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Abstract: Achieving high-yielding crops while also improving nitrogen use efficiency is a significant
challenge for agricultural production in Bangladesh. We investigated the impacts of applying
nitrogen (N) using different management options in wetland rice on a calcareous dark gray soil
over three seasons. These included (1) the recommended dose of available N as prilled urea, (2) the
recommended N dose plus 25% extra of available N as prilled urea, (3) 25% less than the recommended
dose of available N as prilled urea, (4) the recommended dose of prilled urea in 2 t ha−1 cow dung,
(5) the recommended dose as urea super granules (USGs) by deep placement, (6) 4 t ha−1 biochar
with the recommended dose of prilled urea, and (7) Zero N. It was found that the growth, yield, and
N use efficiency (NUE) were significantly different from the results obtained for prilled urea in all
the alternative fertilizer options. The deep placement of USG consistently increased plant height,
total number of tillers per plant, effective tillers per plant, chlorophyll content, panicle length, grains
per panicle, and 1000-grain weight. The yield increases over recommended prilled urea were 5.22%
for USG followed by biochar with the recommended dose. Similarly, using the deep placement of
USG gave the highest yield and harvest index. In addition, compared to the recommended dose of
prilled urea, the deep placement of USG increased NUE by 13%, agronomic N efficiency by 20%,
and recovery N use efficiency by 19%. This suggests the rate of N application could be reduced
by up to 8% without impacting yield by using deep placement of USG instead of prilled urea. The
cost–benefit ratio was higher for the deep placement of USG than all other treatments. Biochar with
the recommended dose of prilled urea also showed good results in terms of growth, yield, and NUE
(41.8, 43.0, and 41.7, respectively, during three sequential years), but the extra cost of the biochar
reduced the cost–benefit ratio. These findings suggest that the deep placement of USG is the best
option for improving the yield of rice while also improving N use efficiency.

Keywords: rice yield; fertilization options; nitrogen use efficiency; urea super granule (USG); biochar

1. Introduction

Rice (Oryza sativa L.) is the most important staple food crop for more than 3 billion
people in the world and 135 million people in Bangladesh. It is the most extensively
cultivated cereal crop in Bangladesh, with about 75% of the total cropped area occupied by
rice cultivation. Thus, rice plays a vital role in the livelihood of the people of Bangladesh [1].

The yield of rice largely depends upon the nutritional state of the soil and the avail-
ability of nutrients from chemical fertilizers. Most of the farmers in Bangladesh apply
more N than is necessary to obtain a high yield. Urea is the most common N fertilizer,
accounting for about 75% of the total N fertilizer used in Bangladesh [2]. Nitrogen is the
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most important and limiting nutrient in crop production worldwide. It is an essential
constituent of protein or chlorophyll, promotes vegetative growth, and provides the green
color to plants. On the other hand, the deficiency of N also hampers crop production. The
growth and yield parameters of rice are strongly affected by N management [3].

Nitrogenous fertilizer application through traditional methods results in losses of
75–80% of the N applied [4,5]. Nitrogen use efficiency in rice cultivation is typically
around 20–50% (Chivenge et al. [6]), while the average value for cereal grain production is
about 40% [7]. It indicates that ~60–80% of the N used for rice is lost to the environment.
Surplus N contributes to greenhouse gas (GHG) emissions (N2O) [8], air pollution (NH3,
NO, and NO2) [9], biodiversity loss [10], soil acidity development [11], groundwater
pollution [12], surface water eutrophication [13], etc. The optimum rate of N fertilization
plays a vital role in the growth and development of rice. On the other hand, unnecessary N
fertilization promotes excessive vegetative growth, making the plant vulnerable to insects,
pests, and diseases, ultimately reducing yield.

Warm climates significantly affect nitrogen (N) stocks in soils through various mech-
anisms, influencing both nitrogen availability and its long-term storage. The N stocks
of Bangladesh soils are very low due to a warm climate accompanied by centuries of
cultivation on the same land [14]. In Bangladesh, conventional fertilization (three splits
of N fertilizer, one basal and two top dressing) is normally practiced in rice cultivation.
Inappropriate fertilization and the excessive use of N fertilizers have resulted in consid-
erable N losses. The loss of N through NH3 volatilization, denitrification, surface runoff,
leaching, chemical fixation, or immobilization by microbes is a severe problem in the wet
low-lands of Bangladesh where rice fields are subjected to alternate submergence and
drainage [15]. Therefore, it is crucial to improve NUE for minimizing adverse environmen-
tal issues through better N management practices for sustainable rice production. In this
context, some improvements in N management have been reported in recent studies such
as precision N management [16], controlled N release [17], and integrated nutrient manage-
ment [18] that deliver optimum N and better NUE. Efficient fertilizer management gives not
only a higher crop yield of crops but also increases NUE and reduces fertilizer cost [19–21].

Some effective measures have been reported for lowering N fertilizer rates and increasing
N use efficiency such as applying the controlled release of N fertilizer [22,23], biochar [24,25],
and combined application of inorganic and organic fertilizer [26,27]. Biochar, a kind of
carbon-rich organic material produced from organic biomass through pyrolysis, i.e., under
limited oxygen and high temperature, has been found to be efficient for enhancing NUE [28].
It has been reported to inhibit the nitrification process in soil, thereby contributing to lower
losses [29]. The higher yield of grain of rice in the biochar-treated fields might be connected
with higher soil nutrient retention [30], higher cation exchange capacity [31], and better
soil fertility [32]. Reduced N2O emissions with biochar application are connected with
both the inhibition of nitrification and denitrification [33]. Therefore, this study assesses
the hypothesis that suitable N fertilizer management options can allow reduced N inputs
while maintaining or increasing yield and increasing N use efficiency. The objective was to
compare the effect of different N fertilizer management options on the growth, yield, and
N use efficiency of BRRI dhan28 (rice variety) in wetland rice cultivation under calcareous
dark gray soil in Bangladesh.

2. Materials and Methods

Experiments were conducted in three consecutive years (2021, 2022, and 2023) at the
Agronomy Research Farm, Department of Agronomy and Agricultural Extension, Univer-
sity of Rajshahi, Rajshahi-6205, Bangladesh. The experimental site location is 24◦22′36′′ N
latitude and 88◦38′27′′ E longitude at an altitude of 20 m above sea level (Figure 1) and is
within the Agro-Ecological Zone (AEZ) ‘High Barind Tract’ (AEZ-11) of Bangladesh [34].
The properties of the soil at the start of the experiment are shown in Table 1. The rice
variety was the high-yielding variety, BRRI dhan28, developed by the Bangladesh Rice
Research Institute [35].
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Table 1. The initial soil properties of the experimental plot.

Parameter Quantity

Soil Type Calcareous dark gray soil
Sand 34%
Silt 36%
Clay 30%
Bulk density 1270 kg m−3

Soil pH 7.62
Organic matter 12 g kg−1

Total N 0.8 g kg−1

Available Ca 32.4 g kg−1

Available P (inorganic) 19.85 g kg−1

Available K 0.47 g kg−1

Available S 14.40 g kg−1

Available Zn 0.78 g kg−1

2.1. Climate of the Experimental Area

The climate of the experimental area is subtropical, characterized by a very hot summer
and cool winter with the hottest months in March and June (maximum temperature 38 ◦C;
average: 25–38 ◦C) and the coldest months in December and January (temperature often
below 12 ◦C; average: 10–18 ◦C). The humidity is high with heavy rainfall (above 80% of
the total rainfall) during January to May (Rabi season); the mean monthly average relative
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humidity is 72.9% and the average annual rainfall is 1524 mm. The air temperatures,
sunshine hours, and rainfall amounts during the rice cultivation period were similar in the
three successive years [36].

