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A B S T R A C T

Pathogenic variants in the Leucine-rich repeat kinase 2 (LRRK2) gene are a primary monogenic cause of Parkin-
son’s disease (PD). However, the likelihood of developing PD with inherited LRRK2 pathogenic variants differs (a 
phenomenon known as “reduced penetrance”), with factors including age and geographic region, highlighting a 
potential role for lifestyle and environmental factors in disease onset. To investigate this, household dust samples 
from four different groups of individuals were analyzed using metabolomics/exposomics and metagenomics 
approaches: PD+/LRRK2+ (PD patients with pathogenic LRRK2 variants; n = 11), PD-/LRRK2+ (individuals 
with pathogenic LRRK2 variants but without PD diagnosis; n = 8), iPD (PD of unknown cause; n = 11), and a 
matched, healthy control group (n = 11). The dust was complemented with metabolomics and lipidomics of 
matched serum samples, where available. A total of 1,003 chemicals and 163 metagenomic operational taxo-
nomic units (mOTUs) were identified in the dust samples, of which ninety chemicals and ten mOTUs were 
statistically significant (ANOVA p-value < 0.05). Reduced levels of 2-benzothiazolesulfonic acid (BThSO3) were 
found in the PD-/LRRK2+ group compared to the PD+/LRRK2+ . Among the significant chemicals tentatively 
identified in dust, two are hazardous chemical replacements: Bisphenol S (BPS), and perfluorobutane sulfonic 
acid (PFBuS). Furthermore, various lipids were found altered in serum including different lysophosphatidyle-
thanolamines (LPEs), and lysophosphatidylcholines (LPCs), some with higher levels in the PD+/LRRK2+ group 
compared to the control group. A cellular study on isogenic neurons generated from a PD+/LRRK2+ patient 
demonstrated that BPS negatively impacts mitochondrial function, which is implicated in PD pathogenesis. This 
pilot study demonstrates how non-target metabolomics/exposomics analysis of indoor dust samples com-
plemented with metagenomics can prioritize relevant chemicals that may be potential modifiers of LRRK2 
penetrance.

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder, affecting 

1.8 % of individuals over the age of 80 years globally, with an increasing 
prevalence due to the progressive aging of the population (Steinmetz, 
2024). PD is characterized by the abnormal accumulation of misfolded 
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alpha-synuclein (α-syn) inside neurons, leading to the formation of Lewy 
Bodies, which promote neuroinflammation and the irreversible degen-
eration of dopaminergic neurons in the substantia nigra pars compacta 
and other brain regions (Chen and Lin, 2022; Vascellari, et al., 2020; 
Talavera Andújar, 2022; Lubomski et al., 2020). The clinical hallmarks 
of PD are tremor, bradykinesia, rigidity, and later in the disease, postural 
instability (Chen and Lin, 2022). However, these typical motor features 
do not become evident until 60–80 % of dopaminergic neurons are lost, 
such that other indicators are needed for earlier diagnosis (Bloem et al., 
2021). Non-motor symptoms related to PD, such as constipation and 
REM-sleep behavior disorder (RBD), can occur decades before the onset 
of the classical motor symptoms but often go unrecognized (Chen and 
Lin, 2022; Lubomski et al., 2020; Bloem et al., 2021; Romano et al., 
2021). Since not all PD patients have Lewy bodies or positive α-syn 
readings (Siderowf, 2023; Schneider and Alcalay, 2017), recently, a 
biological classification of PD has been proposed for research purposes, 
which considers the presence or absence of α-syn pathology, features of 
neurodegeneration, and genetic contributions (Höglinger, 2024).

Although the exact cause of most of patients with PD remains un-
known, recent studies suggest that a combination of genetic and envi-
ronmental risk factors may play a key role in the development of the 
disease (Chen and Lin, 2022; Bloem et al., 2021; Lim and Klein, 2024). 
Typically, monogenic PD comprises five dominantly inherited forms 
(SNCA, LRRK2, VPS35, RAB32 and CHCHD2) and three recessively 
inherited forms (PRKN, PINK1, and PARK7) (Höglinger, 2024; Lim and 
Klein, 2024). Mitochondrial dysfunction may occur already in the early 
stages of PD pathogenesis and plays a crucial role in both sporadic and 
familial forms of the disease (Subramaniam and Chesselet, 2013; Bose 
and Beal, 2016). Gene variants of Leucine-rich repeat kinase 2 (LRRK2) 
are the most common monogenic cause of PD, accounting for 1–2 % of 
all cases (Bjørklund et al., 2020; Trinh et al., 2022; Skrahina, 2021; 
Miller et al., 2024). Most of the LRRK2 pathogenic variants result in 
increased kinase activity of the LRRK2 protein, leading to mitochondrial 
dysfunction and promoting inflammatory responses that may result in 
chronic neuroinflammation and gut inflammation (Chen and Lin, 2022; 
Trinh et al., 2022). In addition to PD, LRRK2 has been linked to in-
flammatory diseases including Crohn’s Disease, leprosy and tuberculosis 
(Chen and Lin, 2022; Tsafaras and Baekelandt, 2022). While the p. 
G2019S pathogenic variant of LRRK2 is the best known and most 
common, not all carriers of this variant will develop PD, a phenomenon 
termed “reduced penetrance” (Chen and Lin, 2022; Trinh et al., 2022; 
Usnich et al., 2021; Healy, 2008). Importantly, the penetrance is age- 
dependent and differs across geographic regions. For example, in 
Tunisia, 61 % of LRRK2 p.G2019S carriers developed PD by the age of 
60 years, and 86 % by the age of 70. In contrast, in Norway, only 20 % of 
carriers developed the disease by age 60, and 43 % by age 70 (Usnich 
et al., 2021; Hentati et al., 2014). This suggests that factors beyond 
genes, such as lifestyle or environment, may play a crucial role in trig-
gering the onset of the disease (Chen and Lin, 2022). Various environ-
mental factors have been previously associated with an increased risk of 
PD, including the exposure to metals (e.g., Cu, Fe and Zn) and pesticides 
(e.g., rotenone and paraquat) (Sakowski et al., 2024). In contrast, 
smoking, caffeine consumption, and the use of anti-inflammatory drugs 
have been linked with a reduced PD risk (Sakowski et al., 2024; Lüth, 
2023). The LRRK2/Luebeck International Parkinson’s Disease Study 
(LIPAD) cohort is one of the largest multinational cohorts of genetic PD, 
focused on LRRK2-associated PD and healthy LRRK2 pathogenic variant 
carriers aiming to identify modifiers of LRRK2 penetrance (Usnich et al., 
2021). The present work describes a pilot study investigating the 
household dust from selected LIPAD cohort participants to determine 
whether this could potentially reveal potential chemical exposures and 
taxa of interest that may influence LRRK2 penetrance, to help direct 
future sampling campaigns.

Although some chemicals have been found to positively or negatively 
impact PD development or progression (as described above), these were 
generally targeted studies and, thus, the effects of other chemical 

exposures on PD remain largely unknown. Since people in urban areas 
spend about 90 % of their time indoors (Shan et al., 2019), sampling the 
indoor environment offers a valuable opportunity to study both chem-
ical and microbial exposures. Household dust can act as a reservoir of 
chemicals, with estimates ranging from 30,000 to 70,000 chemicals in 
household use (Schwarzenbach, 2006). With these numbers of chem-
icals, non-target analytical methods are required to explore which 
chemicals are present in household dust (Rostkowski, 2019; Hollender, 
2023). In addition to chemicals, the gut microbiome has been proposed 
to play an important role in PD pathogenesis (Lubomski et al., 2020). 
The household dust microbiome can influence the host microbiome 
(Shan et al., 2019), linking indoor microbial exposures to potential 
health outcomes including via the oral-gut axis (Kunath et al., 2024). So 
far, between 500 and 1,000 different microbial species have been re-
ported in dust (Shan et al., 2019; Thompson, et al., 2021). Consequently, 
the analysis of household dust is of great interest to generate new hy-
potheses about environmental factors contributing to the penetrance of 
PD.

