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H I G H L I G H T S

• Literature review reveals the importance of woodland for urban riverine macroinvertebrate.
• Statistical analysis of selected urban rivers shows the influences of land cover and habitats.
• The benefit of woodland for aquatic macroinvertebrate is stronger than pasture and cropland.
• Bare ground, even in small amount, is detrimental to macroinvertebrates biodiversity.
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A B S T R A C T

In urban environments, invertebrate communities are subjected to a broad mixture of impacts, including diffuse
pollution. Pollutant mixtures and habitat degradation can combine to apply stress on community diversity. Water
quality is influenced by the assemblage and mosaic of catchment land cover. Amongst a wider suite of Nature-Based
Solutions, the value of urban woodland is increasingly recognized as having potential to support a range of ecosystem
services. Despite an increasing focus on establishing urban woodland for aquatic conservation, its actual influence is
yet to be manifested. Therefore, we explored trees’ location in riparian and upstream catchment, within and outside
of the urban area. We conducted a combination of systematic literature review and statistical analysis to better
understand the woodland influence. Despite the wide range of bioindicators studied and broad worldwide spectrum
of geo-climatic regimes covered, literature evidence for benefits were found in at least half the cases. With a focus on
the overall family richness and the sensitive orders Ephemeroptera, Plecoptera and Trichoptera family richness as
bioindicators, the statistical analysis comprised a national study in England covering 143 sites with substantial urban
cover, totaling 4226 invertebrate community observations over 30 years. Two satellite-derived land cover maps were
used to enable discrimination between urban and extra-urban woodland. The analysis supported the literature evi-
dence that impervious land had negative effects and woodland positive effects. In the urban and upstream catchment,
woodland was more important than pasture or cropland. There was some evidence of those woodland effects being
more advantageous when trees are located within the urban area itself. Benefits attributable to woodland were
distinctly apparent against a backdrop of improving macroinvertebrate diversity found to be synchronous with long-
term reductions in urban pollution signatures. The presence of sparse land, even in small amounts, was detrimental to
macroinvertebrate diversity. These areas of low vegetative cover might be detrimental due to high sediment input
and legacy industrial contamination. Given the increasing accessibility of land cover data, the approach adopted in
this case study is applicable elsewhere wherever macroinvertebrate community data are also available.

Abbreviations: AN, Anglian; ASPT, Average Score Per Taxon; BIOSYS, Biological system; B-IBI, Benthic Index of Biotic Integrity; BMI, Benthic Macroinvertebrate
Index; BMWP, Biological Monitoring Working Party; EPT, Ephemeroptera, Plecoptera and Trichoptera; CCI, Community Conservation Index; EPT_FR, Family richness
of the orders Ephemeroptera, Plecoptera and Trichoptera; FR, Family richness; GI, Green infrastructures; GLMM, Generalized linear mixed-effect model; HMS,
Habitat modification score; LCM, Land Cover Map; MI, Midlands; NBS, Nature-Based Solution; NE, Northeast; NW, Northwest; PICO, Population-Intervention-
Comparator-Outcome; Q1, the first question; Q2, the second question; QE, Quantitative experimental; QO, Quantitative observational; R, Review; SemiN, Semi-
natural; SO, Southern; SW, Southwest; TH, Thames; UK, United Kingdom; Wood_in, Woodland inside; Wood_out, Woodland outside; Wood_t, Woodland total; WQX,
Water Quality eXtension; WwTWs, Wastewater Treatment Works.
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1. Introduction

In well-preserved rivers, the heterogeneity of habitats is large, and
aquatic invertebrate fauna diverse. However, a negative result of
expanding cities across the world is the consequent impoverishment of
associated aquatic ecosystems (Bernhardt and Palmer, 2007; White and
Walsh, 2020). Development of urban areas and growing population
commonly leads to increased pollution (Yang et al. 2021). Often, it also
leads to requirements for channel modifications to control flooding and
ensure navigation such as channel strengthening and riparian vegetation
removal (González et al., 2017; White and Greer, 2006; Yang et al.,
2021). However, human intervention such as, forest harvesting and
stream channel bed and bank modification result in significant
geomorphological impacts on stream channel morphology (Bylak &
Kukuła, 2020). These inevitably simplify habitats (Kabir et al., 2022)
and lead to reduction of biodiversity and population, which may
significantly affect provision of ecosystem services (Bylak et al., 2022a).
Moreover, urban rivers receive increased organic contaminants and
heavy metals (for example, zinc and lead) from road runoff and industry
(Awonaike et al., 2022; Li et al., 2021). The evidence is that the urban
pollutant cocktail together with channel modifications harm local native
aquatic species and reduce biodiversity (Lapointe et al., 2022). Despite
the improvement in wastewater management, water quality is still
problematic in the urban rivers, attributable to road run-off and
impermeability of built-up areas (Bylak et al., 2022b). Habitat moni-
toring and spatially explicit species inventories are essential in evalu-
ating the tradeoffs and complex stressors, and to solve the dilemma
requires high-resolution spatial approaches (Vörösmarty et al., 2010;
Liu et al., 2023).

Forming a type of green infrastructure or Nature-Based Solution
(NBS) (that also includes green roofs, constructed wetlands and bio-
swales etc.), urban forestry provides a range of ecosystem services and
benefits (Choi et al., 2021). Green infrastructure includes engineered
structures but can also include natural and conserved vegetated land
(Jones et al., 2022). Conservation and reintroduction of forestry has
been increasingly used to address issues affecting urban areas worldwide
(McMillan et al., 2014). Establishment of urban NBS (including wood-
land) seeks to achieve environmental and societal co-benefits. These
co-benefits include carbon sequestration, air purification, water regu-
lation, habitat and biodiversity improvement, and recreational oppor-
tunities (Derkzen et al., 2015; Nijnik and Miller, 2013; Vieira et al.,
2018). The majority of functions that woodlands provide, make a direct
contribution to provisioning ecosystem services (e.g. tree roots take up
water and reduce runoff, directly preventing flooding) but for aquatic
biodiversity there are a more complex set of relationships at play (Ogden
et al., 2013). Consequently, it is not known how terrestrial tree coverage
influences aquatic communities, for example freshwater
macroinvertebrates.

