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Abstract  Groundwater nitrate contamination poses 
a potential threat to human health and environmen-
tal safety globally. This study proposes an interpret-
able stacking ensemble learning (SEL) framework 
for enhancing and interpreting groundwater nitrate 
spatial predictions by integrating the two-level het-
erogeneous SEL model and SHapley Additive exPla-
nations (SHAP). In the SEL model, five commonly 
used machine learning models were utilized as base 

models (gradient boosting decision tree, extreme gra-
dient boosting, random forest, extremely randomized 
trees, and k-nearest neighbor), whose outputs were 
taken as input data for the meta-model. When applied 
to the agricultural intensive area, the Eden Valley in 
the UK, the SEL model outperformed the individual 
models in predictive performance and generalization 
ability. It reveals a mean groundwater nitrate level 
of 2.22  mg/L-N, with 2.46% of sandstone aquifers 
exceeding the drinking standard of 11.3  mg/L-N. 
Alarmingly, 8.74% of areas with high groundwater 
nitrate remain outside the designated nitrate vulner-
able zones. Moreover, SHAP identified that transmis-
sivity, baseflow index, hydraulic conductivity, the 
percentage of arable land, and the C:N ratio in the soil 
were the top five key driving factors of groundwater 
nitrate. With nitrate threatening groundwater globally, 
this study presents a high-accuracy, interpretable, 
and flexible modeling framework that enhances our 
understanding of the mechanisms behind groundwa-
ter nitrate contamination. It implies that the interpret-
able SEL framework has great promise for providing 
valuable evidence for environmental management, 
water resource protection, and sustainable develop-
ment, particularly in the data-scarce area.
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Introduction

Groundwater is a valuable resource, serving as the 
primary source of drinking water for over a third of 
the population in the world (IAHS, 2023). However, 
with the increasing human activities, excess nitro-
gen released into the subsurface environment causes 
groundwater nitrate contamination (Castaldo et  al., 
2021; Liu et  al., 2023; Mahlknecht et  al., 2023). It 
poses a threat to human health and environmental 
security, which has attracted global attention (Kaur 
et al., 2020; Knoll et al., 2019; Ransom et al., 2022). 
Nitrate ingestion by humans is related to methemo-
globinemia, adverse pregnancy outcomes, thyroid dis-
ease, and specific cancers (Picetti et al., 2022; Rich-
ards et al., 2022). Due to the importance of protecting 
public health, the World Health Organization (WHO) 
set the guideline value of 50  mg/L NO3 (equivalent 
to 11.3 mg/L-N) for nitrate concentration in drinking 
water (WHO, 2022). Therefore, it is crucial to protect 
groundwater from nitrate pollution and limit nitrogen 
inputs. To achieve the goal, it is necessary to identify 
the spatial pattern and important influential factors of 
groundwater nitrate.

The Eden Valley is a largely rural area in the UK, 
and groundwater is widely used for public water 
supply, industry, and minor private supplies for 
farms (Butcher et al., 2003). Nevertheless, ground-
water nitrate pollution is a serious problem in the 
study area, which is primarily caused by intensive 
farming practices (Wang & Burke, 2017). The 
extensive application of fertilizers and manure 
in arable land in the 1980s significantly increased 
nitrogen levels in the soil (Wang et  al., 2012). 
Moreover, it is reported that atmospheric nitrogen 
deposition is recognized as an important nitrogen 
source for woodland soils in the UK (Vanguelova 
et al., 2024). Nitrogen can be converted into nitrate 
through nitrification and then leach into aquifers via 
infiltration, posing a severe threat to groundwater 
quality. Notably, in areas with a thick unsaturated 
zone in the Eden Valley, the peak nitrogen loading 
has not reached the groundwater table (Wang et al., 
2013). To protect waters against nitrate pollution, 
the EU proposed Nitrates Directive 91/676/EEC 
in 1991, which requires the designation of certain 
areas as Nitrate Vulnerable Zones (NVZs) where 
nitrate in surface water or groundwater has exceeded 
or could exceed 50 mg/L nitrate (11.3 mg/L-N) due 

to agricultural sources, and deliver measures (EU, 
1991; Musacchio et  al., 2020). The recent Nitrate 
Vulnerable Zones (NVZs) designation in 2021 
delineated four groundwater NVZs in the Eden Val-
ley (EA, 2021). To address the groundwater nitrate 
pollution in the study area, it is crucial to investi-
gate the spatial distribution of groundwater nitrate 
concentrations and gain a thorough understanding 
of the impacts of environmental variables.

Accurate groundwater quality spatial distribution 
is essential for comprehending current contaminant 
levels, particularly for the data-scarce area. However, 
conventional spatial interpolation methods typically 
depend on geographical information while neglecting 
the impacts of environmental factors (Mainali et  al., 
2019), which can result in potential high deviation 
and uncertainty in predictions. On the other hand, fre-
quent water quality monitoring and testing is costly 
and time-consuming, and data availability is often 
delayed (Li et al., 2022). By contrast, machine learn-
ing (ML) is a new data-driven model that can iden-
tify the complex and non-linear relationship between 
input and target variables, which has developed rap-
idly in recent decades. With the advantages of high 
accuracy, low cost, and time-saving, ML has been 
increasingly applied in groundwater investigations 
and has shown promising results (Barzegar et  al., 
2021; Iqbal et al., 2023; Nadiri et al., 2023; Ransom 
et al., 2022).