Other fertilizers viz. P, K, S, and Zn were applied 24–76–12–2.5 kg ha−1 as per the
recommendation of the BARC Fertilizer Recommendation Guide (2018).

2.2. Experimental Design

The experimental area was divided into 4 replicated blocks and laid out using a
randomized complete block design (RCBD) to reduce the effects of soil variability. Within
each block, there were seven 15 m × 1.5 m (22.5 m−2) plots, separated from each other by
75 cm borders (total of 28 plots). Treatments were assigned at random to each plot within
the blocks (Table 2).

Table 2. Treatments used in the experiment.

Treatments

T1 Zero N/Control N
T2 Recommended dose (RD) of N (180 kg ha−1 N) as prilled urea
T3 125% of RD of N (225 kg ha−1 N) as prilled urea
T4 75% of RD of N (135 kg ha−1 N) as prilled urea
T5 The cow dung (2 t ha−1) supplemented with prilled urea
T6 Deep placement of urea super granule (USG) (165 kg ha−1: 1 USG of 2.7 g)
T7 Biochar (4 t ha−1) supplemented with prilled urea

2.3. Application of Fertilizers

All the fertilizers except urea were applied during the final land preparation. No
nitrogenous fertilizers were applied to the Zero N/CK. Prilled urea (PU) was applied in
three equal splits at 15, 45, and 60 days after transplanting (DAT). Cow dung was applied
at 2 t ha−1 (2.5% N) during final land preparation and the rest of the N was supplemented
by PU. Urea super granules (USGs) (165 kg N ha−1) were applied at 15 DAT and one USG
pellet of 2.7 g was placed at 8–10 cm depth between four hills at alternate rows. Before the
application of N fertilizers, the water in the rice plots was drained. Biochar was applied
as a urease inhibitor at 4 t ha−1 during the final land preparation. The properties of the
biochar applied are shown in Table 3.

Table 3. The characteristics of rice husk biochar.

Parameter Quantity

The pyrolysis temperature 450 ◦C
Residence time: 100 min
pH 8.70
Carbon (C) 342 g kg−1

Hydrogen (H) 20.8 g kg−1

Oxygen (O) 230 g kg−1

Nitrogen (N) 5 g kg−1

Phosphorus (P) 0.9 g kg−1

Cation exchange capacity (CEC) 24.6 cmol kg−1

The biochar was collected from the Christian Commission for Development in Bangladesh (CCDB).

2.4. Land Preparation and Transplanting

After sufficient water had been applied, the soil was plowed and then cross plowed
three times using a power tiller, followed by laddering to get the plots to the desired puddle
state. The fertilizers were applied following practices recommended by BRRI [37]. The
30-day-old plants were transplanted at three seedlings per hill on the well-puddled plots
after land preparation had been completed.
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2.5. Intercultural Operations

Irrigation was applied to the experimental plots and insect pests, weeds, and diseases
were controlled as needed.

2.6. Straw and Grain Analysis for Nitrogen Content

Randomly positioned samples of straw and grain from each sub-plot were taken at
maturity and oven-dried at 60 ◦C for 72 h. The samples were ground and passed through
a 0.5 mm sieve to prepare a sample of 10 g. The N concentrations of the straw and grain
samples were measured using the Kjeldahl method as described by Jackson [38].

Nitrogen uptake in the grain and straw was calculated by multiplying the N content
by the respective straw and grain yield. Total N uptake in whole biomass was obtained
by summing up the N uptake by the grain and straw. The total N content of the straw
and grain samples was used to estimate the N use efficiency according to Moll et al. [39],
Ortiz-Monasterio et al. [40], and Guarda et al. [41].

Formulae to calculate different efficiencies of nitrogen:

➢ Nitrogen use efficiency (NUE) or NUEN = YN/FN;
➢ Agronomic efficiency of applied N, AEN = (YN − Y0)/FN;
➢ Crop recovery efficiency of applied N, REN = (UN − U0)/FN.

where FN = amount of (fertilizer) N applied (kg ha−1)

YN = crop yield with applied N (kg ha−1);
Y0 = crop yield (kg ha−1) in a control treatment with no N;
UN = total plant N uptake in aboveground biomass at maturity (kg ha−1) in a plot that
received N;
U0 = the total N uptake in aboveground biomass at maturity (kg ha−1) in a plot that
received no N.

2.7. Recorded Data

For each hill from each plot, five plants were selected randomly and data on growth
and yield were recorded. The data on plant growth parameters included plant height (cm);
tillers per hill (no.); effective tillers per hill (no.); non-effective tillers per hill (no.); chloro-
phyll content (SPAD value); dry matter per plant (g); panicle length (cm); extrusion
length (cm); yield and yield contributing parameters viz. filled grains per panicle (no.);
unfilled grains per panicle (no.); weight of 1000 grains (g); grain yield (t ha−1), straw
yield (t ha−1), biological yield (t ha−1), and harvest index (%); N content of grain and
straw (%); N uptake by grain, straw and plant (kg ha−1); N use efficiency (NUE%); agro-
nomic efficiency of N (AEN %); and recovery efficiency of N (REN %).

2.8. Estimation of Benefit–Cost Ratio (BCR)

To calculate the BCR for rice cultivation, the costs were divided into fixed costs
(costs that do not change with the scale of production, such as land rent, and equipment
depreciation like irrigation infrastructure) and variable costs (costs that vary with the
production process, including seeds, fertilizers, pesticides, labor, irrigation, fuel, and
transportation). The following formula was used to determine the benefit–cost ratio:

BCR =
Total Benefits

Total Costs

2.9. Statistical Analysis

The data obtained for different parameters were statistically analyzed using a two-way
analysis of variance to determine the significant difference in different treatments’ effects on
growth, yield and yield attributes, and N use efficiency of BRRI dhan28. The data recorded
were compiled and analyzed statistically using the statistical package SPSS (Version 22) and
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Excel program. The mean differences were adjudged by Duncan’s Multiple Range Test. The
data obtained are presented as mean values with the standard error (±SE) of the means.

3. Results
3.1. Plant Height

Plant height (cm) responded significantly (p = 0.05) to the different N fertilizer man-
agement options (Figure 2) during the three successive cropping years. The tallest plants at
harvest (104.13, 101.13, and 109.50 cm) were from the T6 (USG) treatment; at the same time,
the shortest plants (66.18, 62.75, and 71.63 cm, respectively) were from the T1 (control N)
treatment during the three consecutive years.
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Figure 2. Plant height (cm) of rice (BRRI dhan28) at harvest during three successive cropping years.
The mean average of four replications and the capped line represent standard error. Significance
difference compared to control at p = 0.05. *** = 0.1% level of significance. RDN = Recommended
dose of nitrogen.