Woodlands influence urban water quality in multiple ways (Nisbet
et al., 2011; Piffer et al., 2021). The influences can depend on whether
the woodland is located inside or outside of the urban area or whether in
a riparian zone. For example, the size, age and species of trees will be
different between the inside (special requirements for surrounding
buildings, recreation and to be unified) and outside (higher diversity of
tree species and resistance ability) of a city; which result in differences in
food supply (leaf litter) and shelter/refuge (root or dead wood in the
river) for the related aquatic macroinvertebrates (Gurnell et al., 2007;
Jonsson and Sponseller, 2021; Stoler and Relyea, 2020; Tyrväinen et al.,
2005). Due to space limitation, woodlands or green spaces within cities
can become fragmented and their growth restricted. Nevertheless, they
provide significant refuge and corridors for maintaining invertebrate
richness (Bulhoes et al., 2021). The relatively larger woodlands located
outside cities receive less pollution, can foster more invertebrate species
and support higher biodiversity (White and Walsh, 2020).

Beneficial woodland functions differ in relation to their proximity to
rivers. Riparian trees alongside rivers provide direct benefits to

macroinvertebrates, whereas the benefits from trees located far from
rivers (defined as catchment trees) are indirect. Reduction in erosion,
pollutant transfer and the moderation in runoff volumes brought about
by woodland in the upstream catchment are beneficial indirect path-
ways (Acreman et al., 2021; Piffer et al., 2021). Direct pathways are
related to how trees influence in-channel habitat (Buffagni et al., 2019),
including the effects of canopies regulating water temperature
(Bonacina et al., 2023). Therefore, benefits received depend on the
spatial relationship and proximity between woodland as the source and
macroinvertebrate as the receptor (Harper et al., 1997). The magnitude
of species richness difference between situations with or without trees in
the riparian zone depends substantially on the level of artificial habitat
modification (Cao and Natuhara, 2019). Rivers in highly urbanized
areas usually have impermeable banks and lack of tree coverage.
Modified rivers may have flow regulated by dams which in turn affects
habitat (Pal et al., 2020). Features of modified rivers may have negative
impacts on macroinvertebrates (Dunbar et al., 2010). Whilst functioning
of woodlands to cool rivers and act as barriers to sediment and
contaminant transport is accepted and understood, the significance of
their effects on macroinvertebrate diversity is unclear.

Macroinvertebrates play an important role in freshwater food webs.
They are both prey and predator (Jadhav et al., 2022; Kroetsch et al.,
2020). Macroinvertebrate communities containing only pollu-
tion–tolerant species or very little diversity may indicate an unhealthy
waterbody. Species show differing ability to withstand contaminant
pressures in their larval as opposed to their adult stage (Wesner, 2019).
Biodiversity is increasingly considered as an endpoint in environmental
regulations (Lima et al., 2023; Sigmund et al., 2023; Tittensor et al.,
2014). Typically approaches adopted examine: (i) the overall commu-
nity family richness (FR) and (ii) the sensitive orders Ephemeroptera,
Plecoptera and Trichoptera (EPT, more commonly known as mayfly,
stonefly, and caddisfly, respectively) family richness (EPT_FR). The EPT
orders represent both the terrestrial and aquatic environmental condi-
tion since their larvae and adult stages have different living preferences
(Manning and Sullivan, 2021).

To explore the limits of existing understanding, this study began with
a systematic review based on the relevant research on the influence of
woodlands on macroinvertebrate communities in urban rivers. Sec-
ondly, we undertook a statistical analysis using a database of English
rivers that brings together macroinvertebrate community ecology, water
quality, level of exposure to wastewater, habitat modification and land
cover data. To avoid the complex influence from multiple stressors, and
to pinpoint more specifically the effects of urban land cover on urban
diffuse pollution, the data was filtered to eliminate basins which are (i)
large, (ii) with substantial wastewater influence, and (iii) of low urban
land cover share. This ensures relationships are robust and generaliz-
able. To achieve this objective of addressing the impact of land cover
pattern we combined two remotely sensed maps of different resolutions,
which allowed for the discrimination of woodland inside the urban area
from that outside (peripheral) and also for identifying other specific
green infrastructure (in urban areas). Although used extensively in some
other fields, recent acquisition of finer resolution remotely sensed land
cover data has not often been applied to questions related to aquatic
biodiversity. Integrating the various data sources described above en-
ables emerging questions to be better addressed as summarized visually
in the workflow (Fig. 1). Together, the case study statistical analysis and
the literature review were used to address the following emerging
research questions:
Q1: Is the share of woodland positively correlated with aquatic

macroinvertebrate biodiversity?
Q2: Is it important for woodland to be located inside of the urban

area to confirm a positive correlation?
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2. Methods and Materials

2.1. Bibliometric analysis and screening processes

Bibliometric analysis was based on literature screening from Google
Scholar, Scopus and Web of Science using the following Boolean “topic
search” items: “KEY (urban* OR cit* OR town*) AND (tree* OR forest*
OR woodland*) AND (“green infrastructure” OR “green space” OR
“nature based solution” OR nbs OR “low impact development” OR lid)
AND (water OR river* OR stream OR aqua*) AND (macroinvert*)”. We
did the search on 19th July 2021, and yielded a return of 283 from
Google Scholar, 167 from Scopus and 68 from Web of Science. All ar-
ticles have been screened under the widely-adopted Population-Inter-
vention-Comparator-Outcome (PICO) structure (Collins et al., 2015) at
abstract and full-text level. Articles failing to pass the requirements of
the four PICO elements (Table 1, Table S2) were removed. Finally, the
articles passing the full-text screening comprised the final study material
for further meta-analysis. The further analysis included 8 elements
(Table 2) to enable the evidence mapping exercise and to answer our
two research questions. There are four possible choices to answer each of
the questions: (1) positive (for Q1, this confirms beneficial relationships
between woodland and macroinvertebrates related bioindicators; for
Q2, this confirms benefits from woodland inside the urban area), (2)
negative (evidenced harmful), (3) uncertain (findings that include both
advantages and disadvantages from woodlands or relationships that are
not significant) and (4) unknown (although passed our criteria, but not
able to answer the questions).

