

Geochemical interactions between supercritical CO₂ and the Midale Formation. I: Introduction to fluid-rock interaction experiments

Reservoir Geosciences Programme IEA Weyburn CO₂ Monitoring and Storage Project Commissioned Report CR/02/289

BRITISH GEOLOGICAL SURVEY

COMMISSIONED REPORT CR/02/289N

Geochemical interactions between supercritical CO₂ and the Midale Formation. I: Introduction to fluid-rock interaction experiments

C.A. Rochelle, D.J. Birchall and K. Bateman

Key words

CO₂, carbon dioxide, storage, monitoring, Weyburn, Midale Formation, experimental study, geochemistry, fluid-rock interaction.

Bibliographical reference ROCHELLE, C.A., BIRCHALL, D.J. AND BATEMAN, K. 2002. Geochemical interactions between supercritical CO₂ and the Midale Formation. I: Introduction to fluid-rock interaction experiments. *British Geological Survey Commissioned Report*, CR/02/289N. 28 pp. © NERC 2002

Keyworth, Nottingham British Geological Survey 2002

BRITISH GEOLOGICAL SURVEY

The full range of Survey publications is available from the BGS Sales Desks at Nottingham and Edinburgh; see contact details below or shop online at www.thebgs.co.uk

The London Information Office maintains a reference collection of BGS publications including maps for consultation.

The Survey publishes an annual catalogue of its maps and other publications; this catalogue is available from any of the BGS Sales Desks.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Department for International Development and other agencies.

The British Geological Survey is a component body of the Natural Environment Research Council.

Keyworth, Nottingham NG12 5GG

fax 0115-936 3241
Fax 0115-936 3488
e-mail: sales@bgs.ac.uk
www.bgs.ac.uk
Shop online at: www.thebgs.co.uk

Murchison House, West Mains Road, Edinburgh EH9 3LA

0131-667 1000	Fax 0131-668 2683
e-mail: scotsales@bgs.ac.uk	

London Information Office at the Natural History Museum (Earth Galleries), Exhibition Road, South Kensington, London SW7 2DE

20-7589 4090	Fax 020-7584 8270
2020-7942 5344/45	email:
bgslondon@bgs.ac.uk	

Forde House, Park Five Business Centre, Harrier Way, Sowton, Exeter, Devon EX2 7HU

a 01392-445271 Fax 01392-445371

Geological Survey of Northern Ireland, 20 College Gardens, Belfast BT9 6BS

2 028-9066 6595 Fax 028-9066 2835

Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB

2 01491-838800

Fax 01491-692345

Parent Body

Natural Environment Research Council, Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU

The mathematical set of the ma

Foreword

This report is the published product of a study by the British Geological Survey (BGS), and forms part of the international IEA Weyburn CO_2 Monitoring and Storage Project. This project aims to monitor and predict the behaviour of injected CO_2 in the Midale reservoir at the Weyburn field in southern Saskatchewan, Canada, using methods that include; time-lapse geophysics, modelling its subsurface distribution and migration, and simulating likely chemical interactions with the host rock.

This report aims to provide a description of the laboratory experimental techniques that are being applied at the British Geological Survey to investigate the reactions between CO_2 and various lithologies within the Midale formation. Later reports will detail the results of these experiments.

Acknowledgements

The authors would like to thank their BGS colleagues whose contributions have helped make this report possible. In particular, Humphrey Wallis and Steve Upton of the R&D workshops provided technical assistance and modified the pressure vessels used for the experiments.

The authors would like to thank the European Commission (project number NNE5-2000-00096) and the UK Department of Trade and Industry (contract C/06/00296/00/00) for helping to fund this work.

The authors would also like to thank researchers at the University of Calgary for information on the baseline formation water chemistry of the Weyburn oil field.

Finally, the authors would like to thank staff at Saskatchewan Energy and Mines for their help in the selection of samples of core material from their extensive collection of borehole cores form the Weyburn oil field.

Contents

For	eword	. i
Acl	knowledgements	. i
Co	ntents	ii
Sur	nmaryi	iv
1	Introduction	1
2	Baseline information and samples	2
	2.1 PRESSURE AND TEMPERATURE	2
	2.2 AQUEOUS fluid composition	3
	2.3 SOLID SAMPLES	4
	2.4 GASES	4
3	Description of the experiments	5
	3.1 Experimental equipment	5
4	Sampling and analysis	8
	4.2 Preparation of experimental products	9
	4.3 Analytical techniques 1	1
5. (Conclusions 1	.1
Ref	ferences 1	2

FIGURES

Figure 1	Location of the Weyburn oilfield and miscible CO ₂ -EOR flood	13
Figure 2	Diagram showing a typical batch reactor	14
Figure 3	Diagram showing mounting of rock monoliths inside reactors	15
Figure 4	Diagram showing the typical layout for a series of batch experiments	16
Figure 5	Simplified schematic of column experiment layout	17
Figure 6	Diagram showing the sampling of a batch reactor	18

TABLES

Table 1	Summary of analyses of preliminary baseline fluid sampling survey	19
Table 2	Initial recipe for making up a synthetic equivalent of the porewater from well b14-13-6-14 for the preliminary test experiments	20
Table 3	Modified recipe for making up a synthetic equivalent of the porewater from well b14-13-6-14	21
Table 4	Recipe for making up a synthetic equivalent of the porewater from well 14-1-6-14	22
Table 5	Recipe for making up a synthetic equivalent of the porewater from well 12-11-6-14	23
Table 6	Recipe for making up a synthetic equivalent of the porewater from well d8-23-6-14	24
Table 7	General information about the solid samples used in this study	25
Table 8	Comparison of pressure transducer outputs between those used in the lab and a Druck PTX 610 transducer having external calibration	26
Table 9	Preliminary listing of possible experiments that it is hoped to complete during the study	27
Table 10	Listing of a range of possible analytes, likely detection limits, and an estimation of uncertainty	28

Summary

This report describes work undertaken at the British Geological Survey (BGS) that forms part of the international IEA Weyburn CO_2 Monitoring and Storage Project. This project aims to monitor and predict the behaviour of injected CO_2 into the Midale reservoir at the Weyburn oil field in southern Saskatchewan, Canada, using methods that include; time-lapse geophysics, modelling its subsurface distribution and migration, and simulating likely chemical interactions with the host rock. This report aims to provide a description of the laboratory experimental techniques that are being applied at the British Geological Survey to investigate the reactions between CO_2 and various lithologies within the Midale formation. Later reports will detail the results of these experiments.

The experimental study is being undertaken in the Hydrothermal Laboratory of the BGS, where various measurements are being taken. The techniques that will be used are based upon those used in previous CO_2 projects (e.g. during the JouleII CO_2 storage project [Holloway, 1996; Czernichowski-Lauriol *et al.*, 1996], and during the SACS project [Rochelle *et al.*, 2002]. This will hopefully allow for better intercomparison between the various studies.

The experiments will utilise actual Midale core material from the Weyburn oil field, together with synthetic formation waters based upon measured compositions of samples at the well-head. The experimental conditions chosen for the investigation cover those representative of in-situ conditions (approximately 60° C, 150 bar [15 MPa]), as well as conditions at the bottom of injection wells where pressures might reach approximately 250 bar [25 MPa]. Experiment durations are planned to range from one week to 6 months. Experiments will be pressurised with either nitrogen or carbon dioxide. The former will provide a 'non reacting' reference point from which to compare the more reactive experiments containing CO₂. However, it is hoped that they will also help to provide increased confidence in the understanding of the baseline conditions within the Midale formations prior to CO₂ injection.

1 Introduction

The IEA Weyburn CO_2 Monitoring Project is a collaborative investigation, involving geoscientists from North America and Europe (Moberg, 2001). It is studying the geological sequestration of CO_2 during an enhanced oil recovery (EOR) operation at the Weyburn oil field, Canada. By the end of the EOR phase, it is expected that approximately 20 million tonnes of anthropogenic CO_2 will have been stored deep underground. Climate-warming greenhouse gas emissions will have been reduced in an efficient and cost-effective manner.

The Weyburn oilfield is located in southern Saskatchewan, Canada (Figure 1a). It was discovered in 1954 and is owned and operated by the EnCana Corporation (formerly operated by PanCanadian). Oil is recovered from the uppermost Midale Beds of the Charles Formation, a succession of upwards shoaling, shallow marine carbonate-evaporite sediments of Mississipian age. The Midale Vuggy unit represents open marine conditions and is overlain by the shallow water dolomitic mudstones of the Midale Marly Beds. Post-diagenetic dolomitisation of this later unit created good reservoir properties, which are now the target for the miscible CO_2 flood (Figure 1b).

Since 1964, water injection has been the preferred secondary recovery mechanism. The Midale Vuggy Beds proved more permeable than the overlying Midale Marly Beds and consequently the Midale Vuggy Beds have been saturated from the waterflood operation. However, recently installed CO_2 -EOR operations are considered crucial to the future economic life of the oil field. It is hoped that the miscible CO_2 EOR operation will significantly extend the life of the Weyburn field by the production of 130 million barrels of incremental oil. Injection of CO_2 was commenced during September 2000. Initially, injection is in 17 patterns of nine wells each at the west end of the Weyburn Unit. This CO_2 flood will roll out south-eastwards until 75 patterns have been flooded. The CO_2 is a by-product of the coal gasification process and is supplied direct to Weyburn by the Dakota Gasification Company via a 330 km long pipeline from the Great Plains Synfuels Plant, Beulah, North Dakota, USA (Figure 1a) (for further details see Moberg [2001], and Malik and Islam [2000]).

During underground CO_2 storage operations in deep reservoirs, the CO_2 can be trapped in three main ways (with descriptors from Bachu *et al.*, 1994):

- as 'free' CO₂, most likely as a supercritical phase (physical trapping)
- dissolved in formation water (hydronamic trapping)
- precipitated in carbonate phases such as calcite (mineral trapping)

For CO_2 -EOR operations, the CO_2 can also be trapped as a dissolved phase within residual oil remaining within the formation after the end of production.

During the early stages of storage, 'physical trapping' is likely to be most important trapping mechanism. However, over time, hydrodynamic trapping and eventually mineral trapping will make significant contributions to the long-term containment of CO₂. This experimental study will focus on the reactions between CO₂, porewaters and rock within the Midale Formation. It therefore covers aspects related to both hydrodynamic trapping and mineral trapping.

2 Baseline information and samples

Although the overall IEA Weyburn CO₂ Monitoring and Storage Project will generate large quantities of information during its lifetime, the experimental geochemical programme will be constrained by the baseline data available at the start of the study. However, a key output of the experimental programme will be well-constrained test cases that can be used as 'benchmarks' for geochemical modelling activities, and hence increase confidence in the predictive capabilities of those codes. Although experiments will be run under conditions that are broadly applicable to the Weyburn field, they will not simulate all possible conditions within the field. Instead, emphasis will be placed on simulating specific parts of the field.

2.1 PRESSURE AND TEMPERATURE

There is some uncertainty over the precise *in-situ* conditions within the oil-bearing rocks of the Weyburn field. In part, this is a consequence of only limited downhole pressure and temperature measurement. However, even if such parameters were routinely measured, they would only reflect *present-day* conditions, i.e. after nearly 50 years of oil production and 40 years of water injection. As a consequence, it may only be possible to *estimate* the original pressures and temperatures prior to oil extraction, as well as those that might occur some appreciable time after the field has ceased oil production.