Nevertheless, it is inevitable that individual ML 
models may selectively capture local patterns and be 
prone to noise or errors, which can lead to poor per-
formance on unseen data. In addition, although ML 
has shown promise in predicting variables, its com-
plex structure, like an intelligent black-box, presents 
challenges in understanding the mechanisms (Nearing 
et al., 2021), such as support vector regression (SVR) 
with a non-linear kernel and artificial neural network 
(ANN) with multiple hidden layers, in particular for 
the ensemble learning model within a multi-layer 
structure. Otherwise, ranking the features through 
multiple transformations is essentially meaningless. 
Tree-based models, like extreme gradient boosting 
(XGB) and random forest (RF), enable interpretabil-
ity of the model; whereas, their explanations are lim-
ited to the training data, and XGB can only offer the 
global explanation. This hinders water managers from 
leveraging machine learning predictions to formulate 
targeted safeguard policies.
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To tackle the dual challenge of predictive per-
formance and interpretability, combining stacking 
and the interpretable method offers a potential solu-
tion. Stacking ensemble learning (SEL) is a power-
ful ensemble learning method, and it can enhance 
overall prediction accuracy by integrating the outputs 
of multiple base models to obtain the final predic-
tion based on the “wisdom of crowds” (Wang et al., 
2021). To decrease the risk of overfitting, it is com-
monly coupled with cross-validation (CV) to gener-
ate new training data for the meta-model. The SEL 
model exhibits great promise of applications in many 
fields, e.g., hydrology (Lu et al., 2023; Shams et al., 
2021), meteorology (Gu et al., 2022; Morshed-Bozo-
rgdel et al., 2022), and environment (Sakizadeh et al., 
2024; Wang et  al., 2021). Given its superior model 
performance and generalization in previous studies, 
the SEL model is required to be introduced to accu-
rately predict groundwater contamination, especially 
in the data-scarce area. On the other hand, Shapely 
addictive explanations (SHAP) is an advanced inter-
pretable method that can not only provide global 
explanations and feature importance but also explain 
an individual prediction (Lundberg et al.; Lundberg & 
Lee, 2017). It can also identify the positive and nega-
tive effects on predictive results, as well as linear and 
nonlinear relationships. Thus, SHAP is a valuable 
tool in enhancing model transparency and interpreta-
bility, facilitating a deeper insight into the ML model 
(Li et al., 2022). However, it is rarely used in ground-
water pollution research.

In this study, we adopt a two-level heterogeneous 
SEL model, consisting of five base models at level 
0 (gradient boosting decision tree (GBDT), XGB, 
RF, extremely randomized trees (ET), and k-nearest 
neighbor (KNN)), and a meta-model at level 1 (KNN) 
that uses the output from the base models. SHAP is 
employed to identify important driving factors and 
quantify their contributions. To our knowledge, the 
SEL model combined with the interpretable ML 
method has not been used to analyze contaminants in 
water before, and this study attempts to fill this gap.

The main objectives of this study are to (1) develop 
a novel two-level interpretable stacking ensemble 
learning (ISEL) framework for analyzing groundwa-
ter nitrate; (2) compare the model performance and 
generalization ability of the SEL model to five indi-
vidual ML models; (3) map the spatial distribution of 
nitrate in groundwater and pinpoint high nitrate areas 

in the Eden Valley, UK; and (4) identify key driving 
factors of groundwater nitrate and quantitatively ana-
lyze their influence.

Data and method

Study area

The Eden Valley is located in Cumbria, North West 
England, covering approximately 2308  km2 (Fig. 1). 
The River Eden origins from the Pennines and dis-
charges into the Solway Firth in the northwest, run-
ning northwards and joined by tributary rivers, such 
as the River Eamont, the River Irthing, and the River 
Caldew. The meteorological, hydrology, and hydro-
geology conditions in the Eden Valley are shown in 
Fig. S1. In the study area, the elevation varies from 
945 m to the sea level, which is relatively high in the 
southwest and the east but low in the valley. It has a 
temperate marine climate, with an average annual pre-
cipitation of approximately 1000  mm/a in the study 
area and exceeding 1500  mm/a on higher ground 
(Butcher et al., 2003). The population density of the 
Eden Valley is as low as about 0.2 person/ha, lower 
than most districts in England. The major sources of 
income are agriculture, especially livestock rearing, 
tourism, and some industries (Butcher et al., 2003).

In the Eden Valley, the Permo-Triassic rocks lie 
in a fault-bounded basin bounded southwest by the 
Lake District and northeast by the North Pennines. 
As shown in Fig.  1, the principal aquifers in this 
region are the Penrith Sandstones and St Bees Sand-
stones, which are thick sequences of Permo-Triassic 
sandstones with moderate to high permeability and 
porosity. These sandstones are separated by the Eden 
Shale, an aquitard mainly composed of mudstone 
and siltstone. In the study area, approximately 75% 
of the sandstone aquifers are covered by superficial 
deposits, significantly impacting recharge and dis-
tribution (Allen et  al., 2010). Hydraulic conductiv-
ity (K) ranges from 3.5 × 10–5 to 26.2 m/day for the 
Penrith Sandstones and from 0.048 to 3.5 m/day for 
St Bees Sandstones. The wide range is primarily due 
to the varying degree of cementation of the sand-
stone (Allen et al., 1997). Carboniferous limestone is 
mainly located on the edges of the study area, charac-
terized by very low porosity and permeability. They 
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provide base flow for the streams and tributaries of 
the catchment subregion of the River Eden.

