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Abstract At the time of its development, GeoSure was created using 
expert knowledge based on a thorough understanding of the engi-
neering geology of the rocks and soils of Great Britain. The ability 
to use a data-driven methodology to develop a national-scale land-
slide susceptibility was not possible due to the relatively small size 
of the landslide inventory at the time. In the intervening 20 years, 
the National Landslide Database has grown from around 6000 
points to over 18,000 records today and continues to be added to. 
With the availability of this additional inventory, new data-driven 
solutions could be utilised. Here, we tested a Bernoulli likelihood 
model to estimate the probability of debris flow occurrence and a 
log-Gaussian Cox process model to estimate the rate of debris flow 
occurrence per slope unit. Scotland was selected as the test site for 
a preliminary experiment, which could potentially be extended to 
the whole British landscape in the future. Inference techniques for 
both of these models are applied within a Bayesian framework. 
The Bayesian framework can work with the two models as additive 
structures, which allows for the incorporation of spatial and covar-
iate information in a flexible way. The framework also provides 
uncertainty estimates with model outcomes. We also explored con-
sideration on how to communicate uncertainty estimates together 
with model predictions in a way that would ensure an integrated 
framework for master planners to use with ease, even if adminis-
trators do not have a specific statistical background. Interestingly, 
the spatial predictive patterns obtained do not stray away from 
those of the previous GeoSure methodology, but rigorous numeri-
cal modelling now offers objectivity and a much richer predictive 
description.

Keywords Landslide susceptibility · Landslide intensity · 
Scotland · Log-Gaussian Cox process · Uncertainty estimation

Introduction
Despite being deemed a low-risk country in terms of geological 
hazards compared to some of its European neighbours (Giles 
2020), geohazards in Great Britain (GB) still cause costly delays 
and disruption to the transport network. For instance, shrink-
swell issues alone are estimated to have cost the economy £3 bil-
lion over the last decades (British Geological Survey GeoClimate 
2022). Landslides, and in particular debris flows (Hungr et al. 2014), 
also threaten critical infrastructure and human lives, especially in 
Scotland where slope failures can be large enough to damage local 
infrastructure, block transport routes, and isolate remote commu-
nities (Winter et al. 2010). Numerous disruptive debris flow events 
have highlighted the continued need to produce usable, applied 

landslide information, especially in the light of expected climate 
change impacts. A key information source to reduce the impact 
of landslides consists of an accurate landslide susceptibility map, 
which traditionally conveys the spatial probability of a given hazard 
occurrence conditional on a set of predisposing factors (Van Westen 
et al. 2008). National-scale landslide susceptibility maps (LSMs) in 
GB are developed and managed by the British Geological Survey 
(BGS), as part of the GeoSure digital data product (British Geologi-
cal Survey GeoSure 2019) which covers 6 main types of potential 
ground movement which could impact development and existing 
infrastructure. The LSMs are available for consultation by policy-
makers, planners and homebuyers to assess landslide potential and 
are underpinned by the BGS National Landslide Database (NLD; 
British Geological Survey NLD 2012), the most extensive source of 
information on landslides in Great Britain. There are two LSMs, one 
for debris flows and one for more general landslide processes, both 
were developed using a heuristic approach where expert knowledge 
of the terrain provides a user-derived score for specific geologi-
cal, geomorphological and structural conditions (Ciurean and Lee 
2022). Landslide susceptibility mapping has evolved from objective 
techniques and simple limit equilibrium models to increasingly 
complex statistical and deep learning approaches; the expansion 
in the complexity and number of techniques has been matched by 
an ever-increasing number of publications in the scientific litera-
ture (Dong et al. 2023) GeoSure was developed during the 2000’s 
before the National Landslide Database was sufficiently populated 
to allow for a meaningful quantitative analysis to be undertaken. 
As with all LSM techniques, there are advantages and disadvantages 
and without subjective expert judgement, the heuristic GeoSure 
methodology would not have been able to produce a national-scale 
LSM at the time. With the NLD now representing a picture of land-
slide processes across GB, it is possible to explore a quantitative, 
data-driven approach. The development of data-driven tools has 
explored several themes with time, through dedicated research on 
performance-oriented solutions such as machine (Goetz et al. 2015) 
and deep (Azarafza et al. 2021) learning. Additionally, marked devel-
opment has made use of dedicated experiments on:

(i) Uncertainty estimation (Tanyas and Lombardo 2020), sam-
pling strategies for (ii) stable (Steger et al. 2016) and (iii) unstable 
(Chang et al. 2023) slopes, (iv) space–time extensions (Lombardo 
et al. 2020a, b), as well as (v) bias capture and removal (Steger et al. 
2021), and (vi) variable selection (Budimir et al. 2015) among others.

Aside from the themes mentioned above, a very limited litera-
ture has been dedicated to adapting the multivariate framework 
to modelling hazard instead of susceptibility. Specifically, the first 
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definition of landslide hazard refers to this notion as “the prob-
ability of occurrence within a specified period of time and within 
a given area of a potentially damaging phenomenon”, something 
Guzzetti et al. (1999) later modified to account for the intensity 
associated to a population of landslides (Crozier 2005). Notably, the 
intensity of a single landslide, as a measure of its potential threat, 
can be expressed in terms of its velocity, (Pudasaini and Krautb-
latter 2022), kinetic energy (Chang et al. 2017) or force (Tang et al. 
2014). However, whenever the scale of the study involves large geo-
graphic regions, such intensity-related measures are impossible to 
retrieve due to the costs involved with the geotechnical data acqui-
sition (van den Bout et al. 2021). For this reason, few recent alterna-
tives have been proposed to express landslide intensity over entire 
landscapes. Specifically, Lari et al. (2014) have proposed an intensity 
measure for rock falls under the assumption that failure sources are 
distributed according to a Poisson exponential family. Similarly, 
Lombardo et al. (2018) proposed a doubly stochastic structure (via 
a log-Gaussian Cox Process, LGCP) to model the expected number 
of landslides per mapping unit. Interestingly, from a purely sta-
tistical perspective, the product of an LGCP model is denoted as 
intensity (Illian and Hendrichsen 2010), although this concept is 
different than landslide intensity which is a function of magnitude 
and velocity. Furthermore, Taylor et al., (2018) explored the possi-
bility of expressing intensity as a function of landslide length-to-
width ratios as a proxy indicator of the runout characteristics. More 
recently, Lombardo et al. (2021) presented a data-driven solution to 
the landslide intensity estimation by fitting a log-Gaussian model to 
global landslide planimetric areal data. The same idea was further 
polished by Bryce et al. (2022) who proposed a Hurdle model to 
combine the probability of landslide occurrence with the expected 
planimetric extent. In this broad context, it becomes evident that no 
single solution exists to predict landslides and associated charac-
teristics. One of the main determinants of the choice among these 
solutions has to do with data availability. In fact, most landslide 
inventories are expressed as point locations, these being diagnos-
tic of where the failure mechanism occurred (Martha et al. 2013). 
Therefore, the information on the planimetric area is not included 
as part of the inventory metadata. This is not the case for landslide 
polygonal inventories (Guzzetti et al. 2012) which are more com-
plex to define. Notably, deep-learning automated solutions have 
improved the situation in recent years, especially in addressing the 
need for multi-temporal landslide mapping (Bhuyan et al. 2023). 
In Great Britain, the BGS has collected both point and polygon 
data depending on the method of data collection, with polygonal 
data collected mainly by BGS mapping teams whilst point data is 
often sourced from social media, news outlets and reports from the 
public. It was decided to limit the LSM to purely debris flow pro-
cesses given that they have been the most widely destructive and 
disrupting landslide process in recent years and create an updated 
landslide predictive model for Scotland based on an inventory of 
over 1800 debris flow initiation points. With the available point data, 
the modelling archetypes available were limited to two options, the 
first being modelling landslide susceptibility by the given units as 
per international standard, and the second being the LGCP model 
by the point pattern of the landslides. The susceptibility framework 
has the advantage of being widely recognized; in fact, third par-
ties such as insurance companies, councils, and transport (road 
and railway) agencies can directly use this level of information. 

