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ABSTRACT

Understanding food-web structure is crucial to
determine the functioning of ecosystems and sus-
tainably manage resources. The Scotia Sea is an
important area for Antarctic krill and toothfish
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fisheries, and one of the regions most impacted by
climate change in the Southern Ocean. Whilst the
pelagic Antarctic krill-centric food web has been
investigated in reasonable detail, the structure of
deep-sea food webs associated with toothfish fish-
eries remain largely unknown. Utilising stable iso-
topes and fatty acids as trophic proxies, we studied
the deep-sea food-web structure in three locations
of the Scotia Sea, from South Georgia (SG) to the
South Sandwich Islands (SSI; divided into north
and south). Our analyses indicate that all food webs
were similar, presenting high trophic redundancy
and similar vertical structure. All food webs had
five trophic levels, with the 5th and 4th trophic
levels mainly constituted of fish and the 3rd trophic
level of cephalopods and crustaceans. However,
some differences existed with the SG food web
presenting larger diversity of producers and the
bigeye grenadier Macrourus holotrachys in the high-
est trophic position, while Patagonian toothfish
Dissostichus eleginoides and both Patagonian and
Antarctic toothfish D. mawsoni were the top
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predators at SSI-North and SSI-South, respectively.
Compared to coastal and pelagic food webs in the
Southern Ocean, our results suggest that deep-sea
food webs, including the benthic/demersal com-
ponents, have a longer food-chain length. This
study provides essential knowledge of the ecologi-
cal variability of Southern Ocean deep-sea food
webs while contributing to the management of
resources within the SG and SSI Marine Protected
Area.

Key words: Antarctica; Bathyal zone; Fatty acids;
Food-chain length; Marine protected area;
Stable isotopes; Trophic web.

HIGHLIGHTS

e Benthopelagic food webs in the Southern Ocean
are composed by five trophic levels.

e Two trophic pathways are found in ben-
thopelagic food webs: pelagic and benthic.

e Southern Ocean deep-sea benthopelagic food
webs are longer than pelagic and coastal.
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INTRODUCTION

South Georgia (SG) and the South Sandwich Is-
lands (SSI) are part of the Scotia Arc and form the
northern and eastern boundaries of the Scotia Sea,
in the Atlantic sector of the Southern Ocean (Fig-
ure 1). South Georgia is approximately 500 km to
the northwest of the SSI, yet several environmental
differences exist between these regions. South
Georgia is crossed by the warmer waters of the
Antarctic Circumpolar Current (ACC) and thus
connected to a larger system including the
Amundsen and Bellingshausen seas and the west-
ern Antarctic Peninsula (Whitehouse and others
2008; Murphy and others 2013; Trathan and others
2014). The SG region is one of the most productive
areas of the Southern Ocean and holds a great
diversity and abundance of species (Gaston 2009;
Sexton and others 2009; Stowasser and others
2012a; Murphy and others 2013; Trathan and
others 2014). In contrast, the SSI are located south
of the Southern Boundary of the ACC (though
with some influence at the northern end of the
archipelago), and within the influence of the
Weddell Gyre in the south (Thorpe and Murphy
2022). This creates a strong latitudinal gradient
along the north-south arc of the archipelago, with
warmer waters to the north and cold Antarctic
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Figure 1. Study areas in the South Georgia and the South Sandwich Islands Marine Protected Area. SG: South Georgia;
SSI-N: South Sandwich Islands—North; SSI-S: South Sandwich Islands—South; APF: Antarctic Polar Front; SBACC:
Southern Boundary of the Antarctic Circumpolar Current; SA: South America; FI: Falkland Islands; SO: South Orkneys;

AP: Antarctic Peninsula
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waters to the south (Thorpe and Murphy 2022).
Such a gradient is reflected in the biological com-
munities, with typical subantarctic species in the
north and Antarctic species in the south, and
whose populations present range-edge character-
istics (Gaston 2009; Sexton and others 2009; Ro-
berts 2012; Downie and others 2021; Hogg and
others 2021; Hollyman and others 2022; Soeffker
and others 2022; Queirds and others 2024b).

Both archipelagos are within the SG and SSI
Marine Protected Area (SGSSI MPA), the second
largest MPA in the Southern Ocean and one of the
largest in the world. It was established in 2012 and
comprises a total area of 1.24 million km?, includ-
ing 283 000 km” of no-take zones (Brooks and
others 2020; GSGSSI 2023b). The SGSSI MPA aims
to protect the ecosystem while maintaining a sus-
tainable and highly regulated use of its marine
living resources (Trathan and others 2014; Belchier
and others 2022; GSGSSI 2023b). More specifically,
it aims to protect biodiversity, representative and
rare habitats, facilitate recovery of populations
from past overexploitation, maintain robustness
and resilience against climate change, and protect
ecosystem processes such as the food-web interac-
tions (Trathan and others 2014; Hollyman and
others 2021; Belchier and others 2022).

Four fisheries occur within the MPA, including
fisheries targeting Antarctic (Dissostichus mawsoni;
exclusively at SSI) and Patagonian (D. eleginoides)
toothfish (Trathan and others 2014; Brooks and
others 2018; GSGSSI 2023a). These fisheries oper-
ate in the deep-sea and are limited to depths be-
tween 700 and 2250 m (Belchier and others 2022;
GSGSSI 2023a). Fisheries within the MPA are
managed following a precautionary and ecosystem-
based approach as applied by the Commission for
the Conservation of Antarctic Marine Living Re-
sources (CCAMLR) in its convention area (CAMLR
1980). The ecosystem-based management aims to
use scientific knowledge in decision making,
acknowledge uncertainty, and consider the biodi-
versity and the ecosystem connections (Trochta
and others 2018). However, to fully implement this
management approach, knowledge about the
marine food web is crucial.

The Scotia Sea is one of the regions most affected
by climate change in the Southern Ocean, with
changes in environmental conditions (for example,
warming) being recorded over recent decades
(Whitehouse and others 2008; Murphy and others
2013; Fabri-Ruiz and others 2020; Rogers and
others 2020; Xavier and others 2022). These
changes are not limited to surface waters but are
also altering and impacting the deep-sea and its

communities (Rogers 2015; Rintoul 2018; Rogers
and others 2020; Constable and others 2023; Li and
others 2023). However, the communities’ response
to climate change is highly dependent on the
structure of its marine food web (Post 2002a; Hette-
Tronquart and others 2013; Pinsky and others
2020). Among food-web properties (for example,-
connectance, modularity, etc), the food-chain
length assumes a major role in determining the
response of the community to climate change (Post
2002a). The food-chain length can be defined as
the number of links between the primary producer
and the top predator or simply as the highest
trophic position in a food web, with the latter being
able to be determined using trophic markers such
as stable isotopes (Post 2002b, 2002a).

Food webs represent the predator—prey interac-
tions in an ecosystem, and its structure underpins
the function of the ecosystem (Dunne and others
2002). Previous research on the marine food web
within the SGSSI MPA focussed on the pelagic and/
or shelf environments but the demersal deep-sea
component of the ecosystem, including ben-
thopelagic coupling, remains largely overlooked
(Stowasser and others 2009b, 2012a, 2012b; Lépez-
Lopez and others 2022). Furthermore, there is
generally scarce information on trophic interac-
tions in the deep-sea ecosystems in this region (for
example, Pilling and others 2001; Roberts and
others 2011; Seco and others 2016; Queirds and
others 2018).

Studying deep-sea marine food webs raise
specific challenges compared to other marine food
webs, due to the difficulty of direct observation of
predator—prey interactions and the technical chal-
lenges related to deep-sea sampling (for example,
costs, spatial resolution, organisms damaged by
changes in pressure) (Iken and others 2001; Choy
and others 2017; Parzanini and others 2018).
Trophic proxies such as stable isotopes (mainly §'°C
and 6'°N) and fatty acids have been commonly
used to overcome these challenges (Post 2002b;
Newsome and others 2007; Stowasser and others
2009a; Kelly and Scheibling 2012; Drazen and
Sutton 2017; Horswill and others 2018; Parzanini
and others 2019; Queirds and others 2025). Values
of '°C are relatively stable throughout the trophic
levels and are used to determine the carbon source
of the food web (DeNiro and Epstein 1978;
McCutchan and others 2003; Cherel and Hobson
2007). In contrast, consumers are enriched in '°N
in relation to their prey, so 6'°N values are used to
determine the species’ trophic position (McCutch-
an and others 2003; Vanderklift and Ponsard 2003;
Bearhop and others 2004). Fatty acids are used on
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the principle that each organism presents a unique
fatty acid profile, with some fatty acids being
incorporated by the consumer without changes
(Dalsgaard and others 2003; Kelly and Scheibling
2012; Drazen and Sutton 2017). Polyunsaturated
w3 and w6 fatty acids are exclusively de novo
synthesised by primary producers, with hetero-
trophic organisms being only capable of slightly
modifying them through elongation and desatura-
tion (Dalsgaard and others 2003; Couturier and
others 2020; Graeve and Greenacre 2020). These
modifications are limited by the presence of fatty
acids desaturase, enzyme responsible to introduce
double bounds between carbons, in organisms
(Dalsgaard and others 2003). In contrast, saturated
and monounsaturated fatty acids up to C18:0 can
be synthesised by consumers, for example, fish
(Dalsgaard and others 2003; Graeve and Greenacre
2020). Differences in the synthesis and modifica-
tion of fatty acids enable the attribution of specific
fatty acids to organisms such as C18:1w7 which is
produced by phytoplankton or bacteria whereas
C18:1w9 can be produced by several organisms,
odd chain saturated fatty acids (for example, C15:0,
C17:0) are characteristic from bacteria, or long
chain monounsaturated fatty acids (for example,
C20:1w9, C22:1w11) being characteristic of cala-
noid copepods (Dalsgaard and others 2003; Maar
and others 2023; Papadimitraki and others 2023).
Therefore, fatty acid profiles can provide informa-
tion on the feeding strategy of the species such as
carnivory, herbivory, or detritivory, and on the
phytoplankton community, i.e. diatoms or
dinoflagellates (Dalsgaard and others 2003; Kelly
and Scheibling 2012; Papadimitraki and others
2023).

This study aims to determine the structure of
Southern Ocean deep-sea food webs on a latitudi-
nal gradient from SG to SSI (divided into north and
south) and to consider how food-chain length
varies across different Southern Ocean ecosystems.
To accomplish these, we analysed stable isotopes
and fatty acids in muscle of fish, and of prey spe-
cies, found in their stomachs captured during
toothfish fishing operations in the SGSSI MPA.

