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Fire, environmental and anthropogenic
controls on pantropical tree cover
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Explaining tropical tree cover distribution in areas of intermediate rainfall is challenging, with fire’s role
in limiting tree cover particularly controversial. We use a novel Bayesian approach to provide
observational constraints on the strength of the influence of humans, fire, rainfall seasonality, heat
stress, and wind throw on tropical tree cover. Rainfall has the largest relative impact on tree cover
(11.6–39.6%), followedbydirect humanpressures (29.8–36.8%), heat stress (10.5–23.3%) and rainfall
seasonality (6.3–22.8%). Fire has a smaller impact (0.2–3.2%) than other stresses, increasing to
0.3–5.2% when excluding human influence. However, we found a potential vulnerability of eastern
Amazon and Indonesian forests to fire, with up to 2% forest loss for a 1% increase in burnt area. Our
results suggest that vegetation models should focus on fire development for emerging fire regimes in
tropical forests and revisit the linkages between rainfall, non-fire disturbances, land use and broad-
scale vegetation distributions.

While precipitation gradient explains much of the transition between tro-
pical forests and more open ecosystems1,2, many different vegetation and
tree compositions exist in intermediate and particularly seasonal pre-
cipitation regions. Beyond agricultural and urban areas, which have
replacedordegraded~29.2%ofnatural tropical ecosystems (Supplementary
Fig. 1), many vegetation models invoke fire as a primary disturbance to
reproduce realistic vegetation distribution in seasonal tropical climates,
maintaining low tree cover in savanna and grassland ecosystems3–7. In these
Fire Enabled Dynamic Global Vegetation Models (FDGVMs), fire main-
tains a balancebetweenwoodyandnon-woody vegetationbypreventing the
encroachment of trees into grasslands and promoting the growth of more
fire-adapted herbaceous plant types. FDGVMs consider fire a significant
disturbance in most tropical ecosystems8. While extreme temperatures can
reduce tree cover by causing water stress, leading to leaf area reduction,
branch cavitation and ultimately, death of trees,models generally simulate a
larger impact from fire than heat stress on tropical tree cover, particularly in
savannas and grasslands9.

However, there is a lack of empirical or observational data or studies
that can directly inform the relative importance of these controls on

FDGVM resolutions across the tropics10 and modelled fire impacts on
vegetation are particularly poorly constrained observationally7,11,12.
Field-based13 and empirical analyses using remotely sensed products
identify the coincidence of burnt area with the reduced occurrence
(“missing”) of intermediate (50–60%) tree covers14–18 as evidence of a
substantial impact of fire on tree cover. On the other hand, recent field
analyses of fire impacts in relation to soil and climate19,20 suggest that fire
could have a smaller effect on tropics-wide tree cover than suggested up
to now. Critical evaluations of the most used global woody cover
product have also questioned the intermediate tree cover gap21–24.
Finding constraints on the relative contributions of different factors in
maintaining tree cover has become particularly important given how
much global vegetation models are utilised to assess ecosystem and
carbon impacts of climate, carbon budgets, and environmental and land
use change25,26.

For this analysis, we focus on the “maintenance of tree cover”—the
factors that support or suppress existing tree cover. This approach examines
what sustains the current tree cover rather than the dynamic changes in tree
cover over time. It differs from the “determination” of tree cover, which
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reflects both historical and present conditions, such as how firesmight clear
land and transition forests to different land uses27,28.

We employed a Bayesian limitation framework29,30 to test climate and
environmental influences on tropical tree cover. The framework was opti-
mised against tree cover observations from the MODIS Vegetation Con-
tinuous Fields (VCF) collection 631 at a spatial resolution of 0.5° (~50 km at
the equator), similar to standard FDGVM resolutions32,33, noting that the
main FireModelling Intercomparison Project (FireMIP) ismoving to a 0.5°
grid as standard34. The framework models tree cover as a product of four
limiting factors (see Supplementary Fig. 1; Supplementary Table 2):
1. Mean Annual Precipitation (MAP)
2. Energy, combiningMeanAnnualTemperature (MAT) and Shortwave

Radiation (SW)
3. Stress or disturbance, which includes factors such as fire, rainfall sea-

sonality, heat, and windthrow
4. Human pressure, expressed as land use (cropland, pasture, urban

cover) and population density.

Each limiting factorwasmodelled as a linear combination of its drivers
and represented by a logistic curve that takes a value between 0 and 1. The
final Fractional TreeCover (TC)was calculated as the product of limitations
imposed by all four factors. This means, for instance, that MAP defines the
upper limit on tree cover in regions where energy, stress, and human
pressure are not limiting.

We applied a Bayesian inference technique to optimise the framework
againstMODISVCF tree cover data31. Themodelling approach allows us to
systematically remove the influence of each control, enabling the explora-
tion of how each factor independently affects tree cover. The Bayesian
optimisation generates probability distributions for each simulated tree
cover scenario, providing comprehensive uncertainty quantification29,30.
This combination of systematically isolating the influence of each control
and the Bayesian technique’s production of probability distributions allows
us to assess how confident we are in the model’s predictions30,35,36. It also
helps gauge the reliability of any experiments conducted, particularly when
examining correlated factors like tropical fires and seasonal drought-
induced stress37,38, and co-varying land use and fire7,39,40. The Bayesian fra-
mework also inherently accounts for stochasticity, enabling the exploration
of unpredictable factors, such as windthrow and long-return interval fires,
and their potential impacts on tree cover41. This process allows for experi-
ments that test the effects of removing or interacting drivers, making it
possible to assess both individual and joint impacts of different factors on
tree cover.

The optimisation was conducted across the pan-tropics between 30°
North to South, leveraging the spatial variability of tree cover in MODIS
VCF data to inform the model. To evaluate the model’s performance, we
used 20%of theMODISVCF data for parameter optimisation and reserved
the remaining 80% as validation data. While this overlap between training
andvalidationdatasets introduces somepotential bias, the lackof alternative
global datasets at this resolution makes this approach necessary. Impor-
tantly, we focused on understanding the relative impacts of different con-
trols on tree cover, rather than producing absolute predictions. This also
mitigates against any potential biases in theMODIS VCF training data21–24.
MODISVCF datawas used to calibrate themodel but was not incorporated
as input data in tree cover predictions. The Bayesian optimization generated
parameter distributions that inform the final predictions, ensuring that the
impacts of climate, stress, and human pressures on tree cover can be
quantified independently of the direct use of MODIS VCF data in the final
predictions.