3.2. Tillering

The number of effective tillers was significantly (p = 0.05) influenced by the treatments
(Table 4). During 2021, the highest number of effective tillers per hill (14.75) was observed
in the T6 treatment (urea super granule—USG) and the minimum number of effective
tillers per hill (5.50) in T1 (Zero N). Similarly, during 2022 and 2023, the highest number
of effective tillers per hill (14.75 and 13.17) was in the T6 treatment while the minimum
number of effective tillers per hill (4.75 and 6.25, respectively) was in T1 (Zero N). From the
responses to different nitrogenous fertilizer management options, the results can be ranked
in the following order: T6 > T7 > T3 > T2 > T5 > T4 > T1 in respect of the number of effective
tillers over the three experimental years. Due to the deep placement of USG, the rice plants
grew vigorously and produced more effective tillers compared to the recommended dose
of N fertilizer. The treatments significantly influenced the number of non-effective tillers
(Table 3). The lowest number (0.25 and 1) of non-effective tillers per hill was in the T6
treatment during successive cropping years while the highest number (3.25, 4.25, and 5.0,
respectively) was in the T1 treatment (Zero N). The minimum number of non-effective
tillers hill−1 was obtained in T7 (biochar 4 t ha−1 with recommended N). This might be due
to the slow release of N from USG and biochar and the supply of N as per the requirement
of rice plants in their entire life span.
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Table 4. Effects of nitrogenous fertilizer management options on effective tiller hill−1, non-effective
tiller hill−1 of rice (BRRI dhan28) at harvest.

No. of Effective Tiller Hill−1 No. of Non-Effective Tiller Hill−1

2021 2022 2023 2021 2022 2023

T1 5.50 ± 0.29 d 4.75 ± 0.63 e 5.25 ± 0.42 d 3.25 ± 0.29 a 4.25 ± 0.48 a 4.0 ± 0.41 a

T2 10.50 ± 0.29 c 11.50 ± 0.65 bc 10.67 ± 0.56 b 0.50 ± 0.29 bc 2.25 ± 0.25 b 2.25 ± 0.25 bc

T3 11.50 ± 0.48 bc 11.0 ± 0.71 c 9.67 ± 0.41 bc 0.25 ± 0.25 c 2.0 ± 0.41 b 2.67 ± 0.65 b

T4 9.75 ± 0.85 c 8.75 ± 0.48 d 8.92 ± 0.25 c 1.25 ± 0.48 b 2.25 ± 0.48 b 1.50 ± 0.50 bc

T5 10.25 ± 0.25 c 10.75 ± 0.48 c 9.92 ± 0.53 bc 0.25 ± 0.25 c 1.75 ± 0.25 b 2.17 ± 0.44 bc

T6 14.75 ± 0.48 a 14.75 ± 0.63 a 13.17 ± 0.97 a 0.25 ± 0.25 c 1.0 ± 0.41 b 1.0 ± 0.41 c

T7 12.25 ± 0.48 b 14.0 ± 0.41 ab 10.58 ± 0.21 bc 0.0 c 0.25 ± 0.25 b 1.92 ± 0.08 bc

LS ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗
The mean was calculated from four replicates for each treatment. a, b, c, d, e, etc. indicate significant differences
among the treatments. In a column, means having similar letter(s) are statistically similar and those having dissimilar
letter(s) differ significantly by LSD at 0.05 levels of probability. T1 = Zero N/Control N; T2 = recommended N; T3 = 125%
of recommended N; T4 = 75% of recommended N; T5 = cow dung N 2 t ha−1 supplemented with prilled urea N;
T6 = deep placement of urea super granule (USG) 165 kg ha−1; T7 = biochar 4 t ha−1 with recommended N as prilled
urea; LS = level of significance; *** = 0.1% level of significance; ** = 1% level of significance; ± = standard error.

3.3. Chlorophyll Content (SPAD Value)

The leaf chlorophyll content (SPAD value) responded significantly (p = 0.05) to the
fertilizer treatments at 30, 45, 60, and 75 DAT in the three consecutive years (Table 5).
During 2021, 2022, and 2023, the highest chlorophyll content (SPAD value) was from the T6
(urea super granule—USG) treatment at almost all the sampling dates. This may have been
due to the improving effects of USG on the chlorophyll content of rice plants attributed to its
role in regulating the release of N to synchronize with plant demand. In T2 (recommended
dose of N), T3 (125% of RD of N), and T7 (biochar 4 t ha−1 with recommended N fertilizer),
the SPAD values were also significantly higher than the control at 30, 45, 60, and 75 DAT
for the increment of the SAPD value.

Table 5. Effect of N fertilizer management options on chlorophyll content of rice (BRRI dhan28) at 30,
45, 60, and 75 days after transplanting (DAT).

Chlorophyll Content (SPAD Value)
30 DAT 45 DAT 60 DAT 75 DAT

2021 2022 2023 2021 2022 2023 2021 2022 2023 2021 2022 2023

T1 32.28 ± 0.86 d 30.78 ± 0.35 f 31.90 ± 0.80 d 32.03 ± 0.42 c 29.78 ± 0.98 e 33.0 ± 0.44 c 31.98 ± 0.45 d 27.95 ± 0.41 c 34.38 ± 0.42 d 26.10 ± 0.43 e 26.93 ± 0.62 d 25.45 ± 0.52 d

T2 41.48 ± 0.46 b 43.0 ± 0.37 cd 41.28 ± 0.48 b 42.33 ± 0.42 a 44.23 ± 0.21 bc 41.70 ± 0.58 a 44.35 ± 0.42 ab 42.35 ± 0.83 b 44.65 ± 0.46 ab 31.08 ± 0.45 c 35.48 ± 0.34 b 30.45 ± 0.27 b

T3 43.30 ± 0.30 a 44.80 ± 0.78 ab 42.58 ± 0.53 ab 44.48 ± 0.19 a 44.98 ± 0.05 b 44.20 ± 0.44 a 43.50 ± 0.46 bc 41.60 ± 0.55 b 43.18 ± 0.60 bc 31.73 ± 0.19 bc 39.55 ± 0.76 a 31.58 ± 0.53 ab

T4 37.50 ± 0.87 c 39.0 ± 0.42 e 36.83 ± 0.82 c 42.05 ± 1.15 a 41.0 ± 0.04 d 38.05 ± 1.24 b 41.65 ± 1.20 c 40.60 ± 0.55 b 41.90 ± 1.22 c 28.53± 0.52 d 32.0 ± 0.04 c 27.75 ± 0.54 c

T5 41.25 ± 0.52 b 42.25 ± 0.60 d 41.23 ± 0.46 b 42.05 ± 2.27 a 44.50 ± 0.75 bc 42.33 ± 2.13 a 42.68 ± 0.53 bc 41.60 ± 0.55 b 42.80 ± 0.23 bc 30.83± 0.21 c 36.25 ± 0.60 b 30.65 ± 0.21 b

T6 44.73 ± 0.52 a 45.73 ± 0.06 a 43.60 ± 0.52 a 44.55 ± 0.44 a 45.80 ± 0.48 a 44.88 ± 0.30 a 45.53 ± 0.38 a 45.18 ± 0.94 a 45.68 ± 0.60 a 40.10± 0.51 a 39.48 ± 0.15 a 39.30 ± 0.32 a

T7 43.43 ± 0.57 a 43.95 ± 0.53 bc 43.08 ± 0.67 ab 42.85 ± 0.26 a 43.18 ± 0.62 c 43.03 ± 0.27 a 42.68 ± 0.61 bc 41.35 ± 0.83 b 42.33 ± 0.78 c 32.80 ± 0.35 b 39.68 ± 0.55 a 34.70 ± 0.25 a

LS ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

The mean was calculated from four replicates for each treatment. a, b, c, d, e, etc. indicate significant differences
among the treatments. In a column, means having similar letter(s) are statistically similar and those having dissim-
ilar letter(s) differ significantly by LSD at 0.05 levels of probability. T1 = Zero N/Control N; T2 = recommended N;
T3 = 125% of recommended N; T4 = 75% of recommended N; T5 = cow dung N 2 t ha−1 supplemented with prilled
urea N; T6 = deep placement of urea super granule (USG) 165 kg ha−1; T7 = biochar 4 t ha−1 with recommended
N as prilled urea; LS = level of significance; *** = 0.1% level of significance; ± = standard error.