MATERIALS AND METHODS

Data Collection

Samples were collected during the 2020 toothfish
fishing season at the SSI (March and April—C-
CAMLR Subarea 48.4) and SG (from May to Au-
gust—CCAMLR Subarea 48.3) (Figure 1). Due to

the environmental and ecological differences found
along the north-south arc at SSI (Hollyman and
others 2022; Thorpe and Murphy 2022; Queirds
and others 2024b), we considered two different
study areas, that is, the South Sandwich Is-
lands—North (SSI-N) and South Sandwich Is-
lands—South (SSI-S) (Figure 1).

Samples were obtained from fish captured be-
tween 600 and 1900 m depth aboard the FV Nordic
Prince using an autoline longline system baited with
Humboldt squid (Dosidicus gigas; (Fenaughty
2008)). As a conservation measure, fisheries are
limited to depths between 700 and 2250 m, but
some shallow fishing research lines (from 500 to
700 m) are undertaken by licensed vessels operat-
ing in the MPA, explaining the samples collected at
600 m. Additional samples were collected by sci-
entific observers aboard FV San Aspiring (at SSI) and
FV Argos Froyanes (at SG) using the same capture
method and during the same period. Muscle sam-
ples of skates (Amblyraja sp.; presumably A. geor-
giana as this is the most common species by caught
in these fisheries (Goodall-Copestake and others
2018)), blue antimora (Antimora rostrata), D. elegi-
noides, D. mawsoni, Caml grenadier (Macrourus
caml), ridge scaled rattail (M. carinatus), bigeye
grenadier (M. holotrachys), Whitson’s grenadier (M.
whitsoni), eel cod (Muraenolepis sp.) (and occasion-
ally other fish species) were collected from the
wing (Amblyraja sp.), the head (Dissostichus sp.), and
the lateral body region (all other species). Muscle
samples were preserved at —30 °C aboard fishing
vessels.

Stomachs (n = 1268) from individuals captured
in the longlines were also collected, bagged indi-
vidually, and frozen at —30 °C. Most of the stom-
achs (= 85%) were collected from both D. mawsoni
(at SSI) and D. eleginoides (both SSI and SG) though
stomachs from non-target species (for example,
Amblyraja sp., Macrourus spp., A. rostrata) were
collected when non-everted. In the laboratory,
stomachs were defrosted, and prey items identified
to the lowest taxonomic level using published
identification guides (for example, Gon and
Heemstra 1990; Reid 1996; Xavier and others 2020;
Xavier and Cherel 2021) and reference collections
at King Edward Point Research Station (South
Georgia), at British Antarctic Survey (United
Kingdom) and at the University of Coimbra (Por-
tugal). Muscle from fresh prey found in stomachs
was sampled from the lateral body region (fish),
buccal mass (cephalopods), abdomen and legs
(crustaceans) and pectoral muscle (chinstrap pen-
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guin, Pygoscelis antarctica). Samples of Holothuria
(body wall), Antipatharia (polyps) and Asteroidea
(body) were also collected. Samples collected
aboard and from prey species were transferred to
freezers at —20 °C for stable isotopes and at —80 °C
for fatty acids.

Stable Isotope Analyses

Muscle samples were lyophilised for 36 h. Once
dry, samples were ground to powder and delipi-
dated using three successive rinses of cyclohexane
following Chouvelon and others (2011). Lipids are
enriched in '>C and due to different lipid content
between species, delipidation is necessary to allow
species comparison (DeNiro and Epstein 1977; Post
and others 2007). However, chemical delipidation
may influence 6'°N values, thus these values may
be ~0.25 9,, higher than if non-delipidated (Post
and others 2007). After delipidation, samples were
dried overnight in an oven at 45 °C. No prior
acidification was performed to remove inorganic
carbon from Antipatharia and Asteroidea samples,
therefore these are likely to be enriched in '*C
(Kolasinski and others 2008). Between 0.2 and
0.4 mg of sample were weighed into a tin capsule
using a Mettler Toledo® XPR6UD5 microbalance.
Isotope values of carbon (6'°C) and nitrogen (5'°N)
were determined with a Continuous Flow Mass
Spectrometer (Thermo Scientific® Delta V
Plus—Isotope Ratio Mass Spectrometer) coupled
with an elemental analyser (Thermo Scientific®
Flash 2000). Results are presented following the
conventional d-notation in 9,,. Values were calcu-
lated using Vienna Pee Dee Belemnite (VPDB) and
atmospheric nitrogen (Air-N,) as reference mate-
rials for carbon and nitrogen, respectively. Repli-
cates of the certified reference materials USGS-61
and USGS-63 (Caffeine, United States Geological
Survey) were performed throughout the analyses
to assess the precision of the analyses (al-
ways < 0.10 %, and < 0.14 %, for 6'°C and 6'°N,
respectively). Stable isotope analyses were per-
formed at La Rochelle Université—Littoral, Envi-
ronnement et Sociétés Laboratory (France).

Fatty Acid Analyses

Fatty acids were analysed in the same individuals
used for stable isotopes. However, this analysis was
not done for all individuals nor species as it re-
quires, for example, a larger amount of sample
which was not always possible to collect (for
example, small sized individuals). Muscle for fatty
acids was lyophilised for 72 h (Telstar, USA) and
homogenised prior to fatty acid extraction and

methylation following Gongalves and others
(2012). Briefly, 100 mg of sample were incubated
with methanol to methylate the lipids. N-hexane
was added to the samples and Fatty Acid Methyl
Esters (FAMEs) extracted and separated from total
lipids by centrifugation. The FA C19:0 in n-hexane
(at 2 pg mL™") was added to each sample as an
internal standard for FAME quantification. FAMEs
were identified by Gas Chromatography—Mass
Spectrometry (GC-MS) (Thermo Scientific®—Trace
1310 Gas Chromatographer) equipped with a
Trace™ TR-FFAP GC Column (0.32 mm x 0.25
pm x 30 m, Thermo Scientific®). 1.00 pL of each
sample was injected in spitless mode. GC-MS was
performed using the following program: column
temperature at 80 °C for 3 min; heatingto 160°Cata
rate of 20 °C min~'; heating up to 190 °C at arate 2 °C
min~"'; final heating to 220 °C at a rate 5 °C min~%;
and temperature of 220 °C hold for 10 min. Helium
was used as carrier gasata flow rate of 1.4 mLmin™".
Selective ion monitoring (SIM) acquisition was
performed using a Thermo Scientific® ISQ 7000
targeting specific m/z. SIM allows the ions to be
scanned multiple times increasing the signal to noise
ratio, though it precludes the identification of peaks
not included in the certified reference standard
(Couturier and others 2020). FAME identifica-
tion was performed by comparing the retention
times of samples with those of the certified reference
standard Supelco® 37 Component FAME Mix
(CRM47885, Sigma-Aldrich®). Analyses were per-
formed at Laboratério MAREFOZ—Universidade de
Coimbra (Figueira da Foz, Portugal).

Peaks were integrated using the Thermo Xcalibur
Quan Browse v4.1 software. Before quantification,
peaks were cleaned for background contamination
using the nearest instrument blank and normalised
using the C19:0 peak area. FAME concentrations
were calculated with a specific equation built for
each peak using the chromatographic areas and
corresponding known concentrations of the certified
reference material. All concentrations are presented
in dry weight. Throughout the analyses duplicates
were performed to evaluate the accuracy of the
readings (Coefficient of variation = 5.7%). Fatty
acids were classified according to the number of
double bonds: saturated fatty acids (SFA, zero double
bonds), monounsaturated fatty acids (MUFA, one
double bond), polyunsaturated fatty acids (PUFA,
two or three double bonds) and highly unsaturated
fatty acids (HUFA, four or more double bonds).
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Data Analyses
Stable Isotopic Analyses

Layman metrics were calculated for each of the
three studied food webs using the function com-
munityMetricsML from the SIBER package (Jackson
and Parnell 2023) in R Software (Layman and
others 2007; R core team 2022). These metrics were
used to determine the structure of the studied food
webs and included the range of §'°N (NR) and 6'°C
(CR) values which represents the vertical and the
horizontal structure of the web, respectively (i.e.
larger NR represents more trophic levels and, con-
sequently, higher trophic diversity, whereas larger
CR suggest higher diversity in the base of the food
web, suggesting different carbon sources); total
area (TA) which is the convex hull area including
all species in the 6'°N-6'>C biplot space and rep-
resent the extent of the trophic diversity in the food
web; mean distance to centroid (CD) which rep-
resents the average degree of trophic diversity
within the food web and is calculated as the mean
Euclidean distance of each species to the §'°N-6'>C
centroid considering all species in the web (this
metric is less sensible to the presence of outlier
species in comparison with TA); mean nearest
neighbour distance (MNND) which is the average
of all species Euclidean distance to the nearest
neighbour species in the web and measures the
density of species packing in the web, being a
measure for trophic redundancy, i.e. species with
similar trophic niche; and standard deviation of
nearest neighbour distance (SDNND) which mea-
sures the evenness of species distribution across the
trophic niches (Layman and others 2007).

The trophic position of each individual was esti-
mated using the equation: TP = W +2,
where 3.4 is the average increase in 6'°N that a
marine predator exhibits in relation to its prey
(Minagawa and Wada 1984; Post 2002b); 3.5 is the
average 0'°N value for salp (Salpa thompsoni; pri-
mary consumer) measured in the last two studies
in the Scotia Sea (Stowasser and others 2012a; Seco
and others 2021); and 2 is the trophic position of S.
thompsoni. We must be aware that S. thompsoni is a
pelagic species and may exhibit some food prefer-
ence, thus its use as a baseline organism may not be
the most appropriate for deep-sea benthopelagic
food webs (Pakhomov and others 2019). Yet, con-
sidering that S. thompsoni occurs in our three stud-
ied sites, as well across the Southern Ocean
(Atkinson and others 2004; Liszka and others 2022;
Yang and others 2022), its isotopic values are not
affected by different chlorophyl a concentration

such as the case of our study region and the entire
Southern Ocean (Deppeler and Davidson 2017;
Thorpe and Murphy 2022), and being commonly
used in Southern Ocean food-web studies (for
example, Cherel and others 2008, 2010; Stowasser
and others 2012a), this species is appropriate to
compare the food-web structure between our three
study sites and with other food webs in the
Southern Ocean.