The oil-bearing horizons exist some 1400 m below the ground surface. For a surface water table, this depth would equate to a hydrostatic pressure for pure water of approximately 14 MPa (140 bar). However, this would be very much a minimum pressure as many of the formations are filled with saline porewaters - being more dense that pure water. At the time of writing, the current understanding of realistic down-hole pressures suggests that they are in the order of 15-16 MPa (Gunter, pers. com.; Perkins, pers. com.). However, pressures in injection wells will be significantly higher than these (possibly up to 25 MPa [250 bar] [Riley, pers. com.]), and pressures in production wells will be significantly lower (possibly as low as 10 MPa [100 bar] [Riley, pers. com.]). Laboratory simulations of reactions within the Weyburn field could thus investigate a wide range of pressures. A knowledge of pressure conditions is important because higher pressures of CO₂ will cause increased CO₂ solubility, a larger decrease in pH (e.g. Toews et al., 1995), and hence an increase in reactivity towards carbonate minerals. Although greater reactivity would make laboratory observations of any resulting changes easier, excessive reaction might make any such changes unrepresentative of the system under study. Also, the aim of this laboratory investigation is focussed primarily on the longer-term fate of the CO₂, rather than 'production' timescales.

Most experiments will therefore be undertaken at a pressure of approximately 15 MPa (150 bar) (i.e. conditions likely to exist in the field long after oil production has ceased). However, if time and resources permit, a few experiments will investigate conditions near the injection wells, and utilise pressures of approximately 25 MPa (250 bar).

Information about the exact *in-situ* temperatures within the Midale Marly are limited as per the pressure data mentioned above. However, data presented in Czernichowski-Lauriol *et al.* (2001) and mentioned by other members of the Canadian project team (Gunter, pers. com.; Perkins, pers. com.) suggest that 60° C is a reasonable approximation. Close to CO₂ injection wells however, temperatures could be somewhat lower because the CO₂ is at about 15° C as it enters the injection borehole. Running the laboratory experiments at higher temperatures would favour faster reactions, and allow for easier study. However, higher temperatures might also cause the formation of unrepresentative secondary phases (e.g. aragonite or even vaterite instead of calcite).

It was decided therefore, to conduct the experiments at temperatures that were representative of *in-situ* conditions (i.e. 60° C).

2.2 AQUEOUS FLUID COMPOSITION

The starting point for the experimental fluids is the data from the baseline fluid sampling exercise undertaken by the University of Calgary (Shevallier, pers. com.). This sampling exercise was undertaken prior to the injection of any CO_2 . The data consists of analyses of 43 borehole fluid samples over the 'Phase 1' CO_2 injection area. (Table 1). The fluids sampled during this baseline sampling exercise came from a variety of different horizons depending on the position of the slotted liners within the boreholes.

In order to reduce the number of possible fluid compositions that are being used in this study, a subset was chosen. Inclusion in the later was based upon which boreholes had core material from approximately the same depth as the production interval (Pearce and Springer, 2001). This resulted in a subset of 4 fluid compositions (highlighted with an asterix in Table 1), which were then recalculated into 'recipes' to make up synthetic equivalents (see Tables 2-6). The recipes were calculated with an emphasis on matching the metallic ions and silica. Most metals were added as chloride salts. It is noteworthy that the recipe for the synthetic fluids are relatively rich in chloride compared to the analysis of the baseline fluid samples. Indeed, the baseline analyses appear to not be charge balanced, and about 9% low with respect to anions. At the time of writing this report it is not possible to say exactly why this charge imbalance should occur. However, depressurised samples (i.e. those that were actually analysed) may well have undergone significant changes in the speciation of their dissolved components hence creating an apparent charge imbalance. Unfortunately, making up the synthetic porewaters necessitates a charge-balanced solution, which results in the experimental solutions having a slightly higher salinity than their realistic counterparts. Although not ideal, it should be born in mind that there is a considerable natural variation in fluid chemistry across the Weyburn oil field. In fact, the field lies at the boundary between two water types one a more dilute water, the other a brine. As a consequence, there is a very large natural variation in salinity across the field – with measured chloride contents varying between 19650 mg l^{-1} and 60565 mg l^{-1} (see Table 1). This natural variation is greatly in excess of the differences between actual porewaters and their synthetic counterparts. Of the fluid compositions chosen for this study, three are approximately in the middle of the natural range of salinities, with the other representing more saline conditions (see compositions highlighted with an asterix in Table 1).

Within an underground CO_2 storage operation there will be regions of free CO_2 (e.g. a CO_2 'bubble', or CO_2 'fingers'), CO_2 dissolved in formation porewater and original formation porewater with no dissolved CO_2 . It is likely therefore, that in different parts of the formation there will exist porewaters with a range of dissolved CO_2 concentrations. Within a relatively small experimental programme it is not possible to simulate all possible dissolved CO_2 concentrations. As a consequence, the two 'end-members' of the range have been chosen for investigation. The first of these is the ' CO_2 -free' case where little 'induced' reaction is expected, and the second is the ' CO_2 -saturated' case where maximum CO_2 is dissolved into the porewater (for a given pressure, temperature and salinity). It is anticipated that maximizing aqueous CO_2 concentrations will maximize the degree of fluid-rock reaction and provide a 'limiting case' for study. The ' CO_2 -free' case will serve two important functions:

1) It will provide 'non-reacting' benchmarks with which to compare the results from the ' CO_2 -saturated' experiments (i.e. it will allow artefacts related to the experimental techniques used to be discriminated from reactions due to the presence of CO_2).

2) It will increase confidence in our understanding of how close to equilibrium the baseline fluid samples are with the Weyburn rocks. For example, even relatively minor reaction will indicate non-equilibrium conditions, and hence possible flushing of original porewaters during relatively recent oil field (e.g. water flushing) operations.

2.3 SOLID SAMPLES

As detailed in Section 2.2 above, this study selected borehole cores that were associated with fluid analyses. Several cores were studied by BGS and GEUS staff at the core facility in Regina, Saskatchewan, run by Saskatchewan Energy and Mines (Pearce and Springer, 2001). Several boxes of core were shipped to GEUS for more detailed study and sub-sampling. For this study, it was decided to have one sample from the Midale Vuggy, two samples from the Midale Marly, and one sample from the Midale Evaporite. This would allow for most study to be focused on the Midale Marly (the main target horizon for CO_2 injection and oil recovery). However, the other samples allow investigation of CO_2 -water-rock reactions in the underlying (vuggy) and overlying (evaporite) formations. A summary of information about the core samples used for this experimental study is presented in Table 7.

The solids were reacted in 3 forms within the experiments:

- 1) Granulated solid, as either 125-250 or 250-500 μm fractions with 'fines' removed by ultrasonic washing.
- 2) Powdered solid, <250µm fraction (i.e. 'fines' included).
- 3) Small columns or 'monoliths', of approximately 1 cm square section, approximately 4 cm long.

It is also proposed to study a very few pieces of borehole materials (provision of samples permitting). At the time of writing this report, no samples have been obtained. However, areas of particular interest will be the possible corrosion of steel liners within boreholes, and the borehole cement used to keep the liners in place. The engineered access points into the reservoir (boreholes) could provide fast return pathways for CO_2 to the surface. It is important therefore to investigate whether CO_2 will degrade them over prolonged timescales, and if so, suggest strategies for reducing such reaction. These solids are likely to be reacted as 'monoliths', though it is possible that granulated (fines removed) samples of borehole cement may also be reacted if resources permit.

2.4 GASES

Two gases were used in the experiments: CO₂ and N₂.

$\underline{CO_2}$

The CO₂ used in this study is sourced from high purity (99.99%) liquid CO₂ (Air Products, 4.5 Grade). This liquid CO₂ is obtained in a cylinder fitted with a dip tube and pressurised with 2000 psi (approximately 14 MPa) of helium. However, the actual experimental pressure will be controlled by an ISCO syringe pump, which has its pressure transducer periodically 'zeroed' to minimise drift, and also checked against an externally calibrated Druck pressure transducer (see Table 8). The externally calibrated transducer had a deviation of not greater than $\pm 0.03\%$ in the range 0-4000 psi (0-270 bar [0-27 MPa]). As the liquid CO₂ is piped to the experiments in the ovens, the increase in temperature converts it into a supercritical state. Recorded pressures will be taken from the ISCO pump controller readout.

<u>N</u>2

The N₂ used in this study is obtained from BOC Gases and classified as 'oxygen free' (99.998% pure). It is delivered in a cylinder pressurised to 230 bar (23 MPa). However, the actual experimental pressure will be controlled by either; an ISCO syringe pump, or a single-stage regulator. The later can only be used for the lower pressure (150 bar [15 MPa]) experiments, whereas the ISCO pump will have to be used for the 250 bar (25 MPa) experiments. The ISCO pump has its pressure transducer periodically 'zeroed' to minimise drift, and also checked against an externally calibrated Druck pressure transducer (see comments above). Recorded pressures are taken from the ISCO pump controller readout if an ISCO pump is used. For experiments connected to a gas cylinder, recorded pressures are taken from an independent pressure transducer reading line pressure (see descriptions in the following sections).

3 Description of the experiments

3.1 EXPERIMENTAL EQUIPMENT

Laboratory experiments are being conducted within the Hydrothermal Laboratory of the British Geological Survey, Keyworth, UK. Two main approaches will be utilised during this study:

- Numerous low maintenance 'batch' experiments of variable durations up to 6 months.
- A pair of higher maintenance flowing 'column' experiments, having durations up to 6 months.

Prior to performing the experiments, it was necessary to consider the use of equipment that would perform well. Although dry supercritical CO₂ is relatively inert, in the presence of water or NaCl solution it is much more reactive. Previous investigations within the BGS Hydrothermal Laboratory and other studies (e.g. Schremp and Roberson, 1975) have shown that steel can corrode and standard O-ring seals can blister and fail. To minimise both corrosion and experimental failure, exposed surfaces were chosen so as to be as inert as practicable. Therefore, the pressure vessels were made of stainless steel (e.g. steel types 316 and EN54) and were lined with PTFE (polytetrafluoroethene), high pressure tubing was made of either 316 stainless steel or PEEK[™] (polyetheretherketone), O-ring seals were made of Viton[®], high pressure columns were made of PEEK[™] and pressurised sampling containers were made of titanium.

3.1.1 'Batch' equipment

In order to obtain a better understanding of rock-water-CO₂ interactions, long-term 'batch' experiments have been performed. This type of equipment is relatively simple and generally free from day-to-day maintenance. As a consequence, it is well-suited for running over prolonged time periods. Indeed, it has also been used successfully in previous studies of CO₂-water-rock reaction (e.g. Czernichowski-Lauriol *et al.*, 1996; Gunter *et al.*, 1993; Rochelle *et al.*, 2002).

There were two main aims for the 'batch' experimental programme:

1) To study the evolution of porewater chemistry and solids mineralogy over time during CO₂-porewater-rock reaction. These can be achieved by either; setting up a series of identical experiments and terminating them at ever-increasing timescales, or periodic sampling of the same experiment. Both approaches are being used in

this study, although the latter only provides information on the *final* mineralogical composition. Evolving fluid chemistry is followed as a series of 'snapshots', which can be used to indicate the direction of reaction, overall rates of reaction, and possibly the time required to approach steady-state conditions.