The Eden Valley is largely rural and mainly cov-
ered by grassland, mountains, and arable land. It 
is a notable concern that intensive farming activi-
ties, including fertilizers and manure slurry appli-
cations, lead to groundwater nitrate contamination. 
According to the recent Nitrate Vulnerable Zones 

(NVZs) designation in 2021, there are four ground-
water NVZs in the Eden Valley (EA, 2021). i.e., the 
Brampton Sand Sheet, Penrith, Skirwith, and Kirby 
Thore NVZs. Therefore, it is necessary to under-
stand the nitrate contamination level in groundwa-
ter and analyze its key driving factors to tackle the 
nitrate challenge in the Eden Valley.

Fig. 1   Lithology, well 
locations, groundwater 
nitrate concentrations, and 
NVZs in the study area
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Nitrate concentration data

Groundwater nitrate concentration data were col-
lected from the Water Quality Archive (Beta), which 
was carried out by the EA (EA, 2012). In the Eden 
Valley, there are 1107 groundwater nitrate concentra-
tion measurements from 74 monitoring wells whose 
locations are shown in Fig. 1 between 2012 and 2021. 
10.66% of nitrate values were below the method 
detection limit (0.196  mg/L-N), and they were set 
to half the limit (0.098  mg/L-N). For the well with 
multiple nitrate measurements in one year, the annual 
mean value was calculated to represent its aver-
age nitrate level in that year. Ultimately, 549 nitrate 
concentration data between 2012 and 2021 were 
used for training and testing the predictive model. In 
addition, to decrease the impact of very high values, 
nitrate concentrations were log10 transformed before 
modeling. The log10 transformed values represented 
the response variable for the machine learning mod-
els, and the predictions were then converted back to 
nitrate concentrations after modeling. Nitrate values 
in this study represent nitrate nitrogen, with the unit 
expressed as mg/L-N.

Predictor variables and feature engineering

We compiled a set of 26 predictor variables that rep-
resented climate, hydrology, soils, geology, hydroge-
ology, and land use, as listed in Table S1. Superficial 
depth data was from British Geological Survey (BGS, 
2020). Soil physical and chemical characteristics 
were obtained from the European Soil Data Centre 
(ESDAC) (Ballabio et  al., 2016, 2019). The dataset 
of precipitation and evaporation was from the UK 
Met Office (Met Office et  al., 2018). Furthermore, 
the baseflow index (BFI) (Boorman et al., 1995) and 
land use (Morton et  al., 2014) were collected from 
the UK Centre for Ecology and Hydrology (CEH). 
In the Eden Valley, the main land use was grassland 
(58.90%), woodland (9.98%), arable land (9.71%), 
built-up areas (1.98%), and mountain (18.64%), 
respectively. The former four land use types were 
used to analyze the impacts on the groundwater 
nitrate in this study, and the contributing area was cal-
culated within a 500 m radius circular buffer (Ransom 
et al., 2022). Moreover, some variables were obtained 
from the previous study (Wang & Burke, 2017), 
including elevation, groundwater average recharge, 

unsaturated zone thickness, and aquifer properties. 
Then, all of the environmental variables at the well 
locations and the center of each element in the grid 
map of the Eden Valley (200 m × 200 m), except for 
land use, were extracted as point data using ArcGIS.

To reduce multicollinearity in the dataset, prevent 
overfitting and enhance explanation, the Pearson cor-
relation coefficient (r) between the environmental 
variables was calculated, as illustrated in the heatmap 
of correlation matrix (Fig. 2). Based on the absolute 
value of r exceeding 0.70, four highly correlated vari-
ables exhibiting a higher average absolute value of r 
with other variables were removed (Kuhn & Johnson, 
2013), including precipitation minus evaporation, 
nitrogen fertilizer application rates, nitrogen in the 
soil, and available water capacity. Despite the aver-
age absolute correlation of the percentage of built-up 
area being greater than that of population, the great 
concern about the effects of land use on groundwa-
ter pollution led to the exclusion of the population. 
Similarly, soil sand percentage and DEM were also 
reserved, which are essential variables in nitrate pre-
dictions in previous research (Wheeler et  al., 2015; 
Nolan et  al., 2014). Eventually, 21 environmental 
variables were selected as input features for the ML 
models.

In addition, normalization was applied to ensure 
that each feature contributes equally to the result. It 
can help decrease the training time and improve the 
model performance. In this study, all the predic-
tor variables were normalized to the range of 0 to 1 
through min–max normalization before being utilized 
as inputs, as Eq. (1):

where X′ represents the normalized value; X is the 
original value, and Xmax and Xmin are the maximum 
and minimum of the original data, respectively.

Interpretable stacking ensemble learning (ISEL) 
framework

To improve the model performance and generaliza-
tion and interpret the predictive model, we designed 
an ISEL framework, as shown in Fig.  3. The ISEL 
framework for groundwater nitrate mapping con-
sists of four steps: (1) data pre-processing; (2) 

(1)X� =
X − X

min

X
max

− X
min
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hyperparameter tuning and model performance evalu-
ation; (3) creation of groundwater nitrate distribution 
map; and (4) key driving factors identification and 
quantitative analysis.

Stacking ensemble learning (SEL)

Stacking, also known as a stacked generalization, is 
a powerful ensemble learning technique in machine 
learning. It aims to improve predictive performance 
by relying on the “wisdom of the crowds”. The main 
idea of stacking is to extract more information from 

the base models, capture more complex patterns, and 
reduce the variance and bias of the individual mod-
els by integrating the predictions of multiple models. 
As a result, the SEL model typically performed bet-
ter than the individual models because of the model 
diversity, bias reduction, and enhanced robustness. 
In the SEL model, the models in the first layer are 
trained on the original dataset, while the models in 
subsequent layers are trained on the outputs of the 
previous layer, as illustrated in Fig. 4.