Statistical tests were performed in GraphPad
Prism v9.5.1 and considering « at 5%. Normal
distribution and homogeneity of variances of §'*C
and '°N values for each species in each of the
three study areas was tested using a Shapiro-Wilk
normality test and a Bartlett’s test. Differences in
0'°N values of species with a minimum of four
samples in two of the three studied areas were
tested to evaluate changes in trophic position with
location. Differences between individuals of M. cam!
and M. whitsoni in the three study areas were tested
using an ANOVA followed by a Tukey’s multiple
comparison test, while A. rostrata and Muraenolepis
sp. were tested using a Kruskal-Wallis’ test. Dif-
ferences in D. mawsoni, Nematocarcinus sp. and
euphausiids were tested with a t-test, whereas a
Mann-Whitney test was used for D. eleginoides and
M. longimana. Considering all species together, dif-
ferences in 6'°C values between study areas were
tested using a Kruskal-Wallis test proceeded by a
Dunn’s multiple comparison test. To evaluate the
trophic enrichment of 6'°C values and the number
of carbon sources in the studied food webs we did a
Spearman correlation between §'>C and §'°N val-
ues.

Fatty Acids

In R software v4.2.2 (R core team 2022), we tested
differences in species fatty acids signatures. We
considered three divisions between species, that is,
study area (SG, SSI-N, and SSI-S), taxonomic group
(fish, cephalopods, crustaceans, and ‘““others’””) and
trophic level (that is, considered groups of 0.5
trophic level based on stable isotopes). Significant
differences between groups were tested using a
Permutational Analysis of Variance (PERMANO-
VA) using the function adonis2 (method: Bray-
Curtis; permutations: 999) from the vegan package
(Oksanen and others 2022). Multiple comparisons
were done by a Pairwise-PERMANOVA using the
function pairwise.adonis (method: Bray-Curtis;
permutations: 999) from pairwiseAdonis package
(Arbizu 2020). To evaluate which fatty acids con-
tributed to the differences between groups we did a
Similarity Percentage (SIMPER) analysis using the
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Figure 2. Trophic position, 6'°N and 6'>C values for the three studied areas. Colours define the taxonomic groups:
blue—fish; pink—cephalopods; red—crustaceans; green—others. Values are mean =+ standard deviation. Each plot can be

seen in detail in the Online appendix A

function simper from vegan package (Oksanen and
others 2022). A Principal Component Analysis
(PCA) was performed for divisions with significant
differences in PERMANOVA. PCA was performed

using the function prcomp (scaled and centred) and

plotted (including ellipses)

using the function

fviz_pca_biplot from factoextra package (Kassambara
and Mundt 2020).
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Figure 3. Heatmaps with the % of the different fatty acids in the muscle (except Asteroidea, Antipatharia and

Holothurian) for the three studied areas.

Colours in the name define the taxonomic groups:

blue—fish;

pink—cephalopods; red—crustaceans; green—others. Grey columns mean no sample of the species was analysed in this
specific area. Each heatmap can be seen in detail in the Online appendix A

To evaluate the feeding strategy and the source
of primary production we calculated the following
ratios as indicators of carnivory/herbivory: EPA/

DHA (EPA = Eicosapentaenoic Acid, C20:5w3;
DHA = Docosahexaenoic Acid, C22:6w3),
2 (PUFA + HUFA)/XSFA and Cl6:107/C16:0

(Dalsgaard and others 2003; Stowasser and others

2009b; Papadimitraki and others 2023). The ratio
2 (PUFA + HUFA)/XSFA is usually presented as
2PUFA/ZSFA but considering PUFA as the fatty
acids with two or more double bounds, therefore,
to accommodate the used classification we used
both PUFA and HUFA (Papadimitraki and others
2023). The ratio (Clé6:1w7 + EPA)/(C18:2w6 +
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Figure 4. Principal component analysis (PCA) for the composition of fatty acids between Taxa (Left panel) and Trophic

Position (right panel)

DHA) was used as an indicator of the phytoplank-
ton community (diatom/dinoflagellate) (Dalsgaard
and others 2003). The ratio C20:1w9/DHA was
used as an indicator of the copepod Calanoides acu-
tus (Graeve and Greenacre 2020).

REsuLTS

Trophic Position, §"°C and §'°N Values
at South Georgia and the South
Sandwich Islands

Layman metrics varied across the three studied
food webs. The smallest NR was found at SG,
whereas both SSI areas had similar NR (Table 1).
Contrasting, the largest CR was found at SG (6'°C
values ranged from —25.0 to —19.5 %), followed
by SSI-N (6'°C values between from —25.9 and —
22.2 %,) and SSI-S (6'°C range from —25.8 to —
23.2 9,) with the smallest (Tables 1 and 2). Simi-
larly, the TA decreased from SG to SSI-S, with SSI-
N presenting an intermediate value though closer
to SG (Table 1). The largest CD was found at SG,
followed by SSI-S and with SSI-N presenting the
lowest value (Table 1). Regarding the nearest
neighbour distance, the highest MNND and
SDNND were found at SSI-N, followed by SSI-S
and SG (Table 1).

0'°N values varied largely between species (Ta-
ble 1), and consequently the calculated trophic
position (mean =+ standard deviation), ranged from
the giant warty squid (Moroteuthopsis longimana;
3.1 + 0.3) to M. holotrachys (5.4 + 0.1) at SG; from

euphausiids (2.9) to D. eleginoides (5.5 &+ 0.2) at
SSI-N; and from euphausiids (2.7 4+ 0.4) to Dissos-
tichus species (5.5 & 0.2) at SSI-S (Table 1, Fig-
ure 2).

Significant differences in §'°N values were found
for D. eleginoides between SG and SSI-N and for M.
longimana and Nematocarcinus sp. between SG and
SSI-S (Table 2). Furthermore, significant differ-
ences were found M. whitsoni between the three
areas, with multiple comparisons showing differ-
ences between SG and both SSI areas (Table 2). No
other species showed significant differences in 6'°N
values between studied areas (Table 2). Regarding
0'°C values, significant differences were found for
between the three areas (Kruskal-Wallis:
U =176.0, p < 0.0001), with multiple comparison
test showing differences between all areas (all
p < 0.0001).

Significant correlations were found between
6'2C and 6'°N values for each of the three studied
areas (Spearman correlation, SG: 1= 0.692,
p < 0.0001; SSI-N: r=0.353, p=0.007; SSI-S:
r=0.621, p < 0.0001).

Fatty Acid Composition of Species
at South Georgia and the South Sandwich
Islands

HUFA was the most abundant group of fatty acids
in most of the studied species (Figure 3, Online
appendix A). The exceptions were D. eleginoides at
SG and SSI-N and D. mawsoni at both SSI-N and
SSI-S, Gnathophausia and Antipatharia at SG, the
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Table 2. Statistical Test Results for the Comparison of the ¢'°N Values Between the Different Areas for
Species with at Least Four Measurements in Two Different Areas

Species Comparison Test p-value Test value  Multiple
Comparison

A. rostrata SG (11) vs SSI-N (4) vs SSI-S (5) Kruskal-Wallis 0.5455 F=0.623

D. eleginoides SG (10) vs SSI-N (11) Mann-Whitney  0.0048 U =16.00

D. mawsoni SSI-N (6) vs SSI-S (13) t-test 0.0027 t=3.510

Euphausiid SG (4) vs SSI-S (5) t-test 0.0956 t=1.925

M. caml SG (10) vs SSI-N (11) vs SSI-S (10) ANOVA 0.2296 F =1.552

M. whitsoni SG (8) vs SSI-N (10) vs SSI-S (11) ANOVA < 0.0001 F=22.36 SG # SSI-N;
SG # SSI-S

M. longimana SG (4) vs SSI-S (14) Mann-Whitney  0.0248 U = 7.000

Muraenolepis sp. SG (9) vs SSI-N (8) vs SSI-S (17) Kruskal-Wallis 0.2398 F =0.940

Nematocarcinus sp. SG (11) vs SSI-S (6) t-test 0.0384 t=2.270

Number of samples analysed per study area in brackets. Bold shows statistically significant results

deep-sea smelt (Bathylagus sp.) at SSI-N and
Channichthyidae and P. antarctica at SSI-S which
had higher percentages of MUFA (Figure 3, Online
appendix A). Considering all individuals, on aver-
age DHA (34 + 15%) was the most common fatty
acid, followed by EPA (18 £ 8%), Cl18:1w9
(16 £ 12%; most common in Dissostichus species)
and C16:0 (14 + 5%) (Figure 3, Online appendix
A).
PERMANOVA analyses showed significant dif-
ferences in the fatty acid signatures between taxo-
nomic groups and trophic levels (Table 3,
Figure 4). Pairwise comparisons showed differ-
ences between all pairs of taxonomic groups (Ta-
ble 3). SIMPER analysis showed that differences
between fish, cephalopods and crustaceans are
mainly due to concentrations of C18:1w9 and
Cl6:1w7, though the separation of these groups
with ““others” is mostly created by the DHA, ARA
(Arachidonic Acid, C20:4w6) and C18:0 (Table 3,
Figure 4). Regarding trophic levels, significant dif-
ferences existed for almost all pairs, except for 3
with 3.5, and for 4 with 4.5 (Table 3). Species on
trophic level 5 had higher abundance of Cl6:1w7
and C20:1w9 and lower abundance of C18:1®w9 and
DHA while species on trophic level 2 differed due to
higher concentration of C18:1w9 and lower con-
centration of C18:0 and C20:1w9 (Table 3, Fig-
ure 4).

EPA/DHA at SG varied between 0.21 £+ 0.06 for
A. rostrata and 15.7 for Anthipatharia (Table 4). At
SSI-N this ratio varied between 0.35 £+ 0.05 for M.
whitsoni and 0.96 for euphausiids, while at SSI-S
the lowest value was found for Amblyraja sp.
(0.18 & 0.08) and the highest for Asteroidea
(6.85 + 7.88) (Table 4). Regarding X(PUFA/

HUFA)/ZSFA, the highest values at SG were for
lithodid crabs (Paralomis sp.; 8.12 £ 2.63) and the
lowest for D. eleginoides (1.03 £ 0.27), at SSI-N the
lowest and the highest were recorded for D. maw-
soni (1.06 = 0.17) and M. longimana (5.03 £ 1.93),
respectively, and at SSI-S this ratio varied from
0.97 £ 0.16 for D. mawsoni and 10.5 &+ 2.18 for
euphausiids (Table 4). The ratio Cl16:1w7/C16:0
showed a variation from 0.02 £ 0.02 in Turquet’s
octopus (Pareledone turqueti) to 0.88 £ 0.05 in D.
eleginoides at SG (Table 4). The lowest values of this
ratio in both SSI areas were measured in M. longi-
mana (SSI-N = 0.04 £ 0.00; SSI-S = 0.06 £ 0.02),
whereas the highest values were measured for D.
mawsoni (1.28 £ 0.12) and the shrimp Nemato-
carcinus sp. (1.56 & 0.82) at SSI-N and SSI-S,
respectively (Table 4). (Cl6:1w7 + EPA)/
(C18:2w6 + DHA) varied between 0.21 + 0.04
(Amblyraja sp.) and 1.88 & 1.60 (Paralomis sp.) at
SG, between 0.41 £ 0.07 (M. whitsoni) and
2.35 £ 0.14 (D. mawsoni) at SSI-N, and between
0.23 £ 0.04 (abyssal grenadier, Coryphaenoides
armatus) and 6.04 £ 5.76 (Asteroidea) at SSI-S
(Table 4). Lastly, the C20:1w9/DHA at SG varied
from euphausiids (0.02) to Antipatharia (17.2), at
SSI-N from euphausiids (0.01) to D. mawsoni
(1.55 + 0.60), and at SSI-S from plunderfish
(Artedidraco sp.; 0.02) to D. mawsoni (1.77 £ 0.59)
(Table 4).