As part of the LIPAD study (Usnich et al., 2021), this work aims to 
identify potential environmental modifiers of the penetrance of LRRK2 
pathogenic variants through the analysis of household dust of four 
groups of participants: PD+/LRRK2+ (PD individuals with pathogenic 
LRRK2 variants), PD-/LRRK2+ (individuals with pathogenic LRRK2 
variants but without PD diagnosis), iPD (PD of unknown cause), and a 
matched control group (individuals without pathogenic variants and 
without PD diagnosis), through different metabolomics/exposomics and 
metagenomics approaches. This was complemented with non-target 
metabolomics on paired serum samples, where available, to investi-
gate potential metabolomic differences between groups that could be 
attributed to environmental exposures. Additionally, since alterations in 
bile acids (BAs) have been previously noted in PD (Li, 2021; Graham, 
2018; Loh, 2024), a target study of BAs in serum was performed. Finally, 
a cell study in isogenic neurons generated from a PD+/LRRK2+ patient 
was conducted to investigate the potential neurotoxic effects of a 
chemical found in the household dust, using various readouts related to 
mitochondrial function. To our knowledge, this is the first study inves-
tigating the environmental influences of LRRK2 penetrance through the 
molecular analysis of household dust.

2. Material and methods

2.1. Sample collection

Samples from four different groups of individuals (Control, iPD, PD-/ 
LRRK2+, PD+/LRRK2+, explained above) were collected in Germany 
(36) and Turkey (5) between February 2020 and January 2022, with 
details provided in Table 1. Additional information has already been 
published (Usnich et al., 2021). Participants with different LRRK2 var-
iants were included in this study. In the PD+/LRRK2+ group, seven 

Table 1 
Demographic characteristics of the studied groups (mean ± standard deviation). 
(a) ANOVA single factor was applied to calculate the p-value of the age across 
groups, while Chi-square p-value was computed for the categorical variable 
(sex).

Control iPD PD-/ 
LRRK2þ

PDþ/ 
LRRK2þ

p- 
value(a)Sample Details

Dust n 11 11 8 11 
Age 60.54 ±

11.15
62.45 
± 7.88

50.75 ±
10.40

61.73 ±
8.33

0.0487

Sex (f/ 
m)

6/5 6/5 7/1 6/5 0.4012

Serum n 8 3 8 5 
Age 60.40 ±

9.27
65.00 
± 6.00

50.75 ±
10.40

58.20 ±
8.38

0.6864

Sex (f/ 
m)

5/3 3/0 7/1 1/4 0.0455
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participants carried the p.G2019S variant, two had the p.N1437S 
variant, and one each had the p.R1441H and p.I2020T variants. In the 
PD-/LRRK2+ group, six individuals carried the p.G2019S variant, while 
one each had the p.R1441C and p.S901L variants. Importantly, carriers 
of pathogenic and likely pathogenic variants in 68 PD-linked genes were 
excluded in the iPD and control groups, as specified in the ROPAD 
protocol (Skrahina, 2021; Westenberger, 2024). Further details about 
the participants can be found in Table S1.

A total of forty-one dust samples were collected from vacuum cleaner 
bags stored at room temperature until analysis. To facilitate this, each 
participant was asked to provide a single sample, either their vacuum 
cleaner bag or household dust, which was securely placed in a plastic 
bag closed with a tight knot. The household dust samples were subse-
quently shipped at ambient temperature to the receiving laboratory. In 
addition, twenty-four matched serum samples were collected (Table 1) 
and stored at –80 ◦C until the analysis. Samples were matched by gender 
and age across the control, iPD, and PD+/LRRK2+ groups (Table 1). 
Matching the PD-/LRRK2+ group was more challenging due to the 
younger average age and the specific clinical characteristics of these 
participants. Fig. 1 shows the number of samples per group, and the 
analyses performed (described further in the following sections).

2.2. Sample preparation

2.2.1. Dust
The sample extraction protocol for metabolomics/exposomics was 

adapted from Moschet et al. (Moschet et al., 2018) and Dubocq et al. 
(Dubocq et al., 2021). Briefly, 50 mg of each dust sample was extracted 
using acetonitrile (ACN): methanol (MeOH) (1:1, v/v). The extract was 
evaporated (Labconco CentriVap, − 4 ◦C, 24–48 h), reconstituted using 
0.1 % formic acid (FA) in MilliQ water and MeOH (90:10, v/v), and 
filtered (Phenex-RC 4 mm syringe filter, 0.2 µm). Ten internal standards 
were used to check the instrument performance (see Table S2). 
Extraction blanks and pooled quality control (QC) samples were pre-
pared following the guidelines from Broadhurst et al. (Broadhurst, 
2018). Details about the pooled QC preparation are shown in Figure S1. 
A standard mix of 170 polar compounds (50 µM) was used to serve as 
reference standards later (see Table S3 for full listing). Further details 
are given in the Supplementary Material (SM), section S1.1.1.

For the metagenomic analyses, 100 mg of each dust sample were 
aliquoted, and DNA was extracted using the DNeasy PowerLyzer Pow-
erSoil Kit (Qiagen, 12855–50). Tests were performed at three input 
amounts (50 mg, 100 mg, and 150 mg), whereby 100 mg of material 
yielded the best output in terms of DNA concentrations and quality, see 
S1.1.1 (Figure S2-S3) for details. The manufacturer’s protocol was 
followed (DNeasy PowerLyzer PowerSoil Kit, 2024), with the exception 
that DNA extracts were eluted in 40 µL of sterile DNA-free PCR-grade 
water instead of 100 µL of Solution C6.

2.2.2. Serum
The protocol for the non-target LC-HRMS analysis was adapted from 

Cajka et al. (Cajka et al., 2017) and Lange et al. (Lange and Fedorova, 

Fig. 1. Scheme showing the four groups under study, type of samples analyzed (dust and serum), as well as the different analyses performed in each of them. Note 
that all the serum samples were matched with the dust.
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2020); detailed in full in S1.1.2 and shown in Figure S4. Briefly, serum 
samples were thawed on ice and extracted via liquid–liquid extraction 
(LLE) with cold MeOH containing 14 SPLASH® LIPIDOMIX® mass 
spectrometry standards (listed in Table S4, chromatograms shown in 
Figure S5-S6), methyl tert-butyl ether (MTBE), containing cholesteryl 
ester 22:1 (CE22:1), and MilliQ water. The QC, extraction blank sam-
ples, and the standard polar mix of 170 compounds (Table S3) were as 
described for the dust samples.

For the targeted BA analysis, 50 μL of each serum sample was 
extracted with MilliQ water (containing four IS) and cold MeOH. The IS 
were cholic-D4 acid (CA-D4), deoxycholic-D4 acid (DCA-D4), 
lithocholic-D4 (LCA-D4), and glycocholic-D4 acid (GCA-D4). A mixture 
of fourteen targeted BAs (10 μg/mL) was prepared (listed in Table S5). 
This standard solution was further diluted step by step to build the 
calibration curve. Further details are given in S1.1.2.

2.3. Instrumental analysis

2.3.1. Metabolomics/Exposomics/Lipidomics
Non-target analysis of dust and serum was performed on a Thermo 

Scientific Accela LC system coupled to a Q Exactive™ HF (Thermo Sci-
entific) mass spectrometer using electrospray ionization (ESI) in both 
positive (+) and negative (− ) ionization modes. Dust samples were 
analyzed using an Acquity BEH C18 reversed phase (RP) column (150 ×
2.1 mm; 1.7 μm), and a SeQuant® ZIC-pHILIC 5 µm polymer (HILIC) 
column (150 × 2.1 mm), each with the respective guard column. The 
HILIC method was also employed to analyze the polar extracts of the 
serum samples. The HRMS was operated in full scan profile mode with a 
scan range of 60–900 m/z. Complete details of the RP and HILIC LC- 
HRMS methods are given in Talavera Andújar et al. (Talavera Andújar, 
2022).

The non-polar extracts of the serum samples were analyzed (lip-
idomics) with an RP method adapted from Cajka et al. (Cajka et al., 
2017); using an Acquity UPLC CSH C18 RP column (100 × 2.1 mm; 1.7 
μm) coupled to a guard column (130 Å, 1.7 µm, 2.1 mm X 5 mm). Full 
details are given in S1.2.1.

2.3.2. Target analysis of BAs
The target analysis of BAs (Table S5) was performed on a LC system 

coupled to a Thermo Orbitrap Exploris 240. The HRMS was operated in 
negative ionization mode (full scan mode) with a scan range of 100–620 
m/z, with the same column as for the lipidomics analysis. Full details are 
given in S1.2.2.