2) To investigate whether the synthetic porewaters used in the experiments are representative of realistic Midale porewaters at Weyburn. This is achieved by setting up an identical series of experiments to that described above, but this time using an inert gas (in this case nitrogen) rather than CO_2 as the pressurising medium. The Weyburn oil field has been subject to water flooding for many years, and it is possible that present day porewaters may not be in equilibrium with minerals in their host formations. If the starting synthetic porewater composition is broadly in equilibrium with the Midale rock sample, then very little change in fluid chemistry should be observed during the experiment. However, any dissolution or precipitation would indicate non-equilibrium conditions. These experiments will also serve as 'blanks' with which to compare the CO_2 experiments.

A schematic diagram of a typical 'batch' apparatus is shown in Figure 2. A combination of 100 ml and 150 ml vessels will be used depending on the amount of sample under study. Water saturated with CO_2 is relatively reactive, and this is especially so for saline fluids. For this reason PTFE (polytetrafluoroethylene) liners or 'cups' were used in all vessels.

Assembly of the apparatus involves first weighing out a sub-sample of dried Weyburn core into the PTFE liners, followed by an aliquot of synthetic Midale porewater. The fluid:rock mass ratio used in the experiments will vary depending on the actual experiment being undertaken. However, for many of the experiments (and especially those using granulated solids) a 10:1 porewater:solid mass ratio is likely to be used. Other experiments will use 'monoliths' of Midale core material to investigate reactions at the CO₂/porewater boundary. The monoliths will be mounted inside the vessels as shown in Figure 3.

For most experiments, the total volume of the solid and aqueous samples will fill about half the vessel. A small magnetic stirrer bead is then added, the liner placed into the appropriate steel vessel, fresh O-rings inserted into their grooves, and the lid securely fastened down. The vessel is then placed into a Gallenkamp PlusII thermostatically-controlled oven (accurate to better than $\pm 0.5^{\circ}$ C) and connected to the appropriate pressure line.

The CO₂ will usually be supplied to the reactors from an ISCO 260D syringe pump running in 'constant pressure' mode. Inert nitrogen gas will usually be supplied via a gas bottle using a single-stage regulator, though a few (mainly higher pressure experiments) will also use an ISCO 260D syringe pump. The ISCO pumps are particularly useful for the 'batch' experiments, as they automatically adjust themselves for changes in gas volume. This is especially useful at the start of the CO₂ experiments where the CO₂ is first being warmed (increasing in volume) and dissolving in the porewater (decreasing in volume). The ISCO computerised controllers can allow pressure control to within 0.1 bar. The integral pressure transducer on the ISCO pump will be regularly 'zerod' to maintain accuracy, and will be checked periodically against an externally calibrated Druck pressure transducer (see Table 8, and comments in Section 2.4).

A maximum of 8 vessels can be accommodated per oven, though usually only half will be connected together at one time (i.e. 4 nitrogen experiments and 4 CO_2 experiments) (see schematic diagram in Figure 4). Pressure connections are placed at the top of the vessels so that aqueous fluids (denser than compressed nitrogen or supercritical CO_2) cannot move between vessels. This arrangement means that only a single pump or gas bottle is needed to

maintain the system pressure. A *provisional* listing of the type of 'batch' experiments that will be undertaken during this study is given in Table 9.

Good mixing between CO_2 , porewater and rock is achieved via the stirrer bead in each vessel. Although the base of the stainless steel pressure vessel is in the order of 1 cm thick, it still allows for good 'coupling' between a magnetic stirrer and the stirrer bead. However, stirring the experiments does present a dilemma. Lots of stirring would result in good mixing, but it could also mechanically degrade the solid sample. Conversely, little stirring would lessen any mechanical damage to the solid sample, but mixing would not be good. It was decided to adopt a compromise between these two extremes, and have several short periods of stirring a day, with a stirring speed just high enough to agitate any granular material. Two minutes of stirring were used every 4 hours, which was controlled via an electronic time switch.

Previous studies (Toews *et al.*, 1995) indicate that stable CO_2 concentrations can be obtained in high pressure water- CO_2 experiments within timescales as short as 30 minutes, though slightly longer timescales of just a few hours may be more realistic (Ellis and Golding, 1963; Stewart and Munjal, 1970; Czernichowski-Lauriol *et al.*, 1996). However, given the relatively long duration of the batch experiments (weeks to months) and the relatively frequent stirring, it is reasonable to assume that the aqueous fluid within them will be saturated with CO_2 at the pressure and temperature of the experiment.

The 'blank' experiments pressurised by nitrogen were generally not controlled by a high precision pump, but instead utilised a regulator connected to a gas cylinder. Control of (single stage) regulators at the pressures used during this study can be somewhat coarse. However, the line pressure was monitored via a secondary pressure transducer. This was checked against the ISCO pump pressure transducer and found to agree to ± 0.5 bar or better. Preliminary tests of the equipment seem to show that if care is taken, gas pressure can be controlled (by regulator) to within about 1% of the desired value.

3.1.2 'Column' equipment

These experiments will be aimed at understanding how the front of dissolved CO₂ (and associated chemical reactions) will propagate in an open system, and also to investigate the impact of mineral reaction kinetics on flowing systems. A schematic diagram the apparatus is shown in Figure 5. It is anticipated that it will consist of 3-4 lengths of PEEK tubing (each 50 cm long), making a total length of 1.5-2 m. Each column has an internal diameter of 0.7 cm, and will packed with a granulated sample (125-250 µm, fines removed) of Midale Marly (ideally sample BGS14A [see Tables 7 and 9], but the choice will depend on how much granulated material is available when the experiment starts). Previous experience suggests that it is likely to have an average porosity of approximately 40% (to be determined based on the difference between wet and dry weights, and assuming an overall solid density similar to calcite). The amount of solid material in each column will be recorded. Note that the grains of Midale Marly will be loosely packed into each column, and not compressed together by a strong confining force. This will mean that the sample grains will only experience a uniform pressure from the fluid flowing over them, and not anisotropic stresses as might be found insitu. Although this arrangement is thus not a true representation of actual in-situ conditions, it is representative of the types of system that can be simulated with geochemical modelling packages (most of which do not incorporate geomechanical processes). Other parts of the overall Weyburn project will be conducting laboratory tests using anisotropic stresses (e.g. the tests being conducted by GEUS).

An experimental temperature of 60°C will be used. Although a higher temperature would speed up dissolution/precipitation reactions (and thus help form reaction fronts), it is thought

that this might form unrepresentative secondary phases. Running at 60°C will also help comparisons with the batch experiments (see earlier sections) and field observations. The fluid used will be a synthetic porewater made up in the same way as that used for the batch experiments. It will be pre-saturated with CO_2 under the experimental conditions before being pumped into the column. A flow rate of 0.5 ml h⁻¹ will be used throughout the experiments, and the sampling procedure will be similar to that used for batch experiments.

The fluid pressure will be monitored at the inlet and outlet of the column (via pressure transducers P_1 and P_2 in Figure 5). This will be done to investigate whether any pressure gradient exists across the column whilst the CO₂-rich porewater flows through it. Given the likely high porosity and permeability of the columns, a significant pressure gradient is not expected. However, if one is observed, any changes in it during the experiment might be due to mineral dissolution/precipitation that alters permeability.

4 Sampling and analysis

4.1 SAMPLING PROCEDURE

The sample handling procedure will be similar for both batch and column experiments. However, the methods by which the pressurised samples are actually taken are slightly different.

For each set of experiments, samples from both CO₂-pressurised and N₂-pressurised experiments are treated in the same way. However, different sets of experiments will use one of two slightly different sampling methods:

- 1) For samples of limited volume (e.g. the multiple samples taken from the experiments using $<250 \ \mu m$ solids see Table 9), the procedure will involve degassing straight into a sterile syringe. The samples will then be treated as detailed in Section 4.2.2.
- 2) All other experiments will use high-pressure sampling as they are less constrained by fluid volumes.

High pressure sampling will involve withdrawing a sample of gas-saturated aqueous fluid up the dip tube shown in Figure 2, and along $\frac{1}{8}$ inch diameter PEEK (polyetherethylketone) pressure tubing and out of the oven. This results in a cooling of the sample to room temperature (approximately 20°C). This is advantageous, in that gas solubilities generally increase at lower temperatures (e.g. for CO_2 see Kuk and Montagna, 1983), and so problems due to degassing are likely to be reduced. The pipe work to the sampler will be flushed initially with a few ml of the sample, then the gas-rich aqueous sample withdrawn into a titanium floating piston sampler (internal volume of approximately 22 ml) (see Figure 6). In order to prevent degassing, this will be done under constant pressure conditions. This will be achieved by isolating all the other 'batch' experiments, and using the gas pressurising pump (or cylinder) to maintain constant pressure conditions. The de-ionised water on the nonsample end of the floating piston will be either; withdrawn via a pump, or allowed to slowly drip out via a needle valve. Degassing can also minimised by sampling the fluid slowly. Previous experience shows that too rapid sampling is likely to result in a localised reduction in pressure and hence possible degassing (this is especially so within the fine pores of the filter shown in Figures 2 and 3).

Sampling of the column equipment is more straightforward, in that the fluid flow is diverted into the pressurised Ti sampler until it is full (probably within a few tens of hours given likely

flow rates) (see Figure 5). The Ti sampler can then be isolated from the flow system and the fluids extracted as per the batch samples.

For most of the batch and both of the column experiments, the samples for straightforward cation and anion analysis will be degassed and vented into a suitable vessel during the opening of the titanium sampler. The samples will then be treated as detailed in Section 4.2.2. However, some samples are likely to be taken for the analysis of total dissolved carbon. This will involve reacting some of the gas-rich solution with NaOH solution at the experimental pressure (previous experience has shown that 4 molar NaOH works well). The basis behind this, is to convert all dissolved carbon species (e.g. HCO_3^- , $CO_{2(aq)}$ and H_2CO_3) to carbonate (CO_3^{-2}) by increasing the pH to hyperalkaline conditions:

$$HCO_3^- + OH^- \Rightarrow CO_3^{2-} + H_2O$$
[1]

$$CO_{2(aq)} + 2 OH^{-} \Longrightarrow CO_{3}^{2-} + H_{2}O$$
[2]

$$H_2CO_3 + 2 OH^- \Longrightarrow CO_3^{2-} + 2 H_2O$$
[3]

If the pH is high enough, these equations lie so far to the right that depressurisation does not cause significant loss of carbon through the formation of $CO_{2(g)}$.

Once sufficient fluid sample is obtained, as much as possible of the remaining fluid inside the vessel will also be removed (also at pressure). This is to minimise the potential for carbonate mineral precipitation as a result of the solution degassing (basically this would be an artefact of sampling). However, previous experience has indicated that such degassing results in carbonate precipitation only after several hours. Consequently, for solution samples that are taken and preserved in a matter of a few tens of minutes, such precipitation is not thought to represent a significant problem.

4.2 PREPARATION OF EXPERIMENTAL PRODUCTS

The following sub-sections describe the most likely sample handling procedures that will be used during the study. However, from time to time, it may be necessary to use slightly different methodologies, and any such differences will be noted in subsequent reports. Differing approaches may be necessary, for example, to preserve unexpected run products (e.g. delicate precipitates), or to preserve fluid samples for less usual analyses (e.g. trace heavy metals).