The simulated distribution of tree cover compares well against test
observations (see evaluation supplement and Supplementary Fig. 2, Sup-
plementaryFig. 3).Whereobservationsof tree cover alignwith thepredicted
range (Supplementary Fig. 4), indicates the model correctly reproduces the
controls’ influence on tree cover and its uncertainty30.We report changes in
cover at the 10–90% percentile confidence range of the framework’s pos-
terior probability distribution, which provides a range of plausible

constraints on each factor’s impact. Assumptions about noninteracting
factors are included in uncertainty ranges41. Seemethods for full framework
description.

When analysing the impact of different factors on tree cover, we
consider two key measurements. The first is the absolute difference (or
impact) on tree cover with and without the influence of the factor in
question. The second is the relative impact on tree cover, measured as the
difference in tree cover as a percentage of the original tree cover before the
factor was introduced.

After assessing how large-scale climate gradients influence tree cover,
we use this framework to test how stresses and human impacts limit tree
cover tropic-wide and in different vegetation types. We identify fire impact
on tree cover as a significantly lower response than found in fire-enabled
DGVMs. We demonstrate how our results are consistent with field mea-
surements andfire exclusion experiments before discussing the implications
for global vegetation modelling. Finally, we explore where tree cover is
sensitive to recent or potential future changes in fire.

Results
Environmental controls and human impact
MAP is the primary control of tropical tree cover and dominates in arid and
semi-arid ecosystems, with rainfall distribution consistently the largest
factor influencing stress (Table 1, Fig. 1, Supplementary Fig. 5). Limitation
fromMAP reduces relative tree cover by 11.6–39.6% (Table 1). MAP exerts
the least control in wet forests (2.4–13.1%) and most in deserts
(35.3–72.0%). Energy (i.e.,MATandSWcombined) onlyhas a small impact
on tropical tree cover, primarily from co-limitation with MAP in moun-
tainous areas (Fig. 1), impacting relative tree cover by 0–0.09% (Table 1).

Limitation from environmental stresses (i.e., the combined stresses of
rainfall seasonality, fire, heat stress and wind) occurs almost everywhere in
the tropics, resulting in a 12.8–28.6% relative tree cover reduction (Table 1).
We use four metrics as a proxy for rainfall seasonality: Fractional mean
annual dry days, fractional number of dry days in the driest month, pre-
cipitation in the driest month, and mean seasonal precipitation con-
centration. The results presented here summarize the impact via
performance-weighted contributions of all. Rainfall seasonality has the
most considerable impact from all the stress controls, causing a relative tree
cover reduction of 10.5–23.3%. It is particularly important in the seasonal,
fire-prone savanna ecosystems (reducing relative tree cover by 19.5–30.3%)
in Africa, Asia, Indonesia, Australia and Southern Amazonia, in the
savanna-forest ecotone areas extending into the SouthernAmazonian forest
and the tropical forests of Central Americas (Fig. 2). These stresses co-limit
with MAP over much of the tropics but dominate in some African and
Australian savannas (Fig. 1).

Limitation from human pressure (Land use and population) is
important in southern Amazonia forests, Northern Andes and Chocó-
Manabí Corridor and central tropical Indonesia, impacting relative tree
coverby 29.8–36.8% (Table 1).All controls except energy limits tree cover in
deciduous ecosystems. They are particularly affected by heat stress and
rainfall seasonality, impacting relative tree cover by 12.1–34.6% and
21.0–35.4% respectively (Table 1).

The impact of fire relative to other stresses
Overall, fire (assessed using burnt area) has the least impact from the
stressors tested, with a relative tree cover reduction of 0.20–3.2%. Its impact
is smaller than heat stress (relative reduction of 6.31–22.8%, Table 1,
p = 0.0001, Supplementary Table 1) and windthrow (3.0–8.7%, p = 0.061).
Betweenecosystems,fire impact is greatest in savanna/grassland (0.6–7.1%),
though this is still less than rainfall seasonality, heat stress and windthrow
(Fig. 3; P = 0.013, 0.020, 0.28, respectively). Most of the fire impact is in
African savannas (Fig. 2).

The fire’s impact is concentrated in warm, seasonal climates with
moderate rainfall, predominantly the same regions of high burnt area
(Fig. 4).WhereMAP is between 100–2000mm/yr, fire impact on tree cover
increases as rainfall seasonality andMTWMincrease. Fire only impacts tree
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cover above 2000 mm/yr in areas with extreme seasonality and high tem-
peratures. Fire impacts occur in phenologically seasonal regions (Fig. 4), but
not exclusively.

Fire’s impact is significantly smaller than the 3.4–34.9%
(P = 0.066–0.0003) across all FDGVMs in the fire model intercomparison
experiments (FireMIP)6. FireMIP compared the difference between fire-on
and fire-off experiments that both ran throughout the historic period.
While similar to our experiment, the historic period may have had tran-
sient fire impacts on tree cover, such as fire regime shifts and deforestation
fires, not tested by our framework. The significant and substantial impact,
particularly in savanna climates, which have seen consistently high levels of

burning for millions of years42 and are therefore less likely affected by
transient effects, still suggests that FDGVMs fire impact on tree cover is too
strong for some regions in the present day. However, humans can sub-
stantially diminish fire impact on tree cover in savannas. In areas where
land use reduces tree cover, fire can only impact tree cover over this
reduced area, and land use and active suppression tend to reduce burnt
area in the tropics by inhibiting fire spread even in areas nearby but outside
agriculture29,43. We quantify fire impact on tree cover without human
influence by simulating the impact on tree cover from the burnt area we
would expect to observe without human modification, which we obtained
from29 (see methods) and without population density or land use influence

Table 1 | Environmental stresses and anthropogenic pressures impact on tropical tree cover by biome

All tropics Deciduous 
vegetation Wet Forests Dry Forest Savanna/

grass Mediterranean
Summergreen 

Forests/
woodland

Desert/shrub

10% 90% 10% 90% 10% 90% 10% 90% 10% 90% 10% 90% 10% 90% 10% 90%
Observations 27.84 17.54 53.85 35.76 22.64 38.7 38.27 13.43

Simulation 23.21 32.48 16.23 26.1 42.27 53.93 22.72 35.87 18.79 29.95 22.28 35.05 22.64 35.82 8.18 14.63

