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Explaining tropical tree cover distribution in areas of intermediate rainfall is challenging, with fire’s role
in limiting tree cover particularly controversial. We use a novel Bayesian approach to provide
observational constraints on the strength of the influence of humans, fire, rainfall seasonality, heat
stress, and wind throw on tropical tree cover. Rainfall has the largest relative impact on tree cover
(11.6-39.6%), followed by direct human pressures (29.8-36.8%), heat stress (10.5-23.3%) and rainfall
seasonality (6.3-22.8%). Fire has a smaller impact (0.2-3.2%) than other stresses, increasing to
0.3-5.2% when excluding human influence. However, we found a potential vulnerability of eastern
Amazon and Indonesian forests to fire, with up to 2% forest loss for a 1% increase in burnt area. Our
results suggest that vegetation models should focus on fire development for emerging fire regimes in
tropical forests and revisit the linkages between rainfall, non-fire disturbances, land use and broad-

scale vegetation distributions.

While precipitation gradient explains much of the transition between tro-
pical forests and more open ecosystems', many different vegetation and
tree compositions exist in intermediate and particularly seasonal pre-
cipitation regions. Beyond agricultural and urban areas, which have
replaced or degraded ~29.2% of natural tropical ecosystems (Supplementary
Fig. 1), many vegetation models invoke fire as a primary disturbance to
reproduce realistic vegetation distribution in seasonal tropical climates,
maintaining low tree cover in savanna and grassland ecosystems””’. In these
Fire Enabled Dynamic Global Vegetation Models (FDGVMs), fire main-
tains a balance between woody and non-woody vegetation by preventing the
encroachment of trees into grasslands and promoting the growth of more
fire-adapted herbaceous plant types. FDGVMs consider fire a significant
disturbance in most tropical ecosystems’. While extreme temperatures can
reduce tree cover by causing water stress, leading to leaf area reduction,
branch cavitation and ultimately, death of trees, models generally simulate a
larger impact from fire than heat stress on tropical tree cover, particularly in
savannas and grasslands’.

However, there is a lack of empirical or observational data or studies
that can directly inform the relative importance of these controls on

FDGVM resolutions across the tropics'’ and modelled fire impacts on
vegetation are particularly poorly constrained observationally”'"".
Field-based” and empirical analyses using remotely sensed products
identify the coincidence of burnt area with the reduced occurrence
(“missing”) of intermediate (50-60%) tree covers'*'* as evidence of a
substantial impact of fire on tree cover. On the other hand, recent field
analyses of fire impacts in relation to soil and climate'*”’ suggest that fire
could have a smaller effect on tropics-wide tree cover than suggested up
to now. Critical evaluations of the most used global woody cover
product have also questioned the intermediate tree cover gap”’ ™.
Finding constraints on the relative contributions of different factors in
maintaining tree cover has become particularly important given how
much global vegetation models are utilised to assess ecosystem and
carbon impacts of climate, carbon budgets, and environmental and land
use change™*.

For this analysis, we focus on the “maintenance of tree cover”—the
factors that support or suppress existing tree cover. This approach examines
what sustains the current tree cover rather than the dynamic changes in tree
cover over time. It differs from the “determination” of tree cover, which
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reflects both historical and present conditions, such as how fires might clear
land and transition forests to different land uses”**.

We employed a Bayesian limitation framewor] to test climate and
environmental influences on tropical tree cover. The framework was opti-
mised against tree cover observations from the MODIS Vegetation Con-
tinuous Fields (VCF) collection 6" at a spatial resolution of 0.5° (~50 km at
the equator), similar to standard FDGVM resolutions’>”, noting that the
main Fire Modelling Intercomparison Project (FireMIP) is moving to a 0.5°
grid as standard™. The framework models tree cover as a product of four
limiting factors (see Supplementary Fig. 1; Supplementary Table 2):

1. Mean Annual Precipitation (MAP)
2. Energy, combining Mean Annual Temperature (MAT) and Shortwave

Radiation (SW)

3. Stress or disturbance, which includes factors such as fire, rainfall sea-
sonality, heat, and windthrow

4. Human pressure, expressed as land use (cropland, pasture, urban
cover) and population density.

29,30

Each limiting factor was modelled as a linear combination of its drivers
and represented by a logistic curve that takes a value between 0 and 1. The
final Fractional Tree Cover (TC) was calculated as the product of limitations
imposed by all four factors. This means, for instance, that MAP defines the
upper limit on tree cover in regions where energy, stress, and human
pressure are not limiting.

We applied a Bayesian inference technique to optimise the framework
against MODIS VCF tree cover data™'. The modelling approach allows us to
systematically remove the influence of each control, enabling the explora-
tion of how each factor independently affects tree cover. The Bayesian
optimisation generates probability distributions for each simulated tree
cover scenario, providing comprehensive uncertainty quantification®*.
This combination of systematically isolating the influence of each control
and the Bayesian technique’s production of probability distributions allows
us to assess how confident we are in the model’s predictions™>*. It also
helps gauge the reliability of any experiments conducted, particularly when
examining correlated factors like tropical fires and seasonal drought-
induced stress””*, and co-varying land use and fire”***’. The Bayesian fra-
mework also inherently accounts for stochasticity, enabling the exploration
of unpredictable factors, such as windthrow and long-return interval fires,
and their potential impacts on tree cover*'. This process allows for experi-
ments that test the effects of removing or interacting drivers, making it
possible to assess both individual and joint impacts of different factors on
tree cover.