2.2. England urban river investigation

2.2.1. Rationale, database screening and workflow
As many drivers aside from land cover influence river macro-

invertebrate biodiversity, a number of preparatory steps are needed
before addressing the research questions with statistical analysis. First,
we eliminate effects of wastewater by taking a subset of the macro-
invertebrate sampling sites for which estimated wastewater exposure
was zero (details can be found in: Qu et al., 2023). As urban hydrology is
very complex and related to locally-specific engineering, the spatio-
temporal variability in sewer outflows during extreme storm events have
not been explicitly taken into account in the present study. Next, in order
to identify the influence of woodland in urban rivers additional steps are
required. The database of English rivers covers a wide spatial and
temporal range (over 30 years, whole of England), therefore spatio-
temporal factors are likely to be substantial in explaining river

macroinvertebrate diversity. Hence, we bring together physical char-
acteristics of potential explanatory variables including spatial, temporal,
and local river characteristics. We combined these with the land cover
variables in statistical analysis. By doing so we can separate the influ-
ence of climate factors, temporal change and river habitats from broader
land cover factors.

2.2.2. Macroinvertebrate data sources and samples selection
Macroinvertebrate data was compiled by the Environment Agency

and is publicly available on the national ecology database (BIOSYS,
biological system, https://environment.data.gov.uk/ecology/explorer/
). It contains taxonomic composition of aquatic macroinvertebrates from
freshwater river surveys across England. The aquatic

Fig. 1. Framework to understand and analyze the relationship between woodland and freshwater invertebrate biodiversity. PICO represents ‘Population-Inter-
vention-Comparator-Outcome’ screening criteria.

Table 1
Population-intervention-Comparator-Outcome (PICO) screening criteria.

Item Definition Criterion Categories

Population Targeted
study area

Water in urban areas
not influenced by
sewage effluents

River / stream / creek,
lake / pond,
wetland

Intervention Proposed
intermediary
impacts

Factors related to
trees, affect aquatic
invertebrates

Water temperature
reduction,
water quality
improvement,
soil erosion / sediment
control,
flow regime alteration,
supplementation of
habitat,
food availability
increment

Comparator Control or
difference in
land cover

Presence/absence or a
significantly different
percentage of
woodlands in urban
areas

Deforest upstream,
Gradient of vegetation,
Percentage of
woodland land cover,
Catchment impervious
/ attenuated
impervious area

Outcome Subject of
responder

Aquatic
macroinvertebrates

Biodiversity index (e.
g., FR, EPT_FR,
composition,
functional groups),
benthic
macroinvertebrates
index (e.g., BMWP,
ASPT, BMI, B-IBI, CCI)
,
abundance / density of
the community
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macroinvertebrates were collected following a standardized 3-minute
kick sampling protocol (Murray-Bligh et al., 1997). Because of species
level recording was patchy before 2014, similarly, abundance re-
cordings were in a semi-quantitative manner before 2000. The biolog-
ical data, therefore, focused on presence-absence recording at the family
level, which consistent over time.

To focus on urban rivers without substantial wastewater influence,
the samples for analyzing in this study have gone through three steps of
screening from a total of 1515 sites (those macroinvertebrate sites from
Environment Agency having more than 10 years of observations since
1989). Firstly, the sites were selected with catchment area less than 100
km2 and urban land cover greater than 20 %. Secondly, we excluded the
sites exposed to sewage wastewater (either without any local waste-
water treatment plants or under the simulated wastewater detected limit
of the modelling). The wastewater exposure was simulated by the
LF2000 WQX (LowFlows2000 Water Quality eXtension) model
(Williams et al., 2003) based on a 40-year climate record and a combi-
nation of location and flow of Wastewater Treatment Works (WwTWs)
in England (Balaam et al., 2010). Thirdly, we exclude the sites before
1989 because only a few macroinvertebrate samples were collected

before that year. Finally, 4226 samples relating to 143 sites across En-
gland have been selected (location showing in Fig. 2).

The biodiversity assessment was at the family level, since the iden-
tification undertaken by the Environment Agency was not as detailed as
species level until 2014. We used two bioindicators to describe the
macroinvertebrate biodiversity: (i) FR representing the general number
of families presented in a sample of overall community, (ii) EPT_FR
representing the number of families in the pollution sensitive order.
These are widely used long-time recording biotic indicators which allow
us to compare with other rivers around the world.