3.4. Dry Matter Production

Dry matter production was significantly (p = 0.05) affected by the fertilizer manage-
ment options at 30, 45, 60, and 75 days after transplanting (DAT) (Table 6). At all the
sampling dates, the treatment T6 (urea super granule—USG) had the highest DM accumulation
in the successive cropping years compared to the recommended dose of N fertilizer. The biochar
treatment (T7) was the nearest to the T6 treatment for increasing dry matter production.

3.5. Panicle Length, Extrusion Length (cm), and Grain Weight (g)

There was a significant (p = 0.05) effect of the treatments on the length of panicles
(Table 7). In the entire sequence of cropping seasons, the longest panicle length (23.95,
24.25, and 26.86 cm) was from the T6 treatment and the shortest was from the T1 treatment
(Zero N). The extrusion length (cm) under different treatments varied significantly during
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2021 but it did not vary during the 2022 and 2023 cropping seasons. The weight of
1000 grains (g) varied significantly across the treatments. The maximum 1000-grain weight
was in the T6 treatment and the minimum 1000-grain weight was in T1 (Zero N) during the
successive cropping years. The consistent nutrient supply helps maintain the accumulation
of biomass and enhances the overall grain-filling process which might be attributed to
increasing grain weight.

Table 6. Effect of N fertilizer management options on dry matter plant−1 (g) of rice (BRRI dhan28) at
30, 45, 60, and 75 days after transplanting (DAT).

Dry Matter Plant−1 (g)
30 DAT 45 DAT 60 DAT 75 DAT

2021 2022 2023 2021 2022 2023 2021 2022 2023 2021 2022 2023

T1 0.57 ± 0.02 e 0.58 ± 0.01 c 0.56 ± 0.02 d 1.26 ± 0.02 f 1.23 ± 0.02 e 1.25 ± 0.03 e 1.900.0 e 2.01 ± 0.04 f 1.92 ± 0.02 e 2.86 ± 0.02 f 3.0 ± 0.03 d 2.87 ± 0.03 f

T2 1.09 ± 0.02 b 1.07 ± 0.05 ab 1.08 ± 0.03 b 2.03 ± 0.02 bc 1.85 ± 0.03 b 2.01 ± 0.03 b 2.53 ± 0.02 c 2.64 ± 0.12 bc 2.52 ± 0.02 c 3.59 ± 0.02 bc 3.66 ± 0.04 b 3.58 ± 0.03 b

T3 1.11 ± 0.01 b 1.26 ± 0.11 a 1.10 ± 0.04 b 2.10 ± 0.04 b 1.86 ± 0.01 b 2.07 ± 0.05 b 2.65 ± 0.03 b 2.43 ± 0.08 de 2.64 ± 0.04 b 3.36 ± 0.02 d 3.58 ± 0.04 bc 3.35 ± 0.02 d

T4 0.93 ± 0.03 d 0.91 ± 0.06 b 0.89 ± 0.01 d 1.46 ± 0.03 e 1.63 ± 0.01 d 1.48 ± 0.041 d 2.28 ± 0.02 d 2.25 ± 0.03 ef 2.29 ± 0.03 d 3.11 ± 0.01 e 3.48 ± 0.04 cd 3.10 ± 0.01 e

T5 1.02 ± 0.02 c 1.07 ± 0.05 ab 1.00 ± 0.02 c 1.98 ± 0.04 cd 1.73 ± 0.01 c 1.97 ± 0.04 b 2.62 ± 0.03 bc 2.55 ± 0.03 cd 2.61 ± 0.04 b 3.53 ± 0.01 c 3.71 ± 0.06 b 3.51 ± 0.01 c

T6 1.24 ± 0.02 a 1.24 ± 0.06 a 1.21 ± 0.03 a 2.27 ± 0.03 a 1.96 ± 0.02 a 2.26 ± 0.033 a 3.15 ± 0.03 a 2.94 ± 0.04 a 3.14 ± 0.03 a 3.98 ± 0.04 a 3.91 ± 0.02 a 3.96 ± 0.02 a

T7 1.07 ± 0.01 bc 1.13 ± 0.08 a 1.05 ± 0.03 bc 1.90 ± 0.01 d 1.84 ± 0.02 b 1.85 ± 0.02 c 2.56 ± 0.05 bc 2.82 ± 0.02 ab 2.57 ± 0.03 bc 3.63 ± 0.05 b 3.70 ± 0.06 b 3.62 ± 0.03 b

LS ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

The mean was calculated from four replicates for each treatment. a, b, c, d, e, etc. indicate significant differences
among the treatments. In a column, means having similar letter(s) are statistically similar and those having dissim-
ilar letter(s) differ significantly by LSD at 0.05 levels of probability. T1 = Zero N/Control N; T2 = recommended N;
T3 = 125% of recommended N; T4 = 75% of recommended N; T5 = cow dung N 2 t ha−1 supplemented with prilled
urea N; T6 = deep placement of urea super granule (USG) 165 kg ha−1; T7 = biochar 4 t ha−1 with recommended
N as prilled urea; LS = level of significance; *** = 0.1% level of significance; ± = standard error.

Table 7. Effect of N fertilizer management options on panicle length, extrusion length (cm), and
weight of 1000 grains (g) of rice (BRRI dhan28).

Panicle Length (cm) Extrusion Length (cm) Weight of 1000 Grains (g)
2021 2022 2023 2021 2022 2023 2021 2022 2023

T1 16.02 ± 0.49 c 20.67 ± 0.24 d 22.47 ± 0.57 d 1.33 ± 0.13 cd 1.42 ± 0.20 b 1.35 ± 0.26 21.20 ± 0.33 b 20.33 ± 0.19 c 22.32 ± 0.08 c

T2 22.71 ± 0.16 ab 24.75 ± 0.53 a 24.92 ± 0.28 c 1.75 ± 0.25 abc 1.75 ± 0.20 ab 1.49 ± 0.17 22.43 ± 0.22 a 21.25 ± 0.18 ab 22.9 ±ab 0.05 b

T3 22.84 ± 0.61 ab 25.25 ± 0.58 a 25.75 ± 0.34 bc 2.16 ± 0.17 a 1.75 ± 0.08 ab 1.64 ± 0.03 22.72 ± 0.58 a 21.15 ± 0.33 ab 23.15 ± 0.17 a

T4 21.97± 0.50 b 22.59 ± 0.81 c 25.42 ± 0.25 bc 1.95 ± 0.26 ab 1.33 ± 0.12 b 1.23 ± 0.03 22.36 ± 0.50 a 20.75 ± 0.16 bc 23.5 ± 0.12 a

T5 21.45 ± 0.42 b 23.75 ± 0.28 abc 26.25 ± 0.16 ab 2.29 ± 0.22 a 2.17 ± 0.25 a 1.74 ± 0.09 22.73 ± 0.34 a 21.00 ± 0.21 abc 23.25 ± 0.14 a

T6 23.95 ± 0.57 a 24.25 ± 0.28 ab 26.83 ± 0.22 a 1.47 ± 0.17 bcd 1.96 ± 0.31 ab 1.65 ± 0.12 23.04 ± 0.35 a 21.65 ± 0.17 a 23.25 ± 0.04 a