The optimisation was conducted across the pan-tropics between 30°
North to South, leveraging the spatial variability of tree cover in MODIS
VCE data to inform the model. To evaluate the model’s performance, we
used 20% of the MODIS VCF data for parameter optimisation and reserved
the remaining 80% as validation data. While this overlap between training
and validation datasets introduces some potential bias, the lack of alternative
global datasets at this resolution makes this approach necessary. Impor-
tantly, we focused on understanding the relative impacts of different con-
trols on tree cover, rather than producing absolute predictions. This also
mitigates against any potential biases in the MODIS VCF training data® ™.
MODIS VCF data was used to calibrate the model but was not incorporated
as input data in tree cover predictions. The Bayesian optimization generated
parameter distributions that inform the final predictions, ensuring that the
impacts of climate, stress, and human pressures on tree cover can be
quantified independently of the direct use of MODIS VCF data in the final
predictions.

The simulated distribution of tree cover compares well against test
observations (see evaluation supplement and Supplementary Fig. 2, Sup-
plementary Fig. 3). Where observations of tree cover align with the predicted
range (Supplementary Fig. 4), indicates the model correctly reproduces the
controls’ influence on tree cover and its uncertainty™’. We report changes in
cover at the 10-90% percentile confidence range of the framework’s pos-
terior probability distribution, which provides a range of plausible

constraints on each factor’s impact. Assumptions about noninteracting
factors are included in uncertainty ranges*'. See methods for full framework
description.

When analysing the impact of different factors on tree cover, we
consider two key measurements. The first is the absolute difference (or
impact) on tree cover with and without the influence of the factor in
question. The second is the relative impact on tree cover, measured as the
difference in tree cover as a percentage of the original tree cover before the
factor was introduced.

After assessing how large-scale climate gradients influence tree cover,
we use this framework to test how stresses and human impacts limit tree
cover tropic-wide and in different vegetation types. We identify fire impact
on tree cover as a significantly lower response than found in fire-enabled
DGVMs. We demonstrate how our results are consistent with field mea-
surements and fire exclusion experiments before discussing the implications
for global vegetation modelling. Finally, we explore where tree cover is
sensitive to recent or potential future changes in fire.

Results

Environmental controls and human impact

MAP is the primary control of tropical tree cover and dominates in arid and
semi-arid ecosystems, with rainfall distribution consistently the largest
factor influencing stress (Table 1, Fig. 1, Supplementary Fig. 5). Limitation
from MAP reduces relative tree cover by 11.6-39.6% (Table 1). MAP exerts
the least control in wet forests (2.4-13.1%) and most in deserts
(35.3-72.0%). Energy (i.e., MAT and SW combined) only has a small impact
on tropical tree cover, primarily from co-limitation with MAP in moun-
tainous areas (Fig. 1), impacting relative tree cover by 0-0.09% (Table 1).

Limitation from environmental stresses (i.e., the combined stresses of
rainfall seasonality, fire, heat stress and wind) occurs almost everywhere in
the tropics, resulting in a 12.8-28.6% relative tree cover reduction (Table 1).
We use four metrics as a proxy for rainfall seasonality: Fractional mean
annual dry days, fractional number of dry days in the driest month, pre-
cipitation in the driest month, and mean seasonal precipitation con-
centration. The results presented here summarize the impact via
performance-weighted contributions of all. Rainfall seasonality has the
most considerable impact from all the stress controls, causing a relative tree
cover reduction of 10.5-23.3%. It is particularly important in the seasonal,
fire-prone savanna ecosystems (reducing relative tree cover by 19.5-30.3%)
in Africa, Asia, Indonesia, Australia and Southern Amazonia, in the
savanna-forest ecotone areas extending into the Southern Amazonian forest
and the tropical forests of Central Americas (Fig. 2). These stresses co-limit
with MAP over much of the tropics but dominate in some African and
Australian savannas (Fig. 1).

Limitation from human pressure (Land use and population) is
important in southern Amazonia forests, Northern Andes and Choco-
Manabi Corridor and central tropical Indonesia, impacting relative tree
cover by 29.8-36.8% (Table 1). All controls except energy limits tree cover in
deciduous ecosystems. They are particularly affected by heat stress and
rainfall seasonality, impacting relative tree cover by 12.1-34.6% and
21.0-35.4% respectively (Table 1).

The impact of fire relative to other stresses

Overall, fire (assessed using burnt area) has the least impact from the
stressors tested, with a relative tree cover reduction of 0.20-3.2%. Its impact
is smaller than heat stress (relative reduction of 6.31-22.8%, Table 1,
p=0.0001, Supplementary Table 1) and windthrow (3.0-8.7%, p = 0.061).
Between ecosystems, fire impact is greatest in savanna/grassland (0.6-7.1%),
though this is still less than rainfall seasonality, heat stress and windthrow
(Fig. 3; P=0.013, 0.020, 0.28, respectively). Most of the fire impact is in
African savannas (Fig. 2).

The fire’s impact is concentrated in warm, seasonal climates with
moderate rainfall, predominantly the same regions of high burnt area
(Fig. 4). Where MAP is between 100-2000 mm/yr, fire impact on tree cover
increases as rainfall seasonality and MTWM increase. Fire only impacts tree
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Table 1 | Environmental stresses and anthropogenic pressures impact on tropical tree cover by biome

Decid S / Summergreen
All tropics CCICUOUS vyt Forests Dry Forest Avannar -y odicerrancan . Forests/  Desert/shrub
vegetation grass
woodland
10% 90% 10% 90% 10% 90% 10% 90% 10% 90% 10% 90% 10% 90% 10% 90%