Complimentary, the LGCP model framework provides a point-
based solution to predict the rate of landslide occurrences. Here, 
we implemented both archetypes using the Bayesian paradigm. 
Specifically, we adopt a latent Gaussian modelling framework using 
a Bernoulli likelihood for landslide susceptibility and an LGCP for 
the rate of landslide occurrence. Observations are assumed to be 
conditionally independent given a latent structure that drives the 
dependencies and non-stationarities in the data. This latent struc-
ture is specified through an additive structure that allows the incor-
poration of covariate and spatial effects which describe the spatial 
dependence across observations. This dependence is characterised 
using the Matérn family of covariance functions, widely used in 
geostatistics due to its flexible local behaviour and important theo-
retical properties. Fast and accurate inference for these complex 
spatial structures is achieved using the stochastic partial differen-
tial equation (SPDE; Lindgren et al. 2011) approach. The adapted 
Bayesian framework is fitted using the integrated nested Laplace 
approximation (INLA; Rue et al. 2009), which allows us to easily 
incorporate prior information on the effect of covariates over the 
responses and provide a thorough description of the quantities of 
interest and their associated uncertainties. These uncertainties are 
often underestimated in most geomorphological research, with few 
notable exceptions (e.g., Korup 2021). This situation is even more 
prominent at the level of regulators and decision-makers (Hill et al. 
2013). For this reason, we also investigate how to combine uncer-
tainty estimates in geostatistical analyses and specifically in their 
cartographic translation.

The remainder of the manuscript is structured as follows. 
The “Study area” section describes the study area; the “Data” sec-
tion details the data used for the analyses later explained in the 
“Method” section. The “Results” section presents results for each 
model, and the “Model performance assessment” section presents 
our model performance assessment. Finally, the “Discussion” 
and “Conclusions” sections provide discussions and concluding 
remarks.

Study area
The target of our study is Scotland, a main landmass surrounded by 
multiple smaller islands covering an area of ~ 80,000  km2 (Fig. 1). 
Most of the British landmass is dominated by a gentle topography 
with a slope angle of less than 5° characterising 90% of the total 
territory (Cigna et al. 2014; Novellino et al. 2017). Conversely, the 
Scottish landscape is characterised by over 50% upland environ-
ments formed as a result of an interaction between glacial incisions 
and post-glacial isostatic uplift (Firth and Stewart 2000). Scotland’s 
diverse bedrock formations are covered by a thin or patchy cover 
of superficial deposits such as glacial till, hummocky morainic 
deposits as well as weathered bedrock. Notably, most shallow flow-
like landslides take place in such superficial materials. (Palama-
kumbura et al. 2021). The impact of ice erosion has created several 
recognizably distinct landscapes across Scotland including the 
western ice-scoured landscape, weathered bedrock and solifluc-
tion deposits in the far east, ice-scoured lowlands and extensively 
modified valleys, troughs, and mountains (McKirdy and Crofts 
1999). Land-use in Scotland is quite homogeneous, with a large 
percentage of its surface dedicated to agriculture (~ 70%), with 
woodland corresponding to most of the remaining cover, accord-
ing to the CORINE Landcover map (CLC; Copernicus 2018). As for 
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the built-up areas, these occupy a minor extent, with urban classes 
accounting for less than 3%. The main cities are spread across the 
central belt and communications among centres are ensured by a 
road network relying on a few main transport arteries. In places, the 
lack of diversions away from these key routes makes them sensitive 
to the occurrence of landslides. The Scottish road and rail networks 
are regularly affected by debris flows, with the most well-known 
example of this being the Rest and Be Thankful (RABT). The RABT 
was closed in October 2023 after being hit by seven landslides in 
just a few days whilst in the same storm event ten people were air 
lifted to safety after becoming stuck between landslides on the A83 
and A815. Previous heavy rainfall events have led to a debris flow 
that affected the Fort William to Mallaig train line as well as the 
A830 highway in 2016 in an area previously considered to be of low 
debris flow susceptibility (Palamakumbura et al. 2021). Whilst each 
one of these events was relatively small in scale the impacts on local 
communities and businesses can be significant, the village of Ard-
fern for instance remained inaccessible a month after a 6000-tonne 

landslide blocked the A816 rendering it impassable. The potential 
for these types of landslides to increase with future climate change 
highlights the need for modern up-to-date LSMs.

Data
The BGS NLD is a continuously updated source of landslide infor-
mation (Foster et al. 2012). For this study, we extracted Debris Flow 
(DF) locations because they are the most common landslide type in 
Scotland, and they cause the largest impact on infrastructure routes. 
This is the main reason why in this research, we opted to model pre-
cisely this landslide class, as an updated prediction map, which could 
help address some of the needs to spatially locate DF locations that 
may affect road and railway infrastructures. Notably, the NLD has 
changed the way landslides have been collected; initially, BGS would 
collect information sourced from news reports, and individual and 
transport institution reports whilst recent developments have seen 
the use of social media and earth observations from satellite scenes 
(Pennington et al. 2015). This combined search is meant to ensure 

Fig. 1  Terrain overview of Scotland summarised both cartographically and as the two probability density plots for elevation and steepness. 
The three photos are taken from the BGS field collection of debris flows. The DEM source is NEXTMap Britain elevation data from Intermap 
Technologies. Photo number #1 is a BGS image P001177© UKRI 1990, photo number #2 is a private photo provided by Katie Whitbread, 
and photo number #3 is a BGS image P757938© UKRI 2009. Red points indicate the triggering locations of DFs. As for the distributions of 
elevation and slope, the two densities have been rescaled between 0 and 1
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that any potential bias in the spatial distribution of landslides is 
minimised. Understanding bias is important when dealing with a 
spatially distributed process such as landslides, the inclusion of 
earth observations is intended to limit the skew towards transpor-
tation routes and urban areas that can be produced by collecting 
data purely from social media posts and reports from transport 
infrastructure operators. To further understand the implications of 
such potentially biased sources, we suggest reading the work of Lima 
et al. (2021) or Lin et al. (2021). To avoid propagating such biases one 
could use two potential solutions. The first is in introducing bias-
related covariates in the model fitting, which are then zeroed out 
in the model prediction phase (Lima et al. 2017). The second and 
alternative solution is to solve the issue at the source by introduc-
ing an independent mapping procedure. The strategy of the BGS 
includes the use of freely available Sentinel-2 satellite images and an 
approach similar to NASA’s Sudden Landslide Identification Prod-
uct (SLIP) tool (Fayne et al. 2019) to automatically map potential 
debris flow locations. This combined approach ensures that the NLD 
reflects the standards of quality (Galli et al. 2008) and completeness 
(Tanyas and Lombardo 2020) required for a suitable landslide pre-
diction modelling protocol. The resulting inventory features 1,854 
DFs across the Scottish mountainous terrain. These DFs have been 
digitally recorded with a point whose x and y correspond to the 
highest position visible on the source area.