T7 22.23 ± 0.36 b 23.08 ± 0.35 bc 25.50 ± 0.22 bc 1.05 ± 0.05 d 1.63 ± 0.18 ab 1.62 ± 0.02 22.84 ± 0.06 a 21.45 ± 0.32 ab 22.95 ± 0.06 ab

LS ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ NS NS ∗ ∗∗ ∗∗∗

Mean was calculated from four replicates for each treatment. a, b, c, d, e, etc. indicate significant differences among
the treatments. In a column, means having similar letter(s) are statistically similar and those having dissimilar
letter(s) differ significantly by LSD at 0.05 levels of probability. T1 = Zero N/Control N; T2 = recommended N;
T3 = 125% of recommended N; T4 = 75% of recommended N; T5 = cow dung N 2 t ha−1 supplemented with prilled
urea N; T6 = deep placement of urea super granule (USG) 165 kg ha−1; T7 = biochar 4 t ha−1 with recommended
N as prilled urea; LS = level of significance; *** = 0.1% level of significance; ** = 1% level of significance; * = 5%
level of significance; NS = not significant; mean ± = standard error.

3.6. Grain Number

The total number of grains per panicle responded to the treatments (Table 8), varying
from 90 to 178 during the three years sequential cropping seasons. In 2021, the maximum
number of total grains per panicle (171.5) was in the T6 treatment which was significantly
(p = 0.05) greater than that from the rest of the treatments. These results persisted over the
next two years (2022 and 2023) where the maximum number of total grains per panicle
(178.0 and 170.25) was in the T6 treatment. It may be due to the slow-release nature of
USG that ensures nitrogen availability throughout the critical growth stages of rice plants,
resulting in enhanced tillering and panicle development, improved flowering, and fertility
which finally improved grain numbers. Next to the T6 treatment, the T7, T3, T5, and
T2 treatments also provided high total grains per panicle. These responses to different
treatments show that USG and biochar provided the best results and can be ranked in
the following order: T6 > T7 > T3 > T5 >T2 > T4 > T1 over the whole study period. The
minimum number of total grains per panicle (90 to 94) was in the T1 (Zero N) treatment.
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Table 8. Effects of nitrogenous fertilizer management options on total number of grain panicle−1, no.
of filled grain panicle−1, and no. of unfilled grain panicle−1 of rice (BRRI dhan28).

Total No. of Grain Panicle−1 No. of Filled Grain Panicle−1 Unfilled Grain Panicle−1

2021 2022 2023 2021 2022 2023 2021 2022 2023

T1 90.0 ± 1.07 e 93.50 ± 2.33 d 90.17 ± 3.61 f 79.0 ± 0.53 e 71.25 ± 1.44 d 78.17 ± 3.06 e 11.0 ± 0.91 ab 22.25 ± 1.49 a 12.0 ± 0.82 a

T2 127.50 ± 2.22 c 163.75 ± 3.52 b 125.75 ± 0.86 d 118.50 ± 2.22 d 152.50 ± 4.01 b 117.25 ± 0.98 c 9.0 ± 0.82 bc 11.25 ± 0.85 bc 8.50 ± 0.65 b

T3 140.50 ± 1.71 b 174.75 ± 1.60 ab 137.75 ± 3.61 bc 131.50 ± 1.32 b 160.75 ± 1.49 a 128.50 ± 0.65 b 9.0 ± 0.71 bc 14.0 ± 1.08 c 9.25 ± 0.48 b

T4 115.50 ± 1.89 d 130.25 ± 5.85 c 113.50 ± 3.01 e 106.0 ± 0.71 d 119.25 ± 5.79 c 105.50 ± 2.22 d 9.50 ± 1.55 abc 11.0 ± 0.41 bc 8.00 ± 0.91 b

T5 128.75 ± 1.89 c 168.25 ± 4.63 ab 128.08 ± 8.52 cd 119.25 ± 2.66 c 157.0 ± 4.02 ab 119.83 ± 8.13 bc 9.50 ± 1.32 abc 11.25 ± 0.85 bc 8.25 ± 0.48 b

T6 171.50 ± 3.59 a 178.0 ± 2.92 a 170.25 ± 2.25 a 165.0 ± 3.49 a 171.0 ± 3.39 a 162.50 ± 2.10 a 6.50 ± 0.29 c 7.0 ± 1.08 bc 7.75 ± 0.85 b

T7 146.25 ± 3.22 b 174.0 ± 4.06 ab 142.42 ± 1.91 b 135.75 ± 2.81 b 160.0 ± 3.03 ab 130.67 ± 1.48 b 10.50 ± 0.65 a 14.0 ± 2.42 b 11.75 ± 0.48 a

LS ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

The mean was calculated from four replicates for each treatment. a, b, c, d, e, etc. indicate significant differences
among the treatments. In a column, means having similar letter(s) are statistically similar and those having dissim-
ilar letter(s) differ significantly by LSD at 0.05 levels of probability.T1 = Zero N/Control N; T2 = recommended N;
T3 = 125% of recommended N; T4 = 75% of recommended N; T5 = cow dung N 2 t ha−1 supplemented with prilled
urea N; T6 = deep placement of urea super granule (USG)165 kg ha−1; T7 = biochar 4 t ha−1 with recommended
N as prilled urea; LS = level of significance; *** = 0.1% level of significance; ± = standard error.

The highest number of filled grains per panicle was recorded (165.0, 171.0, and 162.50,
respectively) for the T6 treatment which was significantly greater (p = 0.05) than that
observed in the other treatments (Table 7). The second highest filled grains per panicle
(135.75, 159.0, and 130.67, respectively) was in the T7 treatment (biochar 4 t ha−1 with
recommended N). The minimum number of unfilled grains per panicle (6.50, 7.0, and 7.75,
respectively) was in the T6 treatment, reflecting the positive effect of USG on the filling of
grains. The highest number of unfilled grains per panicle was in the T1 (Zero N) treatment
(11.0, 22.25, and 12.0, respectively).

3.7. Grain Yield (t ha−1)

Grain yield responded significantly (p = 0.05) to the different fertilizer management
options (Figure 3). The grain yield was in the range of 3.18 to 7.23 t ha−1 during the three
experimental seasons, where the maximum grain yield in 2021 was 6.99 t ha−1 in the T6
treatment. Grain yields continued to increase in the next two years, at 7.23 and 6.97 t ha−1 in the
T6 treatment in 2022 and 2023, respectively. The adequate and consistent N supply from USG
might have contributed to better grain formation with more filled grain panicle−1 that increased
grain yield. The lowest grain yield (3.16–3.19 t ha−1) was in the T1 treatment (Zero N).
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Figure 3. Grain yield (t ha−1) of BRRI dhan28 influenced by the application of nitrogenous fertilizer
management options. The mean average of four replications and the capped line represent stan-
dard error. Significance difference compared to control at p = 0.05; *** = 0.1% level of significance.
RDN = Recommended dose of nitrogen.
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3.8. Straw Yield (t ha−1)

Straw yield was statistically different for all of the treatments applied in the experiment
(Figure 4). The highest straw yield was in the T3 treatment (recommended dose plus 25%
extra N), but the other treatments were similar (T2, T6, T5, and T4) in the consecutive
years. The straw yields in T3 were 8.78, 8.70, and 8.70 t ha−1 in successive cropping years
compared to the recommended dose of N (8.69, 8.64, and 8.60 t ha−1). On the other hand,
the lowest straw yield (5.65, 5.52, and 5.64 t ha−1) was observed in the T1 treatment (Zero N)
in the respective cropping years.
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3.9. Biological Yield (t ha−1)