Obscrvations | 27.84 1754 T 76 | 2264 | 887 | Ger = 1343
Simulation 23.21 - 16.23  26.1 - REKN 22.72 - 18.79 29.95 22.28 - 22.64 - 8.18  14.63
r T T T T - 7T T T T T | — T T T 1
area 304 2129 377 224 102 815 18 1391 29 1601 175 1585 1.93 16.41 4.47 37.54
MAP
relative 1158 3959 18.85 4619 236 1312 7.34 27.95 13.37 3484 729 3114 7.86 31.42 3533 WAk
area 0 003 0 0.02 0 005 0 0.03 0 002 0 0.03 0 0.03 0 0.01
Energy
relative. 0 009 0 0.07 0 0.1 0 0.08 0 007 0 0.09 0 0.09 0 0.07
area 34 1298 547 1701 222 1207 261 1157 547 1715 078 698 09 844 066 | 5.07
Env. Stress
relative 12.77 2855 252 3946 499 1829 10.31 2439 2256 36.41 3.38 16.61 3.81 19.08 7.44 2575
_ Human area 987 1891 939 19.36 14.71 2585 10.15 21.87 9.83 2041 807 17.79 866 19.02 343 8.31
Pressure ,opgtive 29.84 3679 36.65 4259 2581 324 30.87 37.88 34.35 40.52 26.58 33.66 27.68 34.69 29.52 36.22
area 005 106 01 224 0 027 0 0.28 012 228 0 005 0 0.06 0 0.12
Burnt area
relative. 02 316 063 7.9 001 049 001 077 061 7.07 0 0.13 0 0.16 = 0.01  0.82
area 156 959 224 1381 115 879 12 86 231 1249 038 489 046 578 04 3.86
Heat Stress
relative 6.31 | 228 1211 [RZNGN 265 14.02 5 19.34 1095 [ZFkN 167 1224 199 139 461 20.88
area 07 309 094 393 052 28 06 284 095 353 013 105 018 149 02 12
Wind
relative 295 869 55 13.09 123 502 257 734 48 1055 057 291 08 4 237  7.56
Rainfall @rea 272 988 431 1433 144 865 195 859 456 13.03 047 479 055 595 061 4.05
seasonality Lo/ sive 1048 23.32 21 RPN 329 1382 7.92 19.33 19.54 [lj<il 2.05 1203 235 1425 697 21.69
Population @rea 001 015 162 0.02 03 002 033 001 013 002 034 002 034 001 012
density  ,ofgsive 005 047 EEEGNEOREE 005 055 008 091 004 043 008 095 008 093 008 0.81
area 035 058 235 421 066 11 064 129 03 057 069 144 074 147 025 051
Urban area
relative 148 176 1264 1389 154 199 274 347 155 1.87 3 396 315 395 291 3.36
Cropland @rea 233 394 448 0969 343 563 3.1 59 195 344 184 372 201 392 088 178
area relative 9.13 10.81 2165 240/l 75 945 1199 1412 94 1031 763 959 815 987 9.74 10.83
Pasture = @rea 422 878 629 1262 484 1003 332 832 521 1094 24 675 287 758 137 376
area relative 15.38 21.28m10.27 15.68 12.76 18.82 21.69m 972 16.15 1124 17.46 14.36 20.43
Burnt area area 006 174 013 3.15 0 053 0 052  0.14 3.46 0 0.1 0 0.13 0 0.23
with no
human /0 026 517 079 1078 001 101 002 162 08 1084 O 0.33 0 042  0.01 162
Pressure

Other biomes are aggregated from Olsen et al. as per*”. Tree cover “area” is the difference in land covered by trees with and without the control’s influence. “Relative” is the relative difference (i.e. tree cover “area”
relative to the tree cover unconstrained by the factor/control). 10% and 90% percentiles accounts for framework uncertainty. The colours in the table are shaded according to the intensity of impact, highlighting
where the stresses or pressures have the greatest effect, with darker shades indicating larger impacts.
Deciduous vegetation shows the impact on tree cover weighted by the grid-cell fraction of deciduous vegetation from ref. 85, regrided as per ref. 78.

cover above 2000 mm/yr in areas with extreme seasonality and high tem-
peratures. Fire impacts occur in phenologically seasonal regions (Fig. 4), but
not exclusively.

Fire’s impact is significantly smaller than the 3.4-34.9%
(P =0.066-0.0003) across all FDGVMs in the fire model intercomparison
experiments (FireMIP)®. FireMIP compared the difference between fire-on
and fire-off experiments that both ran throughout the historic period.
While similar to our experiment, the historic period may have had tran-
sient fire impacts on tree cover, such as fire regime shifts and deforestation
fires, not tested by our framework. The significant and substantial impact,
particularly in savanna climates, which have seen consistently high levels of

burning for millions of years” and are therefore less likely affected by
transient effects, still suggests that FDGVMs fire impact on tree cover is too
strong for some regions in the present day. However, humans can sub-
stantially diminish fire impact on tree cover in savannas. In areas where
land use reduces tree cover, fire can only impact tree cover over this
reduced area, and land use and active suppression tend to reduce burnt
area in the tropics by inhibiting fire spread even in areas nearby but outside
agriculture””. We quantify fire impact on tree cover without human
influence by simulating the impact on tree cover from the burnt area we
would expect to observe without human modification, which we obtained
from™ (see methods) and without population density or land use influence
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Fig. 1 | Limiting controls on tree cover. a—c Shows the relative standard limitation
for each control and d-f normalised sensitivity of each factor. Purple shows areas
limited by mean annual environmental stresses (S), yellow by human pressure from
population density and land use (L), Cyan by Mean annual Precipitation (P) and
dots by Mean Annual Temperature and Shortwave Radiation (T). Red represents co-
limitation by S&L, blue by S&P, and green by L&P. Shades show the relative

Sensitivity
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importance of the limitation, with darker, intense shades indicating a stronger
impact, lighter shaded (and none-capitalised letter in legend) less impact, and white
indicating little or no limitation - by definition coinciding with high tree cover. From
top-bottom maximum stress, human pressure, and MAP limitation at 10%
likelihood.

on tree cover (Fig. 5). Without direct human impact, fire would limit tree
cover by 0.3-5.2% - more comparable to FireMIP models, though a similar
experiment without humans has not been assessed as part of FireMIP yet.
Without humans, fire’s impact on savanna is 0.8-10.8% (Table 1).
Although less than other stressors, it has a substantial effect, highlighting
the importance of including human factors in fire and vegetation
modelling.