2.2.3. Description of the land cover and river habitat survey
For each macroinvertebrate site the catchment land cover and de-

rivative land cover upstream of the site was extracted. Two land cover
maps are used in this study. The first one is Land Cover Map 2015
(LCM_2015) (Rowland et al., 2017), a dataset with 25 m resolution that
is specific to the United Kingdom (UK). From this we used 4 categories:
woodland (abridged as Wood_out in this study), seminatural (SemiN),
urban and arable land cover. The second map is ESA (European Space
Agency) 2020 land cover map (LCM_2020) (Zanaga et al. 2021; Fletcher
et al., 2022) a global dataset with 10 m resolution. From this we used 8
categories: woodland (distinguished as Wood_t in this study), wetland,
grass, water, built, crop, shrub and sparse land (Table 3). This enabled us
to identify woodland inside urban area (Wood_in), as cities and towns
within LCM_2015 are classed as wholly urban, whereas LCM_2020
provides information on vegetation, including trees and greenspaces in
these areas apart from built. By taking advantage of these two maps, we
were also able to estimate the share of green infrastructures (GI) by
“urban minus built” (Table 3). It potentially represents the permeable
land in the urban area. The analysis uses land cover maps that originate
from different years. Whilst this is not ideal, land cover within England
has not changed substantially between these years (Fig. S2). Therefore,
this is the best available option for our purposes.

A sub-set of sites (92) gave extra information about the river habitat
survey results from the UK Environment Agency BIOSYS database. There
are three indicators provided from the river habitat survey: (i) habitat
modification score (HMS, range from 0 to 6000 + ), (ii) habitat modi-
fication class (including 5 classes, describe the rivers from pristine/semi-
natural to severely modified based on the HMS) (Raven et al., 1997;
Raven et al., 1998). The river HMS quantifies the extent, potential
impact and persistence of engineering structures on river channels,

Table 2
Critical appraisal criteria.

Criterion Appraisal entry

Geographic location Latitude, longitude (plus City/country)
Study type Quantitative observational (QO),

quantitative experimental (QE),
review (R)

Study scale Catchment,
riparian,
Both

Woodland location Inside of urban area,
outside of urban area

Study area size Descriptive
Length of observation Long (> 2 years),

moderate (1–2 years),
short (< 1 year)

Monitoring frequency High (> seasonal),
moderate (seasonal − annual),
low (once)

Number of sites Many (> 50),
moderate (10–50),
few (< 10)

Fig. 2. Location of the 143 sites which passed the criteria (<100 km2, >20 % urban, without wastewater influence) and the number of sites for different share of (a)
outside woodland (Wood_out) and (b) total woodland (Wood_t) land cover. Location of the 92 sites with their class of (c) river habitat modification score (HMS). The
abbreviations NW represent for Northwest, NE for Northeast, MI for Midlands, AN for Anglian, TH for Thames, SW for Southwest, SO for Southern. These regions
defined by watershed by Environment Agency, United Kingdom.
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banks and riparian zones (Walker et al., 2002), which reflects the level
of riparian trees coverage, as well as the instream habitat diversity and
river morphology alterations.

2.2.4. Spatial and statistical analysis methods
The analysis methods include two parts: a descriptive summary for

data visualization (see in Result 3.2.1, Table 5 & Fig. 2), and statistical
analysis (see in Result 3.2.2 and 3.2.3, Figs. 3, 4, 5 & 6).

Descriptive summary: The classification of low, medium and high
levels of two types of woodland (Table 5) used the Natural Breaks
method (Jenks, 1967) by ArcGIS (De Smith et al., 2007). This method is
based on the feature of data and identifies breaks at places that best

group similar values together and maximizes the differences between
classes. The difference between habitat modification classes was tested
between the Class 5 and the rest (Class 1 to 4) such that each contains a
similar number of sites (Table 5).

Statistical analysis: Analyses were performed in the R programming
environment (R-4.3.1, R Development Core Team). The patterns of 30-
year trends have been smoothed by local polynomial regression fitting
(using function ‘loess’ in package ‘stats’ (Cleveland et al., 1988). The
grey error bands display the 0.95 confidence intervals around the
smoothed curves. The significance of biological indicators’ difference
among each pair of divisions were tested by the Kruskal-Wallis test
(Kruskal and Wallis, 1952). All land cover parameters together with
habitat modification score were tested with Pearson’s correlation coef-
ficient for correlation and multi-co-linearity. We then applied the
random forest model (Liaw, 2022) to rank the importance of parameters
and identify the key factors most closely associated with the macro-
invertebrates biological indices. The random forest models were created
using function ‘randomForest’ in R package ‘randomForest’. To test the
significance of any trends, generalized linear mixed models were used.
The top predictors were included in the generalized linear mixed model
(GLMM) for testing of their significance and to estimate the response of
biological indices (Schall, 1991). The GLMM models were created using
function ‘glmmTMB’ in R package ‘glmmTMB’.

3. Results

3.1. Literature review and bibliometric analysis

3.1.1. Evidence map
Among the 518 articles from the three search engines, 34 studies

worldwide passed the screening. The prevalence of relevant studies has
increased greatly in recent years with 31 of the 34 studies published
since 2010. Of the remainder only 2 studies reported observations before
2000. Geographically at continental resolution (Fig. S1), the distribution

Table 3
Land cover categories included in this study.

Map Abbreviation Name Description

LCM_2015 Wood_out Woodland
outside

Woodland outside of urban
or arable land

SemiN Seminatural
land

Grassland, littoral Rock,
waterbodies

Arable Arable land Arable and Horticulture land
Urban Urban Urban

LCM_2020 Wood_t Woodland total Tree cover, total woodland
cover

Wetland Wetland Herbaceous wetland
Grass Grass Grassland
Water Water Permanent water bodies
Built Built Built-up land
Crop Crop Cropland
Shrub Shrub Shrubland
Bare Bare land Sparse land / bare ground

Derivative
land cover

Wood_in Woodland inside Woodland total (LCM_2020)
- Woodland outside
(LCM_2015)

GI Green
infrastructures

Urban (LCM_2015) - Built
(LCM_2020)

Fig. 3. Temporal trends in the past 30 years (from 1989 to 2018) in biological indicators as related to classes of woodland landcover share and habitat modification;
where (a) Wood_out (woodland considered mainly located outside of the urban area), (b) Wood_t (total percentage of woodland) in the upstream catchment, (c) HMS
(habitat modification score); and (1) Family richness (FR), (2) Ephemeroptera, Plecoptera and Trichoptera family richness (EPT_FR). The range and number of sites in
low, medium, high woodland catergories and HMS classes divisions are presented in Table 5.