The total aboveground biomass production or biological yield (Figure 5) was affected
significantly (p = 0.05) by the N fertilizer treatment options in the sequential cropping years.
The highest biological yields (15.44, 16.09, and 15.45 t ha−1, respectively) were in the T6
treatment compared to the recommended dose of N (15.39, 14.97, and 15.33 t ha−1) in 2021,
2022, and 2023. The T7 treatment was closest to the T6 treatment while the lowest biological
yields (8.83, 8.72, and 8.81 t ha−1) were in the T1 treatment (Zero N) in the three-year
experimental period.
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Figure 5. Biological yield (t ha−1) of BRRI dhan28 influenced by the application of nitrogenous
fertilizer management options. The mean average of four replications and the capped line represent
standard error. Significance difference compared to control at p = 0.05; *** = 0.1% level of significance.
RDN = Recommended dose of nitrogen.
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3.10. Harvest Index (%)

The harvest index is the ratio of the grain yield to the total biological yield, expressed
as a percentage (Figure 6). The highest harvest index (44.72, 44.94%, and 43.71%) was
observed in the T6 treatment (USG) during 2021, 2022, and 2023. The lowest harvest index
was observed in T1 (35.49–36.59%).
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Figure 6. Harvest index (%) of BRRI dhan28 due to the application of nitrogenous fertilizer man-
agement options (2021, 2022, and 2023). The mean average of four replications and the capped line
represent standard error. Significance difference compared to control at p = 0.05; *** = 0.1% level of
significance. RDN = Recommended dose of nitrogen.

3.11. Nitrogen Content of Grain and Straw (%)

Grain N content was highest in the T6 treatment with values of 1.71% in 2021 and
1.72% in 2022 cropping years (Table 9). Next to the T6 treatment, the T3 and T7 treatments also
provided high N concentrations of 1.69 and 1.71; 1.60 and 1.71%, respectively, in the respective
cropping years. Without N application, the % N concentration of grain was 1.39, 1.30, and
1.22%, respectively, in the T1 treatment (Zero N) in the three-year experimental period.

Table 9. Effects of nitrogenous fertilizer management options on % N content of grain and straw of rice.

Treatment
% N Content (Grain) % N Content (Straw)

2021 2022 2023 2021 2022 2023

T1 1.39 ± 0.02 d 1.30 ± 0.01 e 1.22 ± 0.01 0.98 ± 0.01 f 0.97 ± 0.02 d 1.04 ± 0.02 c

T2 1.67 ± 0.02 a 1.62 ± 0.01 c 1.70 ± 0.01 1.15 ± 0.02 de 1.04 ± 0.02 c 1.16 ± 0.02 b

T3 1.69 ± 0.01 a 1.71 ± 0.02 ab 1.71 ± 0.4 1.21 ± 0.04 bc 1.13 ± 0.01 ab 1.35 ± 0.03 a

T4 1.53 ± 0.01 c 1.57 ± 0.01 d 1.58 ± 0.01 1.11 ± 0.02 e 1.05 ± 0.03 c 1.16 ± 0.04 b

T5 1.62 ± 0.01 b 1.67 ± 0.01 b 1.62 ± 0.01 1.17 ± 0.01 cd 1.12 ± 0.01 b 1.36 ± 0.02 a

T6 1.71 ± 0.01 a 1.72 ± 0.01 a 1.71 ± 0.4 1.31 ± 0.01 a 1.19 ± 0.01 a 1.40 ± 0.01 a

T7 1.60 ± 0.02 b 1.71 ± 0.01 ab 1.69 ± 0.01 1.23 ± 0.01 b 1.18 ± 0.01 ab 1.37 ± 0.03 a

LS ∗∗∗ ∗∗∗ NS ∗∗∗ ∗∗∗ ∗∗∗
The mean was calculated from four replicates for each treatment. a, b, c, d, e, etc. indicate significant differences
among the treatments. In a column, means having similar letter(s) are statistically similar and those having dissim-
ilar letter(s) differ significantly by LSD at 0.05 levels of probability. T1 = Zero N/Control N; T2 = recommended N;
T3 = 125% of recommended N; T4 = 75% of recommended N; T5 = cow dung N 2 t ha−1 supplemented with prilled
urea N; T6 = deep placement of urea super granule (USG) 165 kg ha−1; T7 = biochar 4 t ha−1 with recommended N as
prilled urea; LS = level of significance; *** = 0.1% level of significance; NS = not significant; mean ± = standard error.
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Similarly, the highest N content (%) of straw was in the T6 treatment with values of
1.31, 1.19, and 1.40% during 2021, 2022, and 2023, respectively. In this regard, the closest
values were demonstrated by the T7 treatment. In contrast, the lowest values (0.98, 0.97,
and 1.04%, respectively) were in the T1 treatment (Control N).

3.12. N Uptake by Grain, Straw, and Plant (kg ha−1)

N uptake by grain, straw, and plant (kg ha−1) of BRRI dhan28 was significantly
(p = 0.05) influenced by the application of treatments (Table 10). The highest N uptake
by grain was from T6, where the values were 115.98, 124.17, and 119.66 kg ha−1 in the
gradual cropping years. These results were comparatively better than the T2 treatment
(112.06, 108.95, and 114.54 kg ha−1, respectively). Moreover, the T3, T7, and T4 treat-
ments also showed average results, and as usual, the lowest values were recorded in the
T1 treatment (Control N).

Table 10. Effects of nitrogenous fertilizer management options on N uptake by grain, straw, and plant
(kg ha−1) of rice (BRRI dhan28).

N Uptake by Grain(Kg ha−1) N Uptake by Straw (Kg ha−1) N Uptake by Plant (Kg ha−1)
2021 2022 2023 2021 2022 2023 2021 2022 2023

T1 44.05 ± 0.75 e 41.39 ± 0.24 f 38.61 ± 0.78 f 55.13 ± 0.58 e 53.61 ± 1.19 e 59.11 ± 1.35 e 99.18 ± 1.17 e 95.021 ± 1.11 f 97.72 ± 1.22 g

T2 112.06 ± 1.11 b 108.95 ± 1.35 d 114.54 ± 0.14 b 99.53 ± 1.47 c 85.87 ± 1.01 c 99.76 ± 1.11 c 211.59 ± 2.14 bc 194.83 ± 2.39 d 214.29 ± 1.08 e

T3 111.21 ± 2.45 b 113.89 ± 0.46 c 112.49 ± 0.37 c 106.43 ± 3.26 b 98.69 ± 1.01 b 117.91 ± 2.16 ab 217.64 ± 3.16 b 212.58 ± 2.28 c 230.40 ± 2.52 b

T4 81.35 ± 1.13 d 71.42 ± 0.55 e 69.94 ± 0.84 e 79.96 ± 1.30 d 77.74 ± 0.53 d 84.00 ± 1.58 d 161.31± 2.98 d 149.17+ ± 0.98 e 153.94 ± 1.52 f

T5 106.55± 0.67 c 111.60 ± 0.93 c 108.35 ± 0.67 d 99.63 ± 0.96 c 97.46 ± 0.24 b 115.68 ± 1.03 b 206.18 ± 1.12 c 209.06 ± 1.02 c 224.03 ± 0.84 d