DiscussioN

Using fish captured in demersal longlines in the
bathyal zone of the Southern Ocean as biological
samplers granted us access to a variety of species
and taxa spanning trophic levels that otherwise
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Table 3. Results From PERMANOVA (and Respective Pairwise) and SIMPER Analysis for the Fatty Acids
Concentration Between Region (SG, SSI-N and SSI-S), Taxonomic Group (Fish, Cephalopoda, Crustacea and
““Other””) and Trophic Position (in Groups of 0.5 Trophic Levels From the Estimated Trophic Position From

0'°N Values)

Variable PERMANOVA Pairwise PERMANOVA SIMPER
F P Comparison 4 FA % FA % FA %
Region 1.67 0.094
Taxonomic group 23.89 0.001 Fish vs Cephalopoda 0.001 C18:109 0.15 C20:109 0.30 Clé:107 0.43
Fish vs Crustacea 0.001 C20:5w3 0.12 Clé6:1w7 0.24 Cl18:1w9 0.36
Fish vs Other 0.001 C22:6w3 0.15 C20:406 0.28 C18:0 0.37
Cephalopoda vs Crustacea 0.001 C20:1w9 0.17 C18:1w9 0.34 Clé6:1w7 0.47
Cephalopoda vs Other 0.001 C22:603 0.15 C20:406 0.30 C18:0 0.39
Crustacea vs Other 0.001 C20:406 0.15 C22:6m3 0.28 C18:0 0.40
Trophic position 5.82 0.001 5 vs 45 0.001 Cl6:lo7 015  C22:6w3 030  C20:1w9  0.42
5 vs 4 0.001 Clé6:1w7 0.14 C22.6w3 0.26 Cl18:1m9 0.39
5 vs 3.5 0.001 Clé:1w7 0.14 C18:1w9 0.28 C22:6mw3 0.41
5 vs 3 0.022 Clé:1w7 0.17 Cl8:1m9 0.31 C22:6m3 0.45
5 vs 2.5 0.001 C20:5w3 0.14 C18:1w9 0.27 C20:109 0.52
4.5 vs 4 0.166
4.5 vs 3.5 0.005 C20:109 0.14 Cl8:1m9 0.27 Clé6:1w7 0.37
4.5 vs 3 0.542
4.5 vs 2.5 0.010 C18:0 0.16 C20:1w9 0.28 Cl18:1w9 0.39
4 vs 3.5 0.004 C20:4m06 0.12 C18:0 0.23 C20:1m9 0.35
4 vs 3 0.659
4 vs 2.5 0.046 C18:0 0.15 C20:1w9 0.27 C20:4mw6 0.38
3.5 vs 3 0.540
3.5 vs 2.5 0.027 C20:1m9 0.17 C18:1w9 0.30 C18:0 0.42
3 vs 2.5 0.023 C18:0 0.16 C20:1m9 0.32 Cl18:1w9 0.43

Bold shows statistically significant results

would be difficult to sample, especially at the SSI
(Collins and others 2022; Queirés and others
2024b). Utilising stable isotopes and fatty acids as
trophic proxies enabled us to determine the struc-
ture of the Southern Ocean deep-sea food web on a
latitudinal gradient from SG to SSI-S. The three
food webs have several similarities, including sim-
ilar trophic diversity (most notably the presence of
5 trophic levels) and high trophic redundancy with
species in the studied food webs presenting similar
trophic ecologies. The 5th trophic level was exclu-
sively composed of fish, the 4th trophic level
mainly occupied by fish and the 3rd trophic level
mostly populated by cephalopods and crustaceans.
These three trophic levels comprise most of the
species studied here and represent carnivorous/
omnivorous species as shown by the high per-
centages of DHA and C18:1w9 (Dalsgaard and
others 2003; Papadimitraki and others 2023).
Euphausiids at both SSI locations were the only
species on the 2nd trophic level. Benthic species
like starfish (Asteroidea), sea cucumbers (Ho-

lothuria) and black corals (Antipatharia) were at-
tributed to the 4th trophic level. Yet, fatty acids
indicated that these species belong to a specific
section of the food web, with higher concentrations
of C18:0 suggesting Asteroidea and Holothurians as
detritivores, while higher concentrations of
C20:1w9 suggest Antipatharia as suspension feed-
ers of zooplankton (mostly copepods). Both the
presence of 5 trophic levels and the benthic species
in the 4th trophic level may relate to the chosen
baseline, that is, S. thompsoni which is a species
from the pelagic component of the food web and,
due to the §'°N enrichment of benthic pathways
may be overestimating the trophic position of spe-
cies from, and related, the benthic pathway (dis-
cussed below). Some differences also exist between
food webs, with the SG food web presenting a
higher diversity in the primary producers’ com-
munity when compared to the SSI food webs,
though always dependent on diatom-based detri-
tus. Furthermore, differences exist in the trophic
position of some species in the three food webs (for
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Table 4. Ratios Between Different Fatty Acids for the Different Species In the Three Sampling Areas

Species South Georgia
n EPA EPUFA+XHUFA Cl6:107 C16:107+EPA C20:109
DHA TSFA C16:0 Cl8:206-DHA DHA
Fish
Amblyraja sp. 3 0.18 £ 0.04 2.64 £ 0.13 0.08 £ 0.01 0.21 £ 0.04 0.04 £+ 0.01
A. pharao 0
A. rostrata 3 0.21 £ 0.06 3.40 + 0.48 0.09 £ 0.01 0.23 £ 0.06 0.04 £ 0.01
Artedidaco sp. 0
Bathydraco sp. 4 0.67 £ 0.18 3.60 + 0.22 0.28 £ 0.14 0.76 £ 0.19 0.05 £ 0.01
Bathylagus sp. 0
Channichthyidae 0
C. armatus 0
D. eleginoides 3 0.56 £ 0.11 1.03 £ 0.27 0.88 £ 0.05 1.59 £ 0.26 0.91 £ 0.46
D. mawsoni 0
Lepidonotothen sp. 3 0.48 £+ 0.04 4.27 £ 0.68 0.12 £ 0.03 0.51 £ 0.06 0.03 £ 0.01
M. caml 3 0.79 £ 0.36 2.35 £ 0.66 0.13 £ 0.03 0.87 £ 0.36 0.09 £ 0.03
M. carinatus 3 0.25 £ 0.09 2.33 £ 1.49 0.10 £ 0.02 0.32 £+ 0.04 0.06 £+ 0.05
M. holotrachys 3 0.34 £ 0.02 2.68 £ 0.69 0.17 £ 0.11 0.40 £ 0.03 0.05 £ 0.02
M. whitsoni 3 0.33 £ 0.07 3.34 + 0.07 0.11 £ 0.01 0.37 £ 0.07 0.03 £ 0.01
Muraenolepis sp. 4 0.37 £ 0.07 2.72 £ 0.51 0.17 £ 0.05 0.44 £+ 0.08 0.06 £ 0.05
Paraliparis sp. 1 0.47 3.21 0.36 0.59 0.14
Cephalopoda
B. abyssicola 1 0.48 4.27 0.10 0.50 0.15
C. veranyi 1 0.49 2.86 0.08 0.52 0.12
F. knipovitchi 2 0.49 £ 0.11 4.99 £ 0.95 0.06 £ 0.06 0.50 £ 0.12 0.12 £ 0.01
G. glacialis 0
M. hamiltoni 0
M. longimana 3 0.48 £ 0.09 3.02 + 0.74 0.06 £ 0.02 0.50 £ 0.09 0.14 £ 0.01
P. turqueti 2 0.62 £ 0.29 2.38 £ 1.25 0.02 £ 0.02 0.63 £+ 0.29 0.25 £ 0.15
P. glacialis 0
S. circumantarctica 4 0.50 £ 0.26 5.91 + 4.56 0.17 £ 0.10 1.26 + 1.68 1.35 + 2.58
S. gilchristi 3 0.47 £ 0.07 2.74 £ 0.37 0.14 £ 0.04 0.50 £ 0.09 0.23 £ 0.10
T. notalia 1 0.66 3.17 0.09 0.70 0.22
Crustacea
Euphausiid 1 0.79 3.93 0.14 0.83 0.02
Gnathophausia 1 0.75 2.12 1.08 1.52 0.03
Nematocarcinus sp. 3 0.76 £ 0.09 3.95 + 0.43 0.43 £ 0.19 0.91 £ 0.10 0.06 + 0.07
Paralomis sp. 3 1.83 £ 1.62 8.12 £ 2.63 0.20 £ 0.10 1.88 £+ 1.60 0.13 £ 0.10
Pasiphaea sp. 3 0.94 £ 0.19 7.03 £ 6.54 0.35 £ 0.15 1.06 £ 0.25 0.04 £ 0.01
Thymops sp. 3 1.07 £ 0.08 4.06 = 0.36 0.28 £ 0.11 1.17 £ 0.05 0.07 £+ 0.07
Other
Asteroidea 1 3.49 2.58 0.30 3.25 2.49
Antipatharia 1 15.7 2.19 0.21 13.7 17.2
Holothuria 1 0.00 0.85 n.t 0.00 0.00
P. antarctica 0
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Species

South Sandwich Islands—North

n

EPA
DHA

YXPUFA+X>HUFA
>SFA

Clé:1w7
C16:0

C16:1w7+EPA

C20:1w9

C18:206:DHA

DHA

Fish

Amblyraja sp.
A. pharao

A. rostrata
Artedidaco sp.
Bathydraco sp.
Bathylagus sp.
Channichthyidae
C. armatus

D. eleginoides

D. mawsoni
Lepidonotothen sp.
M. caml

M. carinatus

M. holotrachys
M. whitsoni
Muraenolepis sp.
Paraliparis sp.
Cephalopoda

B. abyssicola

C. veranyi

F. knipovitchi

G. glacialis

M. hamiltoni

M. longimana

P. turqueti

P. glacialis

S. circumantarctica
S. gilchristi

T. notalia
Crustacea
Euphausiid
Gnathophausia

Nematocarcinus sp.