Fire impact on tree cover in areas with high burned area is more
substantial, comparable to cropland and pasture (Fig. 6). It reduces tree cover
by 0.2-0.6 per unit burnt area at burnt areas >60%, compared to 0.7-1.0 per
unit cropland area and 0.4-0.6 per unit pasture area (Fig. 7). However,
annual burning covers a smaller area than land use - 3.8-5.7% of the tropics
(depending on the dataset used, Supplementary Fig. 6). There is considerable
uncertainty in the impact when burnt area is low, with tree cover reduction
up to 10 times the annual average burning in areas with little fire. This
suggests that, in regions with small burnt areas, the introduction of fire may
still substantially impact tree cover. As burnt areas increase, their impact on
tree cover is roughly linear. In contrast, the impact of heat stress increases
sharply at temperatures above 35 °C and rises with wind up to 4 m/s with the
possibility of much larger impacts for windspeeds >10 m/s. Relative tree
cover impacts increase exponentially with rainfall seasonality, linearly to
urban and cropland areas, and plateaus when pasture area cover is 20%.

Fire has little effect on tree cover bimodality (Fig. 9). No variable
contributes solely to the intermediate tree gap identified in refs. 17,44
though removing the impact of heat stress or rainfall seasonality splits the
gap to lower and higher tree covers (i.e. from between 33% and 98% to
between <20% and ~40% and between ~60% and ~98%). Removing the
effect of either cropland or pasture reduces the gap’s magnitude.

Sensitivity of tree cover to disturbance

Tree cover in most savanna, grass and desert areas of the tropics is insen-
sitive to small changes in any controls, i.e., for trees to establish, they require
a considerable reduction in the limitation imposed by both MAP and other
stresses. (Figs. 1 and 2). However, in seasonal semi-arid areas, which are
susceptible to shifts in stress” and where rainfall seasonality and heat stress
have the greatest impact (Fig. 2), marginal changes in rainfall patterns and
temperature could have a major impact on tree cover (Figs. 1 and 7). South

American forests and savannas are most sensitive to changes in land use,
suggesting agricultural practices could have the largest impact on future tree
cover in these regions. Rainforests across the Amazon, Congo, Borneo, New
Guinea Southern lowlands and Yunnan/Guizhou evergreen and dry
deciduous forests are also sensitive to land use impacts. Additionally,
Amazon and Indonesian rainforests show vulnerability to stress in key
deforestation areas (Fig. 2).

Marginal changes in burnt area have minimal impact on savanna tree
cover. Still, they could substantially impact tree cover in forest areas (Fig. 8).
A 1% increase in burnt area could decrease tree cover by as much as 2% (at
the model distributions 90 percentile) in the southern and eastern Amazon
basin, the Amazonia arc of deforestation and South America’s Atlantic
forests. Smaller but important regions of sensitivity to burning also include
Gabon and the western Congo forests (1.5-2% tree cover reduction with a
1% burnt area increase), southern Indonesia (1-2% reduction), the south of
China moist forests (up to 2% reduction) and the eastern India dry forests
(1-1.5% reduction). However, there is considerable uncertainty in this
sensitivity to fire, and our framework suggests that little to no change in tree
cover is also possible (Fig. 8).

Implications and uncertainties

Aside from MAP (mean annual precipitation), we show that rainfall
seasonality and land use are likely dominant factors in maintaining tree
cover at current levels. Beyond these, co-limitation from different con-
trols (Figs. 1 and 2) suggests that no single factor influences savanna tree
cover, noting that soil texture and fertility, not included here, could also
determine the location of forest-savanna transitions™ with variations at
finer resolutions than tested here. All variables have a negligible effect on
the bimodality of the reconstructed tree cover (Fig. 9) and are unlikely to
be a cause of the “missing” intermediate tree covers at the resolution we
test. Alternative drivers for missing intermediate tree cover include the
natural distribution of cover expected under random fluctuations™ and
biases in tree cover observations, which tend to underestimate tree cover
in savannas’**. Our results suggest that either of these or factors not
included, such as soils, are more likely drivers of tree cover bimodal
distribution. As relevant soil properties vary at a finer resolution than
there are detailed tropical observations, we did not test soil here.
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Fig. 2 | The percentage reduction in tree cover area by each environmental and
human stresses. Each row represents a different stress (top-bottom): a, b Fire (using
burnt area), ¢, d heat stress, e, f windthrow, and g, h seasonal rainfall distribution.
These are followed by human pressures: i, j population density, k, 1 urban area,

m, n cropland area and o, p pasture area. For each stress or human pressure, two

2% 5% 10% 20%  40%

maps are shown: the left map represents the 10th percentile, and the right map
represents the 90th percentile of the likely range of the stress’ impacts, illustrating the
range of uncertainty in the estimated tree cover reduction. This figure allows for a
visual comparison of both the magnitude of tree cover reduction by each stress and
the confidence level (percentile range) associated with these reductions.

However, future work in specific locations and finer scales could incor-
porate soil properties.

The impact of land use on tree cover does not always match the
extent of the tree cover itself. This is because, in addition to the extent of
land use changes, reductions in tree cover may diverge due to various
factors, including spatial heterogeneity, differential sensitivity of vege-
tation types, ecological resilience and regeneration processes, frag-
mentation effects, management practices, and climate and
environmental factors. While some of these impacts extended beyond
the land cover extent itself, we safely assumed that they occur within the
same gridcell, given the coarse scale of analysis (0.5°, ~50 km) employed
in this study. That tree cover responses follow cropland extent (Fig. 6)
suggests that any additional impact on tree cover beyond cropland
extent are negligible on our coarse scales. Urban areas do have a large
impact beyond their extent — up to 10 times at lower urban covers,

possibly owing to factors such as heat island effects, altered micro-
climates, fragmentation of surrounding ecosystems, and direct human
disturbances such as deforestation and land clearing for urban expan-
sion. Pasture, however, shows a smaller impact than pastures own
extent, especially as pasture area increases, indicating high tree cover
retention at higher pasture areas.