2.3.3. Metagenomic analyses
DNA was quantified using Qubit fluorometer and Quant-iT dsDNA 

HS Assay kits to obtain accurate concentration values. A Nanodrop in-
strument was then employed to determine DNA quality through the 
260/280 and 260/230 ratios (Table S6). DNA libraries were prepared 
after PCR amplification, taking the same starting DNA from each sample. 
50 ng of DNA were used for metagenomic library preparation using the 
xGen DNA library preparation kit (Cat. no. 10009822, Integrated DNA 
Technologies) using xGen UDI-UMI adapters (Cat. no. 10005903). The 
genomic DNA was enzymatically fragmented for 10 min and DNA li-
braries were prepared with PCR amplification. The average insert size of 
libraries was 400 bp. Prepared libraries were quantified using Qubit 
(DNA HS kit, Thermo) and quality checked with DNA HS kit on Bio-
analyzer 2100 (Agilent). Sequencing was performed at the LCSB Geno-
mics Platform (RRID: SCR_021931) on NextSeq2000 (Illumina) 
instrument using 2x150 bp read length.

2.4. Data analysis

2.4.1. Metabolomics/Exposomics/Lipidomics
For the dust and serum (polar extracts), raw files (“.raw”) were 

converted to “.mzML” format using ProteoWizard MSConvert (Version 

3.0.20331.3768aa6e9 64-bit) (Chambers, 2012). The converted files 
were analyzed with the open software patRoon (version 2.1.0) (Helmus 
et al., 2021; Helmus et al., 2022), using the non-target and suspect 
screening options. This was complemented with MS-DIAL (version 
4.9.221218) (Tsugawa, et al., 2015) using version 17 of the MSP li-
braries; the MS-DIAL input parameters are given in Table S7. Further 
details are given in S1.3.1 and Figure S7; the code for patRoon is 
available on GitLab (Andújar, 2024).

For the lipid analysis in serum, the LC-HRMS raw data files were 
processed in MS-DIAL (parameters given in Table S8) using the in silico 
LipidBlast (Kind et al., 2013) library. To complement the MS-DIAL lipid 
annotations, which are similarity-based, LipidMatch (Koelmel, 2017), a 
rule based software, was employed (see Figure S8). The annotations 
from MS-DIAL and LipidMatch were combined; LipidMatch annotations 
were selected in case of duplicates.

Among all features identified by non-target and suspect screening 
approaches in dust and serum, only those with MS/MS information and 
MS/MS match values were considered for further analysis and chemical 
annotation. R (version 4.1.2) via RStudio (version 2022.02.3) was used 
to filter the samples. Features with a relative standard deviation (RSD) 
> 50 % in the QC-pooled samples were discarded. Since patRoon, MS- 
DIAL and LipidMatch use different approaches to annotate compounds 
and match MS/MS spectra, four different types of criteria were used to 
annotate confidence levels to the features (details given in Table S9). 
Note that only high confidence features, Level 1 to Level 3 (matching 
various criteria shown in Table S9), were considered in this study to 
ensure the quality of the biological interpretation. Features were an-
notated as Level 1 when the match between the chemical standard 
(Table S3) and tentative candidate (in the dust or serum) yielded a 
SpectrumSimilarity score ≥ 0.7 and the retention time (RT) shift was < 1 
min. OrgMassSpecR (Dodder and Mullen, 2017; Nontargeted Compre-
hensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass 
Spectrometry Method and Software for Inventorying Persistent and 
Bioaccumulative Contaminants in Marine Environments, 2024) was 
used to calculate spectral similarity. Xcalibur Qual Browser (version 
4.1.31.9) was used to check the RT and to extract the MS/MS informa-
tion. The annotated chemicals were classified using the MetOrigin web 
server (Yu et al., 2022) and the PubChem Classification Browser (Kim, 
2023), using both the PubChem Compound Table of Contents (TOC) 
(PubChem Classification Browser, 2024) and the NORMAN Suspect List 
Exchange (NORMAN-SLE) (PubChem Classification Browser, 2024) 
classification browsers. Chemical structures were generated using CDK 
Depict (Mayfield, 2023).

For the statistical analysis, peak intensity tables were uploaded to 
MetaboAnalyst 6.0 (web interface) (Pang, 2024), normalized by sum, 
log10 transformed and Pareto-scaled. Principal Component Analysis 
(PCA) was performed using MetaboAnalyst 6.0 while Analysis of Vari-
ance (ANOVA) with Tukey’s honestly significant difference (HSD) post 
hoc test was computed in R (version 4.1.2). A p-value < 0.05 was 
considered as statistically significant in this study. Significant lipids in 
serum were subsequently subjected to Lipid Pathway Enrichment 
Analysis (LIPEA) (LIPEA | What is LIPEA, 2024). Multiple linear re-
gressions (lm function in R) were computed to investigate the relation-
ship between the chemical levels (peak intensities) and clinical 
characteristics (Table S1).

For the target screening of BAs, concentrations of the detected BAs 
were calculated by interpolating the constructed IS-calibrated linear- 
regression curves of individual BAs, with the peak area ratios measured 
form injections of the sample solutions. TraceFinder 5.2 General Quan 
(Thermo) was employed for this analysis. GraphPad Prism (version 
10.1.0) was used to perform ANOVA with Tukey’s HSD and graphs.

2.4.2. Metagenomic analyses and omics integration
The Integrated Meta-omic Pipeline (Narayanasamy, 2016) (IMP; 

v3.0 commit# 9672c874; available at GitLab (Narayanasamy et al., 
2024) was employed to process paired and reverse reads using the 
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metagenomic workflow with default settings. As part of the workflow, 
metagenomic reads aligning with the human genome were filtered and 
removed. Taxonomic profiles were generated using mOTUs (v2.0). 
Furthermore, reads were assembled into contigs, which were used for 
gene predictions using Prokka (Seemann, 2014), and subsequently an-
notated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
orthologous categories. The KEGG orthologous (KO) genes were iden-
tified, and their coverages based on number of reads mapping to indi-
vidual KOs were used for subsequently analyses.

The mOTU table was normalized by the total sequence count 
following which MicrobiomeAnalyst 2.0 (Chong et al., 2020; Lu et al., 
2023), marker data profiling option, was employed to filter based on a 
prevalence threshold of 30 % across samples (minimum count require-
ment of one), and to compute alpha-diversity and core microbiome 
composition. In addition, the ampvis2 (Andersen, 2024) R package was 
employed for data visualization purposes. As for the metabolomics/ 
exposomics data, ANOVA test was computed in R and a p-value < 0.05 
was considered statistically significant.

For the KOs, Transcripts Per Kilobase Million (TPM) were calculated 
in R, accounting for sequencing depth per sample and gene lengths. 
Pathways from the significant KOs were obtained via the KEGGREST 
(KEGGREST, 2024) package in R, see the GitLab repository for details 
(Andújar, 2024). To provide a comprehensive overview, TPM values of 
KOs sharing the same pathway were summed and ANOVA was per-
formed to identify the statistically significant pathways across groups.

The normalized abundance mOTU table (metagenomics) and 
normalized peak intensities table (metabolomics/exposomics) were in-
tegrated using Data Integration Analysis for Biomarker discovery using 
latent components (DIABLO) within the mixOmics (Rohart et al., 2017) 
package in R. Details about this analysis are available in the GitLab re-
pository (Andújar, 2024). Spearman’s correlation between the mOTUs 
and chemicals was computed in R, using the cor.test function of the base 
R stats package, while the Corrplot package, was used to perform the 
correlation plots.

The MultiGroupPower function from the MultiPower R package 
(ConesaLab, 2024; Tarazona, 2020) was applied to compute the power 
calculations integrating the metabolomic/exposomic and metagenomic 
datasets, derived from the dust analysis.