MAP
area 3.04 21.29 3.77 22.4 1.02 8.15 1.8 13.91 2.9 16.01 1.75 15.85 1.93 16.41 4.47 37.54

relative 11.58 39.59 18.85 46.19 2.36 13.12 7.34 27.95 13.37 34.84 7.29 31.14 7.86 31.42 35.33 71.96

Energy
area 0 0.03 0 0.02 0 0.05 0 0.03 0 0.02 0 0.03 0 0.03 0 0.01

relative 0 0.09 0 0.07 0 0.1 0 0.08 0 0.07 0 0.09 0 0.09 0 0.07

Env. Stress
area 3.4 12.98 5.47 17.01 2.22 12.07 2.61 11.57 5.47 17.15 0.78 6.98 0.9 8.44 0.66 5.07

relative 12.77 28.55 25.2 39.46 4.99 18.29 10.31 24.39 22.56 36.41 3.38 16.61 3.81 19.08 7.44 25.75

Human 
Pressure

area 9.87 18.91 9.39 19.36 14.71 25.85 10.15 21.87 9.83 20.41 8.07 17.79 8.66 19.02 3.43 8.31

relative 29.84 36.79 36.65 42.59 25.81 32.4 30.87 37.88 34.35 40.52 26.58 33.66 27.68 34.69 29.52 36.22

Burnt area
area 0.05 1.06 0.1 2.24 0 0.27 0 0.28 0.12 2.28 0 0.05 0 0.06 0 0.12

relative 0.2 3.16 0.63 7.9 0.01 0.49 0.01 0.77 0.61 7.07 0 0.13 0 0.16 0.01 0.82

Heat Stress
area 1.56 9.59 2.24 13.81 1.15 8.79 1.2 8.6 2.31 12.49 0.38 4.89 0.46 5.78 0.4 3.86

relative 6.31 22.8 12.11 34.61 2.65 14.02 5 19.34 10.95 29.43 1.67 12.24 1.99 13.9 4.61 20.88

Wind
area 0.7 3.09 0.94 3.93 0.52 2.85 0.6 2.84 0.95 3.53 0.13 1.05 0.18 1.49 0.2 1.2

relative 2.95 8.69 5.5 13.09 1.23 5.02 2.57 7.34 4.8 10.55 0.57 2.91 0.8 4 2.37 7.56

Rainfall 
seasonality

area 2.72 9.88 4.31 14.33 1.44 8.65 1.95 8.59 4.56 13.03 0.47 4.79 0.55 5.95 0.61 4.05

relative 10.48 23.32 21 35.44 3.29 13.82 7.92 19.33 19.54 30.31 2.05 12.03 2.35 14.25 6.97 21.69

Population 
density

area 0.01 0.15 16.2 26.24 0.02 0.3 0.02 0.33 0.01 0.13 0.02 0.34 0.02 0.34 0.01 0.12

relative 0.05 0.47 49.96 50.14 0.05 0.55 0.08 0.91 0.04 0.43 0.08 0.95 0.08 0.93 0.08 0.81

Urban area
area 0.35 0.58 2.35 4.21 0.66 1.1 0.64 1.29 0.3 0.57 0.69 1.44 0.74 1.47 0.25 0.51

relative 1.48 1.76 12.64 13.89 1.54 1.99 2.74 3.47 1.55 1.87 3 3.96 3.15 3.95 2.91 3.36

Cropland 
area

area 2.33 3.94 4.48 9.69 3.43 5.63 3.1 5.9 1.95 3.44 1.84 3.72 2.01 3.92 0.88 1.78

relative 9.13 10.81 21.65 27.07 7.5 9.45 11.99 14.12 9.4 10.31 7.63 9.59 8.15 9.87 9.74 10.83

Pasture 
area

area 4.22 8.78 6.29 12.62 4.84 10.03 3.32 8.32 5.21 10.94 2.4 6.75 2.87 7.58 1.37 3.76

relative 15.38 21.28 27.92 32.6 10.27 15.68 12.76 18.82 21.69 26.75 9.72 16.15 11.24 17.46 14.36 20.43

Burnt area 
with no 
human 

Pressure

area 0.06 1.74 0.13 3.15 0 0.53 0 0.52 0.14 3.46 0 0.1 0 0.13 0 0.23

relative 0.26 5.17 0.79 10.78 0.01 1.01 0.02 1.62 0.8 10.84 0 0.33 0 0.42 0.01 1.62

Other biomes are aggregated fromOlsen et al. as per29. Tree cover “area” is the difference in land coveredby treeswith andwithout the control’s influence. “Relative” is the relativedifference (i.e. tree cover “area”
relative to the tree cover unconstrained by the factor/control). 10%and 90%percentiles accounts for framework uncertainty. The colours in the table are shaded according to the intensity of impact, highlighting
where the stresses or pressures have the greatest effect, with darker shades indicating larger impacts.
Deciduous vegetation shows the impact on tree cover weighted by the grid-cell fraction of deciduous vegetation from ref. 85, regrided as per ref. 78.

https://doi.org/10.1038/s43247-024-01869-8 Article

Communications Earth & Environment |           (2024) 5:714 3

www.nature.com/commsenv


on tree cover (Fig. 5). Without direct human impact, fire would limit tree
cover by 0.3–5.2% - more comparable to FireMIP models, though a similar
experiment without humans has not been assessed as part of FireMIP yet.
Without humans, fire’s impact on savanna is 0.8–10.8% (Table 1).
Although less than other stressors, it has a substantial effect, highlighting
the importance of including human factors in fire and vegetation
modelling.

Fire impact on tree cover in areas with high burned area is more
substantial, comparable to croplandandpasture (Fig. 6). It reduces tree cover
by 0.2–0.6 per unit burnt area at burnt areas >60%, compared to 0.7–1.0 per
unit cropland area and 0.4–0.6 per unit pasture area (Fig. 7). However,
annual burning covers a smaller area than land use - 3.8–5.7% of the tropics
(dependingon the dataset used, Supplementary Fig. 6).There is considerable
uncertainty in the impact when burnt area is low, with tree cover reduction
up to 10 times the annual average burning in areas with little fire. This
suggests that, in regions with small burnt areas, the introduction of fire may
still substantially impact tree cover. As burnt areas increase, their impact on
tree cover is roughly linear. In contrast, the impact of heat stress increases
sharply at temperatures above 35 °C and riseswithwindup to 4m/swith the
possibility of much larger impacts for windspeeds >10m/s. Relative tree
cover impacts increase exponentially with rainfall seasonality, linearly to
urban and cropland areas, and plateaus when pasture area cover is 20%.