In this study, we employed a two-level SEL model, 
consisting of five base models (GBDT, XGB, RF, ET, 

Fig. 2   The heatmap of Pearson correlation matrix
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KNN) and a meta-model that uses the outputs from 
the base models. These models were selected because 
they are based on different theories and structures, are 
widely used, and have demonstrated high accuracy 
in previous studies. Moreover, the tenfold CV gen-
erator was applied in the training phase to improve 
model generalization capability. As shown in Fig. 4, 
the training data was divided into ten folds randomly; 
nine folds (in light grey) were used for training the 
models and one remaining fold (in dark blue) was 
reserved for validation in each iteration. By repeating 

this process ten times, we obtained ten predictive val-
idation sets, which were then combined to form a new 
feature set for training the meta-model. Furthermore, 
at level 1, the average predictions (in orange) for the 
testing data from each iteration (in dark green) were 
used as a feature of new testing data for the meta-
model. Consequently, the five base models provided 
five columns of new features as new training data and 
testing data for the meta-model. Finally, we can tune 
and fit the meta-model using new training data and 
evaluate model performance using new testing data.

Fig. 3   The framework 
of interpretable stacking 
ensemble learning (ISEL) 
for identifying the spatial 
distribution and driving 
factors of nitrate in ground-
water
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To implement the methodology, we used the 
Scikit-Learn library (Pedregosa et  al., 2011) in 
Python 3.7 (Van Rossum & Drake, 2009) for GBDT, 
RF, ET, KNN, and SEL. For the XGB model, the 
XGBoost package in Python (Chen & Guestrin, 2016) 
was applied.

Hyperparameter tuning

Following the commonly utilized 8:2 dataset split-
ting ratio (Joseph, 2022), ML models were devel-
oped using the training data from the first eight 
years (n = 472, 2012–2019), and the model perfor-
mance was evaluated with the independent test-
ing data from the subsequent two years (n = 77, 
2020–2021). During model tuning, the optimal 
combination of hyperparameters was selected using 
the Tree-structured Parzen Estimator (TPE) algo-
rithm (Bergstra et al., 2011) combined with the ten-
fold CV. TPE algorithm, a Bayesian optimization 
approach based on Gaussian mixture models, runs 
faster and performs more efficiently than Gaussian 
process models. It was conducted using the Python 
package Hyperopt (Bergstra et al., 2015). The initial 
range for the hyperparameter to be optimized was 
assigned according to relevant articles and docu-
ments, and the model was trained 1000 times to 
select the optimal combination of hyperparameters 
using the TPE algorithm. Moreover, tenfold CV 

technique was performed on the training data dur-
ing model tuning to control model overfitting and 
enhance model generalizability.

After determining the optimal combination of 
hyperparameters, the whole training data was uti-
lized to refit the CV-tuned model, and the testing 
data was then used to predict and compare model 
performance. Therefore, nitrate spatial predictions 
can be produced based on the 21 predictor varia-
bles and the CV-tuned model using Python. Finally, 
model predictions for mapping the nitrate spatial 
distribution in groundwater were performed using 
ArcGIS.

Model performance evaluation metrics

Three evaluation metrics were utilized to compare the 
predictive performance of different machine learn-
ing models: mean absolute error (MAE), root mean 
squared error (RMSE), and coefficient of determina-
tion (R2). MAE and RMSE reflect the average abso-
lute difference and the average distance between the 
nitrate predictions and observations, respectively, as 
presented in Eqs. (2) and (3). R2 indicates the pro-
portion of variance in the target variable that can be 
explained by the predictor variables, calculated as 
Eq.  (4). Moreover, the mean R2 of tenfold CV was 
used to evaluate model generalization.

Fig. 4   The workflow of the stacking ensemble learning (SEL) model
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where yi is the ith observed value; ŷi is the ith predicted 
value;yi is the mean value of the observed values; n is 
the number of samples.

Model interpretability

SHAP is a recently developed unified measure of 
feature importance, which can help to improve the 
understanding of the predictions made by ML models 
(Lundberg & Lee, 2017). It is based on game theory 
and uses an additive feature attribution method where 
the model output is a linear combination of input 
variables. The SHAP value represents the marginal 
contribution of each feature to each prediction (Lun-
dberg et  al., 2020). Compared to previous feature 
importance methods, SHAP provides richer explana-
tions that interpret models locally and globally, and 
the global explanations are built according to local 
explanations, ensuring consistency. It can also iden-
tify whether the contribution of each input feature is 
positive or negative based on SHAP values.

The SHAP method was applied in this study to 
analyze the local and global feature importance to 
understand the importance and influence of driving 
factors on groundwater nitrate spatial predictions, as 
well as model contributions from base models to the 
meta-model. The SHAP analysis was implemented 
using the Python package SHAP (Lundberg & Lee, 
2017).

Results and discussion

Groundwater nitrate data summary

As shown in Fig. S2, for the whole dataset (n = 549), 
the annual average groundwater nitrate concentra-
tions ranged from 0.098 to 52.06 mg/L-N from 2012 

(2)MAE =

∑n

i=1
�
�ŷi − yi

�
�

n

(3)RMSE =

�
∑n

i=1

�
ŷi − yi

�2

n

(4)R2 = 1 −

∑n

i=1

�
ŷi − yi

�2

∑n

i=1

�
yi − yi

�2

to 2021, with a mean concentration and a standard 
deviation of 6.31 mg/L-N and 6.70 mg/L-N, respec-
tively. The 25th, 50th, and 75th percentile groundwa-
ter nitrate concentrations were 0.94, 4.41, and 9.87 
mg/L-N, respectively. Overall, 20.79% of the sam-
ples exhibited high nitrate concentrations, exceeding 
the maximum admissible concentration (MAC) of 
nitrate in water for human consumption (11.3 mg/L-
N), as set by the European Union (EU) in the Drink-
ing Water Directive 80/778/EEC. These high nitrate 
concentrations were mainly located in St Bees Sand-
stones and Penrith Sandstones, the central part of the 
Eden Valley. The percentage of wells with groundwa-
ter nitrate below 2 mg/L-N was the largest (37.16%). 
These wells were concentrated in the limestone and 
north of the St Bees Sandstones, the catchment subre-
gion throughout the Eden Valley.