Y. Qu et al. Landscape and Urban Planning 254 (2025) 105251 

5 



of evidence is weighted towards North America (10) and Europe (10)
with the remaining studies in Oceania (6), Asia (5) and South America
(4). Experimental studies (QE) comprised 6 of the 34 studies, all others
being observational (QO). Four partially-overlapping categories of evi-
dence were identified: (1) catchment scale work or findings related to
woodland percentage of the upstream catchment, (2) riparian scale
work or findings focusing on woodland coverage in the riparian buffer
zone (3) studies of impacts of tree coverage detected located inside of
urban area and (4) studies of the large portion of preservation forest
outside of urban area. Information pertaining to the criteria (Tables 1
and 2) together with other details were answered for establishing as-
pects of urban forestry benefit in quantitative terms. A summary of the
key details of the final articles can be found in the appendix (Table S1
and S2).

3.1.2. Bibliometric analysis
Catchment scale has 10 studies considering woodland inside (7

positive, two uncertain and one unknown) and 10 studies considering
woodland outside of the urban area. In general, the answer to Q1 (Is the
share of woodland positively correlated with aquatic macroinvertebrate
biodiversity?) is yes, but not always. There were 20 of 37 studies
showing significant positive correlation between woodlands and aquatic

invertebrate biodiversity. The answer for Q2 (Is it important for wood-
land to be located inside of the urban area to confirm a positive corre-
lation?) is no. Evidence for supporting aquatic invertebrate biodiversity
was found in the cases of both inside and outside woodland. There are 5
out of 10 studies showing a significant positive contribution of trees
outside of the urban area. There are also 15 of 27 studies confirming the
benefits of trees inside of cities. The majority of studies affirmed the
benefits to aquatic water quality and ecological status both at the
catchment and riparian scale. There was little substantial difference
between riparian (8/17) and catchment (12/20) studies. However, re-
lationships defined as negative, uncertain, and unknown together
comprise almost half of the findings. The “uncertain” studies reflect
benefits tailing off at high woodland level, and that extra influences
from habitat modification and use of a variety of bioindicators may
result in confounding conclusions (Table 4).

3.2. Biodiversity trend examination in English urban centres

3.2.1. Summary of the results from screening data and general information
There is a wide gradient of woodland cover (in terms of woodland

outside and woodland total variables) for the selected 143 sites. The
woodland outside varies from 0 to 60%. From north to south, all regions

Fig. 4. A representation of whether the different selected groups for the two macroinvertebrate indices (1) FR (family richness) and (2) EPT_FR (Ephemeroptera,
Plecoptera and Trichoptera family richness) from Fig. 2 are significantly different from one another with respect to two types of woodland: (a) Wood_out (woodland
considered mainly located outside of the urban area) and (b) Wood_t (total percentage of woodland) in the upstream catchment, and (c) HMS (habitat modification
score) in the past 30 years (from 1989 to 2018). The range and site number of low, medium, high and HMS classes division are presented in Table 5. We use the
following convention for symbols indicating statistical significance: ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001).
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contained basins with very low tree coverage (Fig. 1 a). The woodland
total varies from 10 to 70 %. Greater woodland total coverage can be
found in the Thames (TH) than in the Midlands (MI) region (Fig. 1 b).
Some sites with low woodland outside of the urban area are showing
greater woodland total coverage in Thames, however sites with medium
to high level woodland outside is showing less woodland total (Fig. 2 a&
b). Nearly half of the sites (43 of 92, Table 5) which included river
habitat modification survey belong to Class_5, indicating severely
modified status (Fig. 2 c). Another 23 sites lie in Class_4 which is also
significantly modified. Rivers with high woodland are not always less
habitat modified, and vice versa (Fig. 2). Some sites have been less
modified but have less woodland coverage. A few sites located in the
Thames region have a severe habitat modification (in Class_5) despite
having woodland total coverage above 44 %.

3.2.2. FR and EPT_FR trends according to the different percentage of
woodland and local HMS

The richness trends in the past 30 years show overall consistent
improvements (Fig. 3). Both bioindicators had a significant positive
relationship with year (p< 0.001, Table S3), the increase rate of EPT_FR
is higher than FR over the observed 30 years (Table S3). The proportion
of woodland has a positive influence on the presence of the richness of
macroinvertebrates (FR and EPT_FR, Fig. 5 and Table S3). From 1989 to
2018 there was an increase in diversity of around 10 to 20 families for all
sites regardless of woodland share. Throughout the time period, the FR
in sites having greater woodland percentage was larger than for sites
with less woodland sites. This is apparent for both woodland outside and
woodland total attributes (Fig. 5). The smaller sub-group of EPT_FR is
continuing to improve over time in most cases (from around 2 to 6
families). However, there is a marked preference of the more sensitive
macroinvertebrates (EPT_FR) for sites with higher wood_out, instead of
wood_t (Fig. 3 a & b). The Wilcoxon test (Fig. 4a & b) shows there to be
significant differences in macroinvertebrate biodiversity between the
high woodland category and the other (medium and low) categories.
The difference between low and medium groups is not statistically sig-
nificant. Similar results are also observed in tests only covering data for a
recent 5 year period (2014–2018, Fig. S2), demonstrating that any long-
term changes in land-use since 1990 have not affected the relationship
between woodland and macroinvertebrate biodiversity.