4.2.1 Solid products

4.2.1.1 BATCH EXPERIMENTS

On opening a batch pressure vessel, its PTFE liner containing the (hopefully only slightly damp) sample of reacted solid will be removed. The powdered or granular solid will then be washed 3 times in de-ionised water (using approximately 10-20 ml each time). The sample will be allowed to settle for about 5 minutes between washings in order to maintain as much fine material as possible. A final wash of acetone (again using approximately 10-20 ml) will be used to remove traces of water. The sample will then be allowed to dry at approximately 60°C. Once dry, the sample will placed in an airtight container prior to mineralogical analysis.

4.2.1.2 COLUMN EXPERIMENTS

On completion of the column experiments, the entire column assembly (several linked 50 cm columns) will be flushed with isopropyl alcohol - in order to displace the synthetic formation water. This will be done to minimise salt formation when the columns are dried and prepared

for mineralogical analysis (previous experience has shown that this might obscure observations of subtle mineralogical features). Prior to analysis, each column will sliced up into several sections (each likely to be approximately 2-4 cm long), and the reacted solid removed and dried.

4.2.2 Fluid samples

For most of the experiments, two types of samples will be taken. One will involve depressurisation (and hence loss of dissolved gases), but the solution is relatively straightforward to analyse. The other involves capture of dissolved CO_2 by preservation with excess alkaline solution, but the resulting mixture is relatively less straightforward to analyse.

4.2.2.1 DEPRESSURISATION SAMPLE

After depressurisation/discharge from the Ti pressure sampler, each of the reacted fluids will be split into several sub-samples. A sub-sample of 1 ml will be taken for immediate analysis of pH. Another sub-sample will be taken using a polythene syringe and filtered using a $0.2 \,\mu\text{m}$ 'Anotop'[®] nylon syringe filter. A volume (in the order of 12 ml) of this sample will be placed into a polystyrene tube and acidified with 1% (i.e. in the order of 0.12 ml) of concentrated 'ARISTAR'[®] nitric acid. This will be analysed subsequently for major and trace cations by inductively coupled plasma - optical emission spectroscopy (ICP-OES). A further aliquot of the filtered sample (in the order of 4 ml) will be taken and placed in a polyethylene tube for analysis of anions by ion chromatography (IC). This latter sample may also need to be diluted to minimise carbonate mineral precipitation. Samples will be stored in a fridge (at about 5°C) prior to analysis.

4.2.2.2 Alkali preserved sample

This will involve first filling the Ti floating piston sampler (see Figure 6) approximately half full of 4M NaOH solution - the alkali conditions ensuring that all dissolved C species (mainly $CO_{2(aq)}$, H_2CO_3 and HCO_3^{-}) will be converted into $CO_3^{2^-}$. The remainder of the sampler volume is then filled with gas-rich sample fluid at the experimental pressure. After standing for approximately 10 minutes (with occasional shaking) the sample will be depressurised. Previous experience shows that well-collected samples undergo with minimal degassing at this stage. However, previous experience has also shown that samples rich in dissolved Ca may go 'cloudy' when mixed with NaOH – for example due to the precipitation of either portlandite (Ca(OH)₂) or calcite (CaCO₃):

$$Ca^{2+} + 2 OH^{-} \Rightarrow Ca(OH)_{2}$$
 [4]

$$\operatorname{Ca}^{2^+} + \operatorname{CO}_{2(\operatorname{aq})} + 2 \operatorname{OH}^- \Longrightarrow \operatorname{Ca}\operatorname{CO}_3 + \operatorname{H}_2\operatorname{O}$$
 [5]

The precipitate may be very fine. If it does form, the solution will probably be left for several hours to allow it to settle. Mineralogical analysis of the precipitate will identify if significant $CaCO_3$ is present (and as a consequence, whether this needs to be taken into account in calculating total dissolved carbon concentrations).

The relatively clear sample fluid can then be filtered using a 0.2 μ m 'Anotop'[®] nylon syringe filter and placed into a polystyrene tube. It will then be stored in a fridge (at about 5°C) prior to analysis by titration against sulphuric acid. This analysis will provide a determination of total dissolved inorganic carbon, of which approximately 99% is likely to be dissolved CO₂ (van Eldik and Palmer, 1982).

Dilution factors between gas-saturated synthetic porewater and 4M NaOH solution are calculated based on measured Cl⁻ content of the synthetic formation water and the mixed

synthetic formation water/4M NaOH solution - the 4M NaOH solution effectively containing none of this element.

4.3 ANALYTICAL TECHNIQUES

Standard methods of analysis of solid and liquid samples will be employed in this study. In brief, appropriate fluid samples will be taken for chemical analysis of major (± some minor) cations using inductively coupled plasma - optical emission spectroscopy (ICP-OES), and for all major (± some minor) anions using ion chromatography (IC). Other types of analyses will be used as necessary (e.g. inductively coupled plasma - mass spectroscopy (ICP-MS) for trace cations). Mineralogical analyses will utilise standard techniques which are likely to include; conventional optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron probe micro analysis (EPMA).

pH measurements will be made on cooled and depressurised samples using an Orion[®] 900A pH meter calibrated using Whatman[®] NBS traceable buffers at pH 7, 10 and 13. However, if practicable (constrained by time and sample volume) another technique may also applied. This technique effectively monitors the colour change of an aqueous pH indicator solution (e.g. bromophenol blue) using a UV-visible spectrometer. Although this technique is somewhat more complex than conventional methods, it has the advantage that it can be used at elevated temperatures and pressures (Toews *et al.*, 1995; Faanu, 2001), and so can provide an indication of *in-situ* pH. Determination of pH is based upon calibration against known citric acid/NaOH pH buffers.

Details of elements/species analysed, typical detection limits and associated analytical errors are given in Table 10. The errors are based on long-term internal quality control standards. However, there are a couple of points that are worth noting:

- 1) The actual detection limit of any element/species will depend on whether the sample had to be diluted prior to analysis. For example, the *apparent* detection limit of a particular analyte for a sample diluted by a factor of 10, will be 10 times greater than for an undiluted sample.
- 2) The uncertainty (error) associated with a single analytical datum will depend upon how close that value is to the detection limit for that analyte. For example, a useful 'rule of thumb' is as follows:

Nearness to detection limit	Degree of uncertainty/error
<10x detection limit	>10%
~10x detection limit	10%
~10-100x detection limit	5-10%
>100x detection limit	<5%

5. Conclusions

An experimental study is being undertaken to react CO_2 with samples of Midale rocks from the Weyburn oil field and synthetic formation waters based upon measured compositions. The aim of this study is to investigate the potential for CO_2 -porewater-rock interaction in the Weyburn oil field. Quantitative data will be produced relating to the direction, rate and magnitude of any reactions. It is hoped that this will help predictive modelling exercises by providing well-constrained test cases with which to compare the models. A range of experiments are being conducted in either 'batch' and 'flow through' equipment at pressures between 150 and 250 bar (approximately 15 to 25 MPa) and a temperatures of 60°C. Durations of the experiments are likely to range from one week to six months. This report describes the experiments, and typical procedures for setting them up and sampling them. Deviations from these methods will be noted in future reports, which will also detail the results from various of the experiments.

References

Bachu, S., Gunter, W.D. and Perkins, E.H. (1994). Aquifer disposal of CO₂: hydrodynamic and mineral trapping. Energy Conversion and Management, 35, 269-279.

Czernichowski-Lauriol, I., Le Nindre, Y.M., Axaroual, M., Quattrocchi, F., Pearce, J.M. and Springer, N. (2001). The Weyburn CO₂ Monitoring Project. Baseline hydrogeology, hydrochemistry and mineralogy. BRGM report BRGM/RP-51414-FR, 147p.

Czernichowski-Lauriol, I., Sanjuan, B., Rochelle, C., Bateman, K., Pearce, J. and Blackwell, P. (1996). Area 5: Inorganic Geochemistry, Chapter 7 in 'The underground disposal of carbon dioxide' (S. Holloway ed.). Final report for the CEC, contract number JOU2-CT92-0031. Published by the British Geological Survey.

Ellis, A.J. and Golding, R.M. (1963). The solubility of carbon dioxide above 100°C in water and in sodium chloride solutions. American Journal of Science, 261, 47-60.

Faanu, A. (2001). Spectroscopic determination of pH. MSc project report, University of Nottingham.

Gunter, W.D., Perkins, E.H., Bachu, S., Law, D., Wiwchar, B., Zhou, Z. and McCann, T.J., 1993. Aquifer disposal of CO₂-rich gases. Alberta Research Council report, C-1993-5.

Kuk, M.S. and Montagna, J.C. (1983). Solubility of oxygenated hydrocarbons in supercritical carbon dioxide. In: 'Chemical Engineering at Supercritical Fluid Conditions', Ann Arbor Science, Ann Arbour, MI, USA, 101-111.

Malik, Q.M. and Islam, M.R. (2000). *In*: Society of Petroleum Engineers/Department of Energy Symposium on Improved Oil Recovery 2000, Tulsa, Oklahoma, 3-5 April 2000.

Moberg, R. (2001). Greenhouse Issues 57, 2.

Pearce, J. and Springer, N. (2001). A mineralogical review of the Midale Beds (Mississippian) from the Weyburn Oilfield, south-eastern Saskatchewan. British Geological Survey Commissioned Report, CR/01/146. 18p.

Riding, J.B., Czernichowski-Lauriol, I.. Lombardi, S., Quattrocchi, F., Rochelle, C.A., Savage, D. and Springer, N. (2002). The international IEA Weyburn CO₂ monitoring project - the European dimension. Proceedings of the 6th International conference on Greenhouse Gas Control Technology (GHGT-6), Kyoto, Japan.

Rochelle, C.A., Bateman, K. and Pearce, J.M. (2002). Geochemical interactions between supercritical CO_2 and the Utsira formation: an experimental study. British Geological Survey Commissioned Report, CR/02/060, 57 p.

Schremp, F.W., and Roberson, G.R., 1975. Effect of supercritical carbon dioxide (CO₂) on construction materials. Soc. of Petroleum Engineers Journal, June edition, p. 227-233.

Stewart, P.B. and Munjal, P.K. (1970). The solubility of carbon dioxide in pure water, synthetic sea water and synthetic seawater concentrates at -5 to 25° C and 10 to 45 atm pressure. Journal of Chemical Engineering Data, 15(1), 67-71.

Toews, K.L., Shroll, R.M. and Wai, C.M. (1995). pH-defining equilibrium between water and supercritical CO₂. Influence on SFE of organics and metal chelates. Analytical Chemistry, 67, 4040-4043.

van Eldik, R. and Palmer, D.A. (1982). Effects of pressure on the kinetics of the dehydration of carbonic acid and the hydrolysis of CO_2 in aqueous solution. Journal of Solution Chemistry, 11(5), 339-346.

Figure 1 a) Location of the Weyburn oilfield and the route of the CO₂ pipeline.

b) Diagram illustrating how a miscible CO₂-EOR flood produces incremental oil; at Weyburn, the depth to the reservoir unit is *c*. 1400 m.
(from Riding *et al.*, 2002).