Heat stress and windthrow have a substantial impact on tree cover
which is in line with"”*. Few DGVMs incorporate direct effects of either
(though note®), which our results suggest might also aid simulated vegeta-
tion distribution. For example, heat stress affects the productivity of vege-
tation. It can have large implications for the resilience of tropical forests
towards the more severe climate projections into the twenty-first century”.
While DGVMs represent declines in productivity at higher temperatures
(and lower precipitation), some mortality mechanisms, such as xylem
embolism during extreme heat and drought™, may be underrepresented in
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Fig. 3 | Pairwise comparison of the likelihood that the stress or human pressure in
each column reduces tree cover more than the one in each row. Each map in the
grid shows indicates the likelihood of the column stress having a greater impact on
tree cover reduction than the row stress. Blue areas represent regions where the
column stress is more likely to cause a higher reduction in tree cover, while brown
areas represent regions where the row stress has a higher likelihood. The stress or

90% 95% 98% 99%

100% area

Pasture
area

pressure’s first two letters or initials are listed next to the relevant colour for each
map. For example, the top left blue areas show where Hs (Heat stress) reduces tree
cover more than Ba (Burnt area). White indicates equal likelihood, and lighter
shades of blue or brown show a slight likelihood difference between the column and
row stress. The colour gradients allow for a visual comparison of how different
stresses or pressures are likely to impact tree cover in various locations.

models’'. Also biotic attacks following drought and/or windthrow events™
are generally not represented in models.

Fire has a surprisingly low influence on tropics-wide tree cover, though
it plays a more important role in savannas, suppressing tree cover by
0.6-7.1%. Without human impact on burnt area and tree cover loss, the
impact on fire in savannas has the potential to be much higher at between 0.8
and 10.8% (Table 1). This is more in line with empirical studies and field
experiments' > though it still shows that the independent impact of fire is
not enough to fully explain the lack of tree cover within savannas. The use of
remotely sensed data may contribute to the surprisingly low impact.
Overstory mortality is generally minimal in frequently burned woodlands
and savannas, with frequent surface fires primarily influencing recruitment
through high seedling/sapling mortality. Therefore, the observed low
impact of burnt areas from surface fires on tree cover, as detected by
satellites, may reflect the resilience of mature trees to fire-driven mortality in
these environments. However, it is worth noting that FDGVMs tend to
target remote sensed burnt area for parameterisation and evaluation'**.

We were able to separate out the effects of different co-varying
impacts — which is challenging in many field-based and empirical studies
that often consider fire in isolation from other dry disturbances'. These
findings are not inconsistent with the idea that fire has an important impact
on vegetation cover and species selection but suggest that tree covers are
mostly at equilibrium in fiery landscapes with present-day fire regimes.

By considering the controls on the static distribution of tree cover, the
study does not look at the sensitivity of factors that may determine forest
cover temporarily. In deforestation hotspots, increased deforestation rates
are associated with increased burning‘m, which can then decrease due to
subsequent land fragmentation™ - a process not inconsistent with but not
tested in this study. Large-scale tropical deforestation also leads to warmer,
drier and more seasonal conditions®** that our results suggest may main-
tain low tree cover. Fire may also play a role in future forest transitions,
resulting from interactions between land use change, fire and land-
atmosphere exchange in a changing climate.

The slight reduction in tree cover could be because of coarse
(0.5° % 0.5°) spatial scale. Other studies show a substantial impact (up to
20%") of fire on tree cover at fire return intervals of around 1-10 years,
which would result in coarse-scale burnt areas of (1/return time) 10-100%
burnt area”. Here, we show tree cover is reduced only slightly less than the
annual average area burnt — consistent with these finer-scale studies and on
par with the impact of agricultural land use per unit area (Fig. 7). Therefore,
our results do not preclude a substantial impact of fire on cover if the same
areas within a given grid cell are burning each year, which would also explain
tree cover changes found in fire exclusion experiments”. In mesic tropical
systems (savanna and dry forest), fire effects on tree cover can be substantial
if vegetation experiences frequent fires, particularly later in the dry season".
These regions show a higher impact (Table 1; Fig. 4). However, burning here

still only impacts relative tree cover by up to 20%, with many areas seeing
little impact. Tree species in ecosystems prone to regular fires demonstrate
adaptations that allow them to survive, resprout and recruit in the presence
of burning™”. These effects could be tested by representing subgrid het-
erogeneity or applying this framework at finer resolutions. From an Earth
System perspective, fire and the other stressors tested do not just impact
vegetation distribution. There are also disturbance-driven variations in
other important wood vegetation processes such as height, carbon uptake,
carbon allocation, hydrology, and ecosystem fluxes***"', all of which are
influenced by fire.

Fire impact on tree cover is less than previously found in DGVM
studies’. Many fire-enabled DGVMs incorporate the impact of pre-
cipitation through carbon dynamics, which determines vegetation dis-
tribution to some extent. However, most models also require a
substantial impact from fire to simulate the correct distribution of tree
cover. As fire impacts co-vary with other stress factors, most notably
seasonal rainfall distribution (Supplementary Fig. 7, Supplementary
Fig. 8), DGVMs might overly rely on fire to simulate correct tree cover
distribution because they underestimate vegetation response to moisture
availability. Some FDGVMs use fire intensity to describe fire impacts on
cover'"™, and incorporating intensity into this framework may help
constrain the broad uncertainty in fire impact - particularly in regions
with low burnt areas and high tree covers (Fig. 7). However, despite the
wide distribution of potential fire impacts, even the most extreme of our
framework’s posterior probability distribution suggests that fire reduces
tropical tree cover significantly less than any tested FDGVM. This
assumes that switching off fire from our present-day fire-on state would
result in vegetation cover equal to the fire-off simulation. Both simula-
tions have been spun up with and without fire, respectively, which may
lead to different stable states in the present day. More targeted fire model
experiments (e.g. switching off fire at the present day and running to
equilibrium) are needed to provide a more specific test. Adapting our
framework to test the transient impacts of fire on cover (from, e.g.
deforestation fires) will also help attribute the differing impact fire can
have on tree cover over time.