Fire has little effect on tree cover bimodality (Fig. 9). No variable
contributes solely to the intermediate tree gap identified in refs. 17,44
though removing the impact of heat stress or rainfall seasonality splits the
gap to lower and higher tree covers (i.e. from between 33% and 98% to
between <20% and ~40% and between ~60% and ~98%). Removing the
effect of either cropland or pasture reduces the gap’s magnitude.

Sensitivity of tree cover to disturbance
Tree cover in most savanna, grass and desert areas of the tropics is insen-
sitive to small changes in any controls, i.e., for trees to establish, they require
a considerable reduction in the limitation imposed by bothMAP and other
stresses. (Figs. 1 and 2). However, in seasonal semi-arid areas, which are
susceptible to shifts in stress45 and where rainfall seasonality and heat stress
have the greatest impact (Fig. 2), marginal changes in rainfall patterns and
temperature could have a major impact on tree cover (Figs. 1 and 7). South

American forests and savannas are most sensitive to changes in land use,
suggesting agricultural practices could have the largest impact on future tree
cover in these regions. Rainforests across theAmazon, Congo, Borneo,New
Guinea Southern lowlands and Yunnan/Guizhou evergreen and dry
deciduous forests are also sensitive to land use impacts. Additionally,
Amazon and Indonesian rainforests show vulnerability to stress in key
deforestation areas (Fig. 2).

Marginal changes in burnt area have minimal impact on savanna tree
cover. Still, they could substantially impact tree cover in forest areas (Fig. 8).
A 1% increase in burnt area could decrease tree cover by as much as 2% (at
themodel distributions 90th percentile) in the southern and easternAmazon
basin, the Amazonia arc of deforestation and South America’s Atlantic
forests. Smaller but important regions of sensitivity to burning also include
Gabon and the western Congo forests (1.5–2% tree cover reduction with a
1% burnt area increase), southern Indonesia (1–2% reduction), the south of
China moist forests (up to 2% reduction) and the eastern India dry forests
(1–1.5% reduction). However, there is considerable uncertainty in this
sensitivity to fire, and our framework suggests that little to no change in tree
cover is also possible (Fig. 8).

Implications and uncertainties
Aside from MAP (mean annual precipitation), we show that rainfall
seasonality and land use are likely dominant factors in maintaining tree
cover at current levels. Beyond these, co-limitation from different con-
trols (Figs. 1 and 2) suggests that no single factor influences savanna tree
cover, noting that soil texture and fertility, not included here, could also
determine the location of forest-savanna transitions20 with variations at
finer resolutions than tested here. All variables have a negligible effect on
the bimodality of the reconstructed tree cover (Fig. 9) and are unlikely to
be a cause of the “missing” intermediate tree covers at the resolution we
test. Alternative drivers for missing intermediate tree cover include the
natural distribution of cover expected under random fluctuations46 and
biases in tree cover observations, which tend to underestimate tree cover
in savannas21,24. Our results suggest that either of these or factors not
included, such as soils, are more likely drivers of tree cover bimodal
distribution. As relevant soil properties vary at a finer resolution than
there are detailed tropical observations, we did not test soil here.

Fig. 1 | Limiting controls on tree cover. a–c Shows the relative standard limitation
for each control and d–f normalised sensitivity of each factor. Purple shows areas
limited by mean annual environmental stresses (S), yellow by human pressure from
population density and land use (L), Cyan by Mean annual Precipitation (P) and
dots byMeanAnnual Temperature and Shortwave Radiation (T). Red represents co-
limitation by S&L, blue by S&P, and green by L&P. Shades show the relative

importance of the limitation, with darker, intense shades indicating a stronger
impact, lighter shaded (and none-capitalised letter in legend) less impact, and white
indicating little or no limitation - by definition coinciding with high tree cover. From
top-bottom maximum stress, human pressure, and MAP limitation at 10%
likelihood.
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However, future work in specific locations and finer scales could incor-
porate soil properties.

The impact of land use on tree cover does not always match the
extent of the tree cover itself. This is because, in addition to the extent of
land use changes, reductions in tree cover may diverge due to various
factors, including spatial heterogeneity, differential sensitivity of vege-
tation types, ecological resilience and regeneration processes, frag-
mentation effects, management practices, and climate and
environmental factors. While some of these impacts extended beyond
the land cover extent itself, we safely assumed that they occur within the
same gridcell, given the coarse scale of analysis (0.5°, ~50 km) employed
in this study. That tree cover responses follow cropland extent (Fig. 6)
suggests that any additional impact on tree cover beyond cropland
extent are negligible on our coarse scales. Urban areas do have a large
impact beyond their extent – up to 10 times at lower urban covers,

possibly owing to factors such as heat island effects, altered micro-
climates, fragmentation of surrounding ecosystems, and direct human
disturbances such as deforestation and land clearing for urban expan-
sion. Pasture, however, shows a smaller impact than pastures own
extent, especially as pasture area increases, indicating high tree cover
retention at higher pasture areas.

Heat stress and windthrow have a substantial impact on tree cover
which is in line with47,48. Few DGVMs incorporate direct effects of either
(though note8), which our results suggest might also aid simulated vegeta-
tion distribution. For example, heat stress affects the productivity of vege-
tation. It can have large implications for the resilience of tropical forests
towards the more severe climate projections into the twenty-first century49.
While DGVMs represent declines in productivity at higher temperatures
(and lower precipitation), some mortality mechanisms, such as xylem
embolism during extreme heat and drought50, may be underrepresented in