The reason behind such a choice is to represent the most likely 
location where the failure was initiated (Scheip and Wegmann 
2022). Notably, this may be an approximation because laboratory 

experiments have proven that DFs may exhibit retrogressive behav-
iour (Sosio et al. 2007). However, as one faces the limitation of being 
only able to examine the scarp left by the DF, choosing the highest 
point along a polygon perimeter is the most reasonable approach 
(Lombardo et al. 2014). Nevertheless, this level of detail is to be 
accounted for whenever the mapping unit of interest is expressed at 
high resolution. At the level of a coarse spatial partition, the assign-
ment of a stable/unstable label would not change (see “Mapping 
unit choice and dependent and independent variables’ assignment” 
section). In this research, we opted to partition Scotland into Slope 
Units (SUs) and therefore, no substantial changes are expected in 
both the susceptibility and intensity models (see Appendix 1 for the 
methodological overview of these models).

Mapping unit choice and dependent and independent variables’ 
assignment

To represent the DF information over space, we chose the slope unit 
partition of Scotland which can be seen in Fig. 2. A Slope Unit (SU) 
encompasses the geographic space between streams and ridges 
(Amato et al. 2019), and a number of analytical tools to extract 
them from digital elevation models (DEMs) have been developed 
with time. From the first inception by Carrara et al. (1991), SUs have 
been manually mapped (Guzzetti et al. 2006) and later obtained via 
the Inverse DEM method (Turel and Frost 2011). Recently though, a 
robust computational scheme has been introduced by Alvioli et al. 

Fig. 2  Panel (a): The aspect distribution over the entirety of the Scottish landscape. Panel (b): Highlights the slope unit delineation over a 
small area to provide an overview of the partition and the typical mapping unit sizes. Panel (c): The frequency-area distribution of the slope 
units over the whole Scotland. Notably, the frequency area distributions highlights how dissected the Scottish landscapes is, with an esti-
mated mean SU area, smaller than its standard deviation
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(2016) in the form of a GRASS GIS (Neteler and Mitasova 2013) 
script named r.slopeunits. In this work we opted to use r.slopeunits, 
parameterizing it with the following values:

– Flow accumulation threshold = 1,000,000
– Circular variance = 0.3
– Minimum area = 25,000
– Clean size = 10,000

The resulting procedure produced a total of 153,282 SUs, whose geo-
graphic overview and frequency area distribution are shown in Fig. 2.

Notably, SUs are irregular polygonal objects whose spatial extent 
largely exceeds the resolution of common terrain and thematic 
covariates. For this reason, SUs require an aggregation step to express 
both dependent and independent variables for each polygon. The 
dependent one corresponds in our case to the landslide presence 
and absence, to be assigned at the intersection between landslide 
identification points and SUs. This aspect concerns the susceptibility 
model only. In fact, for the LGCP model, the point pattern theoretical 

foundation requires the locations to be kept with their original details 
(Bagchi and Illian 2015). The aggregation at the SU level becomes part 
of the modelling protocol only as a post-processing routine. As for 
assigning the relevant covariates, the aggregation is performed here 
by computing the mean and standard deviation within an SU poly-
gon. These are denoted as μ and σ in the suffixes reported in Table 1, 
where we list all covariates, we opted for to explain the landslide 
distribution in Scotland. Notably, when we considered the rainfall 
information, we did not compute the two summary statistics men-
tioned above because of the coarse resolution of the corresponding 
precipitation layer (1 km). Moreover, the aggregation of the three 
different lithological information was performed by computing the 
predominant class for each SU (Tables 2 and 3).

Method
For reasons of conciseness, a full overview of the proposed meth-
odological protocol is provided in Appendix 1. There, we will 
introduce a summary of our experimental design, an explana-
tion of Bayesian inference and its connection to Latent Gaussian 

Table 1  Summary of the Scotland dataset, including the responses and initial covariates’ set

We stress here that the native DEM resolution is 100  m2, obtained by Intermap Technologies (2007). Rainfall data is obtained at this link: 
https:// www. metof fice. gov. uk/ research/climat e/maps-anddata/data/hadu k-grid/datasets. Similarly, the quaternary domain source is https:// 
www. bgs. ac. uk/ geolo gy- proje cts/ shall ow- geoha zards/ lands lide- domai ns/; superficial deposits and bedrock were accessed at: https:// www. bgs. 
ac. uk/ datas ets/ bgs- geolo gy- 625k- digma pgb/. Planar and profile curvatures have been computed following Heerdegen and Beran (1982)

Variable Acronym Type Units Original scale or  
resolution

Source

Debris inventory flow ODF(s) Binary response 0 = absence, 
1 = pres-
ence

N/A BGS national landslide 
database

Debris inventory flow CountDF(s) Count response Unit-less N/A BGS national landslide 
database

SU area SUA Continuous explana-
tory

m2 N/A NextMap DTM (2007); 
BlueSky (2014/15)

Local relief within 
1000-m buffer

LR Continuous explana-
tory

m 10 m Extracted from the DTM

Slope mean and stand-
ard deviation

SLO μ and σ Continuous Degrees 10 m Extracted from the DTM

Annual precipitation 
mean and maximum 
over a 20-year record

Precμ and Precmax Continuous explana-
tory

mm 1000 m MetOffice HadUK-Grid 
gridded climate obser-
vations, (1999–2019)

Profile curvature mean 
and SD

PRC μ and σ Continuous explana-
tory

1/m 10 m Extracted from the DTM

Planform curvature 
mean and SD

PLC μ and σ Continuous explana-
tory

1/m 10 m Extracted from the DTM

Quaternary domain Quat Categorical explana-
tory

Unit-less From 1:10,000 to 
1:1,000,000

BGS quaternary domains

Superficial deposit Super Categorical explana-
tory

Unit-less 1:625,000 See caption

Bedrock Bedrock Categorical explana-
tory

Unit-less 1:625,000 See caption

https://www.metoffice.gov.uk/
https://www.bgs.ac.uk/geology-projects/shallow-geohazards/landslide-domains/
https://www.bgs.ac.uk/geology-projects/shallow-geohazards/landslide-domains/
https://www.bgs.ac.uk/datasets/bgs-geology-625k-digmapgb/
https://www.bgs.ac.uk/datasets/bgs-geology-625k-digmapgb/
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Models. This will serve the purpose of clarifying our debris-flow 
susceptibility and Log-Gaussian Cox process model. As for all 

the acronyms and terms provided in the manuscript, a summary 
table is provided in Table 4 of Appendix 2.

Results
This section reports the outcome of our modelling protocol. Due 
to the dual set of experiments, we have run, the susceptibility and 
intensity results will be presented separately, first by showcasing 
the covariate effects, then converting the model estimates into map 
form.