2.5. Neuronal differentiation and bisphenol s (BPS) exposure

2.5.1. Generation of midbrain dopaminergic neurons
Induced pluripotent stem cells (iPSCs) were obtained from a PD in-

dividual carrying the LRRK2 G2019S variant. An isogenic control (IC) 
was engineered from the same line using CRISPR-Cas9 technology (Qing 
et al., 2017; Reinhardt, 2013; Nickels, 2019). Neuronal cultures 
enriched in midbrain dopaminergic neurons were generated following 
the Reinhardt et al. protocol (Reinhardt, 2013; Reinhardt, 2013), details 
can be found in S1.4.1 and Table S10. At day 29, cells were treated for 
24 h with bisphenol S (BPS) (Sigma, 43034), at two different concen-
trations (100 µM and 500 µM), using dimethyl sulfoxide (DMSO) (Sigma, 
D2438) as a vehicle, before staining and imaging. Details about the 
mitochondrial membrane potential and mitophagy assays can be found 
in S1.4.2 and S1.4.3, respectively.

2.5.2. Image analysis
Automated image analysis was performed using Matlab (version 

2021a, MathWorks), adapting the method detailed in Baumuratov et al. 
(Baumuratov, 2016). The analysis was performed on the HPC platform 
(Homepage | HPC @ Uni.lu, 2024) from the University of Luxembourg 
in collaboration with the LCSB Bioimaging platform. Features such as 
mitochondrial mass (sum of mitochondrial pixels/sum of nuclei pixels), 
mitochondrial size (sum of mitochondrial pixels/mitochondrial counts), 
mitochondrial membrane potential (mean intensity of TMRE inside the 
mitochondrial mask), and normalized mitophagy (sum of pixels positive 
for Mitotracker Green FM and Lysotracker Deep Red/sum of 

mitochondrial pixels) were extracted.
Statistical analyses and data visualization were performed in 

GraphPad Prism (version 10.1.0). Comparative analyses were performed 
using the Kruskal-Wallis test, followed by multiple comparisons with the 
uncorrected Dunn’s test.

3. Results and discussion

3.1. Dust metabolome and exposome

3.1.1. Overview of chemical composition
The chemical composition of the dust was analyzed by non-target LC- 

HRMS, using the different cheminformatic approaches described above, 
resulting in 1,003 annotated chemicals (Level 1–3), with ninety features 
being statistically significantly different (ANOVA p-value < 0.05). PCA 
was performed to investigate the chemical composition across countries, 
with Figure S9A revealing no clear differences between Germany and 
Turkey. Table S11 contains detailed information about all annotations, 
including statistical results and MetOrigin classifications, while 
Table S12 contains the statistically significant chemicals only. The po-
tential sources of these compounds according to the NORMAN-SLE 
(NORMAN Network | NORMAN, 2024) and PubChem Compound TOC 
(Kim, 2023) are shown in Fig. 2, while the MetOrigin (Yu et al., 2022) 
classifications are shown in Figure S10.

Hundreds of chemicals (784) in dust were found in different lists 
from the NORMAN-SLE tree (Fig. 2A). These NORMAN-SLE lists were 
selected to provide a comprehensive understanding of the types of 
chemicals annotated in the household dust samples. Most matches (544, 
of which 51 were significant) were found in the S32 REACH17 
(Alygizakis and Slobodnik, 2018), which is a list of chemicals registered 
under REACH, the European Chemical Legislation that requires regis-
tration of chemicals in use above one tonne per annum (Lilienblum, 
2008). Benzocaine, benzyl butyl phthalate, and scopoletin are some 
examples of REACH chemicals found in household dust samples. 
Notably, 204 out of the 1,003 chemicals identified in this study were 
previously noted in the NORMAN collaborative household dust trial 
(Rostkowski, 2019) (S35 INDOORCT16 list (Haglund and Rostkowski, 
2016)). These included plasticizers such as dibutyl phthalate, pharma-
ceuticals such as tramadol, benzocaine, ketoprofen, gabapentin and the 
fungicide carbendazim, one of the most prevalent biocides in Italian 
household dust samples (Salis, 2017). Furthermore, 151 chemicals were 
potential ingredients of cosmetics, mapping to the S13 EUCOSMETICS 
(von der Ohe and Aalizadeh, 2000) list, while 52 were present in the list 
of chemicals associated with neurotoxicity (S37 LITMINEDNEURO 
(Baker et al., 2019)), including 2,4-dinitrophenol and diethyltoluamide 
(DEET). Additionally, 89 chemicals associated with plastic packaging 
(via S49 CPPDBLISTB list (Groh and Schymanski, 2019) were tentatively 
identified, including dibutyl phthalate, and bisphenol A diglycidyl ether. 
The overlap of chemicals across all these lists was high (Fig. 2B), sug-
gesting that most of the annotated compounds have multiple potential 
origins and/or reasons for interest.

Fig. 2C shows the potential categories of chemicals based on the 
PubChem Compound TOC, with overlap in Fig. 2D. The “Use and 
manufacturing” category was the most prevalent, with such information 
available for 549 of the annotated compounds. Disorders and diseases 
information was associated with 453 compounds, including 4-chloro-3- 
methylphenol and DEET. Interestingly, 432chemicals were classified as 
food by the PubChem Compound TOC (Fig. 2 C), while 506 chemicals 
were in this MetOrigin class (Figure S10A); 366 of these overlapped. 
Additionally, 282chemicals are potentially related to microbiota ac-
cording to MetOrigin (Figure S10A). As for the NORMAN-SLE cate-
gories (Fig. 2B), the overlap across the different PubChem TOC 
categories was high (Fig. 2D).

3.1.1.1. Relevant chemicals potentially related to penetrance. Ninety 
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Fig. 2. Potential sources of the identified chemicals in the dust. (A) Selected lists from the NORMAN-SLE tree; (B) Chord diagram displaying the overlap of the 
different lists; (C) Selected categories from the PubChem TOC; (D) Chord diagram displaying the overlap of different PubChem categories (D). Statistically significant 
refers to features with ANOVA p-value < 0.05. Full results are available in Table S11. Note that queriers were performed in April 2024.

Fig. 3. Normalized peak intensities across groups of (A) BPS; bisphenol S, (B) PFBuS; perfluorobutane sulfonic acid, (C) BThSO3; 2-Benzothiazolesulfonic acid, and 
(D) 2PP; 2-phenylphenol in dust. p = Tukey’s HSD post-hoc p-value. Note that p < 0.1 is displayed although only p < 0.05 is considered statistically significant here 
(marked with an “*”).
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statistically significant chemicals were found across the groups, indi-
cating potential relevance for disease penetrance. Fig. 3 shows the dis-
tribution of four of these: bisphenol S (BPS), perfluorobutane sulfonic 
acid (PFBuS), 2-benzothiazolesulfonic acid (BThSO3) and 2-phenylphe-
nol (2PP), all annotated as Level 2a. Additional information regarding 
the MS/MS matches with the spectral library are provided in Figure S11
and Table S13. Interestingly, the first two are replacements of hazard-
ous chemicals; BPS (Fig. 3A) emerged as a “safer” alternative to 
bisphenol A (BPA) (Naderi and Kwong, 2020), while PFBuS (Fig. 3B) is a 
substitute for perfluorooctane sulfonate (PFOS) (Hu et al., 2022). All 
compounds illustrated in Fig. 3 had elevated levels in PD+/LRRK2+
compared to the PD-/LRRK2+ group. Thus, these compounds could be 
potential targets for further investigations into environmental influences 
on LRRK2 penetrance in PD.

Significantly higher levels of BPS were found in the control group 
compared to the PD-/LRRK2+ . Higher levels of BPS were also observed 
in the PD+/LRRK2+ group compared to the PD-/LRRK2+ group 
(Fig. 3A). Two other bisphenol species, bisphenol P and bisphenol A 
diglycidyl ether (Figure S12), were also annotated in the dust samples, 
albeit not found to be statistically significantly different. BPS has been 
employed extensively in industry to produce BPA-free products. How-
ever, BPS can have similar or even greater toxicity than BPA (Gyimah, 
2021), exhibiting stronger reproductive effects, DNA damage, longer 
bioavailability, and better dermal penetration compared with BPA (An 
et al., 2021). Additionally, BPS exhibits higher resistance to biodegra-
dation, rendering it more prone to accumulate and persist in the envi-
ronment (Naderi and Kwong, 2020). It can disrupt lipid metabolism, 
glucose metabolism, nucleotide metabolism, vitamin metabolism, and 
induce oxidative stress (An et al., 2021). BPS can cross the blood brain 
barrier (BBB) (Schirmer et al., 2021) and may trigger neurotoxicity 
through different pathways, potentially posing a risk factor for the 
development of neurodegenerative diseases including PD (Naderi and 
Kwong, 2020; An et al., 2021). Therefore, this compound was tested in 
cell-based models (neurons), to investigate its potential neurotoxic ef-
fects, as discussed in Section 3.5.