Paralomis sp.
Pasiphaea sp.
Thymops sp.
Other
Asteroidea
Antipatharia
Holothuria
P. antarctica

O WWOOWOWWOoOH—H—~,OO~ORO

SO OO OO NOO~OO

SO OO O O~

o O O O

0.40

0.37
0.87

0.64 £ 0.02
0.94 £ 0.07
0.38 £ 0.06

0.35 £ 0.05
0.42 £ 0.08

0.41 £ 0.09

0.96

2.96

2.19

3.89

1.49 £ 0.47

1.06 £ 0.17

3.16 £ 0.09

3.16 £ 0.16

3.20 £ 0.39

4.21

5.03 £ 1.93

3.99

0.40
0.36

0.94 £ 0.12

1.28 £ 0.12

0.12 £+ 0.03

0.16 £+ 0.07

0.22 £ 0.11

0.08

0.04 £+ 0.00

0.22

0.46

0.56

0.99

1.47 £ 0.26

2.35 £ 0.14

0.42 £+ 0.06

0.41 &+ 0.07

0.49 =+ 0.10

0.57

0.42 £+ 0.09

1.01

0.05

0.83

0.06

0.48 £ 0.13

1.55 £ 0.60

0.03 £ 0.01

0.04 £+ 0.03

0.03 £ 0.02

0.24

0.11 £ 0.00

0.01
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Species South Sandwich Islands—South
n _EPA_ TPUFALZHUFA Cl6:107 C16:107LEPA C20:109
DHA =SFA C16:0 C18:206:DHA DHA
Fish
Amblyraja sp. 2 0.18 £+ 0.08 2.70 £ 0.22 0.16 £ 0.05 0.24 £ 0.11 0.05 £+ 0.01
A. pharao 1 0.39 4.13 0.33 0.48 0.04
A. rostrata 3 0.27 £ 0.02 3.29 + 0.27 0.12 £ 0.04 0.31 £ 0.03 0.05 £ 0.02
Artedidaco sp. 1 0.30 £ 0.00 3.50 0.30 0.40 0.02
Bathydraco sp. 0
Bathylagus sp. 0
Channichthyidae 1 0.77 £ 0.00 2.48 1.02 1.33 0.20
C. armatus 3 0.21 £ 0.04 3.58 £ 0.16 0.09 £ 0.01 0.23 £ 0.04 0.03 £ 0.01
D. eleginoides 1 0.48 £+ 0.00 2.18 0.44 0.72 0.12
D. mawsoni 3 0.72 £ 0.14 0.97 £ 0.16 1.48 £+ 0.39 2.47 £+ 0.47 1.77 £ 0.59
Lepidonotothen sp. 1 0.74 £ 0.00 3.80 0.23 0.84 0.04
M. caml 3 0.39 £+ 0.06 3.20 £ 0.12 0.18 £ 0.04 0.45 £ 0.07 0.06 £ 0.02
M. carinatus 0
M. holotrachys 0
M. whitsoni 3 0.32 4+ 0.04 3.19 £ 0.33 0.14 £+ 0.04 0.36 £ 0.04 0.03 £ 0.01
Muraenolepis sp. 3 0.31 £ 0.06 3.34 £ 0.31 0.80 £ 0.50 0.56 £ 0.19 0.08 £ 0.03
Paraliparis sp. 0
Cephalopoda
B. abyssicola 0
C. veranyi 0
F. knipovitchi 3 0.53 £+ 0.07 4.01 £+ 1.02 0.08 £ 0.03 0.55 £ 0.08 0.11 £ 0.05
G. glacialis 3 0.79 £ 0.26 2.84 £+ 0.62 0.23 £ 0.15 0.92 £+ 0.38 0.31 £ 0.21
M. hamiltoni 3 0.64 £ 0.14 3.54 + 0.25 0.15 £ 0.03 0.69 £ 0.13 0.27 £ 0.11
M. longimana 4 0.44 £+ 0.11 3.57 £ 0.81 0.06 £ 0.02 0.47 £ 0.12 0.25 £+ 0.21
P. turqueti 0
P. glacialis 1 0.65 3.21 0.12 0.70 0.19
S. circumantarctica 0
S. gilchristi 0
T. notalia 0
Crustacea
Euphausiid 3 0.69 £ 0.33 10.5 £ 2.18 0.39 £ 0.37 0.72 £+ 0.31 0.06 £ 0.05
Gnathophausia 0
Nematocarcinus sp. 4 0.75 £+ 0.08 6.47 £ 2.09 1.56 & 0.82 1.02 £ 0.13 0.05 £ 0.03
Paralomis sp. 0
Pasiphaea sp. 2 0.69 £ 0.08 6.38 £ 7.72 0.48 £ 0.15 1.01 £ 0.46 0.14 + 0.01
Thymops sp. 0
Other
Asteroidea 4 6.85 + 7.88 231 £1.94 0.47 £ 0.23 6.04 £ 5.76 0.58 £ 0.08
Antipatharia 0
Holothuria 3 2.74 £ 2.48 3.23 + 2.09 0.72 £ 0.25 3.15 + 2.21 0.27 £ 0.07
P. antarctica 1 2.52 0.32 0.17 1.87 0.57

Values are mean =+ standard deviation.
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Table 5. Review of the Food-Chain Lengths Recorded in Different Studies Across the Southern Ocean
Location Food Web FCL  Top predator Method References
South Sandwich Islands (North) Benthopelagic 5.5 Dissostichus eleginoides ~ Stable isotopes This study
South Sandwich Islands Benthopelagic 5.5 Dissostichus eleginoides  Stable isotopes (Queirds and others 2025)
Ross Sea Pelagic/Ben- ~5.5' Large demersal fish Modelling (Pinkerton and Bradford-Grieve
thopelagic Physeter macro- 2014)
cephalus
Orcinus orca
South Georgia Benthopelagic 5.4 Macrourus holotrachys  Stable isotopes This study
Ross Sea Coastal ben- 5.4° Trematomus hansoni Stable isotopes (Rossi and others 2019)
thopelagic* Chionodraco hama-
tus
South Sandwich Islands (South) Benthopelagic 5.3 Dissostichus mawsoni Stable isotopes This study
Dissostichus elegi-
noides
Pridz Bay (East Antarctica) Pelagic 5.3 Physeter macrocephalus  Modelling (McCormack and others 2020)
Kerguelen Islands Pelagic 5.32 Talassarche mela- Stable isotopes (Cherel and others 2010)
nophrys
Scotia Sea Pelagic 5.2 Macronectes halli Stable isotopes (Stowasser and others 2012a)
Antarctic Peninsula Pelagic 5.0° Orcinus orca Modelling (Murphy and others 2013)
Hydrurga leptonyx
Scotia Sea Pelagic 5.0° Orcinus orca Modelling (Murphy and others 2013)
Hydrurga leptonyx
Fildes Bay (Antarctica Peninsula) Coastal ben- 4.9 Harpagifer antarcticus ~ Stable isotopes (Zenteno and others 2019)
thopelagic
Windmill Island (East Antarctica) Coastal ben- 4.9 Notothenia corriceps Stable isotopes (Gillies and others 2012)
thopelagic
Adélie Land (East Antarctica) Pelagic 4.6 Aptenodytes forsteri Stable isotopes (Cherel 2008)
Weddell Sea Pelagic 4.3 Oceanites oceanicus Stable isotopes (Rau and others 1992)
Potter Cove (Antarctic Peninsula) Coastal benthic 4.3 Urticinopsis antarctica ~ Feeding links (Marina and others 2018)
Rothera Point (Antarctic penin- Coastal benthic 4.0° Odontaster validus Stable isotopes (Cardona and others 2021)
sula)
Cierva Cove (Antarctic peninsula)  Coastal benthic 3.9° Odontaster validus Stable isotopes (Cardona and others 2021)
Paradise Harbour (Antarctic Coastal benthic 3.9° Diplasterias brulei Stable isotopes (Cardona and others 2021)
peninsula)
Fildes Bay (Antarctic peninsula) Coastal benthic 3.8° Odontaster validus Stable isotopes (Cardona and others 2021)
Esperanza Bay (Antarctic penin- Coastal benthic 3.8° Odontaster validus Stable isotopes (Cardona and others 2021)
sula)
Adélie land (East Antarctica) Coastal benthic 3.3° Isotalia antarctica Stable isotopes (Michel and others 2019)

! Approximate trophic position according to the position of the node on the figure; A trophic level of 6.1 can be estimated for Mesonychoteuthis hamiltoni though it
measures de 8'°N values in the beak and converts to muscle afterwards (Cherel and others 2010); estimated general structure model for the Antarctic Peninsula and
Scotia Sea ecosystem,; *whereas this study focus in a coastal area, the studied food web includes species from deeper areas of the water column, including the species
that have the highest trophic position that are known to inhabit waters up to 600 m deep; *value estimated using the equation TP = (3'°N reported in the

study—3.5)/3.4 + 2"’

Only studies analysing different species within the same food web were considered. For studies analysing stable isotopes of 8'°N but did not calculate the trophic
level, we used the highest 3'°N values recorded in the study and estimated the food-chain length (FCL) with the trophic position equation used in this study. Top
Predator is the species with the highest trophic level in the study. Food webs are ordered by the longest to the shortest food web

example, M. whitsoni and M. longimana), and in the
top predators with Dissostichus spp. being in the
highest trophic position in both SSI study areas,
whereas at SG this position was occupied by M.
holotrachys.