We took advantage of the work in FireMIP to compare how fire
modulates tree cover to our observational constraints. Other model inter-
comparisons could perform similar factorial experiments to compare to our
results. The constraints we have found on the impact of wind and heat stress
could be particularly useful to assess and re-parameterise vegetation models
that represent both these disturbances. This might also establish if the larger
impact of fire is due to little impact of climate seasonal rainfall, windthrow or
heat stress. Like DGVMs, our model considers similar responses of tree
cover across continents with different evolutionary histories and across
gradients of anthropogenic landscape modification. Further framework
development could attribute uncertainties in tree cover disturbance
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Fig. 4 | The impact of burnt area on tree cover in bioclimate space. Dots indicate grid cells with (x-axis) Mean annual rainfall and (y-axis) rainfall seasonality for a, c and
maximum temperature of the warmest month for b, d. a, b Colour indicated fire impact on tree extent and ¢, d percentage deciduous cover vs. evergreen (see methods).

responses to these assumptions, which may also help guide DGVM devel-
opment priorities.

Our framework shows considerable uncertainty in the impact of fire in
humid forests, which, historically, have not experienced regular burning
Our framework suggests a plausible range from virtually no sensitivity of
forests to burning up to more than twice as much forest loss as changes in
burnt area. However, as these areas have not historically experienced high
fire occurrence, their vegetation is unlikely to be fire-adapted. And many
studies have highlighted tropical forest areas that experience infrequent
burning as particularly sensitive to even small increases in burning® . We
have not considered the distribution of fire resilience or acclimation to fire in
this study. There has been a considerable shift in burnt area controls found
in many of the pantropical forest areas™, and a recent UN report highlighted
Eastern and Southern Amazon and Indonesia as at risk for substantial
increases in wildfire occurrence®. In these regions, tree cover could still be
significantly affected by fire under future environmental change, particu-
larly if the speed of such a change precludes the establishment of more

adapted tree communities of more fire-prone wooded

ecosystems®>*,

typical

Conclusion

Our results have shown that, over most of the tropics, human impacts,
rainfall seasonality, windthrow, and heat stress have a much more sub-
stantial direct impact on tropical tree cover than fire. Simulation of tropical
forest and savanna distribution should focus more on tree cover responses to
moisture and temperature. More emphasis on simulating non-fire dis-
turbance events may also improve simulated tropical vegetation distribu-
tions. However, we show that tropical forests are potentially sensitive to
small amounts of burning, even without considering the heightened vul-
nerability of these forests due to their lack of fire history. Given the increased
trend in burnt area in these regions™”, fire could seriously reduce tree cover
under future climates, resulting in modification of important climatic
feedbacks that would fundamentally change the carbon dynamic in the
tropics. Therefore, based on our results, we recommend targeting FDGVM
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development to simulate fire and vegetation responses to burning in tropical
forested areas - essential for evaluating future impacts of fire in these carbon-
rich forests.

Methods

Modelling framework

We constructed a Bayesian limitation control model to estimate probability
distributions describing the likelihood of percentages of tropical tree cover
based on a set of environmental predictors similar to the framework out-
lined in refs. 29,30. These predictors, derived from spatial maps, were uti-
lized as inputs to the model, which was optimized to generate tree cover
maps as outputs.

In the framework, the 11 predictors influencing tree cover are linearly
combined into limiting controls (Supplementary Fig. 1; Supplementary
Table 2): (i) mean annual precipitation (MAP+); (ii) mean annual tem-
perature (MAT+); (iii) shortwave radiation (combining diffuse and direct
radiation sources) (SW); (iv) environmental “stress” (S) from fire, rainfall
seasonality, heat and windthrow; and (v) human pressure (comprised
mainly of “land use”, dubbed LU) combining urban, cropland, pasture and
population density. (ii) and (iii) are multiplied together to form an “Energy”

limiting factor when displayed in the results. MAP«, MAT: and SW climate
controls are often used to understand vegetation distributions"* and have
been used by limitation studies exploring controls on net primary
production”. Grouping the stresses into one control follows the
concept that woody plant resilience and recovery strategies (e.g. resprout-
ing) help plants avoid mortality and rapidly re-establish after a range of
stresses®".

Each control was expressed as a linear combination of its respective
factors. Fractional tree cover (TC) was calculated as a product of limitations
imposed by control (f(k *x (X, — X, ) where ¢ is a control
(C = {MAP,, MAT,,SW,S,LU}), with each control’s limitation repre-
sented by a logistic curve, f:

TC = TC,p X [ [ f (k¥ (X, — X))

f=1/0+e7) )

Where TC,,,, is used to aid our model optimisation as per’”’. X, . is the
value of X . which reduces tree cover to 50% of its unconstrained area,
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and k. is the steepness of the logistic curve, equal to % of the gradient at
X, = X, k >0 where tree cover increases with the control (i.e. MAP,,
MAT,, SW), while k<0 and tree cover decreases for suppressive con-
trols (S and LU).

We assume that there is no tree cover when there is no
rainfall and, therefore, perform a log transform on MAP
(ie.MAP, = log(MAP + 1/ncells) where ncells is the number of grid
points),making our control curve (Eq. (1)) tend to zero as MAP tends to
zero. As MAT and SW had little impact individually on tropical tree cover,
we combined both into energy (E) control were f = f (MAT,) X f(SW).