The dust analysis revealed significantly lower levels of PFBuS 
(Fig. 3B) in the PD-/LRRK2+ participants compared to the iPD and 
control groups, while a similar lower trend was found in PD-/LRRK2+
group compared with PD+/LRRK2+ . PFBuS is a per-/polyfluoroalkyl 
substance (PFAS), which is a group of substances of high environmental 
and toxicological concern due to their long-term environmental persis-
tence and toxicity to organisms, including humans (Cousins, 2020). 
PFBuS, a relatively short-chain PFAS, is currently used as substitute for 
PFOS due to lower toxicity and bioaccumulation (Hu et al., 2022; Min, 
2023). However, adverse effects including cytotoxicity, endocrine 
disruption, immunotoxicity, reproductive toxicity, hepatotoxicity and 
neurotoxicity have been associated with PFBuS (Hu et al., 2022; Min, 
2023). PFBuS can cross the BBB, affecting the Central Nervous System 
(CNS). While PFBuS is considered less toxic than PFOS, both compounds 
exhibited similar mechanisms of toxicity in zebrafish models (Min, 
2023).

Ten additional PFAS were annotated in dust, including the pesticide 
fipronil and its transformation products fipronil desulfinyl and flipronil 
sulfone, which were mainly found in one patient from the iPD group 
(Figure S13A-C). Fipronil, a PFAS-containing pesticide subject to 
stringent regulations in Europe due to its potential environmental and 
health-related risks, was (unexpectedly) identified in the dust samples. 
Although the use of fipronil in food production for human consumption 
was banned in Europe in 2013, eggs contaminated with fipronil were 
found in the Netherlands and neighboring countries in 2017 (van der 
Merwe et al., 2019; Kathage et al., 2018). The veterinary application of 
fipronil emerged as a significant potential source of this compound in 
household dust across Europe. Nonetheless, a prior study conducted in 
Italy in 2016 noted that the highest levels of fipronil were observed in a 
household dust without pets (Testa et al., 2019). These findings, coupled 
with our observation of fipronil in German household dust, underscore 

the necessity for continued regulatory interventions in Europe. Fluo-
meturon (Figure S13D), another PFAS-containing pesticide, was also 
tentatively identified with overall higher peak intensities in the PD-/ 
LRRK2+ dust samples. Additionally, PFAS-containing pharmaceuticals 
were annotated, including fluoxetine, flutamide, and etofenamate, 
without significant differences across groups (Figure S14). A PFAS with 
multiple industrial uses, 6:2 fluorotelomer sulfonic acid (6:2 FTSA), had 
a non-significant lower trend in the PD-/LRRK2+ group compared to the 
control (Figure S15A). Trifluoromethanesulfonic acid (TFMS), an ultra- 
short chain PFAS, showed statistically higher levels in the dust from the 
PD+/LRRK2+ group compared to the PD-/LRRK2+ (Figure S15B).

2-Benzothiazolesulfonic acid (BThSO3) was found at statistically 
significantly lower levels in the PD-/LRRK2+ group compared to the 
PD+/LRRK2+ (Fig. 3C). This trend was also consistent with its trans-
formation product, 2-hydroxybenzothiazole (OBTh), as shown in 
Figure S16A. Benzothiazole (BTh), a parent compound of OBTh, 2-(4- 
morpholinyl)benzothiazole (24MoBTh), and 2-aminobenzothiazole 
(ABhT) were also detected in the dust samples, without being statisti-
cally significantly different (Figure S16B-D). Benzothiazoles (BThs) 
have multiple applications, including as vulcanization accelerators in 
rubber manufacture, fungicides, antialgal agents, slimicides, chemo-
therapeutics and corrosion inhibitors (De Wever et al., 2001). BThs 
undergo chemical, biological and photodegradation in the environment, 
leading to the formation of several transformation products (Liao et al., 
2018), as shown in Figure S17 and discussed later (Section 3.3). Pre-
vious studies have associated BThs with different toxic effects, including 
carcinogenicity (Liao et al., 2018; Gu et al., 2024; Hornung, 2015) and 
impaired child neurodevelopment due to prenatal exposure (Cao, 2023). 
However, the environmental exposure to these compounds and the long- 
term consequences are presently unresolved.

2-Phenylphenol (2PP), an antimicrobial agent used in household 
products and included in the European Union pesticides database, was 
found with statistically significantly higher levels in the PD+/LRRK2+
group compared with the three others (Fig. 3D). 2PP was previously 
found in household waste (Nielsen et al., 2023), food and dairy products 
(Palacios Colón et al., 2021) and cosmetics (S13 EUCOSMETICS list (von 
der Ohe and Aalizadeh, 2000), as illustrated in Fig. 2A). It is also listed as 
a potential endocrine disruptor in the S109 PARCEDC list of potential 
endocrine disrupting compounds (Andres and Dulio, 2024). Moreover, a 
recent rat-based study showed that the exposure to this compound 
altered phospholipid, fatty acids, sterol lipid, and amino acid levels 
(Nazar, 2024).

The relationship between these four chemicals (Fig. 3) and various 
clinical and lifestyle characteristics of the individuals was explored 
(Figure S18). The analysis revealed that higher consumption rates of 
meat and fish were significantly and positively correlated with elevated 
levels of BPS and PFBuS in household dust, respectively. Importantly, 
correlation does not imply causation, and there could be other con-
founding factors affecting the chemical levels. Moreover, since the 
sample size was small, and complete information was not available for 
all the participants (Table S1), these findings should be interpreted with 
caution and further validated in a larger cohort of patients. Further 
details about the analysis are available in the GitLab repository 
(Andújar, 2024).

While four chemicals have been discussed in more detail here due to 
their relevance as potential neurotoxic compounds in the environment 
and for space reasons, another 86 compounds were found to be statis-
tically significant across groups, as detailed in Table S12.

3.2. Differentially abundant taxa and microbial gene Signatures

To complement the dust-derived metabolomics/exposomics, the 
microbial communities of the dust samples were analyzed at different 
taxonomic ranks (from kingdom to species). A total of 1,782 meta-
genomic operational taxonomic units (mOTUs) were initially charac-
terized (Table S14). PCA analysis was performed to explore the 
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variation in microbial composition across countries, but no major dif-
ferences were observed (Figure S9B). This initial list was reduced to 163 
mOTUs for subsequent analysis (Table S15), after filtering to remove 
low quality or uninformative features, as indicated in the Material and 
Methods section. Notably, Actinobacteria, Proteobacteria, and Firmicutes 
emerged as the three most abundant phyla (Fig. 4A). The dominance of 
these phyla in household dust aligns with multiple previous studies 
(Moschet et al., 2018; Shan, 2020; Thompson, et al., 2021). Actino-
bacteria spp., one of the most prevalent bacteria in house dust (Shan 
et al., 2019), were found with the highest abundance in the iPD dust 
samples, matching observations in previous studies showing this genus 
to be enriched in feces from PD patients (Vascellari, et al., 2020; Boktor, 
2023).

The core microbiome at the species level was investigated (Fig. 4B), 
with Cutibacterium acnes the most prevalent species. This shows the 
significant biological components of the dust, including skin cells. 
Interestingly, lower alpha-diversity was noted in the iPD group (phylum 
level) compared to the control group (Fig. 4C-D). However, no statisti-
cally significant differences were observed in the alpha-diversity at 
species level (Figure S19), aligning with previous studies which re-
ported no significant differences in the alpha-diversity in the feces of PD 
patients compared to the control participants (Vascellari, et al., 2020; 
Boktor, 2023).

