observations 
for a given number of training years, whereas the 28 day ahead forecasts 
made with 14 day samples had approximately twice as many training 
observations per training year than those made with 28 day samples. 
Therefore, alongside making considerations concerning the forecast 
horizon, managers designing or assessing sampling routines for fore
casting should understand that the total number of observations 
collected annually may affect how many years’ training data are 
required to achieve adequate performance.

5. Conclusion

Whilst this study was only carried out for a single lake, there are 
many lakes and reservoirs that suffer algal blooms that are monitored at 
a similar frequency to Blelham Tarn. We have shown that with four or 
more years’ data consisting of just a few parameters sampled on a 
fortnightly basis, ML can outperform standard naive benchmarks, and is 
therefore appropriate for generating two week ahead algae forecasts. 
For those already working with more than ten years’ fortnightly data for 
lakes ecologically-similar to Blelham Tarn, our results suggest that with 
appropriate model selection, tuning, and feature selection, the perfor
mance reached at this point is likely very close to the maximal perfor
mance that can be expected, even if more years of training data are 
added as the sampling continues. Ultimately, our results suggest that 
there are likely numerous lakes and reservoirs with sufficient existing 
data for ML forecasting, and that users interested in this approach may 
see significant improvements in forecast ability just a few years after the 
initiation of a simple monitoring programme. However, it is still 
essential to better understand data requirements for ML algae forecasts 
across a diverse range of sampling approaches and lake ecologies. By 

adopting a similar workflow to that which has been presented in this 
study, managers and scientists can continue to advance our under
standing of these requirements and therefore refine future algae fore
casting efforts.
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Demšar, J., 2006. Statistical comparisons of classifiers over multiple data sets. J. Mach. 
Learn. Res. 7, 1–30.

Derot, J., Yajima, H., Schmitt, F.G., 2020. Benefits of machine learning and sampling 
frequency on phytoplankton bloom forecasts in coastal areas. Ecol. Inform. 60, 
101174. https://doi.org/10.1016/j.ecoinf.2020.101174.

Derrac, J., García, S., Molina, D., Herrera, F., 2011. A practical tutorial on the use of 
nonparametric statistical tests as a methodology for comparing evolutionary and 
swarm intelligence algorithms. Swarm Evol. Comput. 1, 3–18. https://doi.org/ 
10.1016/j.swevo.2011.02.002.

Dolah, F.M.V., Roelke, D., Greene, R.M., 2001. Health and ecological impacts of harmful 
algal blooms: risk assessment needs. Hum. Ecol. Risk Assess. Int. J. 7, 1329–1345. 
https://doi.org/10.1080/20018091095032.

Dubelaar, G.B.J., Geerders, P.J.F., Jonker, R.R., 2004. High frequency monitoring reveals 
phytoplankton dynamics. J. Environ. Monit. 6, 946–952. https://doi.org/10.1039/ 
B409350J.

Elliott, J.A., Thackeray, S.J., 2004. The simulation of phytoplankton in shallow and deep 
lakes using PROTECH. Ecol. Model. 178, 357–369. https://doi.org/10.1016/j. 
ecolmodel.2004.02.012.

Feuchtmayr, H., Clarke, M.A., De Ville, M.M., Dodd, B.A., Fletcher, J., Guyatt, H., 
Hunt, A.G., James, J.B., Mackay, E., Rhodes, G., Thackeray, S.J., Maberly, S.C., 
2021. Surface temperature, surface oxygen, water clarity, water chemistry and 
phytoplankton chlorophyll a data from Blelham Tarn, 2014 to 2018 (Dataset) 
[WWW Document]. EIDC. URL. https://catalogue.ceh.ac.uk/id/ae8c850 
d-211e-4560-8b37-437b6e0e2a16. (Accessed 9 December 2023).

Foley, B., Jones, I.D., Maberly, S.C., Rippey, B., 2012. Long-term changes in oxygen 
depletion in a small temperate lake: effects of climate change and eutrophication. 
Freshw. Biol. 57, 278–289. https://doi.org/10.1111/j.1365-2427.2011.02662.x.

Fornarelli, R., Galelli, S., Castelletti, A., Antenucci, J.P., Marti, C.L., 2013. An empirical 
modeling approach to predict and understand phytoplankton dynamics in a reservoir 
affected by interbasin water transfers. Water Resour. Res. 49, 3626–3641. https:// 
doi.org/10.1002/wrcr.20268.

Franks, P.J.S., 2018. Recent advances in modelling of harmful algal blooms. In: 
Glibert, P.M., Berdalet, E., Burford, M.A., Pitcher, G.C., Zhou, M. (Eds.), Global 
Ecology and Oceanography of Harmful Algal Blooms, Ecological Studies. Springer 
International Publishing, Cham, pp. 359–377. https://doi.org/10.1007/978-3-319- 
70069-4_19.

Frey, L.J., Fisher, D.H., 1999. Modeling decision tree performance with the power law. 
In: Seventh International Workshop on Artificial Intelligence and Statistics. 
Presented at the Seventh International Workshop on Artificial Intelligence and 
Statistics. PMLR.
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