The arrival of new families in urban rivers is reflected in improve-
ments from 1989 to 2018 in both low and high HMS classes (Fig. 3 c).
However, the improvement in the severely modified sites (Class 5) has
notably slowed recently and has nearly ceased. In addition, even more
recently, a strikingly negative influence on the presence of the more
sensitive macroinvertebrates (EPT_FR) is apparent for Class 5. The dif-
ferences between low and high modified rivers have grown over time
and with a significantly difference (Fig. 4 c). For both richness in-
dicators, they have statistical strongly negative relationship with HMS
(correlation coefficient = -0.2, p < 0.05, Fig. 5 b).

3.2.3. The key land cover parameters related to macroinvertebrate family
richness

Macroinvertebrate diversity richness variables are more strongly
correlated with woodland variables than any of the other variables
(Fig. 5). The most strongly negatively correlated variables are **urban
or built**. Apart from the high correlation coefficient between two bi-
otic indices, the most highly positively correlated pairs of variables are:
(i) grass (LCM_2020) and semiN (seminatural, LCM_2015), (ii) crop
(LCM_2020) and arable (LCM_2015), (iii) built (LCM 2020) and urban
(LCM 2015). In addition, GI (green infrastructure, derivative land cover)
are highly related to both urban and wood_in (Woodland inside, deriv-
ative land cover). Wood_in and wood_out (woodland outside,
LCM_2015) are correlated with wood_t (woodland total, LCM_2020),
respectively. HMS are negatively correlated with Wood_out and wetland
(Fig. 5 b).

The importance of the physical characteristics (including altitude
and slope gradient) of the sampling sites together with the catchment
land cover parameters based on the Random Forest model were ranked
(Fig. 6). The top predictors for the macroinvertebrates bioindicators
include Wood_t, Built, Wood_out and Bare land cover. The community
general taxonomic richness was also closely associated with the slope
gradient (Fig. 6 a). Importantly, the category of woodland land cover
comes out stronger than grass and semi-natural and wetland. This im-
plies that of non-urban land cover, woodland was more beneficial than
the other types. The wood_t was a stronger explanatory variable than
wood_out, in particular in the analysis of the sub-set of sites for which
habitat modification scores were available (Fig. 6 c & d). Built and bare
land gave strong negative effects to the taxonomic richness (Table S3

Fig. 5. Symmetric correlation matrix plot for the associations between physical characteristics, land cover parameters and richness indicators. The colors represent
the degree of pairwise correlation (Spearman’s rank correlation coefficient). FR represents family richness. EPT_FR represents Ephemeroptera, Plecoptera and
Trichoptera family richness. The full name and explanation of land cover parameters can be found in Table 3, HMS represent habitat modification score.
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and Fig S3). We also tested the responses from the top three predictors
by the partial dependence plots and regression model (Fig. S3 and
Table S3). These two analyses quantify the expected changes in

macroinvertebrate diversity arising from change in the top three
predictors.

4. Discussion

The statistical analysis was based on a database of 4226 samples
from England covering 143 sites over a 30 years (1989 to 2018) period.
The sites covered some of the most densely urban areas of England
including the cities of London, Manchester, Birmingham and South-
ampton. The extent and scale of this studymakes the analysis potentially
more powerful than what is currently available. The longest investigated
period from the literature review covered 7 years of observations (two
studies). One study was focusing on one site in Kentucky (United States
of America) (Hawley et al., 2016). The other from Canada included 133

Fig. 6. Random Forest analysis for ranking the importance of parameters. (a) and (b) for the total 143 sites, (c) and (d) for the 92 sites with HMS (Habitat
modification score). Full name and explanation for the abbreviations of land cover parameters can be found in Table 3.

Table 4
Summary of the number of reviewed studies by answering the research questions
in this study. Column with header of ‘Catchment’ and ‘Riparian’ relate to the
first research question (Q1), ‘Inside’ and ‘Outside’ relate to the second question
(Q2).

Catchment Riparian Inside Outside

Positive 12 8 15 5
Negative 1 2 2 1
Uncertain 5 6 8 3
Unknown 2 1 2 1

Table 5
Sum of number of the sites (Num_site) in each division (Wood_out for woodland outside of the urban or crop land area, Wood_t for total woodland cover, HMS_Class for
the class of habitat modification score).

Wood_out Wood_t HMS_Class
Range (%) Num_site Range Num_site Range Num_site

Low 0.0–8.5 81 9.9–27.6 45 1–4 46
Medium 8.6–19.3 37 27.7–43.7 63
High 19.4–60.4 26 43.8–70.2 35 5 43
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sites but only covered locations surrounding the Toronto region
(Wallace et al., 2013). Besides, we found only two studies (from South
Korea: (Park et al., 2021a; Park et al., 2021b) covering a national-wide
scale of investigation (of three years duration from 2016 to 2018 in this
case)).

The findings from the literature review and the statistical analysis are
in agreement. Addressing the research questions Q1 and Q2 respec-
tively, sections 4.1 and 4.2 cover the beneficial aspects of woodland
influence on biodiversity. Section 4.3 discusses notable temporal
changes occurring through the 30-year period examined. The fourth
sub-section identifies other key land cover influences on aquatic biodi-
versity, draws out more general implications and makes recommenda-
tions for management of NBS.

4.1. The importance of woodland

Although both the meta-analysis and our statistical analysis did not
come up with an absolute affirmative answer to Q1, we found robust
evidence of the benefit of woodlands to local macroinvertebrate
biodiversity.

The searching and screening process in the literature review high-
lighted evidence which had been collected in environmental situations
and scales where NBS could potentially play a significant role in deter-
mining macroinvertebrate diversity. In this context we determined
whether or not evidence for woodland benefits were identified. These
may or may not represent woodlands defined as NBS. From the literature
review, more than half of the studies showed a significant positive
impact on aquatic macroinvertebrate community by various bio-
indicators, considering land cover either in the riparian zone, in the
wider catchment or in both (Table S1). The evidence points in the di-
rection of the beneficial value of woodlands in urban settings across
various biological aspects, including taxonomic and functional diversity,
as well as abundance and the ratio of sensitive and rare species (Table S1
& S2).