Ten mOTUs were differentially abundant across groups (p < 0.05, 
ANOVA; Table S15 and Figure S20), including Clavibacter michi-
ganensis, Marmoricola sp. Leaf446, three different species of Nocardioides 
and Sphingomonas, Candidatus Rickettsiella isopodorum, and Acinetobacter 
parvus. Intriguingly, for all these mOTUS, the PD-/LRRK2+ group 
showed the lowest abundances. Clavibacter michiganensis (Figure S20A), 
recognized as a plant pathogen (Eichenlaub and Gartemann, 2011) 
(Pereira et al., 2017), demonstrated a significant increase in the iPD 

group compared to the control and PD-/LRRK2+ groups. The same trend 
was observed for Marmoricola sp Leaf446. (Figure S20B). This species 
has been mainly isolated from environmental sources, however a pre-
vious study found the Marmoricola genus to be highly abundant in the 
nasal microbiota of PD patients compared to control individuals (Pereira 
et al., 2017). Nocardioides (Figure S20C-E), was found elevated in the 
iPD group compared to the PD-/LRRK2+ . Of note, Nocardioides spp. can 
degrade a wide range of organic pollutants such as nitrophenol, 
ibuprofen, cotinine, melamine, or atrazine. Furthermore, Nocardioides 
can carry out steroid biodegradation and biotransformation (Ma, et al., 
2023). Sphingomonas spp. (Figure S20F-H), was found significantly 
higher in the dust samples from the iPD compared to the PD-/LRRK2+
group. Interestingly, a previous study reported higher abundances of 
Sphingomonas genera in feces samples from PD patients, compared to a 
healthy control group, associated this with motor complications (Qian, 
2018). Candidatus Rickettsiella isopodorum (Figure S20I), an intracel-
lular bacterium infecting terrestrial isopods (Kleespies et al., 2014), was 
significantly higher in the control group. Lastly, statistically signifi-
cantly elevated abundances of Acinetobacter parvus (Figure S20J) were 
observed in the PD+/LRRK2+ group compared to the others. This is an 
opportunistic pathogen associated with nosocomial infections.

In addition to the differentially abundant taxa, a total of 14,444 
different KOs were characterized, of which 624 were statistically sig-
nificant across groups. Pathways from the significant KOs were ob-
tained, resulting in 269 KEGG pathways (Table S16) of which 207 were 
statistically significant. Fig. 5 illustrates the distribution of some of those 
pathways across groups, whereby the top thirty statistically significant 
pathways are represented in Figure S21. Notably, “microbial meta-
bolism in diverse environment”, “carbon metabolism” and “glyoxylate 
and dicarboxylate metabolism” pathways were increased compared to 
the control and iPD groups, compared to the PD-/LRRK2+ and PD+/ 

Fig. 4. (A) Heatmap showing the most abundant phyla entries from the “Phylum” column of the filtered mOTUS (Table S15). (B) Core microbiome showing the most 
abundant species entries from the “Species” column (Table S15). (C) Box plot showing the alpha-diversity across groups with Shannon Index and (D) Simpson Index 
at phylum level. p = Tukey’s HSD post-hoc p-value. Note that p < 0.1 is displayed although only p < 0.05 is considered statistically significant here (marked with 
an “*”).
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LRRK2+ groups (Fig. 5A-C). Furthermore, arginine, proline, phenylal-
anine, and butanoate metabolism exhibited the same trend, i.e., signi-
ficatively decreased in PD-/LRRK2+ compared to the control and iPD 
groups (Figure S22). In contrast, an increase in ribosomal genes was 
observed in PD-/LRRK2+ and PD+/LRRK2+ groups, suggesting that 
dust-borne bacteria might be compensating the lower metabolism 
(Fig. 5D). Finally, both beta-lactam and vancomycin resistance appear 
to be elevated in PD-/LRRK2+ and PD+/LRRK2+ (Fig. 5E-F). Overall, 
the pathways results (Fig. 5) show similar trends between control and 
iPD groups, and between PD-/LRRK2+ and PD+/LRRK2+ .

3.3. Dust omics Integration

Two different approaches were employed to investigate the potential 
relationships between the chemicals and the microbiome constituents 

found in the household dust: (1) DIABLO, a framework used to integrate 
the datasets of chemicals (Table S11), and mOTUs (Table S15) (Fig. 6A- 
B); and (2) Spearman correlation analysis, employed to explore in detail 
the potential correlation between some genera (Rhodococcus spp., 
Pseudomonas spp., and Arthrobacter spp.) and benzothiazoles (Fig. 6C). 
The DIABLO analysis (Fig. 6A) indicated that PD-/LRRK2+ clustered 
separately from the rest of the groups (left), while some iPD and control 
samples cluster together (right). This classification is mainly driven by 
the metabolomics/exposomics data, as most of the selected features are 
chemicals. Interestingly, two of the selected features are PFAS, PFBuS 
and 6:2 FTSA, which have lower levels in the PD-/LRRK2+ group 
compared to the controls, as previously indicated (Fig. 3B and 
Figure S15A). Sample plots from the final DIABLO model in Fig. 6B 
display the degree of agreement between the two datasets. Importantly, 
the PD-/LRRK2+ samples clustered together in both metabolomics and 

Fig. 5. Bar plots of some of the significant KEGG pathways found in the dust samples. Note that TPM values of the KOs sharing the same pathway were summed. p =
Tukey’s HSD post-hoc p-value. Abbreviations: TPM; Transcripts Per Kilobase Million, KOs; KEGG orthologous genes.
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metagenomics datasets.
Certain species within the genus Rhodococcus have been reported to 

degrade BThSO3 (Fig. 3C) to OBhT (Figure S17) (De Wever et al., 2001; 
Liao et al., 2018). Furthermore, BTh can be degraded by several bacte-
rial species including Rhodococcus sp., Pseudomonas sp., Arthrobacter sp. 
and Enterobacter sp. (Liao et al., 2018). Interestingly, all of these were 
identified in the dust samples, although only the first three species were 
included in the filtered dataset (Table S15).

Spearman’s correlation analysis was subsequently performed be-
tween all the BThs identified in the dust samples (Fig. 3C and 
Figure S16), and Rhodococcus, Pseudomonas, and Arthrobacter species, 
known for their capacity to degrade specific BThs (De Wever et al., 2001; 
Liao et al., 2018). A negative and statistically significant association was 
observed between Pseudomonas sp. and BThSO3 (Fig. 6C). The same 
negative association was found between Pseudomonas sp. and 24MoBTh, 
suggesting that this species may degrade both BThSO3 and 24MoBTh. 
Intriguingly, our analysis unveiled a positive (p-value < 0.1) association 
between BTh and Rhodococcus fascians. This association may be 
explained by several factors, including photodegradation or microbial 
degradation (e.g., by Pseudomonas) of other compounds such as 
24MoBTh leading to the formation of BTh. Additionally, the presence of 
multiple microorganisms and chemicals in the household dust samples 
may influence the growth of Rhodococcus fascians and/or BTh meta-
bolism. Therefore, further studies in controlled environments are 
necessary to provide more insights into the relationship between Rho-
dococcus fascians and BTh in household dust samples.

Overall, these results demonstrate agreement between both omics 
approaches as they effectively discriminated the same group (PD-/ 

LRRK2+ ). Furthermore, the findings suggest a potential relationship 
between chemicals and microbes, indicating that some of the chemicals 
found in dust may be metabolized by microbes.

3.4. Serum Metabolome, Exposome, and lipidome

The analysis of dust samples was complemented by exploring the 
serum of some participants where matched samples were available. This 
included a non-target screening of polar chemicals (Table S17) and 
lipids (Table S18-19), as well as the quantitative target screening of BAs 
(Table S20).

3.4.1. Polar chemicals in serum
Forty-nine chemicals were annotated (Level 1–3) in the polar frac-

tion of the serum samples, with three statistically significant results (1,7- 
dimethyluric acid, pipecolic acid, and amantadine). After data normal-
ization, the PCA plot (Figure S23) displayed all the QC samples with a 
tight clustering. This indicates that the instrument variation was effec-
tively corrected, affirming a good system stability and reliability of the 
results.