The three deep-sea food webs studied here pre-
sented a FCL ranging from 5.3 to 5.5. We must be
aware that the §'°N enrichment of benthic path-
ways and the use of S. thompsoni as baseline species,
may overestimate these FCLs, suggesting that
benthopelagic food webs in the Southern Ocean
may be shorter. Yet, previous modelling studies
showed large demersal fish (for example, toothfish)
in the 5th trophic level (though some studies

showed these species close to the 5th trophic level,
but still in the 4th (McCormack and others 2020)),
supporting FCLs of five trophic levels in deep-sea
Southern Ocean benthopelagic food webs (Pinker-
ton and Bradford-Grieve 2014). Compared to
coastal and pelagic food webs in the Southern
Ocean, our results suggest that deep-sea food webs
(including both pelagic and benthic/demersal spe-
cies) have longer food chains (for example, Stow-
asser and others 2012a; Marina and others 2018).
This pattern seems to differ from other oceans
worldwide, where shelf systems appear to present
longer food chains to those in open water system
(Christensen and Pauly 1993). Though previous
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studies also found longer food webs in the Arctic
Ocean deep-sea than those in the shelf areas (re-
viewed in Kedra and others 2015). Furthermore,
studies on deep-sea communities showed that food
webs can have 3 (for example, Porcupine Abyssal
Plain—NE Atlantic (Iken and others 2001)), 4 (for
example, Cape Flattery—NE Pacific (Boyle and
others 2012) and Canada Arctic basin (Iken and
others 2005)) and 5 trophic levels (for example,
Azores (North Atlantic) (Morato and others 2016),
HAUSGARTEN (Arctic Ocean, deep-sea observa-
tory from Alfred Wegener Institute (Bergmann and
others 2009) and Galicia Bank—NE Atlantic (Pre-
ciado and others 2017)). In contrast, a food web
from the shelf of Perti and including benthopelagic
coupling, that is, presence of benthic, demersal and
pelagic fauna, showed a food web including 6
trophic levels (Nacari and others 2023) and another
study in the continental margin of the NW Atlantic
found a food web including almost 5 trophic levels
(Parzanini and others 2019). Therefore, these re-
sults may suggest differences in the food-chain
length between Southern Ocean and other oceans.
Though, as the length of deep-sea food webs seem
to be region-dependent, it is important that further
studies study benthopelagic deep-sea food webs in
other regions of the Southern Ocean. Furthermore,
it is important that future studies also look to food
webs including the benthopelagic coupling in shelf
areas to determine if these are longer than those
from the deep-sea.

Knowing the food-web structure is crucial to
manage toothfish fisheries following the precau-
tionary and ecosystem-based approach (Trochta
and others 2018; Belchier and others 2022), as it is
important to understand the impacts of reducing
the abundance of target and non-target species on
the ecosystem. Our results show the position in the
marine food web of the target (D. mawsoni and D.
eleginoides) and main bycatch species (for example,
Macrourus spp. and Amblyraja sp.) within this fish-
ery, allowing us to better evaluate the effects of
their capture and develop better predation-release
scenarios resulting from these fisheries (Pinkerton
and Bradford-Grieve 2014; Queirds and others
2022). For example, it is estimated that the current
spawning stock biomass of D. eleginoides at SG is at
47% of the pre-exploitation biomass (Trathan
2023). Therefore, predation pressure on its prey,
some of which are also caught as bycatch at SG
such as Muraenolepis sp. and Macrourus spp., de-
crease, potentially leading to an increase of its
biomass (unpublished data; Pilling and others 2001;
Fitzcharles and others 2021). Being in the 4th
trophic level, changes in the biomass of Mur-

aenolepis sp. could consequently cascade through
the trophic levels below, but also influence the
bycatch of this species in this fishery (Pinkerton
and Bradford-Grieve 2014; Queirds and others
2022).

A limitation of this study is the estimation of the
trophic position using an equation that is better
suitable for food webs with a single source, that is,
typical pelagic food web (Post 2002b). However,
benthopelagic food webs have multiple sources of
energy and, consequently multiple pathways,
including the benthic pathway where nutrients are
recycled and it is typically enriched in '°N (Iken
and others 2001; Post 2002b; Preciado and others
2017; Kiljunen and others 2020). Therefore, the
use of a single source equation, together with the
use of a pelagic baseline (discussed above), poten-
tially overestimates the trophic position of the
species in our food webs. The 2-end member ap-
proach would be best suitable to estimate the
trophic position in our food webs (Post 2002b;
Bergmann and others 2009). However, this ap-
proach requires previous knowledge on the
importance of each trophic pathway in the food
web; or on the diet of the different species in the
food webs so we could use a Bayesian approach to
estimate the contribution of the pelagic- and ben-
thic pathway to each species and, ultimately, esti-
mate the trophic position of each species (Post
2002b; Kiljunen and others 2020). None of this
information is currently available for the Southern
Ocean benthopelagic food webs, nor to most spe-
cies studied here. By the importance of ben-
thopelagic ecosystems in the Southern Ocean, it is
urgent that we fulfil these gaps so we can better
estimate the trophic position of the different species
and, ultimately, have a more detailed picture of the
structure and functioning of these food webs. Fu-
ture studies should use different methodologies
including, but not limited to, stomach content
analyses (using both visual analyses and DNA
metabarcoding), compound specific stable isotopes
(CSIA), sulphur stable isotopes (6°*S), or build a
functional trait food web to understand which is
the importance of benthic and trophic pathways in
the different species (yet, for this methodology a
good knowledge of the biodiversity of the region
and feeding ecology is needed) (Newsome and
others 2007; King and others 2008; Gravel and
others 2016; McMahon and Newsome 2019). De-
spite these limitations, our study provides the first
assessment of the structure of benthopelagic food
webs in the Southern Ocean across different envi-
ronments (from warmer subantarctic to colder
Antarctic environments) and in a region impacted
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by climate change such as the Scotia Sea, being a
first step towards to the understanding of the
structure and functioning of these ecosystems.

Deep-Sea Food-Web Structure at South
Georgia and the South Sandwich Islands

This study found that, despite some variability, the
structure of the food webs is similar across the
study areas. Community-wide metrics showed
similar vertical structure with the range of 6'°N
values varying by only 1 9, suggesting a difference
of ~0.3 trophic levels between the shortest food
web at SG and the longest at SSI-N (Minagawa and
Wada 1984; Layman and others 2007). This dif-
ference mostly arises by different euphausiids
found in both study areas, with herbivorous species
at SSI and carnivorous/omnivorous species at SG
which is reflected by the '’N enrichment by
euphausiids at SG (discussed below). Our food
webs presented lower NR than coastal food webs at
Esperanza Bay (NR =11 9,,) and Rothera Point (NR
~9 9%,) in the Antarctic Peninsula and Terra Nova
Bay (NR =13.5 9,) in the Ross Sea (Rossi and
others 2019; Cardona and others 2021). This dif-
ference may suggest shorter food webs in the
Southern Ocean deep-sea in comparison with
coastal food webs, however such difference arises
from the species analysed in each study. Previous
studies included phytoplankton and particulate
organic matter in their food webs, thus the range of
0'°N values includes primary producers, whereas
our study only includes consumers, that is, starting
in the 2nd trophic level (Rossi and others 2019;
Cardona and others 2021). This is supported by the
lowest 0'°N values in the three studies, that is, 6.0
%, in our study, ~1.5 %, in the Antarctic Peninsula
and ~0 9, in the Ross Sea, and the highest esti-
mated trophic position for each food web (discussed
below; Rossi and others 2019; Cardona and others
2021). The lower values of CD, MNND and SDNND
showed that the three food webs present high
trophic redundancy, suggesting that the studied
species have a similar trophic ecology (Layman and
others 2007). This is supported by the high con-
centration of fatty acids indicators of carnivory in
the studied species, and by the high levels of om-
nivory found in the Southern Ocean oceanic food
webs (Stowasser and others 2012a; de Santana and
others 2013). Nonetheless, SSI-N presented higher
MNND and SDNND values than the two other
studied food webs. This is explained by the lower
number of species included in this food web com-
pared to SG and SSI-S, leading to a lower packing of
the species (Layman and others 2007). This simi-

larity is supported by the TA values between SG
and SSI-N that suggest similar trophic diversity in
both food webs. In contrast, SSI-S showed a lower
TA which suggest lower trophic diversity in com-
parison with the other two food webs. This is ex-
plained by the lower diversity found in the base of
the food web as showed by the lower CN values of
this food web (discussed below).

The similarities between the studied food webs
are supported by the five trophic levels and the
absence of differences in fatty acids signatures. The
studied food webs were dominated by carnivory
with DHA and C18:1w9 present in high concen-
trations in most of the studied species, as well the
low ratios of EPA/DHA and C16:1w7/C16:0, and
high ratios of X(PUFA + HUFA)/XSFA (Dalsgaard
and others 2003; Maar and others 2023; Papadim-
itraki and others 2023). The high percentages of
C16:0 in the three areas suggest a degree of
dependence on detritus (Papadimitraki and others
2023), which is expected for a deep-sea food web as
these commonly depend on marine snow (Silver
and Alldredge 1981; Glover and Smith 2003; Maar
and others 2023). Low values of (C16:1w7 + EPA)/
(C18:2w6 + DHA) suggest that this marine snow is
mainly composed of diatom-based detritus (Dals-
gaard and others 2003; Graeve and Greenacre
2020). Except for SSI-N, where no Asteroidea and
Holothurian were sampled, the high percentage of
ARA and ZSFA in these taxa at SG and SSI-S sug-
gest mud feeding, including free living and
endosymbiotic bacteria (Howell and others 2003),
suggesting a significant benthic component in these
food webs (Parzanini and others 2018).

Similarities between food webs extend to the
composition of the different trophic levels. In the
three food webs, the 4th trophic level is mainly
composed of fish, though there were a few excep-
tions like the long-armed squid (Chiroteuthis ver-
anyi), the glacial squid (Psychroteuthis glacialis) (at
SG), the deep-sea squid (Bathyteuthis abyssicola) (at
SG and SSI-S), the octopod P. turqueti (at SG), and
the crustacean Paralomis sp. (both SG and SSI-N).
Paralomis sp. is the only crustacean on this trophic
level. It is a known scavenger at SG (Collins 2002),
with a previous study in P. granulosa in the Beagle
Channel (South America) showing that it also feeds
on benthic organisms such as echinoderms, poly-
chaetes, and molluscs (Comoglio and Amin 1999).
Except for P. antarctica, species included in the
group ‘“‘other” are represented in the 4th trophic
level. Asteroidea, Holothuria and Antipatharia are
benthic organisms, with both Asteroidea and Ho-
lothuria being mud feeders (discussed above). An-
tipatharia is a known suspension feeder on
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zooplankton (Wagner and others 2012), which is
supported, in the SG samples, by the presence of
fatty acids derived from copepods (C20:1w9,
C22:1w9 and C20:1w9/DHA ratio) (Graeve and
Greenacre 2020; Maar and others 2023; Papadim-
itraki and others 2023). However, having a diet
relying on detritus and/or copepods it was not ex-
pected to be in the 4th trophic level as suggested by
0'°N values. Previous studies in the North Atlantic
and North Pacific oceans found that benthic path-
ways in benthopelagic food webs are enriched in
0'°N in comparison with pelagic pathways (Boyle
and others 2012; Parzanini and others 2018). The
high 6'°N values found in these organisms suggest
their reliance on a benthic pathway of this food
web, most probably associated with recycled par-
ticulate organic matter (Iken and others 2001;
Mintenbeck and others 2007). Therefore, the high
trophic level attributed to these organisms are a
consequence of using S. thompsoni, a pelagic
organism, rather than a true reflection of their
trophic position (Iken and others 2001; Preciado
and others 2017).