Susceptibility model

As detailed in Appendix 1, the variable selection procedure isolated 
a subset of the initial covariates. Their marginal effects are pre-
sented in Fig. 3. There, the influence of the local relief (LR) appears 
as the most dominant covariate among all the selected ones. We 
recall here that LR is computed as the difference between the maxi-
mum and minimum elevation values within a single SU. Therefore, 
this is commonly interpreted as a proxy for gravitational potential, 

Table 2  Summary of selected covariates for the susceptibility 
model (see Appendix 1)

Fixed effects Random effects Categorical 
effects

SLO σ, Precmax LR, SLO μ Quat

Table 3  Summary of selected covariates for the LGCP model (see 
Appendix 1)

Fixed effects Random 
effects

SLO σ, PRC σ SLO μ, Precmax, LR

Fig. 3  Posterior means (dark blue curves) of random effects with 95% pointwise credible intervals (light blue shaded area) (top row). Poste-
rior means (dots) of fixed linear effects (except the intercept) with 95% credible intervals (vertical segments) and of categorical quaternary 
effects (bottom row). The horizontal grey dashed lines indicate no contribution to the DF occurrence.  Panels (a) and (b): Two RW1 effects for 
local relief and mean slope per SU. Panel (c): The standard deviation of the Slope and the maximum Precipitation linear contributions to the 
model.  Panel (d): The categorical influence of the quaternary domains
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a property intrinsically linked to DF predisposition (see Iverson 
1997). Specifically, the inferred pattern points out a negative con-
tribution of the relief up to 200 m. From this elevation difference 
to approximately 250 m, the LR contribution to the DF occurrence 
probability rapidly increases and transitions to an approximate 
linear and positive trend up to 600 m.

Figure 3 additionally highlights the contribution of the aver-
age steepness per SU (SLOμ). We recall here that steepness is also a 
measure of variation in elevation. The LR estimates differences over 
a large neighbourhood whereas steepness values are computed as 
the first order derivative between two adjacent grid-cells. Therefore, 
the LR and SLOμ can be considered as the two sides of the same 
morphometric coin. A closer look at the latter marks a contribution 
to the susceptibility with a negligible effect up to approximately 15° 
of mean steepness per slope unit. After which, the trend becomes 
positive and approximately linear up to the limit of 25°. Interestingly, 
21° is empirically referred to by Iverson (1997) as a potential thresh-
old for a slope to become prone to DFs. Moving to the fixed effects, 
two were selected as such. The first is the SLOσ, another parameter 
capable of capturing topographic roughness. Its contribution to the 
susceptibility model appears positive (mean βSLOσ = 0.710) and sig-
nificant (95% of the regression coefficient distribution shares the 
same sign). A lower and still linear contribution is also estimated 
for the 20-year maximum rainfall amount computed per SU (mean 
βPRECmax = 0.009). In this case, though, the covariate misses signifi-
cance by a slight margin, with the 97.5 percentile of the regression 
coefficient distribution being markedly positive while the 2.5% 
appears negative. Nevertheless, the mean is still quite far away from 
the zero-line shown in the plot, thus implying a non-negligible con-
tribution to the model, on average, which is expected for a covariate 
that should be linked to the DF genetic process. As DF records were 
not accompanied by their temporal information in the inventory 
metadata, we could only opt for a general meteorological represen-
tation of the Scottish landscape, rather than a precise measure of the 
trigger pattern in space and time. Ultimately, the bottom-right panel 
of Fig. 3 presents the categorical effect of the morphology left by the 
last quaternary glaciation retreat (addressed as Quaternary). Among 
all the landforms, only the Incised Valleys have been estimated with 
a positive and significant contribution to the DF occurrence prob-
ability. This is geomorphologically sound, and a result commonly 
retrieved in other DF susceptibility studies tailored to flow-like land-
slides in Scottish terrains (Ballantyne 1986; Milne et al. 2015). All the 
remaining quaternary classes, appear not to be statistically signifi-
cant nor do their regression coefficient appear to be large enough 
to cause notable variations to the susceptibility pattern, on average.

The sum of all mean susceptibility model components, together 
with the global intercept and after the logit transformation, pro-
duce the estimated susceptibility map shown in the left panel of 
Fig. 4. Furthermore, the variability estimated for each of the regres-
sion coefficients shown in Fig. 3, leads to the uncertainty estimates 
mapped in the central panel of Fig. 4. What stands out is that the 
model produces susceptibility patterns for which the central sec-
tor of Scotland appears to be largely prone to DFs. Conversely, the 
southernmost, easternmost and northernmost districts generally 
present non-susceptible characteristics. However, each of these 
districts is associated with a different probabilistic pattern when 
we include uncertainty-oriented considerations. The northern 
and eastern districts show very low mean susceptibility values 

associated with very low uncertainty values. Therefore, this is a 
portion of the landscape largely to be considered secure from a risk 
assessment perspective. As for the southern case, low susceptibil-
ity values are generally accompanied by high uncertainty levels. 
In turn, this may indicate a potential danger and require further 
attention rather than consider this district safe. Making such con-
sideration is crucial and it is also the reason why Bayesian statistics 
is so widely adopted across virtually any scientific field. However, 
for a science such as geomorphology intrinsically connected to 
environmental policies, producing separate maps and comment-
ing on their relative patterns is not ideal. This is the case because 
traditionally, decisionmakers do not have formal statistical train-
ing and, at times, a geoscientific one (Betcherman 1993). Therefore, 
reading and interpreting the map’s probabilistic indication could 
be difficult. For this reason, here, we propose a simple yet informa-
tive alternative to conveying the full probabilistic prediction, in the 
form of mean values and uncertainty estimates around those. Our 
approach is to perform a first post-processing step where the mean 
posterior estimates are binned into a few classes. Here, we choose 
three for simplicity, to be plotted according to a standard traffic 
light criterion, corresponding to low (green), medium (yellow) and 
high (red) susceptibility values. We export all SUs belonging to a 
given class in a separate file, reporting the width of the 95% credible 
interval (CI) for each unit. We then plot each file separately, assign-
ing a monochromatic colour bar whose intense colours correspond 
to SUs with low uncertainty and faded colours for SUs with high 
uncertainty. By plotting the three files together, we produce a uni-
fied probabilistic overview of the model in map form. We believe 
this to be a solution to a common problem between scientists and 
policymakers, and further consideration on this topic will be pro-
vided in the “Model performance assessment” section.

LGCP

The marginal effects for the variables selected by the procedure 
mentioned in Appendix 1 are presented in Fig. 5. Interestingly, the 
selected covariates boil down to those of the same nature selected 
in the susceptibility case. Specifically, meteorological and terrain 
characteristics control the variation of the DF intensity. However, 
the situation for the LGCP model is flipped as compared to the 
susceptibility one. In fact, the annual rainfall maxima over a period 
of 20 years appear to be much more closely linked to the response 
variable and morphometric characteristics that come after it. We 
recall once more that the intensity of an LGCP model can be consid-
ered a rate of DF occurrences in a given neighbourhood. Therefore, 
the spatial information this parameter conveys is ideally more com-
plex than the simpler binary case tackled in a susceptibility task. 
This may be partially the reason behind the dominant contribution 
of rainfall extremes (the maximum among the yearly sums taken 
over a period of 20 years) towards the intensity. We would like to 
stress once more something partially referred to in the suscepti-
bility case. Such a rainfall covariate should not be interpreted in 
the same way as in landslide early warnings (Guzzetti et al. 2020), 
where the rainfall is measured in a much narrower time window, 
comparable to the landslide failure process. In fact, the DF inven-
tory we used does not report the landslide date and time of occur-
rence, therefore hindering the possibility of building temporal or 
spatiotemporal models. Conversely, the DF data representation we 
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use is purely spatial and thus the rainfall interpretation needs to 
be simplified and summarised to a spatial context only. As a result, 
the maximum values among the annual accumulated ones over two 
decades exclusively reflect the geographic tendency of the Scottish 
landscape to be exposed to intense precipitation. Going back to the 
estimated effect, the first panel of Fig. 5 highlights a gradual positive 
trend, distinguishable into two main near-linear segments. The first 
one starts at an approximate maximum of 1000 mm and continues 
with a similar incremental rate up to 2100 mm. Up to this point, 
the contribution still appears to decrease the expected rate of DF 
occurrences per SU. Conversely, from this point to around 2500 mm 
the effect shifts to a positive contribution to the estimated DF inten-
sity, after which, it reaches a sort of plateau up to 4,500 mm. The 
second largest contributor to the landslide intensity appears to be 
SLOμ. Differently from the susceptibility case, here the mean SU 
steepness appears to be much more relevant, behaving according to 
a marked non-linear trend. This time, the effect is negative overall 
up to ten degrees, while showing a positive incremental trend that 
continues until 27°. The third panel of Fig. 5 shows the non-linear 
effect of linear relief (LR) on DF intensity which, as mentioned 
before, is a diagnostic of higher energy potential. The effect is nega-
tive up to 200 m before increasing its positive effect until a spike 
at around 250 m. From here, the effect is shortly negative in its 