We represented S and LU controls by combining factors (x;) weighted
by their respective influence (v;). For S control, as we describe cumulative
effects of annual average stresses, we do not assume that stress impact
accumulates linearly with each increased stress. For example, an increase
in one-degree temperature stress will likely have a much bigger impact
at high temperatures. To account for this, we raise each variable

to a power. Therefore:

x=3

1

v; Xxipf/Zv,- where v, = land for f = SW,LU, p, =1
i

@

Datasets

We optimised the framework against MODIS Vegetation Continuous
Fields (VCF) collection 6 fractional tree cover”, regridded as per ref. 29.
Although refs. 21,24 recently demonstrated a potential bias in the tree cover
distribution of VCF, there are no alternative global fractional tree cover
datasets available which are independent of VCF, so our interpretation of
results focuses on contrasting the impact of different controls, which, given
our model setup, only assumes that VCF values regridded to 0.5° are cor-
rectly ranked.
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Disagreement between burnt area datasets can significantly affect
analyses of fire and vegetation interactions’’. We, therefore, ran the fra-
mework using five different burnt area datasets used in and provided by the
Fire Model Intercomparison Project'*>** (Supplementary Fig. 6). Likewise,
to sample the well-known disagreement between precipitation datasets’”, we
used four different precipitation products (Supplementary Fig. 8): GPCC'’;
MSWEP”* and CMORPH"”*"® downloaded from the eartH2Observe portal
(http://www.earth2observe.eu/); and ~ CRUTS4.03”  downloaded
from CEDA.

A variety of metrics can be used to describe rainfall
seasonality. As there is no single apparent metric candidate, we ran
separate optimisations with the following metrics (Supplemen-
tary Fig. 8):

* Fractional mean annual dry days (MADD), calculated as 1 - fractional
number of wet days for CRU, and number of days where rainfall is less
than 0.1 mm for all other products.

o The fractional number of dry days in the driest month (MDDM) - as
above, but for the month with the smallest number of dry days.

* Precipitation in the driest month (MADM) - which we normalised by
the mean monthly precipitation, i.e.:

MADM = min{pr,, } (€)

MAP
Where pr,, is the monthly precipitation climatology over our study
period.

» The mean seasonal concentration of precipitation (MConc) is calcu-
lated as per the concentration metric”®. i.e.:

1/sz —l—L},2 :

2P

Mconc =

where L, = Z pry, % cos(8,,)and L, = Z pry, X sin(9,,) (4)

Where 6,, corresponds to the direction of the month, m, in the
complex plane.

We calculated annual averages between 2000 and 2013 - the dataset’s
common period - for the region between 30° North and 30° South to delimit
the tropics and subtropics at 0.5° resolution - the dataset’s most common
resolution. We performed bilinear resampling for data not already on a 0.5°

grid, using the R Package ‘raster””’.

Optimisation

We optimised our framework’s reproduction of tree cover using a Bayesian
inference technique''. Bayesian inference allows us to quantify framework
uncertainty, including uncertainty for variables with multiple realisations,
and therefore provides confidence in our driver’s impacts - applicable when
assessing co-varying variables. Instead of giving us a single, defined set of
parameters, Bayesian inference produces the probability distribution for
each parameter, which we propagate through to the influence of controls,
limitation factors and overall tree cover. Bayes theorem states that the
likelihood of the values of the unexplained parameter set, 3 (i.e. parameters
in Egs. (1)—(4), as well as our error terms (o, Py), given a set of observations
(Obs), is proportional to the prior probability distribution of 8 (P(f3)) by the
probability of Obs given f. i.e

P(B|Obs) o P(PB) x P(Obs|p) where

ﬁ: {{X0}7{k}7{Vi}'{pi}vTCmax'avpo} (5)

This gives us 23 parameters to optimise. We assume no prior knowl-
edge and so set generously large priors on all parameters: uniform priors
with only physically plausible bounds (i.e. [0, 1]) for TC,,,, exponential
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Fig. 8 | Senstivity of tree cover to changes in
burnt area. Reduction in tree cover due to a 1%
increase in burnt area for (top) 90% and (bottom)
10% uncertainty range. Note that the colour scales of
the two maps differ.
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distributions with a generous rate parameter of 1 for v;, p;h and k; which has
alower (or upper for kgand k,,) bound of 0, and normally distributed priors
with a mean and deviation of half the range of the corresponding control (i.e.
0.5 for fractional cover for land use) for x,.

Tree cover is approximately normally distributed under a logit trans-
formation, apart from a slight divergence at the intermediate tree cover gap
and a peak at 0 tree cover (Supplementary Fig. 9). We use the same zero-
inflated, logit-normal distribution from ref. 30.

P(Obs = 0|B) =1N"[ 1-TC?)

i

x(1—Py)

P(Obs = 0|B) = [1 — P(Obs = 0)|B)]

OXA2Xm
(6)

where i represents an individual datapoint, Obs = {obs;} is our set of
target observations and N is the observation sample size. Inferring the
posterior solution is a case of maximising Eq. (6). Inference and posterior
sampling were based on the ConFire model code’". The posterior
solution was inferred using a Metropolis-Hastings Markov Chain Monte
Carlo (MCMC) step with the PyMC3 Python package’’. We ran 10
chains with 10,000 iterations over 20% of the data points (i.e. N =2408
points) separately for each rainfall seasonality metric and each
precipitation and burnt area dataset. Unless otherwise stated, the
posterior solution is constructed by sampling 10 parameter ensemble
members from the last 5000 iterations of each chain (i.e, 100 samples for
each dataset/seasonaility metric combination). A combined posterior was
calculated by bootstrapping 1000 ensemble members across datasets and
rainfall distribution metrics members, with the selection probability
derived from Eq. (6). Sampling was performed using the Iris package®
with Python version 3 (Python Software Foundation, https://www.

python.org/).