The whole nitrate concentration data between 
2012 and 2021 (n = 549) was divided into a train-
ing set (n = 472, 2012–2019) and a testing data set 
(n = 77, 2020–2021), as shown in Fig.  S2. Training 
data ranged from 0.098 to 52.06 mg/L-N, and testing 
data ranged from 0.098 to 30.00 mg/L-N. Moreover, 
the first, second, and third quartiles of training data 
are 0.94, 4.44, and 9.63 mg/L-N, respectively, which 
are 1.00, 4.20, and 11.00 mg/L-N for testing data. In 
general, the distributions of the training and testing 
datasets were similar, which may help mitigate the 
tendency for the method to overfit the training data.

Hyperparameter tuning and model performance

The optimal hyperparameters of ML models were 
determined using the TPE optimization algorithm 
combined with the maximum tenfold CV mean R2 
criterion by training 1000 times (Table  S2). Model 
performance was compared according to the evalua-
tion metrics for the testing data: MAE, RMSE, and R2 
(Table  1). All individual and SEL models produced 
satisfying predictions and were considered accept-
able. Based on the testing R2, the model performance 
ranked in the following order: SEL > GBDT > XGB 
> RF > ET > KNN. Compared to the five individual 
models, the SEL model had the lowest MAE (0.1229) 
and RMSE (0.2586) and the highest R2 (0.8644) for 
testing data, which indicated that the SEL model out-
performed the other five individual models in pre-
dictive performance. Furthermore, in terms of gen-
eralization ability, models ranked the same as the 
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model performance based on the mean R2 of tenfold 
CV. The SEL model had the highest CV mean R2 of 
0.8500, which was 2.68–4.90% higher than the other 
models, and the smallest CV standard deviation of 
0.0702, suggesting better generalization and stability. 
Thus, in contrast with the five individual models, the 
two-level heterogeneous SEL model enhanced predic-
tive performance and generalization ability.

The box plots of predicted and observed groundwa-
ter nitrate concentrations were displayed in Fig. 5, vis-
ually representing the spread of nitrate values. To con-
trast the predicted and observed nitrate concentrations, 

we retransformed the predicted values back to nitrate 
concentrations. In Fig.  5, the lower and upper ends 
of the box denote the 25th and 75th percentiles ( Q

1
 

and Q
3
 ), the horizontal line inside the box represents 

the 50th percentile (the median), and the cross indi-
cates the mean value. Moreover, the lower whisker 
represents the minimum nitrate value, and the upper 
whisker denotes the value of Q

3
+ 1.5(Q

3
− Q

1
) , 

excluding the outliers that drawn as points.
In Fig.  5, it can be observed that the minimum 

(0.10 mg/L-N) and the first quartile (0.96–1.11 mg/L-
N) of nitrate predictions from all models were similar 
to those of the observation (0.10 mg/L-N, 0.94 mg/L-
N). Whereas the third quartile (8.91–9.35  mg/L-N) 
and the upper whisper (20.03–20.15  mg/L-N) from 
the five individual models were apparently lower than 
those of the SEL model (10.24 mg/L-N, 21.22 mg/L-
N) and observation (9.94  mg/L-N, 23.35  mg/L-N), 
indicating that the predictions for five individual 
models were biased in high values. By contrast, the 
SEL model had a more reliable range of groundwa-
ter nitrate predictions, closer to the observations 
than the other five individual models. Moreover, the 
mean value of nitrate predictions from the SEL model 
(5.60  mg/L-N) was comparable to the observation 
(5.65 mg/L-N), which is marked by a cross in Fig. 5. 
In comparison, the mean values of the predictions 
from the individual models were 5.33–5.42 mg/L-N, 
suggesting that their predicted results were gener-
ally lower than the observed values. Furthermore, the 
standard deviation of predictions from the SEL model 
(5.34  mg/L-N) was also quite close to the observa-
tions (5.40  mg/L-N), revealing that its predictions 
were dispersed similarly to the observation. Overall, 

Table 1   Model performance metrics for the models: gradient boosting decision tree (GBDT), extreme gradient boosting (XGB), 
random forest (RF), extremely randomized trees (ET), k-nearest neighbors (KNN), and stacking ensemble learning (SEL)

The units of MAE and RMSE are log10 (mg/L-N), and std. represents standard deviation. Bold text indicates the best performance 
according to the evaluation metric

Model Tenfold CV R2 
(mean ± std.)