influence before regaining a positive trend until 600 m. The final 
panel of Fig. 5 shows the linear effects of the standard deviation of 
the profile curvature and the standard deviation of the slope per 
SU, with profile curvature being negative (βPRCσ =  − 0.319) and sig-
nificant and the latter being positive (βSLOσ = 0.520) and significant. 
The variation in the profile curvature per slope is something that 
we can interpret in terms of roughness. In other words, large vari-
ations would imply a rough terrain where the curvature measured 
across the vertical direction changes frequently in a stepped-like 
manner. Conversely, low variations would imply a relatively smooth 
surface. For this reason, we interpret a negative regression coef-
ficient as additional topographic information to that carried by 
SLOμ. Specifically, SUs with high average steepness values but with 
the same being largely kept constant across the vertical profile are 
prone to host large numbers of DFs. A justification for this may be 
assumed in the geotechnical interpretation of large curvature vari-
ations. In fact, mostly hard materials have the capacity to produce 
stepped-like landscapes, and they are mostly not capable of releas-
ing shallow landslides but rather rockfalls or topples (Frattini and 
Crosta 2013). As for constant- or near- constant steep slopes, these 
are diagnostic of soft unconsolidated materials or soils draping 
over the bedrock. Thus, these are naturally the ideal hosts for DFs 
(Iverson 1997).

Fig. 4  Mean DF susceptibility based on the presence/absence observations (left), the associated width of 95% CI (middle), and the combined 
mean susceptibility graded by its uncertainty (right)
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Analogously to the susceptibility case, the sum of all mean 
LGCP model components, together with the global intercept and 
after the exponential transformation—required to convert the 
intensity from the log to the linear scale—produce the estimated 
mean DF intensity map shown in the left panel of Fig. 6. What 
stands out is that the DF intensity is mostly concentrated on the 
West coast and central Scotland. Something to be stressed here is 
that the patterns arising between the susceptibility and the inten-
sity are quite similar. This being said, the information contained 
in the two maps is not the same. In fact, the susceptibility purely 
contains information on the occurrence probability whereas 
the intensity contains information closer to the requirement of 
hazard modelling. In fact, if we assume a mean DF size (area or 
volume) then a higher rate of DFs per SU would lead to a higher 
expected hazard. Conversely, if we consider an average DF size in 
the context of susceptibility, the associated map will not account 
for the number of events and therefore to the expected hazard in 
a given SU. Another interesting element in maps shown in Fig. 6 
corresponds to the variability in the mean intensity estimates, 
shown in the central panel. What we see here is that the variation 
is minimal. This is comforting information because it generally 
indicates that the expected intensity or hazard associated with a 
given SU is robust. As for the last panel, the similarity that char-
acterised susceptibility and intensity in their respective first two 
maps ceases to hold here. In fact, the pattern of the combined 

intensity/uncertainty highlights has less variability than what is 
shown for the susceptibility. This in turn may indicate that not 
only the intensity mapping is more informative than its suscep-
tibility counterpart but that the model is also more certain about 
its output. As a result, an ideal use of such a map may be more 
effective for decision-makers.

Model performance assessment
In this section, we provide an overview of the performance assess-
ment, spanning over the fitting and cross-validation routines, 
implemented for the susceptibility and LGCP models, respectively.

The left panel of Fig. 7 shows the goodness-of-fit for the suscepti-
bility case, through a ROC curve with an AUC of 0.97. We recall here 
that the ROC curve is a measure of the true positive rate (unstable 
SUs predicted by the model to be unstable, as a fraction of the total 
number of unstable SUs) against the false positive rate (stable SUs 
predicted by the model to be unstable, as a fraction of the total num-
ber of stable SUs) (Bewick et al. 2004). Such a value is an indication 
of extremely high explanatory power (outstanding according to 
the classification proposed by Hosmer et al. 2000). To test whether 
this is due to overfitting, we implemented a tenfold cross-validation 
(CV). This procedure involves sub-setting the dataset into ten ran-
dom portions each one made of 10% of all data. Because the SUs are 
assigned with a presence/absence label according to the intersection 
of a debris flow initiation point, the random subsets constitute a 

Fig. 5  Posterior means (dark blue curves) of random effects with 95% pointwise CI (light blue shaded area) for the LGCP (panels a, b, and 
c). Posterior means (dots) of fixed linear effects (except the intercept) with 95% CI (vertical segments) for the LGCP (d). The horizontal grey 
dashed lines indicate no contribution to the DF occurrence. Panels (a), (b), and (c): The RW1 effect carried by the mean slope per SU, the maxi-
mum precipitation, and the local relief, respectively. Panel (d): The linear contributions to the model of both the standard deviations of profile 
curvature and slope per SU
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Fig. 6  Mean DF intensity (left), the associated width of 95% credible intervals (middle), and the combined mean intensity graded by its uncer-
tainty (right) aggregated across the Scottish SUs

Fig. 7  ROC curve and AUC value for the susceptibility model fit (left panel) and the tenfold cross validation ROC curves and associated AUC 
values for the susceptibility model (right panel)
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smaller version of the initial matrix, with the added constraint that 
each subset is mutually exclusive from the other nine. As a result, 
the union of the ten subsets returns the whole Scottish territory. 
The tenfold prediction skill is graphically shown in the right panel, 
where the ten receiver operating characteristic (ROC) curves appear 
to showcase a limited, if not negligible, spread. This attests to the 
model’s robustness. Aside from pure modelling considerations, 
going back to the susceptibility map, such high predictive power 
reflects the ability of the model to constraint the unstable labelling 
to the yellow region highlighted in Fig. 4, where essentially most of 
the Scottish SUs that host at least one DF takes place.

Validation and model assessment are generally complex for 
LGCP models as we are interested in points in space rather than 
some value at said point. However, as we used the Poisson approxi-
mation to the LGCP likelihood, we can use the same tenfold cross-
validation technique to divide the SUs and examine the DF counts 
as a function of the model’s resulting mean intensity, thus creating 
an approximation for cross-validation for the LGCP.