Measures of impact on tree cover

We follow a modified version of Kelley et al.”” definitions of limitation and
sensitivity to controls. This approach allowed us to quantify both absolute
and relative contributions of individual controls and factors. The impact on

2
N | logit(obs; )—logit(TC;)
N [
(4

tree cover of a factor or control, 7, is the absolute difference in tree cover with
(TC) and without (TC, (i)) that factors influence (|T'C, (i) — TC|). We used
this for Table 1 and Figs. 2 and 5.

The relative impact on tree cover (pe(i)) of a given control or factor, 7, is
the increase in tree cover if the limitation imposed by i is removed in the
presence of other controls:

TC,(i) — TC

C.(0) @

pe(i) =

As used in Figs. 4 and 6. For controls, TC, (X ) is simply the product of
all factors, excluding that control, (C\c) i.e:

TC,.(X,) = TC, 4 % Z][.:\Cf(kj X (X; — Xo;) and therefore

pe(i) = TCx (1 — f(k; X (X; — Xo,i))) (8

If i is a factor within control ¢ then we simply remove i from that factor
1\d):
1C,(X) = f (kex (5] %5 = voy ) ) % TIPSk % 05— )

and therefore
(e (S = w,))

pe(i) = TCx X (e = %)

)

which is the product of all factors with the contribution of control i within its
factor, [ removed.

The probability of pe for i being significantly different than j
(P(pe(i) # pe(j))) is the root of the multiplied distributions, as per”.

P(pe(i)#pe(j)) = \/ / ;P(TC|ﬂ,i|Obs)><P(TC|ﬁ,j|ozas)ch (10)

Where f3_, is the set of parameters with v; set to zero, removing the influence
of factor (or factors if testing a control) i.

Reported P-values in the main text are then 1 — P(pe(i) # pe(j)), to
conform to the convention of testing for a null result.
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Fig. 9 | Frequency of occurrence of tree cover in
1% bins. Top left for VCF observations, with colour
indicating the frequency of occurrence by aggre-
gated Olson biomes" (see methods). Top right for
the framework with black showing 10% and grey
showing 90% percentile based on parameter
uncertainty and dashed line the VCF observations.
This corresponds to red-shaded regions’ in sub-
sequent plots, which show tree covers from the
framework when each listed environmental stress or
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To test the impact and relative impact of burnt area in the absence of tree cover impact and
human pressure, we performed two additional tests:
1. The impact fire would have without direct human impact on tree cover. TC,(burnt area, LU) — TC,(burnt area) . .
‘ . . . for relative tree cover impact
To do this, we compared tree cover without LU with tree cover without TC,(burnt area, LU)
LU and burnt area. ie |TC,(burnt area, LU) — TC,(burnt area)| for (11)
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2. The impact fire would have without direct human impact on tree cover
and burnt area. We used simulation from just GFED4s, which we
replaced with reconstructed burnt area from the 1000 ensemble
members without human influence (crop, pasture and population
density) in ref. 29. Each member was randomly sampled when con-
structing TC, (burnt area, LU) and TC, (burnt area) in Eq. (12).

The limitation imposed by a control (L(X,)) is simply one minus the
maximum tree cover allowed for that factor. For S and LU, we first normalise
the maximum allowed tree cover by the tree cover when the factor is 0, i.e. so
that tree cover is not limited by stress when there is no stress, or human
pressure when there is no human pressure:

1—f(k,x(X,—X,,) X.=MAP,_ MAT, SW

L fex0x,0)
f(_k/: x Xo.()

L(x,) = (12)

X, =S, Ex

We also evaluate how sensitive tree cover is to changes in each control to
establish the resilience of the tree cover to environmental change (“sensitivity”
from ref. 29). The sensitivity of a control or factor (R(7)) is the tree covers rate
of change (G(i)) relative to the maximum rate of change in tree cover for that
control (i.e. when X = X)), again in the presence of the other control:

of(i)/8()

0 saw/en

R(i) = G(i) X TC, (i) (13)

To test the sensitivity of tree cover to small changes in fire, we ran the
framework with an increase of 1% burnt area across the tropics. The impact
is simply the difference to the “standard” run with observed burnt area.

Probability densities for L(X,), P(x), R(i) and the fire sensitivity test

were constructed using the same bootstrapping protocol described under
“optimisation” as per ref. 29. The difference between the standard run was
calculated by pairing ensemble members to account for co-variation
amongst parameter distributions. Uncertainty estimates for limitation and
sensitivity are based on our sampled posterior solution’s 10% and 90%
quantile range. Uncertainties in Fig. 1 estimates the 10-90% range by using
the 65% quantile for the limitation or sensitivity imposed by the maximum
control and the 35% quantile for all other controls.
Biomes. We used the Olson biome*** groupings from ref. 29. Wet
forests are defined as tropical & sub-tropical wet broadleaf forest, tropical
and subtropical coniferous forests; Dry forest as tropical and sub-tropical
broadleaf dry forest; Savanna/grassland as tropical and subtropical
grasslands, savannas and shrublands, wooded grasslands & savannas;
Mediterranean as mediterranean forests, woodlands and scrub; Sum-
mergreem forests/woodland as temperate broadleaf and mixed forests,
temperate grasslands, savannas & shrublands, temperate conifer forests.
Table 1 shows the grid-cell area weighted sum of each variable’s impact
and relative impact on tree cover. For “Deciduous vegetation”, we based
the area weights on-grid areas multiplied by the fraction of deciduous
vegetation for that grid cell, where the deciduous fraction came
from ref. 85.

Data availability
Model inputs and outputs are available at https://doi.org/10.5281/zenodo.
8322912%.

Code availability

Code for running the framework is available, and generating data used in
this analysis is available at github.com/douglask3/savanna_fire feedback
test/tree/Paper1®” (https://doi.org/10.5281/zenodo.5513895).
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