Fig. 2 | The percentage reduction in tree cover area by each environmental and
human stresses. Each row represents a different stress (top-bottom): a, b Fire (using
burnt area), c, d heat stress, e, f windthrow, and g, h seasonal rainfall distribution.
These are followed by human pressures: i, j population density, k, l urban area,
m, n cropland area and o, p pasture area. For each stress or human pressure, two

maps are shown: the left map represents the 10th percentile, and the right map
represents the 90th percentile of the likely range of the stress’ impacts, illustrating the
range of uncertainty in the estimated tree cover reduction. This figure allows for a
visual comparison of both the magnitude of tree cover reduction by each stress and
the confidence level (percentile range) associated with these reductions.
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models51. Also biotic attacks following drought and/or windthrow events52

are generally not represented in models.
Fire has a surprisingly low influence on tropics-wide tree cover, though

it plays a more important role in savannas, suppressing tree cover by
0.6–7.1%. Without human impact on burnt area and tree cover loss, the
impactonfire in savannashas thepotential to bemuchhigher at between0.8
and 10.8% (Table 1). This is more in line with empirical studies and field
experiments13,53 though it still shows that the independent impact of fire is
not enough to fully explain the lack of tree coverwithin savannas. The use of
remotely sensed data may contribute to the surprisingly low impact.
Overstory mortality is generally minimal in frequently burned woodlands
and savannas, with frequent surface fires primarily influencing recruitment
through high seedling/sapling mortality. Therefore, the observed low
impact of burnt areas from surface fires on tree cover, as detected by
satellites,may reflect the resilience ofmature trees to fire-drivenmortality in
these environments. However, it is worth noting that FDGVMs tend to
target remote sensed burnt area for parameterisation and evaluation11,32,54.

We were able to separate out the effects of different co-varying
impacts – which is challenging in many field-based and empirical studies
that often consider fire in isolation from other dry disturbances13. These
findings are not inconsistent with the idea that fire has an important impact
on vegetation cover and species selection but suggest that tree covers are
mostly at equilibrium in fiery landscapes with present-day fire regimes.

By considering the controls on the static distribution of tree cover, the
study does not look at the sensitivity of factors that may determine forest
cover temporarily. In deforestation hotspots, increased deforestation rates
are associated with increased burning30, which can then decrease due to
subsequent land fragmentation35 – a process not inconsistent with but not
tested in this study. Large-scale tropical deforestation also leads to warmer,
drier and more seasonal conditions55,56 that our results suggest may main-
tain low tree cover. Fire may also play a role in future forest transitions,
resulting from interactions between land use change, fire and land-
atmosphere exchange in a changing climate.

The slight reduction in tree cover could be because of coarse
(0.5° × 0.5°) spatial scale. Other studies show a substantial impact (up to
20%13) of fire on tree cover at fire return intervals of around 1–10 years,
which would result in coarse-scale burnt areas of (1/return time) 10–100%
burnt area53. Here, we show tree cover is reduced only slightly less than the
annual average area burnt – consistent with these finer-scale studies and on
par with the impact of agricultural land use per unit area (Fig. 7). Therefore,
our results do not preclude a substantial impact of fire on cover if the same
areaswithin agivengrid cell are burning eachyear,whichwould also explain
tree cover changes found in fire exclusion experiments57. In mesic tropical
systems (savanna and dry forest),fire effects on tree cover can be substantial
if vegetation experiences frequent fires, particularly later in the dry season19.
These regions showahigher impact (Table 1; Fig. 4).However, burning here

still only impacts relative tree cover by up to 20%, with many areas seeing
little impact. Tree species in ecosystems prone to regular fires demonstrate
adaptations that allow them to survive, resprout and recruit in the presence
of burning58,59. These effects could be tested by representing subgrid het-
erogeneity or applying this framework at finer resolutions. From an Earth
System perspective, fire and the other stressors tested do not just impact
vegetation distribution. There are also disturbance-driven variations in
other important wood vegetation processes such as height, carbon uptake,
carbon allocation, hydrology, and ecosystem fluxes6,60,61, all of which are
influenced by fire.

Fire impact on tree cover is less than previously found in DGVM
studies6. Many fire-enabled DGVMs incorporate the impact of pre-
cipitation through carbon dynamics, which determines vegetation dis-
tribution to some extent. However, most models also require a
substantial impact from fire to simulate the correct distribution of tree
cover. As fire impacts co-vary with other stress factors, most notably
seasonal rainfall distribution (Supplementary Fig. 7, Supplementary
Fig. 8), DGVMs might overly rely on fire to simulate correct tree cover
distribution because they underestimate vegetation response tomoisture
availability. Some FDGVMs use fire intensity to describe fire impacts on
cover11,54, and incorporating intensity into this framework may help
constrain the broad uncertainty in fire impact - particularly in regions
with low burnt areas and high tree covers (Fig. 7). However, despite the
wide distribution of potential fire impacts, even the most extreme of our
framework’s posterior probability distribution suggests that fire reduces
tropical tree cover significantly less than any tested FDGVM. This
assumes that switching off fire from our present-day fire-on state would
result in vegetation cover equal to the fire-off simulation. Both simula-
tions have been spun up with and without fire, respectively, which may
lead to different stable states in the present day. More targeted firemodel
experiments (e.g. switching off fire at the present day and running to
equilibrium) are needed to provide a more specific test. Adapting our
framework to test the transient impacts of fire on cover (from, e.g.
deforestation fires) will also help attribute the differing impact fire can
have on tree cover over time.

We took advantage of the work in FireMIP to compare how fire
modulates tree cover to our observational constraints. Other model inter-
comparisons could perform similar factorial experiments to compare to our
results. The constraintswe have found on the impact of wind and heat stress
could be particularly useful to assess and re-parameterise vegetationmodels
that represent both these disturbances. Thismight also establish if the larger
impactoffire is due to little impact of climate seasonal rainfall, windthrowor
heat stress. Like DGVMs, our model considers similar responses of tree
cover across continents with different evolutionary histories and across
gradients of anthropogenic landscape modification. Further framework
development could attribute uncertainties in tree cover disturbance

Fig. 3 | Pairwise comparison of the likelihood that the stress or humanpressure in
each column reduces tree cover more than the one in each row. Each map in the
grid shows indicates the likelihood of the column stress having a greater impact on
tree cover reduction than the row stress. Blue areas represent regions where the
column stress is more likely to cause a higher reduction in tree cover, while brown
areas represent regions where the row stress has a higher likelihood. The stress or

pressure’s first two letters or initials are listed next to the relevant colour for each
map. For example, the top left blue areas show where Hs (Heat stress) reduces tree
cover more than Ba (Burnt area). White indicates equal likelihood, and lighter
shades of blue or brown show a slight likelihood difference between the column and
row stress. The colour gradients allow for a visual comparison of how different
stresses or pressures are likely to impact tree cover in various locations.
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responses to these assumptions, which may also help guide DGVM devel-
opment priorities.