The English case-study findings are in accordance with the positive
support from the literature review regarding Q1. The overall evidence
from both bioindicators (general community FR and sensitive groups
EPT_FR) is that catchments with high woodland had higher levels of
biodiversity throughout the 30-year time period than catchments with
lower woodland percentages (Figs. 2 & 3). Use of the two land cover
maps revealed these findings to be apparent for both woodland types
(Wood_out and Wood_t). In addition, woodlands are more important
than semi-natural, grassland and wetland land cover (Fig. 5). It implies
that the presence of trees in urban green spaces improves local aquatic
biodiversity. The river habitat survey identifies the riparian condition,
when highly modified, can cap further recovery (Fig. 2). This brake on
recovery is particularly clear for EPT_FR over the past 30 years. Less
modified rivers, likely with good riparian vegetation condition, hold an
ongoing potential for recovery.

The studies of similar scale and extent as our study have reached
similar conclusions to ours. Park et al. (2021a, b) which looked into
catchment scale for 754 sites during 3 years found positive relationship
of forest to benthic macroinvertebrates index (BMI). Walllace et al.
(2013) studied 133 sites for 7 years and also indicate a positive rela-
tionship between BMI and forest landcover percentage. BMI (Barbour,
1999) represents the health condition of a habitat from the bio-
assessment of macroinvertebrate composition metric. The higher the
BMI score, the better the river ecological status.

4.2. Does woodland inside or outside the city make a difference?

From the literature review, 8 of 17 studies suggested a positive
impact from woodland land cover, but this also included the contribu-
tion of the riparian woodlands standing outside of the urbanized area.
For studies at the catchment scale, half of them (9 of 18) considered
woodlands inside of the urban area, and 5 of these 9 concluded that

aquatic macroinvertebrates biodiversity was positively influenced by
woodland. The remaining four are uncertain or undetectable; none
showed negative relationships between woodland and aquatic biodi-
versity. The other half of the 18 studies consider woodlands outside of
the city zone, and of these 5 confirm the positive contribution of
woodland to aquatic biodiversity.

For the English analysis, both woodland total and woodland outside
had positive temporal trends with biodiversity (Fig. 2), woodland total
was generally a more powerful indicator (Fig. 5 a, c, d), which demon-
strated the importance of woodland within the urban area to support
richness. Because the woodland total shows stronger relationship than
woodland outside to FR, and since the woodland inside is also always
highly correlated with woodland total (Fig. 4), it seems that the wood-
land inside is the most beneficial to local macroinvertebrate diversity.
The high woodland percentage groups showed significant difference
from the low and medium level of woodland percentage (Fig. 3). The
contribution of urban and agricultural tree cover outside forests has
been largely overlooked (Liu et al., 2023). Liu et al. also mentioned that,
tree cover inside urban areas is not only valuable for national carbon
stock, systematic identification of their location could also form an in-
tegral part of monitoring and planning schemes related to biodiversity,
microclimate, habitats, and hydrological cycles. On the other hand, the
peripheral basin (woodland outside of urban area) is also critical for
maintaining good ecological status. These woodlands can be important
for protecting the aquatic species and can provide periodic or permanent
refugia in deteriorating environmental conditions (Bylak et al., 2018).

4.3. Temporal change in bioindicators

The 143 English sites show improvement in biodiversity indicators
over time (Table S3). The temporal changes in FR are greater than the
difference in FR between low and high woodland (Fig. 2 a_1 & b_1). As
the statistical analysis in this study did not include sites with wastewater
influence, the known improvements in sewage treatment over the 30-
year period (Whelan et al., 2022) are not affecting temporal trends in
biodiversity here. Nevertheless, it is notable that diffuse urban pollution
(as illustrated for example by stream water dissolved lead concentra-
tions, reflecting reduced air pollution and road runoff contamination
alone) has markedly decreased throughout the 1988–2018 period and
this will likely have some beneficial effect. Dissolved lead concentra-
tions in a subset of 15 of the 143 urban sites have typically declined from
40.75 µg/L in 1988 to 18.95 µg/L in 2003 and remained fairly constant
thereafter (with an average of 8.29 µg/L and not exceed 23.26 µg/L)
(Fig. S4). This declining trend closely follows the improving trends seen
in FR and EPT_FR (Fig. 2).

In recent years the improvement has been levelling off (Fig. 2). This
indicates that a limit to further improvement in FR is being approached.
We postulate that there are three aspects which may be limiting further
improvement. These are: (i) high levels of woodland prevent species
dispersion (ii) severe habitat modification may prevent further
improvement regardless of there being high woodland cover (iii) highest
feasible biodiversity levels are already being approached. Evidence from
the literature review supports evidence that some or all of these factors
may be important.

Whilst we are seeing a levelling off of improvements in biodiversity
in recent years, the upper limit of the 95 % confidence interval level for
the entire population of 1515 sites (36 for FR and 15 for EPT, Qu et al.,
2023) is still considerably higher than typical current levels in the 143
selected sites (Fig. 2). This suggests that future improvements in urban
river environments are still achievable. Logically this might be deemed
achievable through further tree planting, but too much riparian wood-
land can be a problem. A substantial proportion of papers reported the
uncertain, insignificant, even negative influence of woodland land
cover. One study (Thornhill et al., 2017) pointed out a potential biodi-
versity decline when riparian shading rose above 75 %. In addition,
(Walsh et al., 2007) suggested difficulties in species dispersal under high
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woodland conditions might contribute to decreasing biodiversity. This is
understandable due to establishment of physical barriers, the fostering
of potential predators and disadvantageous microclimate alterations
arising from presence of dense woodland (Ramey and Richardson, 2017;
O’Malley et al., 2020; Bollinger et al., 2023). In addition, riparian
woodland comprising monoculture forestry with possible fertilizer
application may likely impair development of macroinvertebrate com-
munities (Palik et al., 2020). Short-rotation woody crops with the aim of
producing a constant yield of merchantable wood, have often led to low
tree species diversity, and damaged the water quality (Griffiths et al.,
2019). Although only 5 studies contained information about tree spe-
cies, these suggest it is important to plant diverse trees combined with
other types of green infrastructure in urbanizing catchments as part of
efforts to develop NBS that can provide multiple environmental and
societal benefits.