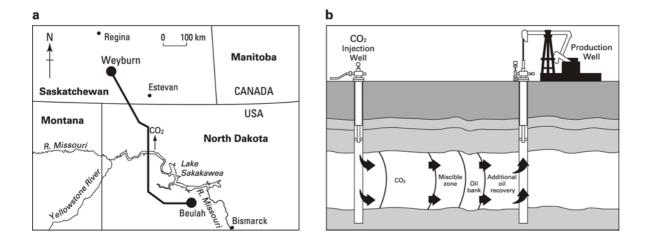


Figure 2 Schematic diagram showing a typical batch reactor.

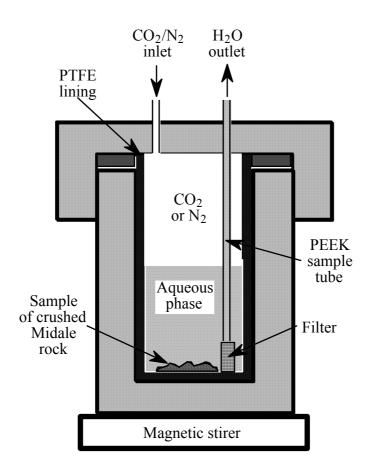


Figure 3 Schematic diagram showing how rock monoliths are mounted onto the 'dip tube' assembly.

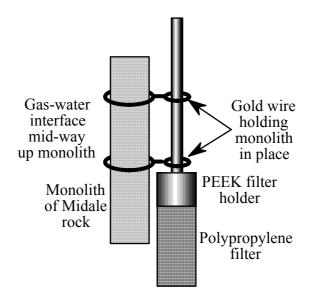


Figure 4 Schematic diagram showing the typical layout for a series of batch experiments.

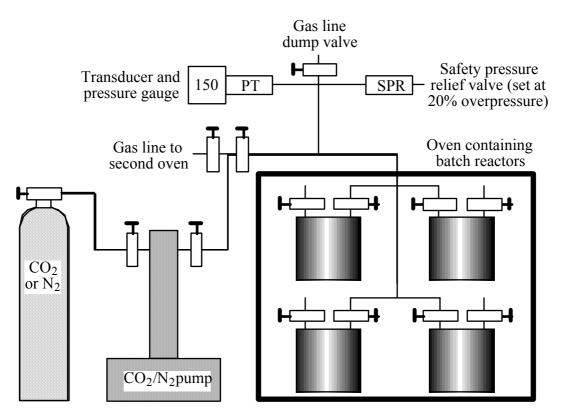
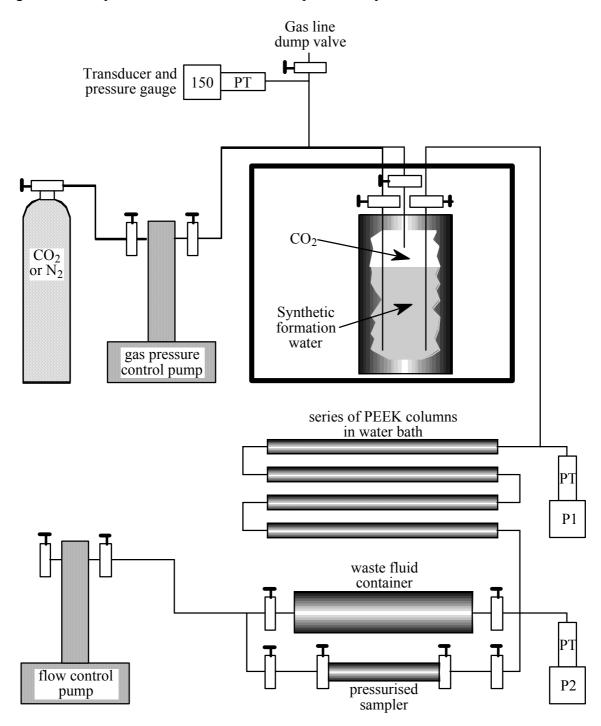
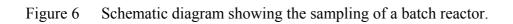
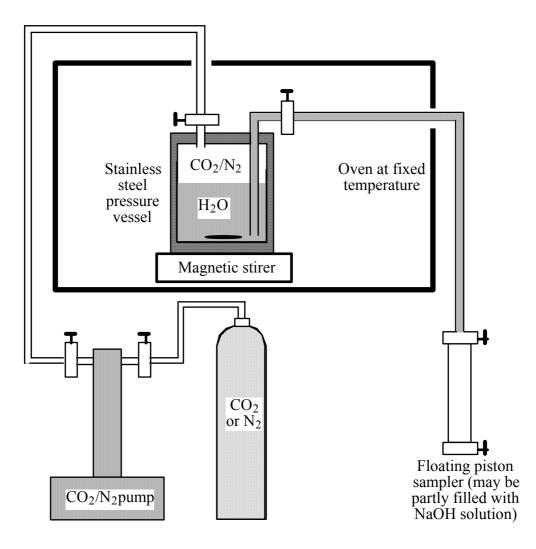





Figure 5 Simplified schematic of column experiment layout.