The 3rd trophic level was composed of cephalo-
pods and crustaceans (also including some fish
species). The low EPA/DHA values and the absence
of C18:1w9 in cephalopods is a typical pattern of
species feeding on herbivorous prey which is ex-
pected for species at this trophic level (Stowasser
and others 2009b). The presence of some C20:1w9
also suggests a small contribution of copepods to
the diet of cephalopods in these food webs (Dals-
gaard and others 2003; Papadimitraki and others
2023). The absence of differences in fatty acids in
species between trophic level 3 and 4.5 (some dif-
ferences exist but SIMPER does not show any fatty
acid significantly contributing for such differences)
may suggest some similarity between these trophic
levels. This similarity may be related to the high
level of omnivory present in the Southern Ocean
food webs with species in different trophic position,
for example, D. mawsoni, M. holotrachys or P.
antarctica, sharing the same prey such as the squid
F. knipovitchi and euphausiids (Morley and others
2004; Ratcliffe and Trathan 2011; Roberts and
others 2011; Queir6s and others 2024a).

The composition of the different trophic levels is
supported by differences found in fatty acid profiles
by taxonomic groups. SIMPER analyses showed
that fish have a higher concentration of C18:1w9,
an indicator of carnivory for higher trophic levels,
and cephalopods have higher levels of C20:1w9
which is synthesised, for example, by copepods
(Dalsgaard and others 2003; Maar and others 2023;
Papadimitraki and others 2023). Unfortunately, we

could not identify the fatty acid C18:1w7 because it
was absent from the reference material. Its ratio
with C18:1®9 is an indicator of carnivory and less
influenced by primary production which would be
better to study the higher trophic levels, and thus,
easier to discriminate the differences between fish
on the 4th and 5th trophic levels (Dalsgaard and
others 2003; Maar and others 2023; Papadimitraki
and others 2023).

Despite mostly similar, several differences were
found between the three Antarctic deep-sea food
webs. The range of 513C values, i.e. CR, decrease
from SG to SSI-S, with SG presenting a range
twofold larger than at SSI-S, with SSI-N presenting
an intermediate value, though closer to SSI-S. This
variability is supported by the significant differ-
ences in 6'°C values found between areas. The CR
is known to increase when multiple carbon sources
are present in the food web, with different 6'°C
values being related to the composition of primary
producers (Layman and others 2007; Newsome and
others 2007; Saporiti and others 2015). SG is a
hotspot for phytoplankton diversity in the South-
ern Ocean and its communities differ from those at
SSI which may explain this result (Alvain and
Ovidio 2014; Liszka and others 2022). For example,
Phaeocystis sp. exist at SG but not at the SSI, and this
microalga is responsible for several blooms in the
Southern Ocean (Alvain and Ovidio 2014; Bender
and others 2018). Furthermore, these differences
can also relate with the mixing of Weddell Sea and
western Antarctic Peninsula surface waters at SG
which can influence the phytoplankton commu-
nity at SG (Orsi and others 1993; Murphy and
others 2013). Although, Cl6:1w7 concentration
and (Cl6:1w7 + EPA)/(C18:2w6 + DHA) ratio do
not suggest differences in the primary production
between the three food webs, all being based on
diatoms (Dalsgaard and others 2003; Papadimitraki
and others 2023). However, we must be aware that
fatty acids only allow us to differentiate between
diatoms and dinoflagellates-based diet but no other
phytoplankton (Dalsgaard and others 2003;
Papadimitraki and others 2023). Furthermore, s3C
values also decrease with latitude (DeNiro and
Epstein 1978; McCutchan and others 2003; New-
some and others 2007). Poleward decreasing of
6'°C values can also explain these differences as
our study spans a latitudinal gradient including
different oceanographic conditions (Murphy and
others 2013; Thorpe and Murphy 2022). Moreover,
despite being considered stable, §'>C values pre-
sents a stepwise enrichment of ~0 to 1 9, per
trophic level (DeNiro and Epstein 1978; Peterson
and Fry 1987). The positive relationship between
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6'’C and ¢'°N values show that 6'°C values are
increasing due to the trophic position, and the
carbon source of the three food webs is similar,
supporting fatty acids results that all food webs
have diatoms (or diatom detritus) as main primary
producers (DeNiro and Epstein 1978; Peterson and
Fry 1987; Dalsgaard and others 2003; Papadimi-
traki and others 2023). Variability was also found
in TA across the three food webs. The SSI-S pre-
sented a TA 1.6 and 1.5-fold lower than SG and
SSI-N, respectively, suggesting a lower trophic
diversity within this food web. TA is usually related
with both NR and CR (Layman and others 2007).
Considering that NR values were similar across the
three food webs, the lower trophic diversity at SSI-
S is therefore related with less diversity within the
primary producers rather than with the trophic
niche of the consumers (discussed above).
Regarding the diversity within the food webs,
Dissostichus species are the top predators at SSI
areas, though at SG the highest trophic position
belongs to M. holotrachys. For both Dissostichus spe-
cies to occupy the highest trophic level is not sur-
prising because they are top predators in the
Southern Ocean feeding mainly on fish and ce-
phalopods (Roberts and others 2011; Pinkerton and
Bradford-Grieve 2014; Yoon and others 2017;
Queirds and others 2022). However, identifying M.
holotrachys as top predator at SG was unexpected.
M. holotrachys’ fatty acids profile is similar to other
Macrourus species from the 4th trophic level. Fur-
thermore, the presence of EPA indicates that this
species should be closer to the primary producer
than D. eleginoides. A recent study on the bathyal
region off-Peru also shows M. holotrachys above D.
eleginoides in the food web (Nacari and others
2023). One hypothesis to explain the higher
trophic position relates to the presence of benthic
prey in its diet, for example, echinoderms and
crustaceans, previously found for individuals at SG
and at the South Atlantic and South Pacific oceans
(Laptikhovsky and Fetisov 1999; Morley and others
2004; Nacari and others 2022). Therefore, M. holo-
trachys may be more associated to the benthic
trophic pathway than the other Macrourus species
in this study, explaining the higher §'°N values and
consequently the estimated trophic position (dis-
cussed above). Moreover, this species is a scavenger
which, depending on the scavenged species, can be
reflected in higher 6'°N values (Morley and
Belchier 2002; Nacari and others 2023). However,
the fatty acid profile does not support any of these
hypotheses (for example, EPA suggests a position
closer to the primary production; ARA concentra-
tion is lower than other Macrourus spp.). To better

understand the higher trophic position of M. holo-
trachys at SG different analyses are needed such as
5>*S stable isotopes that allow a better discrimina-
tion of benthic-pelagic diet and the contribution of
chemosynthesis to the food web (Newsome and
others 2007).

Differences also exist in lower trophic levels.
Euphausiids are in the 2nd trophic level at both SSI
areas. This is not surprising as most euphausiids in
the Southern Ocean are herbivorous (though car-
nivorous species exist) (Cuzin-Roudy and others
2014). Herbivory is supported by the high per-
centages of EPA and DHA, but also by the high
C16:1w7/C16:0 ratio (Dalsgaard and others 2003;
Graeve and Greenacre 2020; Papadimitraki and
others 2023). However, at SG, euphausiids are in
the 3rd trophic level. Both stable isotopes and fatty
acids support this result, suggesting a change from
an herbivorous diet to some carnivory as suggested
by the higher concentration of C18:1w9 (Dalsgaard
and others 2003; Maar and others 2023; Papadim-
itraki and others 2023). This difference could relate
to a mixture of euphausiid species being sampled in
both locations (Ward and others 1990; Gurney and
others 2001; Cuzin-Roudy and others 2014; Liszka
and others 2022); but also, to a seasonal change in
the diet of euphausiids like the Antarctic krill
(Euphausia superba). This species is an abundant
herbivorous euphausiid in the Scotia Sea (Atkinson
and others 2001; Mackey and others 2012; Yang
and others 2022), though with an omnivorous diet
between autumn and spring (Ericson and others
2018). The lowest trophic position at SG is occupied
by the squid M. longimana, which is thought to feed
on zooplankton (mainly E. superba) (Nemoto and
others 1988; Lu and Williams 1994; Collins and
Rodhouse 2006; Queir6s and others 2018, 2021).
However, high concentrations of DHA and low
concentrations of C18:1w9 indicate that this species
(and other cephalopods) is also feeding on salps
and chaetognaths (Stowasser and others 2012b).
Salps are expected to increase in abundance in the
Scotia Sea with rising ocean temperatures due to
climate change (Atkinson and others 2004), and
this result suggests that zooplanktivorous species
may already be shifting their prey, potentially
affecting the energy intake of higher predators
(Pakhomov and others 2002; Pietzsch and others
2023). Further studies are needed to fully under-
stand the effects on this change.

Differences in §'°N values between study areas in
M. whitsoni, M. longimana and Nematocarcinus sp.
also suggest differences in the mid-trophic levels.
Being on the same trophic level, these differences
may be related to different prey species or ratios
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between similar prey (Bearhop and others 2004).
This is expected as different communities inhabit
the three areas, but also due to differences in water
masses that can influence the baselines (Bearhop
and others 2004; Hollyman and others 2022; Liszka
and others 2022; Thorpe and Murphy 2022;
Queirds and others 2024b). We must highlight that
species ontogenetic changes were not considered in
this study, for example, 6'°N values and stomach
contents of smaller D. eleginoides from the South
Georgia shelf suggest that juveniles of this species
feed in lower trophic levels than adults (Collins and
others 2007; Seco and others 2021), and M. longi-
mana is known to increase one trophic level with
ontogeny (Queirds and others 2018). Therefore, we
must be aware that the structure of these food-
webs may slightly change, especially the trophic
level occupied by the different species, according to
the life-stage of individuals. Nonetheless, smaller
(or larger) individuals of species with ontogenetic
changes may not be present in the bathyal zone,
belonging to a different food web such as the case
of juveniles of D. eleginoides that inhabit the shelf of
South Georgia and are rarely caught in the studied
depths (Collins and others 2007). Also, changes in
trophic position with size are not recorded for all
species in these food webs, for example, F. knipo-
vitchi in the Pacific sector of the Southern Ocean
(Queirds and others 2021) and D. mawsoni in both
Ross Sea region (despite size explained some vari-
ability in 6'°N values, smaller individuals feed in
the same trophic level of the largest adults (Queirds
and others 2022)), and Antarctic Peninsula (size
only influenced the number of cephalopods in the
diet with all other prey species remaining similar
(Pérez-Pezoa and others 2023)). Due to the species-
specific life history and the current lack of knowl-
edge, it is currently not possible to evaluate how
the structure of these food webs change with the
size of individuals. To overcome these challenges,
more studies on ontogenetic changes in habitat and
trophic level of these species are required.