Training data (n = 472) Testing data (n = 77)

MAE RMSE R2 MAE RMSE R2

GBDT 0.8416 ± 0.0971 0.0999 0.2072 0.9000 0.1254 0.2618 0.8610
XGB 0.8400 ± 0.1082 0.0997 0.2056 0.9016 0.1263 0.2651 0.8575
RF 0.8368 ± 0.0910 0.1023 0.2114 0.8960 0.1271 0.2680 0.8544
ET 0.8363 ± 0.0954 0.1060 0.2140 0.8934 0.1315 0.2763 0.8452
KNN 0.8240 ± 0.1392 0.0958 0.2078 0.8994 0.1283 0.2859 0.8342
SEL 0.8500 ± 0.0702 0.1037 0.2112 0.8961 0.1229 0.2586 0.8644

Fig. 5   The box plots of observed (OBS) and predicted 
groundwater nitrate concentrations from the models: gradi-
ent boosting decision tree (GBDT), extreme gradient boosting 
(XGB), random forest (RF), extremely randomized trees (ET), 
k-nearest neighbors (KNN), and stacking ensemble learning 
(SEL)
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the distribution of nitrate predictions from the SEL 
model was comparable to that of the observations at 
the training and testing phases in terms of the range, 
mean value, and standard deviation.

From the analysis above, it can be concluded that 
the SEL model exhibited superior predictive perfor-
mance and generalization, indicating that its nitrate 
predictions were more reliable. Although GBDT and 
XGB performed relatively well, their high nitrate pre-
dictions were obviously lower than those of the SEL 
model and observations. This is probably because the 
ensemble tree regression models typically reduce the 
variance of predictions but leave bias, resulting in 
negative and positive bias for big and small values, 
respectively (Belitz & Stackelberg, 2021; Zhang & 
Lu, 2012). Thus, the SEL model can be a powerful 
tool for accurately predicting groundwater nitrate 
concentrations at unsampled locations.

Nitrate predictions and spatial distribution

After the training and testing phases, the SEL model 
was applied to predict groundwater nitrate concentra-
tions across the 200 m × 200 m grid map covering the 
Eden Valley using environmental variables. Table  2 
summarizes the percentages of different concentration 
ranges of groundwater nitrate spatial predictions for 
the SEL model. According to the statistical metrics, 
the predicted nitrate concentrations across the Eden 
Valley ranged from 0.11 to 27.27  mg/L-N, consist-
ent with the observations excluding the outliers. The 
median and mean values for nitrate spatial predictions 
were 1.10 and 2.22 mg/L-N, respectively, indicating 
that nitrate concentrations are generally low at most 
locations in the study area. As shown in Table 2, the 
percentage of nitrate concentration classes decreased 
as the concentration increased. The predicted nitrate 
concentrations in the range of 0–2 mg/L-N accounted 
for the largest proportion at 67.36%, followed by 
the 2–5  mg/L-N (16.78%), 5–8  mg/L-N (10.85%), 
and 8–11.3  mg/L-N (4.22%) classes, respectively. 
By contrast, the areas with high groundwater nitrate 

concentrations exceeding the MAC of 11.3  mg/L-N 
only occupied 0.79% of the total, the lowest propor-
tion within the study area, and these areas accounted 
for 2.46% of the sandstone aquifers.

Figure 6 shows the 200 m × 200 m spatial distribu-
tion grid map of predicted groundwater nitrate con-
centrations for the SEL model in the Eden Valley, 
representing the average annual nitrate level between 
2012 and 2021. The results suggested that its distribu-
tion pattern is similar to the nitrate input reported in 
the previous study (Wang & Burke, 2017). Moreover, 
nearly 91.26% of high nitrate predictions exceeding 
11.3 mg/L-N are located inside the NVZs, revealing 
that the predicted spatial distribution of groundwater 
nitrate for the SEL model is reliable. As illustrated in 
Fig.  6, predicted groundwater nitrate concentrations 
in most of the central part of the valley, were gener-
ally above 2 mg/L-N, whereas concentrations in other 
aquifers were predominantly below 2  mg/L-N. Fur-
thermore, the high nitrate concentrations exceeding 
11.3 mg/L-N were concentrated in the Penrith Sand-
stone aquifer where arable land and grassland pre-
dominated. It is evident that the groundwater nitrate 
contamination is primarily attributed to agriculture 
in the study area, which is in line with earlier inves-
tigations (Allen et  al., 1997; Butcher et  al., 2003). 
Therefore, it is necessary to control the application 
of N-fertilizers and animal manure to reduce nitrogen 
pollution sources in high groundwater nitrate areas 
and surrounding regions, as required by the NVZ 
regulations (EU, 1991). In addition, drip irrigation is 
suggested as a substitute for flood irrigation to limit 
nitrogen leaching from the bottom of the soil.

According to the nitrate spatial predictions from the 
SEL model, it is worth noting that about 8.74% of the 
high groundwater nitrate areas are located outside the 
designed NVZs. These areas are concentrated in the 
southeast and northeast of the Penrith NVZ, as well as 
the southeast of the Kirby Thore NVZ, and have the 
potential to exacerbate groundwater nitrate contamina-
tion without any mitigative measures. Based on the pre-
vious study (Wang & Burke, 2017), they are areas with 
high to moderate high nitrogen input. Thus, it is neces-
sary to consider delineating these areas into the NVZs in 
the future and formulate targeted management strategies. 
Moreover, a small portion of built-up areas in the central 
part of the valley are quite close to high nitrate locations. 
Hence, water managers should be cautious about poten-
tial health issues when directly using local groundwater.