Our framework shows considerable uncertainty in the impact of fire in
humid forests, which, historically, have not experienced regular burning.
Our framework suggests a plausible range from virtually no sensitivity of
forests to burning up to more than twice as much forest loss as changes in
burnt area. However, as these areas have not historically experienced high
fire occurrence, their vegetation is unlikely to be fire-adapted. And many
studies have highlighted tropical forest areas that experience infrequent
burning as particularly sensitive to even small increases in burning62–64. We
havenot considered thedistributionoffire resilience or acclimation tofire in
this study. There has been a considerable shift in burnt area controls found
inmanyof the pantropical forest areas29, and a recentUN report highlighted
Eastern and Southern Amazon and Indonesia as at risk for substantial
increases in wildfire occurrence35. In these regions, tree cover could still be
significantly affected by fire under future environmental change, particu-
larly if the speed of such a change precludes the establishment of more

adapted tree communities typical of more fire-prone wooded
ecosystems65–68.

Conclusion
Our results have shown that, over most of the tropics, human impacts,
rainfall seasonality, windthrow, and heat stress have a much more sub-
stantial direct impact on tropical tree cover than fire. Simulation of tropical
forest and savannadistribution should focusmoreon tree cover responses to
moisture and temperature. More emphasis on simulating non-fire dis-
turbance events may also improve simulated tropical vegetation distribu-
tions. However, we show that tropical forests are potentially sensitive to
small amounts of burning, even without considering the heightened vul-
nerability of these forests due to their lackoffire history.Given the increased
trend in burnt area in these regions29,35, fire could seriously reduce tree cover
under future climates, resulting in modification of important climatic
feedbacks that would fundamentally change the carbon dynamic in the
tropics. Therefore, based on our results, we recommend targeting FDGVM

Fig. 4 | The impact of burnt area on tree cover in bioclimate space.Dots indicate grid cells with (x-axis) Mean annual rainfall and (y-axis) rainfall seasonality for a, c and
maximum temperature of the warmest month for b, d. a, b Colour indicated fire impact on tree extent and c, d percentage deciduous cover vs. evergreen (see methods).
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development to simulatefire and vegetation responses to burning in tropical
forested areas - essential for evaluating future impacts offire in these carbon-
rich forests.

Methods
Modelling framework
We constructed a Bayesian limitation control model to estimate probability
distributions describing the likelihood of percentages of tropical tree cover
based on a set of environmental predictors similar to the framework out-
lined in refs. 29,30. These predictors, derived from spatial maps, were uti-
lized as inputs to the model, which was optimized to generate tree cover
maps as outputs.

In the framework, the 11 predictors influencing tree cover are linearly
combined into limiting controls (Supplementary Fig. 1; Supplementary
Table 2): (i) mean annual precipitation (MAP*); (ii) mean annual tem-
perature (MAT*); (iii) shortwave radiation (combining diffuse and direct
radiation sources) (SW); (iv) environmental “stress” (S) from fire, rainfall
seasonality, heat and windthrow; and (v) human pressure (comprised
mainly of “land use”, dubbed LU) combining urban, cropland, pasture and
population density. (ii) and (iii) aremultiplied together to form an “Energy”

limiting factor when displayed in the results.MAP*,MAT* and SW climate
controls are often used to understand vegetation distributions1,69 and have
been used by limitation studies exploring controls on net primary
production70. Grouping the stresses into one control follows the
concept that woody plant resilience and recovery strategies (e.g. resprout-
ing) help plants avoid mortality and rapidly re-establish after a range of
stresses61.

Each control was expressed as a linear combination of its respective
factors. Fractional tree cover (TC) was calculated as a product of limitations
imposed by control (f ðkc × ðXc � X0;cÞÞ where c is a control
ð* ¼ fMAP�;MAT�; SW; S; LUgÞ, with each control’s limitation repre-
sented by a logistic curve, f:

TC ¼ TCmax ×
Y*

c
f kc × ðXc � X0;cÞ
� �

f xð Þ ¼ 1= 1þ e�xð Þ ð1Þ

Where TCmax is used to aid our model optimisation as per29,30. X0,c is the
value of X c which reduces tree cover to 50% of its unconstrained area,

Fig. 5 | The percentage reduction in tree cover area by fire. a, b Fire as per Fig. 2,
c, d fire without direct human influence on tree cover and e, f fire without influence
from human impact on tree cover or burnt area. g, h Shows the added impact on tree

cover fire would have without humans influencing tree cover, while i, j shows fires
added impact without human influence on tree cover or burnt area. Columns show
10% and 90% percentiles accounting for framework uncertainty.
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and kc is the steepness of the logistic curve, equal to ¼ of the gradient at
Xc ¼ X0;c. k c> 0 where tree cover increases with the control (i.e.MAP�,
MAT�, SW), while kc< 0 and tree cover decreases for suppressive con-
trols (S and LU).

We assume that there is no tree cover when there is no
rainfall and, therefore, perform a log transform on MAP
(i.e.MAP� ¼ logðMAPþ 1=ncellsÞ where ncells is the number of grid
points),making our control curve (Eq. (1)) tend to zero as MAP tends to
zero. As MAT and SW had little impact individually on tropical tree cover,
we combined both into energy (E) control were f E ¼ f MAT�

� �
× f ðSWÞ.

We represented S and LU controls by combining factors (xi) weighted
by their respective influence (vi). For S control, as we describe cumulative
effects of annual average stresses, we do not assume that stress impact
accumulates linearly with each increased stress. For example, an increase
in one-degree temperature stress will likely have a much bigger impact
at high temperatures. To account for this, we raise each variable

to a power. Therefore:

Xc ¼
X
i

vi × xi
pi
�X

i

vi where v1 ¼ 1 and for f ¼ SW; LU; pi ¼ 1

ð2Þ

Datasets
We optimised the framework against MODIS Vegetation Continuous
Fields (VCF) collection 6 fractional tree cover31, regridded as per ref. 29.
Although refs. 21,24 recently demonstrated a potential bias in the tree cover
distribution of VCF, there are no alternative global fractional tree cover
datasets available which are independent of VCF, so our interpretation of
results focuses on contrasting the impact of different controls, which, given
our model setup, only assumes that VCF values regridded to 0.5° are cor-
rectly ranked.