4.4. Other important factors influencing local macroinvertebrate diversity

The built or impermeable land cover showed mainly negative in-
fluences from both literature review (Liao et al., 2020) and our statistical
analysis. High percentage of built land cover is problematic because it is
largely impermeable and can lead to rapid pollution pathways to rivers
and a more extreme hydrological regime entailing disruptive drought
and flood events. This can lead to receiving aquatic environments
experiencing intermittently high pollution concentrations and damaging
sediment fluxes. These potentially stress wildlife. However, confounding
evidence may be apparent whereby better biodiversity (high score of FR
and EPT_FR) in sites with high built land cover is probably due to the
specific location of the built land. If the riparian area is preserved (i.e.,
woodland or grassland semi-natural) then this is beneficial for FR and
any harm from built land is less apparent.

Built and sparse land cover appears to be the biggest obstacle for
pollution sensitive species (EPT_FR) in urban rivers (Fig. S3& Table S3).
Bare ground, despite only ever comprising a small share in sites in the
English case study, contributed a disproportionally negative effect on
macroinvertebrates (Fig. S3). This land cover sub-type could be impor-
tant not just in urban settings (Bylak et al., 2022b; Maloney and Femi-
nella, 2006; Park et al., 2011). Arising harmful effects of bare ground are
due to the high input of sediments, and high turbidity (from bare un-
consolidated soil on building sites) that could be released as well as
possible legacy pollution in reclaimed industrial land. Additionally, the
sparse land cover category comprise lands with exposed soil, sand, or
rocks and never have more than 10 % vegetated cover during the year
(Zanaga et al., 2021), characteristics which do not themselves generally
provide good habitats for wildlife. A proportion of macroinvertebrates
(such as genera Simulium, Leuctra, Ephemera, Polycentropus, Ischnura,
eta.) have four life stages. Individuals undergo complete metamorphosis
linking both aquatic with terrestrial habitats. Therefore, bare ground
located in riparian zones indicates especially severely modified habitats
that potentially adversely affect habitat quality and the survival rate of
these species. Bare ground has been found problematic for a range of
biotic communities including macroinvertebrates in rapidly developing
countries or areas (Bylak et al., 2022b). Freshwater macroinvertebrates
taxonomic richness in areas where there is still high pollution (as had
been the case in England before 1990) will likely benefit greatly from
tree planting initiatives.

Aside from land cover categories, local physical attributes (slope and
altitude) emerge as strong explanatory variables (Fig. 5). The signifi-
cance embodies the local ecological preferences of macroinvertebrates,
which involve local hydro-climatic and geological features preference
(Shah et al., 2015). Different communities are found under different
types of natural conditions. RIVPACS (River InVertebrate Prediction
And Classification System), a well-established scheme, reflects this and
predicts similar communities exist wherever environmental conditions
are the same (Wright et al., 1998). In the absence or removal of stress,
RIVPACS predicts a differentiation across physical patterns, alongside

local hydro-climatic and geological factors. In the present English study,
the latitude gradient is strong and reflects a number of the key factors
that control macroinvertebrate communities directly (Qu et al., 2023).
In summary, land cover and location attributes are powerful because
they represent integration of a wide range of factors that are strong in-
dicators for the pattern of macroinvertebrate communities. The benefits
of woodland to aquatic biota, not merely for macroinvertebrates but
phytoplankton as well, cannot be overlooked and are worthy of further
investigation (Qu et al., 2022).

5. Conclusion

The international literature points to the positive effects of wood-
lands on water quality and aquatic macroinvertebrate diversity from the
majority of studies, although the biotic response to woodland is often
found to be uncertain. Examination of 30 years of data for English urban
areas shows woodlands inside and outside of urban areas assist biodi-
versity recovery and conservation. The increasing trend of aquatic
macroinvertebrate richness is probably associated with a reduction in
chemical pollution, However, although a minority of the literature
suggested uncertain or negative effects, adding more woodland can
provide a 50% further beneficial effect in urban areas. The English study
confirms findings on the negative effects of built or other impermeable
land cover types on local macroinvertebrate diversity. Sparse land is also
found to be clearly detrimental for biotic diversity. These harmful effects
are exacerbated when located in riparian zones where they result in
severely modified river habitats.

The method is potentially applicable in other countries, as satellite
data of the types used here are available worldwide. The ESA data is
particularly valuable as it includes a representation of sparse land.
Findings from our literature review suggest further analysis regarding of
tree species and woodland biodiversity would be valuable to distinguish
their different contribution. The Random Forest model developed is
suitable for ranking importance of factors but is not readily suitable for
prediction and interaction effects. Potential interaction effects from
multiple stressors may also affect the final conclusion and might be
identified from statistical modelling of a data set covering additional
sites for example covering known gradients of wastewater stress. A next
step would be to develop a predictive machine learning algorithms (e.g.,
convolutional neural network combined with long short-term memory
for richness prediction (Cha et al., 2021; Lee and Rezaie, 2021), that can
be used to test scenarios of land cover change.
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