Table 2   Percentages of different ranges of groundwater nitrate 
spatial predictions in the Eden Valley, utilizing the stacking 
ensemble learning (SEL) model

Nitrate (mg/L-N) 0–2 2–5 5–8 8–11.3 ≥ 11.3

Percentage (%) 67.36 16.78 10.85 4.22 0.79
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Quantitative analysis of driving factors and base 
models

Contributions of driving factors to nitrate predictions

The importance and influence of the driving fac-
tors underlying the nitrate predictions on the train-
ing data were quantitatively analyzed using the 
SHAP method, offering valuable insights into 

the relationship between environmental variables 
and groundwater nitrate concentrations. Figure  7a 
illustrates the global variable importance ranking 
based on the mean absolute value of SHAP values 
shown on the x-axis, denoting the average impact 
on model output magnitude. Figure 7b presents the 
SHAP summary plot as a violin plot, illustrating the 
global distribution of feature influence. The y-axis 
lists the top ten most important variables, and the 

Fig. 6   Spatial distribution 
of predicted nitrate con-
centrations in groundwater 
for the SEL model at 200 
m × 200 m resolution in the 
Eden Valley
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x-axis represents the SHAP value of each instance 
for the feature. Moreover, the width of the vio-
lin plot denotes the frequency of the SHAP value, 
and the color indicates the average feature value 
at that position, with red and blue signifying high 
and low relative values of the variables, respec-
tively. Figure 7c displays the local SHAP values for 
each value of the top ten crucial driving factors and 
shows the relationship between the environmental 
variables (x-axis) and SHAP values (y-axis), pro-
viding insights into how nitrate predictions vary 
with the increasing values of the variables.

As shown in Fig. 7a, the top ten crucial variables 
for the SEL model can be generally categorized 
into the following five categories: hydrogeology, 

hydrology, land use, soil organic matter, and topogra-
phy. Transmissivity (T) and K are essential hydrogeo-
logical parameters representing the ability of an aqui-
fer to transmit and conduct water, both of which are 
related to groundwater flow rate (Wang et al., 2013). 
They are the most and the third-most important driv-
ing factors on groundwater nitrate predictions for the 
SEL model, respectively, and both have a positive 
impact (Fig. 7b and c), consistent with the finding of 
earlier research (Wang & Burke, 2017). High T and K 
can accelerate groundwater flow, thereby facilitating 
the migration and dispersion of nitrate (Jang et  al., 
2017). Moreover, rapid groundwater flow can reduce 
the potential for nitrate to interact with microorgan-
isms and other substances, hindering denitrification 

Fig. 7   SHAP analysis for training data. a The average absolute value of SHAP values, b SHAP values, and c SHAP dependence 
plots of the top ten essential variables for the stacking ensemble learning (SEL) model
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processes and preventing effective nitrate removal 
(Rivett et  al., 2008). This ultimately increases the 
risk of nitrate pollution in groundwater (Aller et  al., 
1987).

BFI is a critical index that reflects the contribu-
tion of groundwater to river flow. It emerged as the 
second most important variable and exhibited a posi-
tive correlation with nitrate predictions. This can be 
attributed to the fact that BFI is positively correlated 
with groundwater recharge (r = 0.69) (Zomlot et  al., 
2015). A higher BFI signifies greater recharge, which 
can enhance the transport of nitrogen from the sur-
face to the aquifer and facilitate nitrate leaching into 
groundwater. It can potentially raise groundwater 
nitrate levels (Nolan and Hitt, 2006), particularly in 
areas with high agricultural nitrogen loading (Böhlke, 
2002). Although increased recharge can contribute to 
the dilution of groundwater nitrate, in agriculturally 
intensive areas such as the Eden Valley, this effect 
is likely less significant than the substantial nitrate 
leaching into the groundwater. In contrast, potential 
evapotranspiration (PET) showed a negative correla-
tion with recharge (r = -0.35) (Walker et  al., 2019). 
Therefore, increased PET suggests reduced recharge, 
which may limit contaminants leaching into the aqui-
fer, resulting in lower nitrate levels in groundwater.

Furthermore, the percentage of arable land and 
woodland within a 500  m radius circular buffer 
ranked fourth and sixth in the SEL model, respec-
tively, and were associated with high nitrate concen-
trations, as shown in Fig. 7c. The possible reason is 
that the arable land percentage and fertilizer applica-
tion rate are highly correlated (r = 0.72) (Fig.  2), in 
line with the previous findings (Butcher et al., 2003; 
Ransom et al., 2022). Extensive fertilizer and manure 
utilization in arable land can enhance crop growth 
and promote nitrification (Zhang et al., 2013). Thus, 
excessive nitrogen unabsorbed by crops likely leads 
to an elevated nitrate level. Furthermore, the posi-
tive influence of woodland on elevated groundwater 
nitrate levels is possibly due to abundant nitrogen 
from various sources, such as atmospheric nitrogen 
deposition, litter decomposition, and biological nitro-
gen fixation (Sardar et  al., 2023). Notably, atmos-
pheric nitrogen deposition in most woodlands in the 
UK surpasses the critical loads (Vanguelova et  al., 
2024), enhancing nitrogen mineralization and nitrifi-
cation in the soil (Zhu et  al., 2015), thereby raising 

the likelihood of nitrate leaching into groundwater 
(Dise & Wright, 1995).

Conversely, groundwater nitrate concentrations 
tended to decrease with increasing C:N ratio and 
organic carbon content in the soil, which ranked fifth 
and seventh in importance. Elevated C:N ratios and 
soil organic carbon can restrict the availability of 
nitrogen sources essential for microbial metabolism 
(Hoang et al., 2022). It has been reported that a high 
C:N ratio in soil adversely impacts ammonifying bac-
teria, facilitating soil organic nitrogen conversion into 
ammonium nitrogen (Yang et  al., 2023). The nitri-
fication process is closely related to the ammonium 
nitrogen production rate (Booth et  al., 2005), and 
thus, insufficient nitrogen can significantly hamper 
the nitrification process. In addition, an abundance 
of organic carbon in soil can strengthen the activity 
of denitrifying bacteria, which are mostly facultative 
anaerobic heterotrophs, favoring denitrification and 
reducing nitrate levels (Sheng et  al., 2018). Conse-
quently, a high C:N ratio and increased organic car-
bon content can help prevent nitrate accumulation 
in soil and reduce nitrate leaching losses (Bai et  al., 
2021), thereby decreasing the risk of nitrate pollution 
in groundwater.