Fig. 6 | The relative response of % tree cover to each environmental or anthro-
pogenic stressors. calculated as the difference in tree cover with and without each
stressors divided by tree cover without that control (Eq. (8), methods). Grey areas

represent the 10–90% uncertainty percentiles (in 10% increments) of the response
interquartile range. Red areas represent the 10–90% percentiles (in 10% increments)
of median response. The dotted lines show the frequency of occurrence of controls.
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Disagreement between burnt area datasets can significantly affect
analyses of fire and vegetation interactions71. We, therefore, ran the fra-
mework using five different burnt area datasets used in and provided by the
FireModel Intercomparison Project11,32,54 (Supplementary Fig. 6). Likewise,
to sample thewell-knowndisagreement betweenprecipitationdatasets72, we
used four different precipitation products (Supplementary Fig. 8): GPCC73;
MSWEP74 and CMORPH75,76 downloaded from the eartH2Observe portal
(http://www.earth2observe.eu/); and CRUTS4.0377 downloaded
from CEDA.

A variety of metrics can be used to describe rainfall
seasonality. As there is no single apparent metric candidate, we ran
separate optimisations with the following metrics (Supplemen-
tary Fig. 8):
• Fractional mean annual dry days (MADD), calculated as 1 - fractional

number of wet days for CRU, and number of days where rainfall is less
than 0.1mm for all other products.

• The fractional number of dry days in the driest month (MDDM) - as
above, but for the month with the smallest number of dry days.

• Precipitation in the driest month (MADM) - which we normalised by
the mean monthly precipitation, i.e.:

MADM ¼ min prm
� �

×
12

MAP
ð3Þ

Where prm is the monthly precipitation climatology over our study
period.

• The mean seasonal concentration of precipitation (MConc) is calcu-
lated as per the concentration metric78. i.e.:

Mconc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lx

2 þ Ly
2

q
:P

mprm

where Lx ¼
X
m

prm × cosðθmÞ and Ly ¼
X
m

prm × sinðθmÞ ð4Þ

Where θm corresponds to the direction of the month, m, in the
complex plane.

We calculated annual averages between 2000 and 2013 - the dataset’s
commonperiod - for the region between 30°North and 30° South to delimit
the tropics and subtropics at 0.5° resolution - the dataset’s most common
resolution.We performed bilinear resampling for data not already on a 0.5°
grid, using the R Package ‘raster’79.

Optimisation
We optimised our framework’s reproduction of tree cover using a Bayesian
inference technique41. Bayesian inference allows us to quantify framework
uncertainty, including uncertainty for variables with multiple realisations,
and therefore provides confidence in our driver’s impacts - applicable when
assessing co-varying variables. Instead of giving us a single, defined set of
parameters, Bayesian inference produces the probability distribution for
each parameter, which we propagate through to the influence of controls,
limitation factors and overall tree cover. Bayes theorem states that the
likelihood of the values of the unexplained parameter set, β (i.e. parameters
in Eqs. (1)–(4), as well as our error terms (σ, P0), given a set of observations
(Obs), is proportional to the prior probability distribution of β (PðβÞ) by the
probability of Obs given β. i.e

PðβjObsÞ / P β
� �

×PðObsjβÞ where

β ¼ X0

� �
; kf g; vi

� �
: pi
� �

;TCmax:σ; P0

� � ð5Þ

This gives us 23 parameters to optimise. We assume no prior knowl-
edge and so set generously large priors on all parameters: uniform priors
with only physically plausible bounds (i.e. [0, 1]) for TCmax, exponential

Fig. 7 | Response curves of the relative impact on
tree cover per unit of burnt area (top left) or land
use (other panels) in 1% burnt area/land use bins.
Calculated as ðTC� ið Þ � TCÞ=ðAbin ×TC� ið ÞÞ where
Abin is the burnt/land-use area of each bin and
TC*(i) is tree cover without burnt area/land use (i.e.
a value of 1 indicates a 100% tree cover exclusion
from the burnt/land-use area). Dotted lines show the
frequency of occurrence of burnt area/ land use.
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distributions with a generous rate parameter of 1 for vi, pih and kiwhich has
a lower (or upper for kS and kex) bound of 0, and normally distributed priors
with ameananddeviationof half the rangeof the corresponding control (i.e.
0.5 for fractional cover for land use) for x0.

Tree cover is approximately normally distributed under a logit trans-
formation, apart from a slight divergence at the intermediate tree cover gap
and a peak at 0 tree cover (Supplementary Fig. 9). We use the same zero-
inflated, logit-normal distribution from ref. 30.

P Obs ¼ 0jβ� � ¼ YN
i

1� TCi
2

� �
× 1� P0

� �

P Obs ¼ 0jβ� � ¼ 1� P Obs ¼ 0ð Þ β
�� �	 


×
N

σ ×
ffiffiffiffiffiffiffiffiffiffi
2× π

p × e
PN

i

logit obsið Þ�logitðTCi Þ
σi

h i2

ð6Þ

where i represents an individual datapoint, Obs ¼ fobsig is our set of
target observations and N is the observation sample size. Inferring the
posterior solution is a case of maximising Eq. (6). Inference and posterior
sampling were based on the ConFire model code30,80. The posterior
solution was inferred using a Metropolis-Hastings Markov Chain Monte
Carlo (MCMC) step with the PyMC3 Python package81. We ran 10
chains with 10,000 iterations over 20% of the data points (i.e. N = 2408
points) separately for each rainfall seasonality metric and each
precipitation and burnt area dataset. Unless otherwise stated, the
posterior solution is constructed by sampling 10 parameter ensemble
members from the last 5000 iterations of each chain (i.e, 100 samples for
each dataset/seasonaility metric combination). A combined posterior was
calculated by bootstrapping 1000 ensemble members across datasets and
rainfall distribution metrics members, with the selection probability
derived from Eq. (6). Sampling was performed using the Iris package82

with Python version 3 (Python Software Foundation, https://www.
python.org/).

Measures of impact on tree cover
We follow a modified version of Kelley et al.29 definitions of limitation and
sensitivity to controls. This approach allowed us to quantify both absolute
and relative contributions of individual controls and factors. The impact on

tree cover of a factor or control, i, is the absolute difference in tree coverwith
(TC) and without (TC�ðiÞ) that factors influence (jTC�ðiÞ � TCj).We used
this for Table 1 and Figs. 2 and 5.