T6 119.18 ± 0.82 a 124.17 ± 0.75 a 119.66 ± 0.46 a 113.39 ± 0.83 a 104.96 ± 0.96 a 120.40 ± 0.40 a 232.57 ± 1.03 a 229.13 ± 1.02 a 240.06 ± 0.82 a

T7 110.36 ± 0.85 b 120.45 ± 0.69 b 116.23 ± 1.76 b 104.18 ± 1.50 bc 100.08 ± 0.74 b 116.83 ± 1.23 ab 214.54 ± 1.87 b 220.54 ± 0.82 b 233.06 ± 1.12 c

LS ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

The mean was calculated from four replicates for each treatment. a, b, c, d, e, etc. indicate significant differences
among the treatments. In a column, means having similar letter(s) are statistically similar and those having dissim-
ilar letter(s) differ significantly by LSD at 0.05 levels of probability. T1 = Zero N/Control N; T2 = recommended N;
T3 = 125% of recommended N; T4 = 75% of recommended N; T5 = cow dung N 2 t ha−1 supplemented with prilled
urea N; T6 = deep placement of urea super granule (USG) 165 kg ha−1; T7 = biochar 4 t ha−1 with recommended
N as prilled urea; LS = level of significance; *** = 0.1% level of significance; mean ± = standard error.

Considering the N uptake by straw, the highest uptake (114.32, 118.78, and 120.40 kg ha−1,
respectively) was recorded by the treatment T6 compared to the recommended N applica-
tion option (99.53, 85.87, and 99.76 kg ha−1) as well as the other treatments during 2021,
2022, and 2023. Finally, in the case of the N uptake by plants (kg ha−1), the T6 treatment
showed consistently the highest values of 229.30, 128.69, and 240.06 kg ha−1 compared to
the T2 treatment (211.59 kg ha−1, 194.83 kg ha−1, and 214.29 kg ha−1, respectively). The
T3 and T7 treatments also provided good results for increments of N uptake. In contrast,
the lowest N uptake by plants (99.33, 95.02, and 104.21 kg ha−1) was in the T1 treatment
(Control N/Zero N) in the three-year experimental period.

3.13. Nitrogen Use Efficiency (NUE)/Partial Factor Productivity (PFP)

Nitrogen use efficiency (NUE) was significantly (p = 0.05) affected by the treatments
with the highest NUE in from T6 (41.83, 43.0, and 41.71, respectively) in the successive
cropping years compared to the T2 treatment (37.22, 37.30, and 37.43, respectively (Figure 7).
From the responses to different nitrogenous fertilizer management options, the results can
be ranked according to the following order: T6 > T7 > T2> T5 > T4 > T3. The average NUE
was 13.05% higher in the T6 treatment (USG) than the recommended dose of N.

3.14. Agronomic Efficiency of N (AEN %)

The nitrogen fertilizer management options resulted in significant (p = 0.05) variations
for the agronomic efficiency of N (AEN %). The highest AEN (23.1, 24.48, and 23.06%,
respectively) was for the T6 treatment (USG) compared to the T2 treatment (recommended dose
of N) where the recorded values were 19.56, 19.58, and 19.85%, respectively, in the consecutive
cropping years (Figure 8). The effects of the treatments can be ranked according to the following
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order: T6 > T7 > T2 > T5 > T3 and T4 in respect of % AEN over the respective cropping years.
The average AEN was 19.74% higher than the RD of N in the T6 treatment (USG).
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Figure 7. Nitrogen use efficiency (NUE %) of BRRI dhan28 due to the application of nitrogenous
fertilizer management options. The mean average of four replications and the capped line represent
standard error. Significance difference compared to control at p = 0.05; *** = 0.1% level of significance.
RDN = Recommended dose of nitrogen.
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Figure 8. Agronomic efficiency of N (AEN %) of BRRI dhan28 due to the application of nitrogenous
fertilizers dozes (2021, 2022, and 2023). The mean average of four replications and the capped line
represent standard error. Significance difference compared to control at p = 0.05; *** = 0.1% level of
significance. RDN = Recommended dose of nitrogen.

3.15. Recovery Efficiency of N (REN %)

The application of the nitrogen fertilizer management options significantly (p = 0.05)
influenced the recovery efficiency of N (REN) over the serial experimental years (Figure 9).
The highest REN (0.73, 0.75, and 0.73%, respectively) was by the T6 treatment compared to
T2 (0.62, 0.60, and 0.64%, respectively) in the sequential cropping years. The average REN
by the T6 treatment (USG) was 18.87% higher than the RD (T2).
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Figure 9. Recovery efficiency of N (REN %) of BRRI dhan28 due to the application of nitrogenous
fertilizer management options (2021, 2022, and 2023). The mean average of four replications and
the capped line represent standard error. Significance difference compared to control at p = 0.05;
*** = 0.1% level of significance. RDN = Recommended dose of nitrogen.

3.16. Dry Matter Yield (Kg ha−1) and Grain N Uptake

There was a statistically positive relationship between the DM yield and total N
application. The highest DM yield was in the USG treatment (Figure 10) as it provided a
more continuous supply of N through the growing period of the rice plant. N promotes
rapid plant growth and improves grain yield and quality.
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Figure 10. Effects of grain N uptake (Kg ha−1) of rice in response to applied N.
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3.17. Benefit–Cost Ratio (BCR)

A profitability indicator benefit–cost ratio analysis was used to determine the viability
of cash flows generated from a project. The benefit–cost ratio (BCR) of rice cultivation
responded significantly to N fertilizer application options in the three consecutive years
(Figure 11). The highest BCR values (2.56, 2.64, and 2.55) were from the T6 treatment. Next
to the T6 treatment, the fertilization option T2 also had a high BCR (2.42, 2.41, and 2.43,
respectively) in the sequential cropping years. But, the T7 treatment (Biochar) had low BCR
values (2.11, 2.15, and 2.10, respectively) reflecting the high cost of biochar.
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Figure 11. Benefit–cost ratio of BRRI dhan28 due to effects of nitrogenous fertilizer management
options (2021, 2022, and 2023). RDN = Recommended dose of nitrogen.