Looking at the results of the assessment counterpart for the 
LGCP, the performance also appears good albeit less outstanding. 
The left panel of Fig. 8 shows the observed count per SU versus the 
fitted count per SU, obtained by multiplying the SU mean inten-
sity by the corresponding SU area. The agreement between the two 
parameters appears to hold for small counts. However, it shows an 
increasing deviance for large counts. This is most likely because 
very high counts are much less represented in the model. Therefore, 
small to medium counts are relatively easy to model because the 
LGCP learns from the available data. As for the medium to high 
counts, their small numbers hinder the ability of the LGCP to reflect 
them in the fitted results.

The prediction skill of the LGCP is presented in the right panel of 
Fig. 8, where the observed counts are plotted against their predicted 
counterparts in the same tenfold division manner as the susceptibil-
ity case. The plot shows a similar behaviour as compared to the fit, 
with low to medium counts being suitably estimated. However, the 
prediction of medium to high counts is not as good. This attests once 

more to the model robustness, where little variations are experienced 
at changing the modelled data. Similar to the susceptibility case, if 
we look at the locations where high mean DF intensity is shown in 
Fig. 6, a high predictive power means that the region from SW to NE 
where high DF rates per SU are observed is consistently recognized.

Discussion

Binary vs count based modelling reflections
Here we reflect on the noticeable effects of using one modelling 
procedure (susceptibility case) and the other (intensity case). The 
susceptibility model produced exceptionally high goodness-of-
fit and predictive performance diagnostics (see Fig. 7). When we 
first observed the outstanding classification (Hosmer et al. 2000) 
in the left panel, we assumed it to be potentially due to some 
clustering or spatial structure within the covariates. If that were 
the case, implementing a spatial cross-validation routine would 
have been capable of breaking down or reducing the contribu-
tion of any spatial structure, thus producing spatially unbiased 
predictive performances. As a result, we would have also noticed 
a marked decrease in the estimated classification metrics. How-
ever, the right panel still shows outstanding predictions. For this 
reason, we further investigated whether this could be due to some 
potentially biased covariates, as per Steger et al. (2021). To do so 
we circled back and generated five single-variable models, one 
for each covariate selected in our benchmark susceptibility. Inter-
estingly, extremely high performance is obtained solely using 
LR or SLOμ. These are not covariates that should be sensitive to 
any mapping criterion. In other words, when looking for biasing 
covariates, one should expect a property to explain a large por-
tion of the DF distribution, this being the case because the covari-
ate itself may be sensitive to the way local geological surveys are 
carried out to report landslides. For instance, Moreno et al. (2024) 
found that the effectively surveyed area (a layer expressing prox-
imity to road networks) correlates well with the presence/absence 
of landslide data in South Tyrol (Italy), a bias they removed from 

Fig. 8  Observed versus fitted counts for LGCP model (left panel) and observed versus tenfold predicted counts for LGCP model (right panel)
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the model by zeroing out the associated regression coefficient. 
In our case, we have no reason to assume that the inclusion of 
the LR and SLOμ is closely associated with any mapping practice 
behind the Scottish DF inventory. Despite that this is an uncom-
mon result, we believe our model to be reliable and the effect 
of these two terrain characteristics to be realistic. We support 
this argument by benchmarking our model against the GeoSure 
model, and by comparing the covariate effects estimated as part 
of the intensity procedure. Analogous susceptibility patterns can 
in fact be seen also in the GeoSure map (Fig. 9b). At the time of 
the GeoSure heuristic development most of the DFs we used were 
not available, especially those that have been mapped in response 
to public notice. Therefore, it is highly unlikely that the public 
would report DFs, depending on the terrain arrangement and it 
is rather more reasonable to assume that the slope geometry may 
largely contribute to the genesis of DF in Scotland. An additional 

verification can be seen in the intensity model. There, a more 
reasonable performance is obtained, far from being outstand-
ing. This actually brings another point of discussion. After many 
years of data-driven methodological development, outstanding 
performances have become commonplace among many suscep-
tibility contributions. For instance, outstanding performance 
diagnostics, e.g. AUC > 0.95, are nowadays reported frequently 
in a number of articles adopting advanced spatial statistics (Lom-
bardo et al. 2020a, b), machine (Di Napoli et al. 2020) and deep 
(Lv et al. 2022) learning. Therefore, the point we are trying to 
raise here is questioning whether the susceptibility framework 
shouldn’t be considered largely solved (Ozturk et al. 2021), when-
ever heavily non-linear models are tasked with distinguishing the 
distribution of landslides purely in space. Conversely, the data-
driven estimation of landslide intensity (Lari et al. 2014), whether 
it is spatially (Moreno et al. 2023), temporally (Nava et al. 2023), 

Fig. 9  GeoSure DF susceptibility (a), aggregated on the basis of a majority criterion per SU (b), and according to the highest class per SU (c). 
Panel (d): A reduced version of the DF susceptibility built in this work and already mapped in Fig. 4
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or spatiotemporally (Fang et al. 2024) addressed it is still at an 
infancy stage where few contributions are available and much 
may still be gained from a common geoscientific effort.

GeoSure benchmark

In this Section, we opted to compare the GeoSure DF susceptibil-
ity layer against the DF susceptibility we produced here. Figure 9 
allows for such comparison by reporting in Fig. 9a, the original 
GeoSure raster at 50 m resolution. Because our model is expressed 
at the SU scale, we opted to aggregate the 50 m information over 
SUs, following two separate criteria: the first (Fig. 9b) assigns the 
most frequent DF susceptibility class while the second (Fig. 9c) 
assigns the worst case scenario. In other words, the first criterion 
calculates how many 50-m pixels fall among the five GeoSure cat-
egories (VL = very low, L = Low, M = medium, H = high, VH = very 
high), and assigns to each slope unit the most representative class. 
The second approach assigns the highest class, irrespective of its 
numerosity per SU. We recall here that the definition of suscep-
tibility refers to the probability of having at least one landslide 
occur. For this reason, we also included the second approach, to 
account for at least one high probability pixel.

What immediately stands out is that the probability patterns 
of our mean DF susceptibility and the pixel-based GeoSure 
largely match across Scotland. The same consideration applies 
when looking at the GeoSure majority aggregation per SU, but 
it is not the case for the GeoSure worst-case scenario.

As for the match at the local level, GeoSure tends to polarise 
the susceptibility estimates either in the VL to L classes or in the 
H to VH class, leaving the intermediate class less represented. 
This is mostly an effect due to the expert-based structure behind 
the current GeoSure maps and it becomes particularly evident in 
the Zoom1 of Fig. 9a, where the effect of the slope steepness map 
largely controls the susceptibility classes, with no other apparent 
contribution coming from other predictors.

The same is true for Zoom2 of the same panel. There, the 
effect of a geological type that has received a negative weight 
flattens out the susceptibility, which mostly falls in the VL cat-
egory. By comparison, our mean DF susceptibility provides a 
richer description of the process, not only because it includes the 
uncertainty, but also because its patterns appear more realistic.