Alt S N C N	Sample	Location	Location Temp (°C)	Hq							Concentra	Concentrations (mg/L)	/L)							
1222-641 202 C(0) 664 660 157 160 141 180 140 180 1					Alk	S ₂ .	Na	К	Ca	Mg	Mn	Li	Fe	Sr	Ba	Si	C	SO_4	Acetate	Propionic
T T	-	12-23-6-11	787	6 76	864.6	6867	13770	1757	945	1 1 1 7	50.0		0 8000	15.43	1 066	74.47	10665	3675		
173564 270 647 2647 106 116 106	- (2-26-6-14	32.02	6.43	430.0	273.6	0//61	4884	1405	1.124	0.40		1 606	80.61	1 007	18.85	34250	3330	6.64	
New Network 217 6.64 9.05 16.75 17.95 10.16 16.16 16.17 16.16 16.17 <	1 (*	12-25-6-14	23.0	6.75	519.8	284.2	14990	143.9	2611	106.9	0.10		0.5198	31.40	1.581	18.06	24150	3695	1010	3,875
H12-bit 115 68 410 4145 177 60 524 159 476 01 151 551 501 503 </th <th>9.4</th> <th>b8-18-6-13</th> <th>21.7</th> <th>6.45</th> <th>395.8</th> <th>168.2</th> <th>29740</th> <th>363.7</th> <th>1571</th> <th>709.9</th> <th>0.55</th> <th></th> <th>1.705</th> <th>40.71</th> <th>1.618</th> <th>18.07</th> <th>44920</th> <th>3245</th> <th></th> <th></th>	9.4	b8-18-6-13	21.7	6.45	395.8	168.2	29740	363.7	1571	709.9	0.55		1.705	40.71	1.618	18.07	44920	3245		
BC1-0+11 306 668 3783 151 173 530 340 BC1-0+11 305 6.0 3783 101 137 3506 3935 313 BC3-0+13 321 6.0 342 901 302 0531 333	5	14-12-6-14	31.5	6.81	419.6	144.5	21720	552.4	1539	487.6	pu		1.654	76.28	1.961	14.79	36710	3680		
Wein-Holi Dial Cio Taylo Holi Tail Hail	9	b2-13-6-14	26.6	6.68	398.3	145.6	22890	565.4	1687	274.6	0.46		1.971	92.56	0.310	12.47	35495	3460		
SD-641 221 620 942 902 2780 604 147 905 633 731 7315 7304 7315 H446615 224 688 711 888 711 731 730 731 H446615 235 688 711 888 7313 583 7323 7806 7305 731 730	7	b8-17-6-13	20.3	6.50	277.0	66.1	35410	710.3	1696	862.8	0.49		1.514	44.22	0.184	17.30	55830	2895		
	8	8-20-6-13	22.1	6.20	342.9	90.2	27580	365.4	1476	206.6	0.03		0.8202	43.31	0.317	15.12	39545	3395	5.15	4.43
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	6	14-20-6-13	23.2	6.66	308.3	69.2	25030	400.4	1406	330.7	0.17		0.9291	53.35	0.370	13.57	37000	3320	7.71	1.55
#1+7-613 243 643 710 713 713 713 713 713 713 713 713 713 713 713 713 713 713 713 713 713 713 713 714 714 713 714 713 714 713 714 713 714 714 713 714 71	10	b14-8-6-13	25.4	6.88	391.1	34.6	35000	451.8	1388	234.7	0.20		0.9021	62.02	0.285	12.71	47200	3265		
	11	d14-7-6-13	24.3	6.85	371.6	138.4	34990	746.1	1552	1096.0	0.70		1.588	45.70	0.047	11.98	53400	3150	5.09	
• 14-16-61 330 6.84 7103 717 3270 3271 1373 1376 0.34 1376 0.356 1376 0.357 0.355 <th0.3575< th=""> 3.3557</th0.3575<>	12	d8-7-6-13		6.57	358.8	123.6	27730	337.3	1559	157.2	0.08		0.8094	84.07	0.171	10.32	42315	3595		
* 11-16-14 32.6 6.34 97.3 15.8 0.55 13.10 6.57 13.6 0.56 13.6 0.56 13.6 0.56 13.6 0.56 13.6 0.56 13.6 0.56 13.6 0.56 0.56 13.6 0.56 13.6 0.56 <	13	d14-6-6-13		6.84	710.5	17.2	29730	322.7	1373	1248.0	0.49		2.477	31.76	0.202	13.72	51800	3045	6.09	5.14
	14 *	14-1-6-14		6.34	493.4	121.6	40850	588.7	1319	687.9	0.56		2.563	44.38	0.262	6.86	60565	3105	19.72	
16:15-11 32.6 6.78 36.9 49.3 35.73 106 11.26 1.66 36.3 37.13 36.90 31.75 31.75 36.90 31.75 31.75 36.90 31.75 31.75 36.90 31.75 31.75 36.90 31.75 31.75 36.95 31.75 31.75 36.95 31.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.7	15	2-12-6-14		6.49	414.6	100.2	18960	382.3	1530	345.5	0.41		1.175	68.97	0.258	13.58	30025	3625		
11-16-14 292 6.64 6.63 87.3 87.0 1.43 5.27 0.101 1.400 2.03 11-16-14 292 6.64 6.63 87.3 87.0 1.41 5.56 0.201 1.00 4.100 2.05 12-116-14 21.6 6.60 57.8 2.000 1.20 4.100 2.35 3.00 12-116-14 2.10 6.61 57.8 2.010 1.20 4.100 2.36 3.05 2-20-613 3.11 7.18 2.200 61.3 0.30 1.42 0.36 0.12 1.52 3.11 1.400 3.35 3.00 3.15 3.55 3.65 3.16 3.75 3.66 3.75 3.66 3.75 3.66 3.75 3.66 3.75 3.66 3.75 3.66 3.75 3.66 3.75 3.66 3.75 3.66 3.75 3.66 3.76 3.66 3.76 3.66 3.76 3.76 3.76 3.76 3.7	16	d8-12-6-14		6.79	386.9	49.3	29550	584.1	1615	971.6	1.05		1.669	39.39	0.179	9.23	46375	3690		
di+11-6+1 376 6.0 383 10.2 3200 31.7 500 <	17	11-1-6-14		6.64	66.3	87.4	28710	400.4	1647	679.3	0.69		1.485	36.27	0.194	11.00	44100	3205		
* 12:11-614 24.0 647 537.8 169.0 245.0 70.0 12.0 14.2 55.6 0.23 178.5 3900 14-2-614 30.6 67.8 57.7 75.3 26070 268.9 1130 71.4 7555 3455 71.4 14-2-614 30.6 67.8 257.0 447.9 11.30 53.2 0.03 11.30 37555 3455 71.4 2-3-6614 30.6 67.8 257.0 47.9 12.2 0.89 10.3 10.3 10.3 3565 71.4 2-3-6613 31.1 7.08 359.6 11.30 68.9 0.24 10.3 10.3 31.5 31	18	d14-11-6-14	37.6	6.50	389.3	103.5	29200	512.7	1760	796.2	0.39		1.512	35.64	0.261	10.71	45000	3175		
2-10-641 3.18 6.01 578.5 303.7 2000 318 611 17.5 2050 11.8 11.7 10.42 0.890 65.19 0.384 12.00 4100 3860 2-14-6-14 2.8 6.73 470.3 3475 5960 411.2 1592 11.8 0.33 10.1 13.875 3455 3455 714 2-14-6-13 2.8 6.73 470.3 6.88 2500 412 193 1720 0455 3555 3555 3555 3555 3555 3555 3556 3447 0509 3445 714 2-306-13 2.01 6.88 3553 1560 3135 0101 055 0031 6465 3455 714 8-366-13 2.01 6.88 3590 2154 1034 1064 1441 3751 0131 1400 3855 756 8-366-13 2.23 1043 1063 0026 0645 884				6.47	537.8	169.3	24570	269.0	1296	476.0	pu		1.425	45.65	0.276	19.23	37855	3900		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	2-10-6-14		6.61	578.5	203.7	26070	268.9	1158	220.9	0.17		0.8050	65.19	0.384	12.40	44100	3850		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	14-2-6-14	30.6	6.78	232.7	77.5	29630	611.2	1592	818.8	0.59		1.522	41.42	0.036	11.01	43875	3565		
	22	2-24-6-14	28.5	6.94	476.6	88.8	25070	434.5	1318	641.4	0.40		1.603	31.95	0.021	19.31	37555	3485		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	8-13-6-14	29.6	6.73	407.3	40.7	35860	427.9	1452	242.7	0.34		0.8106	79.38	0.071	16.94	51720	3455	7.14	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	24	12-19-6-13	31.1	7.08	437.9	60.8	21540	359.6	1138	689.2	0.52		1.130	23.22	0.142	9.99	31645	3755		
	25	2-30-6-13	30.6	6.85	388.3	117.8	22510	123.5	1138	862.6	0.31		1.405	24.47	0.059	14.01	34960	3445	5.85	
	26	8-25-6-14		6.92	353.1	45.5	12220	128.4	1008	148.9	0.05		0.6376	42.00	0.066	16.65	20635	3665	7.86	2.76
	27	14-30-6-13		6.88	359.3	52.6	16140	107.4	1096	169.1	0.24		0.7041	60.26	0.029	14.90	26000	3605	8.025	4.65
	28	8-36-6-14	23.3	7.30	264.8	23.5	19940	345.7	1416	216.4	0.38		1.243	88.50	0.013	18.32	30815	3670	14.66	2.54
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	29	8-30-6-13		6.92	510.9	35.2	21500	218.4	1178	174.4	0.09		0.6465	89.01	0.092	12.64	31745	3685		4.33
	30	12-20-6-13		6.63	298.6	67.0	30070	558.9	1432	988.6	0.43		1.441	37.51	0.150	11.35	45480	3690	5.13	
	31	10-17-6-13		6.58	390.0	19.1	34180	584.9	1504	877.7	0.44		2.020	39.26	0.023	11.80	51200	3790	5.57	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	32	8-19-6-13		2.00	335.9	13.4	23020	389.7	1195	565.1	0.35		1.398	29.01	0.011	11.17	34320	3350	6.04	1.55
34 34 12-26-614 29.1 6.79 550.4 283.9 22100 193.5 1166 312.1 0.08 6.048 0.4906 86.96 nd 9.25 32610 2995 14-23-6-14 17.1 6.40 704.2 133.5 11280 181.4 1110 286.3 0.07 5.359 0.5191 62.89 nd 11.28 19650 3290 14-23-6-14 17.1 6.40 704.2 133.5 11280 181.4 1110 286.3 0.07 5.359 0.5191 62.89 nd 11.28 19650 3290 14-14-6-14 23.5 7.00 47.7 24830 298.1 1402 315.7 0.55 8.687 1.220 30.05 nd 11.28 19650 3320 15.465 * 045-355-614 33.5 7.00 470.7 188.6 244.6 1141 660.0 0.33 30.90 1.289 3960 3320 15.465	33	5-36-6-14	19.9	6.93	302.9	25.0	19820	162.9	1049	458.0	0.36		1.089	27.64	pu	13.68	30225	3605	9.88	
12-26-6-14 29.1 6.79 550.4 285.9 1106 312.1 0.08 6.048 0.4906 86.96 nd 9.25 32610 2995 14-25-6-14 17.1 6.40 704.2 133.5 11280 181.4 1110 286.3 0.07 5.359 0.5191 62.89 nd 9.25 32610 3295 14-14-6-14 20.9 6.77 602.1 44.7 24830 298.1 1402 315.7 0.55 8.687 1.220 30.05 nd 746 36570 3385 4.90 * 48:23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47 8.696 1.377 39.11 nd 11.9 353.0 15.465 * 48:23-6-14 23.5 7.00 470.7 188.6 2476.0 1359 538.6 1.377 39.11 nd 11.99 3330 15.465 2-23-6-14 22.5	34	34		ii N																
14-23-6-14 17.1 6.40 704.2 133.5 1128 19650 3290 37 31 20.9 6.77 602.1 44.7 24830 298.1 1402 315.7 0.558 8.687 1.220 30.05 nd 7.46 36570 3385 4.90 * d8-23-6-14 21.2 6.07 602.1 44.7 24830 298.1 1402 315.7 0.55 8.687 1.220 30.05 nd 7.46 36570 3385 4.90 * d8-23-6-14 31.2 6.81 6.07 1492 315.7 0.55 8.687 1.220 30.05 nd 11.99 36880 3320 15.465 * d8-13-6-14 21.3 6.61 0.354.6 144.0 1660.0 0.33 30.90 12.88 0.3960 3330 15.465 * b14-13-6-14 22.3 6.62 342.60 1782 780.2 0.44 10.47 10.77 53.0	55	12-26-6-14		0.79	4.000	283.9	22100	C.561	1166	312.1	0.08		0.4906	80.90	pu	67.6	32610	6667		
J G G J	36	14-23-6-14	17.1	6.40	704.2	133.5	11280	181.4	1110	286.3	0.07		0.5191	62.89	pu	11.28	19650	3290		
I+1+4-6-14 20.9 0.7.1 04.1 245.0 295.1 140.2 315.7 30.00 7.40 33.50 15.465 * 24.33-5-14 33.5 7.00 470.7 188.6 24750 494.0 1359 538.5 0.47 8.696 1.377 39.11 nd 11.99 36880 3320 15.465 * 24.35-6 364.6 1141 660.0 0.33 30.90 1.287 39.11 nd 11.99 3880 3330 15.465 * b14-13-6-14 21.3 6.62 42.2.560 364.6 1141 660.0 0.33 30.90 1.288 33360 3330 * b14-13-6-14 21.3 6.57 354.2 27040 294.4 1399 471.0 0.94 10.47 10.77 319.0 3460 17.27 b13-18-6-13 26.5 6.57 367.0 152.4 30660 393.0 12.36 14.71 10.77 30.18 0.293<	5/	15 11 11 11		50 3	1 007		0.010	1 000	0071	5 3 1 0	0.55	207.0	000	20.05	7	2	000000	2000	00.1	
* d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47 8.606 1.377 39.11 nd 11.99 36880 3320 15.465 2-23-6-14 21.2 6.81 665.1 354.3 22560 364.6 1141 660.0 0.33 30.90 1.287 29.18 nd 8.99 33960 3330 * b1-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47 1.077 55.18 nd 8.99 33960 3330 b13-18-6-13 26.5 6.57 367.0 152.4 30660 395.6 1782 780.2 0.46 12.16 1.450 45.00 0.281 9.15 39440 3460 d14-18-6-13 19.5 6.31 437.1 182.9 19920 393.0 1238 224.7 0.39 10.52 1.494 79.68 0.011 11.96 32875 3650 8.50	50 4	14-14-0-14		0.11	1.200	44./	24850	1.862	1402	/.010	cc.0	0.00/	077.1	c0.0c	DU.	/.40	0/000	0000	4.90	
2-23-6-14 21.2 6.81 605.1 354.3 22560 364.6 1141 660.0 0.33 30.90 1.283 29.18 nd 8.99 33960 3330 * b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47 1.077 53.06 0.281 9.15 39440 3460 b13-18-6-13 26.5 6.57 367.0 152.4 30660 395.6 1782 780.2 0.46 12.16 1.450 46.70 0.293 7.41 43705 3600 17.27 d14-18-6-13 19.5 6.31 437.1 182.9 19920 393.0 1238 224.7 0.39 10.52 1.494 79.68 0.011 11.96 32875 3650 8.50	39 *	d8-23-6-14	33.5	7.00	470.7	188.6	24750	404.0	1359	538.5	0.47	8.696	1.377	39.11	pu	11.99	36880	3320	15.465	5.12
* bl4-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47 1.077 53.06 0.281 9.15 39440 3460 bl3-18-6-13 26.5 6.57 367.0 152.4 30660 395.6 1782 780.2 0.46 12.16 1.450 46.70 0.293 7.41 43705 3600 17.27 dl4-18-6-13 19.5 6.31 437.1 182.9 19920 393.0 1238 224.7 0.39 10.52 1.494 79.68 0.011 11.96 32875 3550 8.50	40	2-23-6-14	21.2	6.81	605.1	354.3	22560	364.6	1141	660.0	0.33	30.90	1.283	29.18	pu	8.99	33960	3330		
b13-18-6-13 26.5 6.57 367.0 152.4 30660 395.6 1782 780.2 0.46 12.16 1.450 46.70 0.293 7.41 43705 3600 17.27 d14-18-6-13 19.5 6.31 437.1 182.9 19920 393.0 1238 224.7 0.39 10.52 1.494 79.68 0.011 11.96 32875 3650 8.50	41 *	b14-13-6-14		6.62	422.0	52.8	27040	294.4	1399	471.0	0.94	10.47	1.077	53.06	0.281	9.15	39440	3460		
d14-18-6-13 19.5 6.31 437.1 182.9 19920 393.0 1238 224.7 0.39 10.52 1.494 79.68 0.011 11.96 32875 3650 8.50	42	b13-18-6-13		6.57	367.0	152.4	30660	395.6	1782	780.2	0.46	12.16	1.450	46.70	0.293	7.41	43705	3600	17.27	1.95
	43	d14-18-6-13		6.31	437.1	182.9	19920	393.0	1238	224.7	0.39	10.52	1.494	79.68	0.011	11.96	32875	3650	8.50	2.23

Summary of analyses of preliminary baseline fluid sampling survey (Shevalier pers. comm.). Key fluids are marked with an asterisk.

Table 1

Table 2Initial recipe for making up a synthetic equivalent of the porewater from well
b14-13-6-14 (as highlighted in Table 1) for the preliminary test experiments.