The relative impact on tree cover (pe(i)) of a given control or factor, i, is
the increase in tree cover if the limitation imposed by i is removed in the
presence of other controls:

peðiÞ ¼ TC�ðiÞ � TC
TC�ðiÞ

ð7Þ

Asused in Figs. 4 and 6. For controls,TC� Xc

� �
is simply the product of

all factors, excluding that control, (*nc) i.e:

TC�ðXcÞ ¼ TCmax ×
P*nc

j f ðkj × ðXj � X0;jÞ and therefore

peðiÞ ¼ TC × ð1� f ðki × ðXi � X0;iÞÞÞ ð8Þ

If i is a factor within control c thenwe simply remove i from that factor
(I\i):

TC�ðXcÞ ¼ f kc ×
PIni

j vj × xj � v0;j
� �� �

×
Q*nc

j f ðkj × ðxj � x0;jÞÞ
and therefore

peðiÞ ¼ TC × 1�
f kc ×

PIi
j vj × xj � v0;j

� �� �
f ðkc × ðxc � x0;cÞÞ

0
@

1
A ð9Þ

which is the product of all factorswith the contribution of control iwithin its
factor, l removed.

The probability of pe for i being significantly different than j
(PðpeðiÞ≠ peðjÞÞ) is the root of the multiplied distributions, as per35.

P peðiÞ≠peðjÞ� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
PðTCjβ�ijObsÞ× PðTCjβ�jjObsÞdTC

s
ð10Þ

Where β�i is the set of parameterswith vi set to zero, removing the influence
of factor (or factors if testing a control) i.

Reported P-values in the main text are then 1� P peðiÞ≠ peðjÞ� �
, to

conform to the convention of testing for a null result.

Fig. 8 | Senstivity of tree cover to changes in
burnt area. Reduction in tree cover due to a 1%
increase in burnt area for (top) 90% and (bottom)
10%uncertainty range. Note that the colour scales of
the two maps differ.
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To test the impact and relative impact of burnt area in the absence of
human pressure, we performed two additional tests:
1. The impactfirewouldhavewithoutdirect human impact on tree cover.

To do this, we compared tree coverwithoutLUwith tree coverwithout
LU and burnt area. ie jTC�ðburnt area; LUÞ � TC�ðburnt areaÞj for

tree cover impact and

TC�ðburnt area; LUÞ � TC�ðburnt areaÞ
TC�ðburnt area; LUÞ for relative tree cover impact

ð11Þ

Fig. 9 | Frequency of occurrence of tree cover in
1% bins. Top left for VCF observations, with colour
indicating the frequency of occurrence by aggre-
gated Olson biomes84 (see methods). Top right for
the framework with black showing 10% and grey
showing 90% percentile based on parameter
uncertainty and dashed line the VCF observations.
This corresponds to red-shaded regions’ in sub-
sequent plots, which show tree covers from the
framework when each listed environmental stress or
human pressure control is removed.
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2. The impactfirewould havewithout direct human impact on tree cover
and burnt area. We used simulation from just GFED4s, which we
replaced with reconstructed burnt area from the 1000 ensemble
members without human influence (crop, pasture and population
density) in ref. 29. Each member was randomly sampled when con-
structing TC�ðburnt area; LUÞ and TC�ðburnt areaÞ in Eq. (12).

The limitation imposed by a control (L(Xc)) is simply one minus the
maximumtree cover allowed for that factor. For S andLU, wefirst normalise
themaximumallowed tree cover by the tree coverwhen the factor is 0, i.e. so
that tree cover is not limited by stress when there is no stress, or human
pressure when there is no human pressure:

L Xc

� � ¼ 1� f kc × ðXc � X0;cÞ
� �

Xc ¼ MAP�;MAT�; SW

1� f kc × ðXc�X0;cÞð Þ
f �kc ×X0;cð Þ Xc ¼ S; Ex

8<
: ð12Þ

Wealso evaluate how sensitive tree cover is to changes in each control to
establish the resilienceof the tree cover to environmental change (“sensitivity”
from ref. 29). The sensitivity of a control or factor (R(i)) is the tree covers rate
of change (G(i)) relative to themaximum rate of change in tree cover for that
control (i.e. when X =X0), again in the presence of the other control:

GðiÞ ¼ δf ðiÞ=δðiÞ
δGðiÞ=δðiÞ and

R ið Þ ¼ G ið Þ×TC�ðiÞ ð13Þ

To test the sensitivity of tree cover to small changes in fire, we ran the
framework with an increase of 1% burnt area across the tropics. The impact
is simply the difference to the “standard” run with observed burnt area.

Probability densities for L(Xc), P(x), R(i) and the fire sensitivity test
were constructed using the same bootstrapping protocol described under
“optimisation” as per ref. 29. The difference between the standard run was
calculated by pairing ensemble members to account for co-variation
amongst parameter distributions. Uncertainty estimates for limitation and
sensitivity are based on our sampled posterior solution’s 10% and 90%
quantile range. Uncertainties in Fig. 1 estimates the 10–90% range by using
the 65% quantile for the limitation or sensitivity imposed by the maximum
control and the 35% quantile for all other controls.

Biomes. We used the Olson biome83,84 groupings from ref. 29. Wet
forests are defined as tropical & sub-tropical wet broadleaf forest, tropical
and subtropical coniferous forests; Dry forest as tropical and sub-tropical
broadleaf dry forest; Savanna/grassland as tropical and subtropical
grasslands, savannas and shrublands, wooded grasslands & savannas;
Mediterranean as mediterranean forests, woodlands and scrub; Sum-
mergreem forests/woodland as temperate broadleaf and mixed forests,
temperate grasslands, savannas & shrublands, temperate conifer forests.
Table 1 shows the grid-cell area weighted sum of each variable’s impact
and relative impact on tree cover. For “Deciduous vegetation”, we based
the area weights on-grid areas multiplied by the fraction of deciduous
vegetation for that grid cell, where the deciduous fraction came
from ref. 85.

Data availability
Model inputs and outputs are available at https://doi.org/10.5281/zenodo.
832291286.

Code availability
Code for running the framework is available, and generating data used in
this analysis is available at github.com/douglask3/savanna_fire_feedback_
test/tree/Paper187 (https://doi.org/10.5281/zenodo.5513895).
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