Another interesting element to consider has to do with the 
pixel structure of a susceptibility map, and this reasoning goes 
well beyond the specific case and rather applies to any similar grid-
ded map versus an SU-based one. In fact, if one selects grids as the 
mapping unit of choice, the most common effect is to obtain “salt 
and pepper” looking maps. This is again visible in Fig. 9a, where 
the zooms highlight single pixels falling in the VH susceptibility 
class being entirely surrounded by pixels falling in the L or even 
VL classes. This constitutes a problem for decision-makers because 
slope stabilisation practices cannot be applied to single grid cells 
but rather to the whole slope they belong to. This “salt and pep-
per” effect propagates to the susceptibility in Fig. 9c. Risk-oriented 
applications are often tailored towards worst-case scenarios and 
here what becomes evident is that almost every SU in Scotland 
hosts at least one VH susceptibility pixel. However, not every slope 
in Scotland fails and luckily so, which in turn points to the limited 
realistic representation of a landscape in grid-based models.

General considerations and future improvements

In this section, we review the two models presented, look at their 
possible limitations and suggest future improvements.

Firstly, we note that the data is as complete and representative 
as possible. Therefore, modelling the higher DF counts is unlikely 
to be improved with this methodology as there is no way to gain 
more data on higher counts if none exist. However, we can extend 
the data framework to account for a larger domain—the whole of 
GB for example—and in this way, we can gather more information 
on the spread of DF count and its dependence on the covariate set 
we chose.

Secondly, the covariate information and the modelling method-
ology are purely spatial. This is an informative start, but extend-
ing the point process modelling towards spatiotemporal struc-
tures could explain varying patterns of DF intensity. However, 
some degree of variations to the model should be implemented. 
For instance, the covariates should be revisited. Presently, we used 
an aggregate of the maximum daily precipitation over a 20-year 
period, calculating averages on an annual basis. Rainfall has a high 
correlation with DF intensity but with a spatial model, we can only 
account for one statistic (the average of the maxima) to describe the 
whole rainfall pattern. If we used a spatiotemporal LGCP model, we 
could use a function to describe the pattern of rainfall over a period 
of time that might influence the slope instability—prior and past 
to the DF event. This would improve prediction ability and provide 
a model that is interpretable over time. In turn, this could open up 
towards a new generation of early warning systems for Scottish 
debris flows. However, it should be stressed that not all the data 
points we used have an associated date and ideally we would want 
the complete data. The geoscientific community is working hard to 
improve this, mainly in the form of automated mapping procedures, 
thanks to the high orbital frequency modern satellites offer.

Overall, the DF susceptibility and DF intensity maps both cap-
ture the areas in which to focus in terms of a higher DF risk. The 
LGCP model intensity map however, perhaps pinpoints these areas 
with a higher degree of accuracy due to the nature of the point pro-
cess modelling approach. Both models do well in terms of model 
performance, although validation measures for point-process mod-
els are generally complex and more along the lines of a residual 
analysis to compare variations of the model. Using the DF count 
per SU allowed us to implement the same tenfold CV scheme that 
was used to validate the susceptibility model. An improvement here 
could be conducting a leave-one-group-out cross-validation (Liu 
and Rue 2022). When one SU is removed, the underlying spatial 
correlation between SUs can still be closely approximated by the 
surrounding SUs. Removing a group of SUs at a time would better 
test the model’s prediction abilities by accounting for the absence 
of this spatial correlation when a group of SUs are removed.

A final improvement to the model can be achieved with the inte-
gration of information from the BGS National Geotechnical Database 
(British Geological Survey National Geotechnical Database 2019) on 
the geographical distribution of physical properties of a wide range of 
rocks and soils present in GB. Presently, the information is relatively 
coarse across space which makes its integration into the model dif-
ficult at this time. BGS is continuously updating its records and data-
bases which in the future could be used in a model for DF prediction.
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We conclude the discussion by pointing out an interesting aspect 
of the landslide predictive patterns coming from our susceptibility 
and intensity models, as well as the susceptibility produced for the 
GeoSure system. The general patterns of the three corresponding 
maps look similar at a broad examination. The main areas where 
landslides are expected follow two trends, one North to South on 
the West coast, and another one South-West to North-East start-
ing from the West coast and extending across the central belt. This 
is interesting because both our models rely on underlying spatial 
effects whereas the GeoSure map is purely driven by an expert-
based weighting system informed by knowledge of the debris flow 
initiation process.

Conclusions
In this work, we proposed modelling DF occurrence across Scotland 
using a dual approach that respected the traditional susceptibility 
requirements as well as a more complex structure that extended 
the estimation towards DF counts per mapping units. In the first 
case, we opted for a.

Bernoulli distribution model in the Bayesian framework, where 
we included covariates as fixed and random effects. The count 
extension is here introduced as a complementary source of infor-
mation, providing both where and how many events should be 
expected for specific areas. Such a model is a step forward in the 
existing LSM of Scotland, developed to provide local stakeholders 
(local authorities and railway/roadway managers) an overview of 
debris flow susceptibility across their network and to assist home-
owners and developers in reducing social and economic losses. The 
present contribution aligns well with the activities undertaken by 
the Natural Hazard Partnership which the BGS supports through its 
Daily Landslide Hazard Assessment. If a model could be extended 
to account for spatiotemporal variations in precipitation regimes 
and associated debris-flow occurrences it could be integrated into 
the existing forecasting tool used by the BGS to assess rainfall-
triggered landslides, however, this requires further data homog-
enization efforts.

Appendix 1. Methodological overview
We implemented two modelling archetypes: to model landslide 
susceptibility as per international standards, we can predict the 
probability of observing at least one DF in a SU by using a Bernoulli 
distribution (see, Section 4.3). For the LGCP, we model the DF rate 
of occurrence per SU by using a Poisson distribution with a random 
intensity function (see Section 4.4) that approximates the LGCP 
likelihood of the landslide points distributed across the space. In 
both cases, we can assume that the observations (presence/absence 
in the susceptibility case or counts in the LGCP case) are condi-
tionally independent given a latent Gaussian process (more details 
in Section 4.2), where these models can flexibly capture local cor-
relation structure and uncertainty. As a result, the covariates can 
be modelled flexibly in terms of their influence on DF occurrence 
or intensity and in the remainder of the manuscript they will be 
addressed as fixed and random effects to refer to their linear and 
nonlinear use, respectively. This nomenclature stems from the 
Bayesian statistical community, and it will be adopted here due 
to the Bayesian modelling choice we have made (more details in 
Section 4.1).

Bayesian inference

Bayesian statistics is an approach to data analysis centred on Bayes’ 
theorem. It updates our understanding of model parameters by 
combining prior knowledge (or prior distribution) with observed 
data through a likelihood function, yielding a conditional prob-
ability known as a posterior distribution. This posterior represents 
our refined belief about the parameters and can be used to predict 
future events. Here, we briefly define the three terms mentioned 
above, namely, conditional probability, likelihood, and prior dis-
tribution, in the context of landslide science, and refer the reader 
to Rue et al. (2017) for further explanation.

Conditional probability refers to the probability of an event 
occurring given that something else (a set of conditions) is true. In 
our context, a conditional probability of interest is, e.g., that of an 
SU being unstable given that the slope is steeper than a certain angle 
while accounting for other similar geomorphological influencing fac-
tors, hereafter referred to as covariates or predictors. The likelihood 
indicates how likely a population is to produce the observed sample. 
Using our previous example, it translates into the joint probability of 
observing an unstable SU computed as a function of the parameters 
of a statistical model. Finally, a prior distribution represents the best 
guess about the true value of a model parameter, expressed as a prob-
ability distribution. In a regression context with a single regression 
coefficient, a prior over the coefficient can be interpreted as the initial 
range of regression coefficients, which will be later updated with the 
sample information using the Bayes theorem.