In marine ecosystems the food webs are com-
monly size-structured, with predators mostly
feeding in smaller prey and with larger predators
selecting larger prey (Cohen and others 1993).
Though, recent studies showed that food webs
build using predator—prey size ratio oversimplifies
and do not properly represent the trophic interac-
tions in an ecosystem (Garcia-Oliva and Wirtz
2025). Our results showed larger species in lower
trophic levels than smaller sized-species, for
example, M. longimana that can reach 110 cm
mantle length is in the 3rd trophic level (at South
Georgia almost 2nd trophic level) whereas Chiro-

teuthis veranyi that only grows up to 30 cm mantle
length is in the 4th trophic level, and the presence
of large prey species such Mesonychoteuthis hamiltoni
(4th trophic level; mantle length up to 250 cm and
body weight up to 500 kg) in the stomach of D.
mawsoni that is in the 5th trophic level and it is a
top predator of the Southern Ocean deep-sea (Ro-
berts and others 2011; Cherel 2020; Queirds and
others 2024b; see Online appendix A for species’
size). Smaller species with higher §'°N values was
also found in other deep-sea ecosystems elsewhere,
for example, Suruga Bay (Japan; Fujiwara and
others (2021)) and Northwest Atlantic (Stowasser
and others 2009a). Several hypotheses may explain
this absence of size-structured food web in the
studied food webs: the presence of scavenger spe-
cies allow smaller individuals to feed in larger prey
that they would not predate (for example, D.
mawsoni feeding in M. hamiltoni (Remeslo and
others 2015), species associated with a benthic
trophic pathway that is enriched in '’N in com-
parison with organisms associated with the pelagic
pathway (for example, M. holotrachys feeding in
benthic organisms whereas D. eleginoides feeds
mostly on fish (Morley and others 2004; Queir6s
and others 2024b), or the presence of different food
chains within these food webs that using
stable isotopes we cannot disentangle that
approximate the predator—prey ratio to the allo-
metric rule (Cohen and others 1993).

The Southern Ocean Food Web:
Differences between Regions and Zones
of the Water Column

The Southern Ocean food web varies regionally
and seasonally, including differences in the overall
structure, species importance, and number of
trophic levels (reviewed in Queirés and others
2024a). However, no studies have evaluated pat-
terns between food webs in different zones of the
Southern Ocean, that is, deep-sea benthopelagic vs
pelagic vs coastal. Our food webs are among those
with the highest trophic level recorded for the
Southern Ocean (Table 5). The presence of both
Dissostichus species and M. holotrachys in the diet of
larger predators, for example, sperm whales (Phy-
seter macrocephalus), Killer whales (Orcinus orca), or
southern elephant seals (Mirounga leonina) (Collins
and others 2010; Hanchet and others 2010), sug-
gest that these food webs may include a 6th trophic
level. Besides this study, the longest food webs
were those from the deep-sea that included ben-
thopelagic coupling (Table 5). The work of
Pinkerton and Bradford-Grieve (2014) for the Ross
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Sea place both P. macrocephalus, O. orca and large
demersal fish (includes D. mawsoni) at the top of the
food web. This suggests that deep-sea ben-
thopelagic food webs in the Southern Ocean, de-
spite their location (that is, from warmer
subantarctic islands to cold Antarctic seas) and
species composition, are long and have a minimum
of five trophic levels. Several hypotheses may ex-
plain the presence of such longer food webs in
deep-sea ecosystems from the Southern Ocean
such as a lower predator—prey body size ratio that
allows food chain to lengthen due to the presence
of predators of intermediate size (Jennings and
Warr 2003); the presence of scavengers in the food
web, in particular when we found these in higher
trophic levels such as the case of D. eleginoides and
D. mawsoni (Bergmann and others 2009; Collins
and others 2010; Hanchet and others 2015; Ami-
raux and others 2023); due to the limited food
availability in deep-sea ecosystems the nutrients
are recycled, especially in the benthic component
of these ecosystems, which reflects in higher
trophic positions in the pelagic component of the
benthopelagic food web (Iken and others 2005;
Bergmann and others 2009); and larger ecosystems
such as the deep-sea allow more diversity in the
food web, favouring the presence of more biotic
interactions and, ultimately, favouring longer food
chains (Bergmann and others 2009).

Previous studies on Southern Ocean food webs
analysed the structure of pelagic and coastal food
webs (Table 5). The highest trophic position re-
corded for pelagic food webs range from 4.3 to 5.3.
However, pelagic food webs with five trophic levels
include large mammals such as P. macrocephalus and
0. orca (Murphy and others 2013; McCormack and
others 2020), or seabirds that scavenge on seals,
penguins, and fish remains from fishing vessels,
thus feeding on organisms from the benthopelagic
food webs, for example, black browed albatross
(Thalassarche melanophris) and giant petrel (Macro-
nectes spp.) (Cherel and others 2010; Stowasser and
others 2012a; Phillips and Wood 2020). When large
mammals or scavenging seabirds were absent, top
predators occupy the 4th trophic level, for example,
emperor penguins (Aptenodytes forsteri) at Adélie
Land and Wilson’s storm petrels (Oceanites oceanicus)
in the Weddell Sea (Rau and others 1992; Cherel
2008). Coastal food webs are the shortest in the
Southern Ocean (Table 5). The higher predators of
these food webs were mostly on the 4th trophic
level (Table 5). The top predator’s trophic level in
coastal food webs relate, to some extent, with the
biodiversity. Food webs including fish have four
trophic levels (Gillies and others 2012; Zenteno and

others 2019), while those exclusively composed by
benthic organisms, for example, corals, sponges,
holothurians, are almost limited to three trophic
levels (Marina and others 2018; Michel and others
2019; Rossi and others 2019; Cardona and others
2021). An exception to this pattern is the ben-
thopelagic food web from Terra Nova Bay (Ross
Sea) whose top predators were found in the 5th
trophic level (Rossi and others 2019). However, the
top predators of this food web were Chionodraco
hamatus and Trematomus hansoni which are two
species known to inhabit waters as deep as 600 and
550 m, respectively (Gon and Heemstra 1990).
Therefore, this unusual longer coastal food web
may be explained by the presence of deep-sea
species as top predators, species that may feed in
deeper waters but also include benthic species in
the diet that are enriched in 6'°N values (discussed
above; Pakhomov 1998), supporting that the
length of Southern Ocean coastal food webs are
strictly connected to the biodiversity included in
the web. It is important to note that some studies
only presented the 6'°N values with the trophic
position being estimated using the equation that
we used for our food webs, including using S.
thompsoni as baseline species, suggesting that those
including a benthic component may have an
overestimated FCL (discussed above; Table 5).
These results suggest that the Southern Ocean
coastal benthic food webs have the shortest food-
chain length (for example, Cardona and others
2021), followed by pelagic open ocean food webs
(for example, Stowasser and others 2012a), with
deep-sea benthopelagic food webs having the
longest food-chain length (this study; Queirds and
others 2025). However, we must have in mind that
this is variable and dependent on the analysed food
chain, for example, the pelagic food web that in-
cludes primary producer—Antarctic Kkrill—top
predator (for example, blue whale Balaenoptera
musculus) is shorter than a coastal food web
including fish (Kawamura 2007; Rossi and others
2019). The stability hypothesis proposed by Pimm
and Lawton (1977) may explain this increase in
food-chain length from coastal to deep-sea ben-
thopelagic food webs. Coastal and pelagic regions
are more variable than deep-sea ecosystems (Glo-
ver and Smith 2003). Sea-ice, iceberg scouring,
swell, stronger currents, run-off from terrestrial
environments are examples of environmental fac-
tors that induce dynamism in coastal and pelagic
areas but not in the deep-sea (Glover and Smith
2003; Convey and Peck 2019; Zwerschke and oth-
ers 2021; Thorpe and Murphy 2022; Tarling and
others 2024). However, studies including environ-
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mental variables are needed to validate this
hypothesis.

These changes in the food-chain length have
different ecological implications for the Southern
Ocean ecosystem: it highlights that the long
standing hypothesis of a short, Antarctic krill
dominated food web does not apply to all the
Southern Ocean (Everson 1977; Benninghoff
1987); individuals in longer food chains have
higher concentrations of biomagnifying trace ele-
ments (Seco and others 2021); food webs with
longer food chains are less stable, less resistant and
recover slower from disturbances; and it has
implications for the energy budgets and assimila-
tion losses in the food webs, with the amount of
energy reaching the top predator on the ben-
thopelagic deep-sea being lower than to a pelagic
predator, though this hypothesis was proposed
studying lake food webs which is a closed system in
comparison with open systems like the one studied
here (Post 2002a). Indeed, the presence of longer
food webs and high number of species in inter-
mediate levels (for example, 4th trophic level in-
cludes the highest number of species in each food
web, followed by the 3rd trophic level), may sug-
gest that top predators and mesoconsumers can use
different trophic pathways, making these food webs
more resistant to changes (for example, local
extinction of mid-trophic level consumers)
(Queirés and others 2024a). Furthermore, these
ecological implications are dependent on the
immigration of other species to this region,
including higher predators such as humpback
whales (Megaptera novaeangliae) (Bamford and
others 2022) or mid-trophic level organisms such as
myctophids (Saunders and others 2017). These
migrants, when entering these food webs can
change the trophic structure, the energy and
nutrients flow, and ultimately influencing the sta-
bility and resistance of the food web towards
external stressors (Bauer and Hoye 2014).
Nonetheless, this influence depends on the trophic
role the migrant species occupy in the ecosystem,
that is, as prey or predator (Bauer and Hoye 2014).
The presence of Gymnoscopelus sp. in the 4th trophic
level at South Georgia may suggest that this spe-
cies, that can migrate northwards to Subantarctic
waters (Saunders and others 2017), may have a
similar trophic role to resident fish species in the
archipelago. However, this is only one species and
in a winter food web when most of migrant species
are not on the region. Therefore, further studies are

needed to understand the role of migrant species in
the benthopelagic deep-sea food webs in this re-
gion, to better understand the structure and func-
tioning of these ecosystems. This knowledge
assumes a greater importance because these
ecosystems are being impacted by climate change
(Rogers and others 2020), toothfish fisheries oper-
ate in this zone (Agnew 2004; Brooks and others
2018), and deep-sea species already have less pro-
ductive life-cycles and are more vulnerable to these
stressors (Norse and others 2012; Rogers 2015;
Clark and others 2016).
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