1,7-Dimethyluric acid, a metabolite of caffeine, was elevated in the 
control and PD-/LRRK2+ groups compared with the PD+/LRRK2+
group. Although this metabolite was not found in the dust, the parent 
compound (caffeine) was identified, without significant differences but 
with an average higher normalized peak intensity in the control group 
(Figure S24). These results agree with previous studies (Takeshige- 
Amano, 2020; Fujimaki, et al., 2018), which proposed lower levels of 
caffeine and caffeine metabolites as potential diagnostic biomarkers for 

Fig. 6. (A) DIABLO Clustered heatmap showing the variables selected by multiblock sPLS-DA performed on the metagenomics (mOTUs table) and metabolomics/ 
exposomics (peak intensities table) dust datasets on component 1. Samples represented in columns and features in rows. (B) DIABLO sample plot showing the 
discrimination across groups based on metabolomics (left panel) and metagenomics data (right panel). (C) Spearman’s correlation analysis between Rhodococcus 
spp. and benzothiazoles. Red color indicates positive correlation while blue color indicates negative correlation. The size of the dots is proportional to the absolute 
value of the correlation coefficient. ** p-value < 0.05 *p-value < 0.1. Abbreviations: 6:2 FTSA; 6:2 fluorotelomer sulfonic acid, PFBuS; perfluorobutane sulfonic acid, 
BThSO3; 2-Benzothiazolesulfonic acid, OBTh; 2-hydroxybenzothiazole, BTh; benzothiazole, ABTh; 2-Aminobenzothiazole, and 24MoBTh; 2-(4-Morpholinyl)benzo-
thiazole. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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early PD. Caffeine, a common psychostimulant, has shown neuro-
protective effects (via reduction of Reactive Oxygen Species (ROS)) and 
appears to improve motor symptoms in PD (Takeshige-Amano, 2020; 
Fujimaki, et al., 2018). Lower levels of caffeine and its metabolites in PD 
patients might be explained by a malabsoption in the small intestine. 
Although microbiome dysbiosis is a common feature in PD, to date it 
remains unclear whether caffeine malabsorption in PD is influenced by 
this (Fujimaki, et al., 2018).

Pipecolic acid was found significantly lower in the PD+/LRRK2+
group compared to the iPD group. This compound was also identified in 
the dust samples, without being statistically significantly different 
(Figure S25). Interestingly, opposite trends were observed, which sug-
gests that biological samples do not always reflect environmental ex-
posures. A previous study reported decreased levels of pipecolic acid in 
plasma samples from pre-PD individuals, suggesting that this may be 
indicative of microbiota-gut-brain axis (MGBA) dysregulation 
(Gonzalez-Riano, 2021). Pipecolic acid can be produced by intestinal 
bacteria and cross the BBB (Matsuda et al., 1995), where it can act as a 
neurotransmitter, modulating the uptake of γ-aminobutyric acid (GABA) 
by brain neurons (Gonzalez-Riano, 2021; Dalazen, 2014). Moreover, 
pipecolic acid may originate from the breakdown of lysine in human 
mitochondria and peroxisomes, which are organelles involved in many 
roles including β-oxidation metabolism, and ROS homeostasis 
(Gonzalez-Riano, 2021; Dalazen, 2014). Dysfunction of these organelles 
contributes to the aging process and neurodegenerative diseases, 
including PD (Lin, 2020).

Amantadine is an antiviral and antiparkinson drug, which was 
exclusively found in the two PD groups (iPD and PD+/LRRK2+ ), as 
expected. This trend was consistent for both dust and serum samples 
(Figure S26). Furthermore, levodopa, the most commonly prescribed 
medication for first-line therapy in PD, was found solely in the house-
hold dust of PD participants (iPD and PD+/LRRK2+, Table S12 for 
details) (Bloem et al., 2021). Importantly, the intake of amantadine, 
levodopa, and other dopaminergic drugs (exclusively in the PD groups) 
may influence the metabolism, and consequently the observed results in 
the serum samples.

3.4.2. Serum lipidome
A total of 313 unique lipids were annotated (Level 2–3) in the serum 

samples by non-target LC-HRMS analysis (Table S18), with 252 in ESI 
(+) and 61 in ESI (− ), see S2.3 and Figure S27-28 for details about the 
filtering and quality control approaches. The most abundant lipid cat-
egories in serum included glycerophospholipids, glycerolipids and 

sphingolipids. Forty-three lipids were statistically significantly different, 
primarily glycerophospholipids (34 of 43; Figure S27). Lipid pathway 
enrichment analysis, computed with the significant lipids, revealed 
glycerophospholipid metabolism and sphingolipid metabolism as the 
most altered pathways (Table S19), which is consistent with a previous 
study performed in serum samples from PD and LRRK2 carriers (Galper, 
2022).

Among the glycerophospholipids, phospathidylcholines (PCs) were 
significantly decreased in the PD+/LRRK2+ or PD-/LRRK2+ compared 
to the other groups under study (Figure S29 and Table S18). A signif-
icant decrease of PC 14:0_18:2 was observed in the PD+/LRRK2+
compared with the PD-/LRRK2+ and iPD groups. PCs are the most 
abundant glycerophospholipids in membranes and are involved in the 
control of inflammation, neuronal differentiation and cholesterol ho-
meostasis (Dahabiyeh et al., 2023; Fernández-Irigoyen et al., 2021). 
Thus, a decrease in PCs may contribute to the neuroinflammation and 
disease progression, as previously suggested (Dahabiyeh et al., 2023). In 
contrast, some lysophosphatidylcholines (LPCs), breakdown products of 
PCs, were significantly elevated in the PD+/LRRK2+ group, including 
LPC 18:1 and LPC 16:0 (Fig. 7A-B). This is in line with a previous study 
(Dahabiyeh et al., 2023), suggesting that alterations in LPCs serve as 
markers of mitochondrial dysfunction, neuroinflammation and oxida-
tive stress processes. Additionally, lysophosphatidylethanolamines 
(LPEs), LPE 18:0 and LPE O-18:1 (Fig. 7C-D), were significantly elevated 
in the PD+/LRRK2+ group compared with the control group. This in 
contrast with previous studies performed in plasma (Chang et al., 2022) 
and serum (Dahabiyeh et al., 2023) of iPD participants, which found 
decreased levels of LPE with the advance of the disease. Thus, it would 
be interesting to check further whether this alteration is specific to pa-
tients carrying LRRK2 pathogenic variants.

The quantitative analysis of BAs in serum did not reveal any statis-
tically significant differences (Table S20), which is in contrast with 
recent work on Alzheimer’s disease progression in cerebrospinal fluid 
(CSF) samples (Talavera Andújar, 2024). However, non-significant 
higher trends of the neuroprotective BAs chenodeoxycholic acid 
(CDCA), and ursodeoxycholic acid (UDCA) were observed in PD-/ 
LRRK2+ in comparison to the PD groups (Figure S30A-B). Higher but 
non-significant trends of the cytotoxic BA deoxycholic acid (DCA) were 
also observed in the PD-/LRRK2+ group (Figure S30C). Previous 
research has reported elevated levels of secondary cytotoxic BAs in PD, 
including DCA and lithocholic acid, correlated with an increase in BA- 
metabolizing bacteria (Chen and Lin, 2022; Li, 2021). Thus, the non- 
significant higher trends of BAs found in the PD-/LRRK2+ and iPD 

Fig. 7. Bar plots showing the normalized peak intensities across groups of LPC 18:1 (A), LPC 16:0 (B), LPE 18:0 (C), and LPE 0–18:1 (D). p = Tukey’s HSD post-hoc 
p-value. Note that p < 0.1 is displayed although only p < 0.05 is considered statistically significant here (marked with an “*”).
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groups may be explained by gut microbiome dysbiosis, as the gut 
microbiota metabolize the primary BAs to produce secondary BAs such 
as DCA (Li, 2021). However, this was not investigated further here due 
to the lack of significance. Since BAs are crucial signaling molecules and 
key modulators of metabolism and immune homeostasis (Mohanty, 
2024), investigating BAs in future studies with larger sample sizes could 
provide additional insights.

3.5. Effects of BPS on neurons

While the vast majority of studies on BPS so far have focused on its 
endocrine disrupting effects (Naderi and Kwong, 2020), recent findings 
have linked this chemical to an elevated risk of neurodegenerative dis-
eases (Xu, 2024). The potential neurotoxic effect of BPS found in the 
dust samples (Fig. 3A) was explored in cultures enriched with dopami-
nergic neurons generated from a PD individual carrying the LRRK2 
G2019S variant and its isogenic control (IC), as shown in Fig. 8A.