4. Discussion

The application of the optimum amount of N can enhance crop growth and yield
while reducing N loss and increasing N use efficiency. Although the applications of
large amounts of N fertilizers can lead to increased crop yields, this practice is often
associated with significant economic costs and adverse environmental impacts [42,43].
Excessive N application in crop production is common in Bangladesh. Reduction in N
applications to the optimal rate is an efficient strategy to mitigate environmental risk [44].
Compared to the conventional application method, reducing N input significantly decreases
reactive nitrogen losses in terms of leaching and gaseous emissions [45]. Appropriate N
management approaches based on the conventional fertilizer application rate would not
reduce yield but maintain yield to some extent as well as increasing the nitrogen use
efficiency. Our study has demonstrated that improved nitrogen use efficiency (NUE) under
different management practices can be achieved without a loss of yield and while reducing
total N inputs. The deep placement of USG (slow-release N) and biochar (urease inhibitor)
with the recommended dose of N fertilizer significantly influenced plant growth, yield,
and NUE. The application of USG significantly increased plant height. It might be that
the continuous supply of N from USG over the entire life cycle of the plant contributed
to various physiological processes including the cell division and cell elongation of the
plant which contributed to the observed increases in plant growth. Our findings are in
line with the results reported by Singh and Singh [46], and Chopra and Chopra [47]. The
results are also consistent with the findings of Alam [48]. Biochar also has beneficial effects
on regulating plant growth by enhancing soil nutrient retention and uptake efficiency as
reported by Ghorbani and Amirahmadi [49]. Tiller density is an important attribute that
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influences the yield of rice. The USG treatment significantly increased the number of tillers
per hill. The application of USG resulted in more vigorous growth and produced more
effective tillers compared to the recommended dose of N fertilizer. An adequate N supply
from USG probably led to an increased number of productive tillers. This result is supported
by the findings of Adhikari et al. [50] and Das [51]. On the other hand, Schnier et al. [52]
reported that N supply controlled the tiller production of rice plants unless other factors
such as spacing or light became limiting factors. The highest leaf chlorophyll content
(SPAD value) of rice was from the USG treatment. The improving effects of slow-release N
fertilizer (USG) on the chlorophyll content and vegetative growth of rice plants might be
attributed to its role in regulating the release of N to synchronize with plants’ demand [53].
In addition, the role of N in plants is that it increases the growth and development of all
living tissue and is also an important constituent of chlorophyll [54]. The accumulation of
dry matter (DM) was highest in the USG treatment compared to the recommended dose of
N fertilizer. The finding is also in line with the opinion of Rao et al. [55] who mentioned
that USG was most effective in increasing DM compared with the split applications of
urea. From three years of sequential cropping seasons, the highest panicle length was
recorded from USG treatment. These results are also consistent with the findings of other
researchers [56,57] who found that the application of USG significantly increased panicle
length. Moreover, this result is in line with another study [58] which found that the
application of USG significantly increased the panicle length in rice plants compared to
conventional urea application methods. This improvement is attributed to the slow-release
nature of USG, which provides a more consistent supply of nitrogen to the plants, leading
to better growth and development of the panicle structure. The weight of 1000 grains was
highest in the treatment with USG, probably because of the increased photosynthesis and
chlorophyll content in the leaves and finally dry matter accumulation in the plant which
was possible due to the supply of N from USG in response to plant requirements [59].
Our results indicated that the overall dry matter production was associated with higher
levels of grain yield. The increase in weight of 1000 grains of rice was also reported by
Ashrafuzzaman et al. [60] in response to improved N management. The positive effects of
USG as a source of N on the grain yield of rice have been observed by other researchers [61].
It might be due to the fact that an adequate supply of N from USG contributed to grain
formation which probably increased the number of grains per panicle. This finding was
also supported by the results reported by Rama et al. [62] and Kapre et al. [63], who
observed significantly higher filled grains per panicle with the application of USG over
a split application of urea. The grain yield of rice responded significantly to the USG
treatment compared to the recommended dose of N. The yield analysis showed a greater
yield in response to N fertilizer which was attributed largely to the number of effective
tillers per hill and increased in the USG treatment compared to the RD treatment. The
higher yield of rice grain in the biochar treatments might have been associated with higher
soil nutrient retention, higher cation exchange capacity, and better soil fertility. It may be
due to improving porosity that enhances its ability to retain water and nutrients, a large
surface area that allows more space for nutrient adsorption and microbial colonization,
and surface functional groups that improve cation exchange capacity, facilitating nutrient
retention [64,65]. USG deep placement (8–10 cm depth) may have the capacity to slow the
release of N which helps in the continuous supply of N over the entire life cycle of the plant
that contributes to various physiological processes that ultimately lead to better growth,
development, and yield of rice.

Improved grain and straw yields may have resulted from an adequate N nutrient
supply which could be attributed to better synchrony between the supply and crop demand
for N in the USG and biochar treatments, thereby contributing to superior crop growth
and development [66,67]. The biological yield was also significantly influenced by the USG
application and recorded the highest result compared to the recommended PU. Most of the
treatments gave more or less similar results for harvest index except the T1 treatment (Zero N).
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However, throughout the cropping period, USG and biochar performed consistently
better for the harvest index. Similar results were observed at the highest harvest index from
the report of Huang et al. [68] and Rahman et al. [69]. Soil amendment with biochar and
USG could decrease total nitrogen leaching (TNL) compared to that without amendments.
Therefore, the appropriate management practices can effectively reduce the TNL and
ultimately contribute to better growth and yield of rice and finally the harvest index. Higher
grain yields in the fertilizer treatments were associated with a higher harvest index. The
USG treatment consistently showed the highest N uptake by grain and straw throughout
the cropping seasons. These results were comparatively better than the recommended
PU. All the NUE indices (NUE, AEN, and REN) were significantly higher in the USG
and biochar treatments with few exceptions. Many studies have demonstrated that the
application of controlled release N significantly increases the grain yield of rice and NUE
in comparison with the application of traditional prilled urea [70,71]. During the study
period, the highest agronomic efficiency of N was observed in the USG treatment. Biochar
at 4 t ha−1 with recommended N (T7) also showed statistically similar results with respect
to % AEN over the recommended N in the successive cropping years. However, this study
was unable to assess the longer-term (>3 year) impacts of biochar. This should be a priority
for future studies given the longevity of biochar in soils. The performance of USG as a
slow-release N fertilizer is highly beneficial for wetland rice cultivation for synchronous N
management leading to the reduction in volatilization leaching and other N losses. AEN is
usually higher at low N rates than at higher N rates [67,72]. Our observation is consistent
with those findings.

The highest recovery efficiency of N was in the USG treatment. The recovery efficiency
of N was higher in USG than in the traditional application of prilled urea (PU) in a study
reported by Hossain et al. [73]. This might be because the deep placement of USG increases
the N use efficiency of the urea N over an extended period of time [74]. Biochar improves
soil structure by increasing soil porosity and water retention, which is particularly beneficial
in paddy fields where maintaining optimal moisture levels is critical for rice growth. It helps
retain nutrients like nitrogen (N), phosphorus (P), and potassium (K) by reducing leaching [75].

Due to the application of various N management practices, the grain N uptake re-
sponded significantly. A higher grain yield and grain N uptake were recorded for the USG
treatment compared to the other treatments. Higher levels of partial factor productivity
(PFP) indicate a higher amount of nutrient input, while lower levels indicate a productivity-
limiting deficit. In our study, N partial factor productivity (PFP) varied with treatment.
The highest partial factor productivity was in the T6 treatment (USG). This finding was
supported by Chen et al. [71]. They observed that compared to the application of urea,
controlled release urea increased the partial factor productivity. The highest benefit–cost
ratio of rice was also recorded from the T6 treatment (USG). Biochar with the recommended
dose of prilled urea also showed good results in terms of growth, yield, and N use efficiency,
but the extra cost of the biochar reduced the cost–benefit ratio. The findings suggest that
the deep placement of urea super granules is the best option for improving the yield of rice
while also improving N use efficiency.

5. Conclusions

These results clearly demonstrate that the application of different N fertilizer manage-
ment options had a significant influence on the growth, yield, and N use efficiency of the
BRRI dhan28 rice variety. The plant height, chlorophyll content, dry matter accumulation
per plant (g), tiller density, filled grain per panicle, 1000-grain weight, grain yield, biologi-
cal yield, and harvest index were increased with the urea super granule (USG) treatment
at the same N rate as prilled urea applied in conventional management practices. The
same treatment successfully increased all the indices of N use efficiency in wetland rice
cultivation. Moreover, the USG treatment showed the highest benefit–cost ratio (BCR). In
summary, the USG treatment would be the best option for higher yield production as well
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as improved NUE of BRRI dhan28 in wetland rice cultivation under the calcareous dark
gray soils of Bangladesh.
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