Posterior distributions usually involve the calculation of high-
dimensional integrals without a closed-form expression. A clas-
sical way to approximate these integrals is through Markov chain 
Monte Carlo (MCMC), which refers to a class of simulation-based 
methods to create samples from the posterior distributions of inter-
est based on classical convergence results for Markov chains. In 
practice, MCMC entails tedious and complex computations. These 
challenges are exacerbated due to the slow or lack of convergence 
of the chain. A popular alternative was proposed by Martino and 
Rue (2009) which is the integrated nested Laplace approximation 
(INLA), a method that approximates posterior distributions in a 
computationally efficient way by combining Laplace approximation 
of probabilities with numerical methods using a variational Bayes 
correction (Van Niekerk 2023). INLA is conveniently accessible via 
the R-INLA package (Bivand et al. 2015). Due to its computational 
efficiency, INLA is particularly suitable for incorporating various 
covariates with different types of effects over the response, including 
spatial effects with complex dependence structures. Readily avail-
able in INLA is the stochastic partial differential equation (SPDE; 
Lindgren and Rue 2015) approach to approximate Matérn covari-
ance structures between locations. Its importance in our modelling 
strategy lies in the ability to retrieve unaccounted-for but spatially 
structured effects over the response (Lombardo et al. 2019).

Gaussian latent models

INLA is constructed for the class of latent Gaussian models (LGMs), 
a very flexible class of models often used for spatial data (Rue et al. 
2017). They have a hierarchical representation where observations 
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are assumed to be conditionally independent given a latent field 
and a set of hyperparameters (the reader can refer to Bryce et al. 
(2022) for a formulation of the hierarchical representation of the 
latent Gaussian field in the context of landslide modelling). Here, 
we denote the observations as (s), s ∈ S ( S is the study domain; i.e., 
the collection of SUs), which are assumed to depend on the sum 
of model components, (s). Our sum of model components has an 
additive structure, obtained by combining fixed and random effects, 
together with a term that accounts for the spatial effect among SUs. 
This is particularly relevant because, in the absence of a spatial 
effect, SUs located next to each other would be treated exactly in the 
same way as SUs far apart. As a result, our generic model structure 
takes the form:

where α is an intercept and (w1 (s),..., (wM (s))T are a subset of 
the covariates detailed in Table 1 with fixed (or linear) coefficients 
β = (β1,..., βM)T. The functions f = {(⋅),..., fK(⋅)} are random (or non-
linear) effects defined in terms of a set of covariates (z1(s),..., zK(s))T. 
The specific form of the functions (⋅) is that of a Gaussian ran-
dom walk of order 1 (RW1), defined over a binned version of the 
covariates. This is used to capture the non-linear relationship the 
covariate might have with the DF susceptibility or intensity. Lastly, 
the term (s) is the spatial effect represented by a Gaussian process 
with Matérn covariance structure. For more details, we refer the 
reader to Bakka et al. (2018). Overall, the model structure described 
above is valid both for susceptibility and LGCP cases, denoted as 
ηBernoulli(s) and ηLGCP(s), and the next two sections will dive into 
the specifics of how each of the two selected models will tackle the 
landslide prediction.

The susceptibility model

We model DF susceptibility with a Bernoulli distribution, 
thus we have that y(s) = ODF (s) ∈ {0,1} and y(s) | ηBernoulli(s) ≡ 
Bernoulli(p(s)), where p(s) = Pr{ODF(s) = 1}. The probability.

(s) is related to the sum of model components, ηBernoull(s), 
through the logit link, so that p(s) = exp{ηBernoulli(s)} / 
(1 + exp{ηBernoulli(s)}).

The sum of the susceptibility model components, ηBernoul(s), 
follows the general model structure of Eq. 1, with its specific form 
depending on the influence of the covariates on the DF suscepti-
bility. To find the most appropriate way to express the influence of 
each covariate, as well as whether each given covariate provides 
useful information to the model, we conduct a dual-stepped varia-
ble selection. This is performed by testing each covariate in a linear 
and nonlinear form, as well as introducing these two realisations 
as part of a standard stepwise forward procedure (Steyerberg et al. 
1999). This procedure calculates the Deviance Information Crite-
rion and the Watanabe-Akaike Information Criterion (DIC and 
WAIC respectively; Meyer 2014; Gelman et al. 2014). Out of all the 
covariates listed in Table 1, the selected ones and their specific form 
as part of the susceptibility model are detailed below in Table 2 (all 
the pre-processing is unreported for reasons of conciseness).

(1)�(s) = � +
∑

Mm=1�mwm(s) +
∑

kK=1fk
�

zk(s)
�

+ u(s), s ∈ S

The log‑Gaussian Cox process

We model the spatial rate of DF occurrences per SU (DF intensity) 
via a log-Gaussian Cox process (LGCP). This model has a doubly 
stochastic nature consisting of an inhomogeneous Poisson point 
process whose random intensity surface is expressed in the loga-
rithmic scale, allowing it to be modelled with a Gaussian likelihood 
(Illian et al. 2008).

One of the properties of the Poisson distribution is that it is 
consistent across any spatial resolution due to Poisson additivity. 
In other words, the sum of N-independent Poisson variables with 
mean λi, i = 1,…, N is again a Poisson variable with mean ∑N

i λi. 
From this, we can define a spatial Poisson process over a continu-
ous space such that for example a region, A, within the study area 
contains a random number of events (e.g., landslides) that follow 
the Poisson distribution with mean λ(A) = ∫A λ(s), where λ(s) > 0 
denotes the intensity at location s.

A spatial Poisson process with a spatially varying random 
intensity Λ(S ) is called a Cox process and if Λ(S ) is modelled as a 
Gaussian process in the log scale, it is known in the statistical litera-
ture as an LGCP (Bachl et al. 2019). In the context of latent Gaussian 
models, Λ(S ) is linked to the sum of the model components of the 
same form as Eq. (1) as follows:

A methodology proposed by Illian et al. (2012) allows us to 
fit an LGCP model using the integrated nested Laplace approxi-
mation by constructing a Poisson approximation to the LGCP 
likelihood. The number of DF points in each cell (defined from 
a regular lattice over the study area) are counted, CountDF(s), 
and if we assume that the regular lattice is small enough and 
that the latent field is correctly discretized then the approxima-
tion is sufficient for the LGCP likelihood. In this study, rather 
than a regular lattice defined, we use the SU partition. This can 
be further broken down as the number of points in each SU fol-
lowing a Poisson distribution with its mean represented by the 
intensity of the cell. This intensity is then approximately equal 
to the area of each cell multiplied by the exponential value of 
the latent field in each cell.

This process ensures that the number of DFs occurring in an SU 
can be considered rather than simplified into the binary classifica-
tion typical of susceptibility studies. In other words, the suscepti-
bility case keeps the zeroes exactly in the same form as the LGCP. 
However, the positive value is compressed to one, denoting slope 
instability. Conversely, the LGCP framework allows modelling the 
numerosity of the slope failures rather than being limited to the 
presence/absence situation. The selected covariates and their spe-
cific form of entry underwent the same variable selection procedure 
described in Section 4.3. Out of all the covariates listed in Table 1, 
the selected ones and their specific form as part of the LGCP model 
are detailed below in Table 3 (all the pre-processing is unreported 
for reasons of conciseness).

(2)Λ(S) = exp(η(S))

(3)log(Λ(S)) = η(S)
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