Exposure to BPS elicited distinct responses in the IC and PD+/ 
LRRK2+ neurons, particularly at the level of mitochondrial homeostasis. 
Functional evaluation of mitochondria upon BPS exposure showed that 
the IC neurons respond by elevating the mitochondrial potential, a 
response not seen in the PD + cells (Fig. 8B). This may be interpreted as 
a compensatory response of IC neurons to increase ATP production, or 
conversely, as a result of mild ATP-synthase inhibition, which leads to 
hyperpolarization of mitochondrial membrane potential due to lower 
consumption of the mitochondrial proton gradient. Disparate effects of 

BPS treatment were also observed in the averaged mitochondrial mass, i. 
e., the volume of mitochondria per cell. Contrarily to the IC, the PD+/ 
LRRK2+ neurons significantly increased their mitochondrial mass 
(Fig. 8C), suggesting that the PD cells accumulate mitochondria due to 
an impaired mitochondrial clearance mechanism, as previously reported 
for PD+/LRRK2+ murine models (Singh et al., 2021). Alternatively, the 
cells may intensify mitochondrial biogenesis to compensate for the BPS- 
induced insult. Furthermore, BPS negatively impacted (reduced) the 
organellar size in the PD+/LRRK2+ neurons (Fig. 8D), a response 
commonly seen upon mitochondrial stress, and which is necessary for 
efficient clearance via mitophagy to occur. Interestingly, BPS had the 
opposite effect in the IC line at 100 µM, with an increased mitochondrial 
size detected. Finally, the proposed alterations in mitophagy were sup-
ported by the assessment of the normalized colocalization of mito-
chondria and lysosomes, which suggests that IC neurons more efficiently 
initiate this clearance process (Fig. 8E), and are therefore able to 
maintain higher mitochondrial fitness. Further experiments, beyond the 
scope of this current effort, are ongoing to better understand the impact 
of BPS exposure on neurons.

4. Conclusions and future perspectives

Pilot studies, such as this one, play an important role in health 
research to develop, assess, and adapt the methods employed, generate 
hypotheses and provide information for a sample size calculation for a 
larger trial (Lancaster et al., 2004; Foster, 2013). More specifically, they 

Fig. 8. (A) Experimental setup showing the three different conditions for the two groups (PD+/LRRK2+ and isogenic cell lines); untreated, treated with 100 µM of 
Bisphenol S (BPS) and treated with 500 µM of BPS. (B) mitochondrial potential, (C) mitochondrial mass, (D) mitochondrial size, and E) normalized mitophagy. 
Kruskal-Wallis test followed by post-hoc Dunn’s test (uncorrected) was performed. Dunn’s test p-values are displayed in the scatter plots.
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can be used to adjust sample sizes, refine sample collection methods, or 
to determine chemicals of interest for the design of more sensitive 
analysis methods (e.g., target analysis techniques). Using the results 
generated in this study, a power analysis was undertaken using the 
MultiPower method in R (ConesaLab, 2024; Tarazona, 2020) to calcu-
late the optimal sample size for each group comparison integrating both 
metabolomics/exposomics (1,003 chemicals, Table S11), and meta-
genomics (163 mOTUs, Table S15) datasets to help scope future studies. 
For an average statistical power of 0.8, the estimated minimum sample 
size for each group in metabolomics/exposomics ranges between 40 and 
89, while for metagenomics it is 36–79. The overall optimal sample size 
would thus be 273 (Table S21 for details), and the minimum sample size 
required per group comparison and omic dataset (metabolomics and 
metagenomics) is shown in Figure S31, which is a challenge for 
specialized cohorts such as this one.

In this pilot study, several significant differences were found in the 
indoor dust chemical and microbial composition across study groups. 
Although previous studies have indicated that household dust acts a 
reservoir of several chemicals and microbial taxa that may pose a risk to 
human health (Shan et al., 2019; Rostkowski, 2019; Fuentes-Ferragud 
et al., 2023), to our knowledge, the present study represents one of 
the early substantial efforts to investigate the dust metabolome/expo-
some and microbiome in the context of PD, and more specifically in PD 
associated with the penetrance of LRRK2 pathogenic variants. BPS, 
PFAS, and BThs showed significantly higher levels in the PD+/LRRK2+
group compared with the PD-/LRRK2+ and should be investigated 
further (with a larger sample size) to determine whether they could be 
potential modifiers of LRRK2 penetrance associated with PD. Moreover, 
several taxa and KOs were significantly different between groups, with 
various species (e.g., Clavibacter michiganensis and Marmoricola sp. 
Leaf446) displaying significantly lower abundances in the PD-/LRRK2+
group compared to the iPD group (Figure S20). In line with previous 
reports based on the nasal microbiota from PD patients (Pereira et al., 
2017), it is worth investigating whether the household environment 
could be responsible for some of the observations in the host microbiome 
in future studies. Since oral ingestion of dust is a potential source of 
exposure to environmental contaminants, especially concerning for in-
fants/toddlers, the connection between dust and the oral-gut axis 
(Kunath et al., 2024) could be of interest for future investigations. Dif-
ferences in the serum lipidome and metabolome were observed, 
partially matching previously published works. However, most of the 
chemicals found in dust, which may be potential risks for human health, 
were not found in the serum samples. This may be because exogenous 
chemicals are present at trace levels in biological samples compared 
with endogenous chemicals (David, 2021).

This study has provided valuable insights for both collecting addi-
tional patient information as well as designing future sample collection 
procedures that will enable better consideration of relevant lifestyle 
factors in the next investigations. While the small sample size is the main 
limitation of our study, monogenic PD only occurs in about 5 % of pa-
tients and this study specifically focused on an even smaller subset of 
affected and unaffected carriers of pathogenic variants in the LRRK2 
gene, with the specific aim to explore the contribution of environmental 
factors to penetrance. The statistically relevant number of dust samples 
was only obtained due to access to the unique LIPAD study cohort 
(Usnich et al., 2021), which enabled pursuit of this challenging research 
objective. However, the design of the LIPAD study also restricted the 
sample matching in this study and the discrepancy in the average age of 
the PD-/LRRK2+ group and the PD+/LRRK2+ may have confounded 
the results. Since the PD-/LRRK2+ group was on average 10 years 
younger than the PD+/LRRK2+ group, some of the currently asymp-
tomatic individuals with LRRK2 pathogenic variants may still develop 
PD later in life. Other confounding factors that may have influenced the 
observed differences in both dust and serum include diet, smoking and 
the use of medication.

While this current effort involved samples primarily from Germany 

(36), it also included a limited number of samples from Turkey (5). Since 
multivariate analysis revealed no clear geographic differences 
(Figure S9), further exploration of environmental factors across 
geographic regions was not further pursued. As the LIPAD cohort de-
velops and more samples become available, it will be easier to match the 
demographic data of the samples and to form more geographically 
coherent sample sets, which will ease the data interpretation. Further-
more, all the samples were collected from respective households at a 
single point in time as part of a cross-sectional study, with individuals 
already diagnosed, which could lead to a risk of reverse causation when 
interpreting the results. Future longitudinal studies that collect samples 
across different time points are essential to validate the results of this 
research.

Household dust samples can be heterogenous and highly variable, 
both intra-day and inter-day. The collection of dust samples via vacuum 
cleaner bags can add further to this variability. While improving dust 
sample collection is a subject under discussion, the experience obtained 
here shows that the advantages of a simple dust sample collection pro-
tocol currently outweigh the disadvantages. While this approach may 
lead to more variability due to the different vacuum cleaner systems 
used by the participants, it allows for an easy enlargement of the cohort 
size. More advanced collection systems require training of both nursing 
staff and participants and would rapidly become financially unfeasible 
within the context of a cohort study like LIPAD that was designed to 
carry out a clinical trial.

Finally, this study demonstrated that BPS, a compound found in the 
household dust samples with statistically significant differences between 
groups, negatively affected mitochondrial function in PD+/LRRK2+
and isogenic control neurons, providing avenues for further investiga-
tion. This underscores the importance of exposome studies in priori-
tizing chemicals for further exploration with patient-derived in vitro 
models. Of note, the investigated patient midbrain neurons harbored the 
G2019S change in LRRK2, which is the most frequent PD-linked path-
ogenic variant, and the most abundant variant in the cohort investigated 
here. Hence, this pilot study connected, for the first time, all of expo-
somics, in vivo and in vitro analyses to obtain unique insights into how 
environmental factors may modulate molecular mechanisms that define 
the penetrance of PD gene pathogenic variants.
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