Moreover, elevation was ranked as the eighth most 
significant influencing factor. As shown in Fig.  7c, 
the SHAP value implied a positive correlation with 
elevation, peaking at around 130 m before gradually 
decreasing. Specifically, 86.4% of the samples with 
positive SHAP values fall within the elevation range 
of 60–150  m, where the positive influence on high 
nitrate predictions is stronger than the negative, as 
illustrated in Fig. S3a. These elevations are predomi-
nantly located along the River Eden (Fig. S2), which 
is suitable for farming. Fig. S3b reveals that when the 
percentage of arable land exceeds 5%, 72.8% of the 
samples are situated at an elevation ranging from 60 
to 150 m, holding a significantly larger proportion of 
samples compared to other elevation intervals. There-
fore, prevalent agricultural practices on arable land at 
these elevations, including the applications of chemi-
cal fertilizers and manure, likely contribute to the ele-
vated groundwater nitrate level.

In addition, it should be noted that a thicker unsat-
urated zone is associated with higher groundwater 
nitrate concentrations (Böhlke, 2002) This is prob-
ably because of the longer lag time for peak nitrate 
leaching in the 1980s in areas with a thick unsaturated 
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zone, which has arrived at groundwater table in the 
1990s in regions with a thinner unsaturated zone 
(Wang et al., 2013). Furthermore, due to limited data 
access, this study used long-term average values for 
the unsaturated zone thickness. If data on the tem-
poral dynamics of the unsaturated zone thickness or 
groundwater table become available, further research 
could explore their impacts on nitrate concentrations 
in groundwater.

Contributions of base models to the meta‑model

In the stacking model, the output from the base 
model was used as the input for the meta-model. 
To assess the contribution of base models to the 
meta-model, the importance of the base model 
was analyzed by employing SHAP. Based on the 
mean absolute value of SHAP values, the five base 
models at level 0 exhibited positive impacts on the 
meta-model at level 1, with the following ranking: 
XGB > KNN > GBDT > RF > ET.

In the SEL model, the average absolute values 
of SHAP values of the outputs from both XGB and 
KNN were nearly 0.12, higher than those of the other 
base models. It is likely because that the importance 
rankings of the percentage of woodland in a 500  m 
radius circular buffer in the XGB and KNN are higher 
(the third) compared to other base models (the fifth 
or sixth), as shown in Fig. S4b and e. Conversely, the 
average absolute value of SHAP values of the output 
from the ET model was below 0.10, which was obvi-
ously lower than those of the other base models. This 
may be associated with the percentage of arable land, 
which ranked tenth in the ET model (Fig. S4d) but in 
the top five in the other four base models and in the 
SEL model.

Furthermore, in the top three performing models 
(i.e., GBDT, XGB, and RF), T was identified as the 
most influential variable (Fig. S4a–c). Another vari-
able related to aquifer characteristics, K, ranked in 
the top five in four of the base models, excluding the 
GBDT.

In conclusion, the contribution analysis of driving 
factors to the final nitrate predictions, as well as the 
impacts of the base models, suggests that the effects 
of hydrogeology, hydrology, land use, soil organic 
matter, and elevation in this study are consistent 
with previous findings (Aller et  al., 1987; Butcher 
et al., 2003). The results reveal that hydrogeological 

conditions (T and K) and land use (particularly arable 
land and woodland) play a crucial role in predict-
ing groundwater nitrate concentrations in the Eden 
Valley. Consequently, from the perspective of gen-
esis analysis, nitrate spatial predictions from the SEL 
model are reliable. It is essential for water environ-
ment managers to formulate targeted strategies to 
manage fertilizer application and manure storage, 
especially in areas with high nitrogen loading and fast 
groundwater flow.

Conclusions

Nitrate is a widespread pollutant in groundwater, 
threatening human health and environmental safety 
worldwide. This study developed a novel framework 
for identifying the spatial pattern of groundwater 
nitrate concentration with high accuracy and quanti-
tatively analyzing the importance of key driving fac-
tors. The results demonstrate that the proposed ISEL 
framework is effective in the Eden Valley. The SEL 
model improved predictive performance and gener-
alization ability compared to the five individual ML 
models (GBDT, XGB, RF, ET, KNN), providing reli-
able nitrate predictions. It was found that groundwa-
ter nitrate concentrations in 2.46% of sandstone aqui-
fers exceed the MAC of 11.3 mg/L-N, while 8.74% 
of areas with high nitrate concentrations have not 
been delineated as the NVZs. SHAP analysis fur-
ther reveals that groundwater nitrate levels are sig-
nificantly affected by aquifer characteristics, and land 
use, with T identified as the most important factor in 
the SEL model. These findings can assist water envi-
ronmental managers in developing targeted pollution 
control strategies to ensure sustainable groundwa-
ter quality management. This study marks the first 
integration of the stacking technique with an inter-
pretability approach in the field of groundwater con-
taminant. Future research directions include predict-
ing contaminant distribution across different spatial 
scales, modeling the spatiotemporal dynamics of pol-
lutants and incorporating broader data sources such 
as remote sensing. Overall, the proposed framework 
offers a promising way to accurately predicting con-
taminants distribution and clarifying complex envi-
ronmental phenomena, thereby contributing to sus-
tainable development.
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