Key information	Borehole Latitude Longitude	b14-13-6-14 49.47911 103.777								
	Fluid chemistry fro		of Calgary bas	seline survey		T				
	Plug sample id	BGS2A					T24	sol	1111	∩n
	MPG code	H636						301	au	
	Plug sample horizo									
	Perf horiz	M evaporite t	o M3							
Comments	Not a brilliant mat This information is Synthetic solution	for the initial	'look see' te	t experiments.				ole.		
Information relation	ng to laboratory cl									
Chemical	Source	Grade	min assay	batch numbe	r mol wt	mol wt info	Date ordered	Notes		
LiCl	-						-			
NaCl	- BDH	- ARISTAR	- 99.5	-	- 58.44	- from packet	Old stock			
KCI	BDH Fisher Chemicals	ARISTAR	99.5 99.72	-	58.44 74.56	from packet from packet				
	Fisher Chemicals	-	99.72	-	74.50	from packet	Old Stock			
MgCl2	- Fisher Chaminals	-	-	-	-	-	-			
MgCl2.6H2O	Fisher Chemicals		99.1	-	203.31	from packet	UId Stock			
CaCl2	-	-	-	-	-	-	-			
CaCl2.2H2O	BDH	AnalaR	99.5	-	147.02	from packet				
SrCl2	-	-	-	-	-	-	Old stock			
SrCI2.6H2O	BDH	AnalaR	98.5	-	266.62	from packet	Very old stoc	k		
NaHCO3	BDH	AnalaR	99.5	-	84.01	from packet	Old stock			
H2SO4 (conc)	BDH	ARISTAR	98.0	-	98.07	from packet	Old stock			
Si (1000ppm sln)	BDH	-	-	-	-	-	Old stock	In solution wit	th HF	
NaOH	BDH	ARISTAR	98.0	-	40.00	from packet	Old stock			
		۲								
Original Uni. of Calç	arv analysis	1							(ut in a ml fo	r Sisln)
	any analysis	Equivalent	Comments		1	For an	alvtes on left	amount to add		
Location		Equivalent mol/l	Comments				alytes on left, a			
Location Temp (oC)	b14-13-6-14	Equivalent mol/l	Comments			For an Ingredient	alytes on left, a for 1 litre	amount to add for 2 litres	for 4 litres	for 8 litres
Temp (oC)	b14-13-6-14 22.3	- ·	Comments							
Temp (oC) pH	b14-13-6-14 22.3 6.62	mol/l	Comments			Ingredient	for 1 litre	for 2 litres	for 4 litres	for 8 litres
Temp (oC) pH Alk (mg/L)	b14-13-6-14 22.3 6.62 422.0	mol/l 6.9058E-03		studvina redox				for 2 litres		for 8 litres
Temp (oC) pH Alk (mg/L) S ²⁻ (ppm)	b14-13-6-14 22.3 6.62 422.0 52.8	6.9058E-03 1.6469E-03		studying redox	-	Ingredient NaHCO3 -	for 1 litre 0.5802 -	for 2 litres 1.1603	for 4 litres 2.3206	for 8 litres 4.641
Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040	6.9058E-03 1.6469E-03 1.1762E+00		studying redox	ion 1	Ingredient NaHCO3 - NaCl	for 1 litre 0.5802 - 64.1215	for 2 litres 1.1603 - 128.2430	for 4 litres 2.3206 - 256.4860	for 8 litres 4.641 - 512.972
Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4	6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03		studying redox	olution 1	Ingredient NaHCO3 - NaCl KCI	for 1 litre 0.5802 - 64.1215 0.5614	for 2 litres 1.1603 - 128.2430 1.1228	for 4 litres 2.3206 - 256.4860 2.2456	for 8 litres 4.641 - 512.972 4.491
Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399	mol/l 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02		studying redox	t solution 1	Ingredient NaHCO3 - NaCl KCl CaCl2.2H2O	for 1 litre 0.5802 - 64.1215 0.5614 5.1318	for 2 litres 1.1603 - 128.2430 1.1228 10.2635	for 4 litres 2.3206 - 256.4860 2.2456 20.5270	4.641 - 512.972 4.491 41.054
Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0	mol/1 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.9375E-02	Omit - not s		nent solution 1	Ingredient NaHCO3 - NaCl KCI	for 1 litre 0.5802 - 64.1215 0.5614	for 2 litres 1.1603 - 128.2430 1.1228 10.2635	for 4 litres 2.3206 - 256.4860 2.2456	for 8 litres 4.641 - 512.972 4.491 41.054
Temp (oC) pH Alk (mg/L) S ² (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94	mol/1 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.9375E-02 1.7110E-05	Omit - not s Omit - mino	r	ponent solution 1	Ingredient NaHCO3 - NaCl KCl CaCl2.2H2O	for 1 litre 0.5802 - 64.1215 0.5614 5.1318	for 2 litres 1.1603 - 128.2430 1.1228 10.2635	for 4 litres 2.3206 - 256.4860 2.2456 20.5270	for 8 litres 4.641 - 512.972 4.491 41.054
Temp (oC) pH Alk (mg/L) S ^{2*} (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L) Li (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47	mol/l 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.9375E-02 1.7110E-05 1.5086E-03	Omit - not s Omit - mino Omit - from	or drilling fluid?	component solution 1	Ingredient NaHCO3 - NaCl KCl CaCl2.2H2O	for 1 litre 0.5802 - 64.1215 0.5614 5.1318	for 2 litres 1.1603 - 128.2430 1.1228 10.2635	for 4 litres 2.3206 - 256.4860 2.2456 20.5270	for 8 litres 4.641 - 512.972 4.491 41.054
Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47 1.077	mol/l 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.9375E-02 1.7110E-05 1.5086E-03 1.9284E-05	Omit - not s Omit - mino Omit - from	r	Component solution 1	Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O MgCI2.6H2O - - -	for 1 litre 0.5802 - 64.1215 0.5614 5.1318 3.9391 - -	for 2 litres 1.1603 - 128.2430 1.1228 10.2635 7.8782 - -	for 4 litres 2.3206 - 256.4860 2.2456 20.5270 15.7563 - -	for 8 litres 4.641 - 512.972 4.491 41.054 31.512 - -
Temp (oC) pH Alk (mg/L) S ^{2*} (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mn (mg/L) Li (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47	mol/l 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.9375E-02 1.7110E-05 1.5086E-03	Omit - not s Omit - mino Omit - from Omit - not s	n drilling fluid? studying redox	Component solution 1	Ingredient NaHCO3 - NaCl KCl CaCl2.2H2O	for 1 litre 0.5802 - 64.1215 0.5614 5.1318	for 2 litres 1.1603 - 128.2430 1.1228 10.2635 7.8782 - -	for 4 litres 2.3206 - 256.4860 2.2456 20.5270	
Temp (oC) pH Alk (mg/L) S ²⁺ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47 1.077 53.06	mol/l 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.9375E-02 1.5086E-03 1.5086E-03 1.9284E-05 6.0557E-04	Omit - not s Omit - mino Omit - from Omit - not s	n drilling fluid? studying redox	Component solution 1	Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O MgCI2.6H2O - - -	for 1 litre 0.5802 - 64.1215 0.5614 5.1318 3.9391 - -	for 2 litres 1.1603 - 128.2430 1.1228 10.2635 7.8782 - -	for 4 litres 2.3206 - 256.4860 2.2456 20.5270 15.7563 - -	for 8 litres 4.641 - 512.972 4.491 41.054 31.512 - -
Temp (oC) pH Alk (mg/L) S ^{2*} (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 4771.0 0.94 10.47 1.077 53.06 0.281	mol/l 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.9375E-02 1.7110E-05 1.5086E-03 1.9284E-05 6.0557E-04 2.0460E-06	Omit - not s Omit - mino Omit - from Omit - not s	n drilling fluid? studying redox	5	Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O MgCI2.6H2O - - SrCI2.6H2O -	for 1 litre 0.5802 - 64.1215 0.5614 5.1318 3.9391 - - - 0.1615 -	for 2 litres 1.1603 - 128.2430 1.1228 10.2635 7.8782 - 0.3229 -	for 4 litres 2.3206 - 256.4860 2.2456 20.5270 15.7563 - 0.6458 -	for 8 litres 4.641 - 512.972 4.491 41.054 31.512 - - - 1.291
Temp (oC) pH Alk (mg/L) S ^{2*} (ppm) Na (mg/L) Ca (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L) Fe (mg/L) Ba (mg/L) Ba (mg/L) Si (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47 1.077 53.06 0.281 9.15	mol/l 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.9375E-02 1.7110E-05 1.5086E-03 1.9284E-05 6.0557E-04 2.0460E-06 3.2574E-04	Omit - not s Omit - mino Omit - from Omit - not s	n drilling fluid? studying redox	5	Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O MgCI2.6H2O - - SrCI2.6H2O - Si std sln	for 1 litre 0.5802 - 64.1215 0.5614 5.1318 3.9391 - - 0.1615 - 9.1500	for 2 litres 1.1603 - 128.2430 1.1228 10.2635 7.8782 - 0.3229 - 18.3000	for 4 litres 2.3206 - 256.4860 2.2456 20.5270 15.7563 - - 0.6458 - 36.6000	for 8 litres 4.641 - 512.972 4.491 41.054 31.512 - - 1.291 - 73.200
Temp (oC) pH Alk (mg/L) S ² (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L) Li (mg/L) Sr (mg/L) Ba (mg/L) Si (mg/L) Cl (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47 1.077 53.06 0.281 9.15 39440	mol/1 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.7110E-05 1.5086E-03 1.9284E-05 6.0557E-04 2.0460E-06 3.2574E-04 1.1126E+00	Omit - not s Omit - mino Omit - from Omit - not s	n drilling fluid? studying redox	5	Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O MgCI2.6H2O - - SrCI2.6H2O - Si std sln From above of	for 1 litre 0.5802 - 64.1215 0.5614 5.1318 3.9391 - - - 0.1615 - 9.1500 thlorides - so to	for 2 litres 1.1603 - 128.2430 1.1228 10.2635 7.8782 - - 0.3229 - 18.3000 his element to	for 4 litres 2.3206 - 256.4860 2.2456 20.5270 15.7563 - - 0.6458 - 36.6000 vary from mea	for 8 litres 4.641 - 512.972 4.491 41.05 31.512 - - 1.291 - 73.200 sured values
Temp (oC) pH Alk (mg/L) S ² (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L) Si (mg/L) Cl (mg/L) SO ₄ (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47 1.077 53.06 0.281 9.15 39440 3460	mol/l 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.9375E-02 1.7110E-05 1.5086E-03 1.9284E-05 6.0557E-04 2.0460E-06 3.2574E-04	Omit - not s Omit - mino Omit - from Omit - not s	n drilling fluid? studying redox	5	Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O MgCI2.6H2O - - SrCI2.6H2O - Si std sln	for 1 litre 0.5802 - 64.1215 0.5614 5.1318 3.9391 - - 0.1615 - 9.1500	for 2 litres 1.1603 - 128.2430 1.1228 10.2635 7.8782 - - 0.3229 - 18.3000 his element to	for 4 litres 2.3206 - 256.4860 2.2456 20.5270 15.7563 - - 0.6458 - 36.6000	for 8 litres 4.641 - 512.972 4.491 41.054 31.512 - - 1.291 - 73.200
Temp (oC) pH Alk (mg/L) S ^{2*} (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L) Cl (mg/L) SO4 (mg/L) Acetate (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47 1.077 53.06 0.281 9.15 39440 3460	mol/1 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.7110E-05 1.5086E-03 1.9284E-05 6.0557E-04 2.0460E-06 3.2574E-04 1.1126E+00	Omit - not s Omit - mino Omit - from Omit - not s	n drilling fluid? studying redox	5	Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O MgCI2.6H2O - - SrCI2.6H2O - Si std sln From above of	for 1 litre 0.5802 - 64.1215 0.5614 5.1318 3.9391 - - - 0.1615 - 9.1500 thlorides - so to	for 2 litres 1.1603 - 128.2430 1.1228 10.2635 7.8782 - - 0.3229 - 18.3000 his element to	for 4 litres 2.3206 - 256.4860 2.2456 20.5270 15.7563 - - 0.6458 - 36.6000 vary from mea	for 8 litres 4.641 - 512.972 4.491 41.054 31.512 - - 1.291 - 73.200 sured values
Temp (oC) pH Alk (mg/L) S ² (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L) Ba (mg/L) Si (mg/L) Cl (mg/L) SO ₄ (mg/L)	b14-13-6-14 22.3 6.62 422.0 52.8 27040 294.4 1399 471.0 0.94 10.47 1.077 53.06 0.281 9.15 39440 3460	mol/1 6.9058E-03 1.6469E-03 1.1762E+00 7.5294E-03 3.4905E-02 1.7110E-05 1.5086E-03 1.9284E-05 6.0557E-04 2.0460E-06 3.2574E-04 1.1126E+00	Omit - not s Omit - mino Omit - from Omit - not s	n drilling fluid? studying redox		Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O MgCI2.6H2O - - SrCI2.6H2O - Si std sln From above of	for 1 litre 0.5802 - 64.1215 0.5614 5.1318 3.9391 - - - 0.1615 - 9.1500 thlorides - so to	for 2 litres 1.1603 - 128.2430 1.1228 10.2635 7.8782 - - 0.3229 - 18.3000 his element to	for 4 litres 2.3206 - 256.4860 2.2456 20.5270 15.7563 - - 0.6458 - 36.6000 vary from mea	for 8 litres 4.641 - 512.977 4.491 41.05 31.512 - - - 73.200 sured value:

Table 3Modified recipe for making up a synthetic equivalent of the porewater from
well b14-13-6-14 (as highlighted in Table 1).

Key information	Borehole Latitude Longitude Fluid chemistry fr	b14-13-6-14 49.47911 103.777 om University of		line survey						
	-	BGS2A	n cuigury busc	ante survey						
	Plug sample id MPG code	BG52A H636								
	Plug sample horiz									
	Perf horiz	M evaporite t	o M3							
Comments	Not a brilliant mai Synthetic solution NaOH weights cor	predicted to b	e some 9% ric	her in Cl comp	ared to Univ	ersity of Calgary	analysis.	ble.		
Information relation	ng to laboratory c	hemicals used	to make up	synthetic sou	ltions.					
Chemical	Source	Grade	min assay	batch numbe	r mol wt	mol wt info	Date ordered	Notes		
LiCl	BDH	AnalaR	99.0	B829017	42.39	from packet	27/5/02			
NaCl	BDH	AnalaR	99.5	K30508033	58.44	from packet	27/5/02			
KCI	BDH	AnalaR	99.5	F862257	74.55	from packet				
MgCI2	-	-	-	-	-	-	-			
MgCl2.6H2O	BDH	AnalaR	99.0	TA753833	203.30	from packet	27/5/02			
CaCl2	-	-	-	-	-	-	-			
CaCl2.2H2O	BDH	AnalaR	99.5	TA940333	147.02	from packet	27/5/02			
SrCI2	BDH	AnalaR	99.0	A225111	158.52	assumed	27/5/02	Asumed to be	anhydrous	
SrCI2.6H2O	-	-	-	-	-	-	-			
NaHCO3	BDH	AnalaR	99.7	к28137916	84.01	from packet	27/5/02			
H2SO4 (conc)	BDH	ARISTAR	95.0	K29485908	98.08	from packet				
Si (1000ppm sln)	BDH	Spectrosol	996±5 mg/l				27/5/02	In 0.5 mol/l N	аОН	
NaOH	BDH	ARISTAR	98.0	B368949	40.00	from packet	27/5/02			
		7								
Original Uni. of Calg	jary analysis	Equivalent	Comments			For an	alvtec on left	amount to add	(wt in a ml for	r Si clo)
Location	b14-13-6-14	mol/l	Comments			Ingredient	for 1 litre	for 2 litres	for 4 litres	for 8 litres
Temp (oC)	22.3					ingredient	TOT T IIITE	101 2 11(165	101 4 11(165	tor o litres
pH	6.62	-								
Alk (mg/L)	422.0	6.9058E-03				NaHCO3	0.5802	1.1603	2.3206	4.641
S ²⁻ (ppm)	52.8	1.6469E-03	Omit - not st	udving redox		-	-	-	-	-
Na (mg/L)	27040	1.1762E+00	onne not ot	adying ready	-	NaCl	64.1215	128.2430	256.4860	512.972
K (mg/L)	294.4	7.5294E-03			io	KCI	0.5613	1.1226	2.2453	4.490
Ca (mg/L)	1399	3.4905E-02			olut	CaCl2.2H2O	5.1318	10.2635	20.5270	41.054
Mg (mg/L)	471.0	1.9375E-02			Component solution	MgCl2.6H2O	3.9389	7.8778	15.7555	31.511
Mn (mg/L)	0.94	-	Omit - minor		llen	-			-	
Li (mg/L)	10.47	1.5086E-03	Omit - from	drilling fluid?	od	-	-	-	-	
Fe (mg/L)	1.077	1.9284E-05	Omit - not st	0	5	-	-	-	-	
Sr (mg/L)	53.06	6.0557E-04		, ,		SrCI2	0.0960	0.1920	0.3840	0.768
Ba (mg/L)	0.281	2.0460E-06	Omit - minor			-	-	-	-	-
Si (mg/L)	9.15	3.2574E-04			n 2	Si std sln	9.1500	18.3000	36.6000	73.200
CI (mg/L)	39440	1.1126E+00			Itio			his element to		
SO₄ (mg/L)	3460	3.6019E-02			solt	conc H2SO4	3.5324	7.0648	14.1296	28.259
Acetate (mg/L)	-				t	-				-
Acetate (IIIg/L					u 0	1	1			
Propionic (mg/L		-			6	-	-	-	-	-
]-			Component solution 2	- Extras	-	-	-	-

Table 4Recipe for making up a synthetic equivalent of the porewater from well 14-1-6-
14 (as highlighted in Table 1).

Borehole Latitude	14-1-6-14 49.44999 103 777								
		of Calgary base	line survey						
Plug sample id	BGS5A								
MPG code	H637								
							ble.		
g to laboratory c	hemicals used	to make up	synthetic sou	ltions.					
Source	Grade	min assay	batch numbe	r mol wt	mol wt info	Date ordered	Notes		
BDH	AnalaR	99.0	B829017	42.39	from packet	27/5/02			
BDH	AnalaR	99.5	K30508033	58.44	from packet	27/5/02			
BDH	AnalaR	99.5	F862257	74.55					
-	-	-	-	-	-	-			
BDH	AnalaR	99.0	TA753833	203.30	from packet	27/5/02			
-	-	-	-		-	-			
BDH	AnalaR	99.5	TA940333	147.02	from packet	27/5/02			
BDH	AnalaR	99.0	A225111	158.52	assumed	27/5/02	Asumed to be	anhydrous	
	-	-	-	-	-	-			
BDH	AnalaR	99.7	K28137916	84.01	from packet	27/5/02			
BDH	ARISTAR	95.0	K29485908	98.08	from packet	27/5/02			
BDH	Spectrosol	996±5 mg/l	OC058843			27/5/02	In 0.5 mol/l N	aOH	
BDH	ARISTAR	98.0	B368949	40.00	from packet	27/5/02			
any analysis	7								
ary analysis	Equivalent	Comments			For an	alvtes on left. a	amount to add	(wt in a. ml for	Si sln)
14-1-6-14	mol/l	00111101100				for 1 litre	for 2 litres	for 4 litres	for 8 litres
23.6	1								
6.34	7								
493.4	8.0742E-03				NaHCO3	0.6783	1.3566	2.7133	5.426
121.6	3.7929E-03	Omit - not st	udying redox		-	-	-		
40850	1.7769E+00		-	-	NaCl	99.5898	199.1797	398.3593	796.718
588.7	1.5056E-02			tior	KCI	1.1224	2.2449	4.4898	8.979
1319	3.2909E-02			olu	CaCl2.2H2O	4.8383	9.6766	19.3532	38.706
687.9	2.8297E-02			ut s	MgCl2.6H2O	5.7528	11.5056	23.0111	46.022
0.56	1.0193E-05	Omit - minor		ner	-	-	-		
24.3	3.5014E-03	Omit - from	drilling fluid?	odu	-	-	-		
	4.5891E-05	Omit - not st	udying redox	Č	-	-	-		
2.563	4.5891E-05			1	SrCl2	0.0803	0.1606	0.3212	0.642
2.563 44.38	5.0651E-04								
	5.0651E-04	Omit - minor			-	-	-	- ·	
44.38 0.262	5.0651E-04 1.9077E-06	Omit - minor		5	-	-			
44.38 0.262 6.86	5.0651E-04 1.9077E-06			on 2	- Si std sln	6.8600		27.4400	
44.38 0.262 6.86 60565	5.0651E-04 1.9077E-06 2.4422E-04 1.7085E+00			lution 2	From above of	hlorides - so t	his element to	vary from meas	ured values
44.38 0.262 6.86 60565 3105	5.0651E-04 1.9077E-06 2.4422E-04 1.7085E+00 3.2324E-02			solution 2			his element to		ured values
44.38 0.262 6.86 60565 3105 19.72	5.0651E-04 1.9077E-06 2.4422E-04 1.7085E+00 3.2324E-02		udying organic	ent solution 2	From above of	hlorides - so t	his element to	vary from meas	54.880 ured values 25.359
44.38 0.262 6.86 60565 3105	5.0651E-04 1.9077E-06 2.4422E-04 1.7085E+00 3.2324E-02		udying organic	solution	From above of	hlorides - so t	his element to	vary from meas	ured values
	Latitude Longitude Fluid chemistry fm Plug sample id MPG code Plug sample horiz Perf horiz Not a brilliant mat NaOH weights cor g to laboratory c Source BDH BDH BDH - BDH BDH - BDH BDH BDH ary analysis 14-1-6-14 23.6 6.34 493.4 121.6 40850 588.7 1319 687.9 0.56	Latitude 49.44999 Longitude 103.777 Fluid chemistry from University of MPG code H637 Plug sample id BGSSA MPG code H637 Plug sample horizo M Evap Perf horiz M1 to M3 Not a brilliant match between loo NaOH weights corrected to take g to laboratory chemicals used Source Grade BDH AnalaR BDH AnalaR BDH AnalaR BDH AnalaR BDH AnalaR BDH AnalaR BDH AnalaR BDH AnalaR C - BDH AnalaR BDH AnalaR BDH AnalaR C C BDH AnalaR BDH Anal	Latitude 49.44999 Longitude 103.777 Fluid chemistry from University of Calgary base Plug sample id BGS5A MPG code H637 Plug sample horizo M Evap Perf horiz M1 to M3 Not a brilliant match between location of perfo NaOH weights corrected to take account of NaO g to laboratory chemicals used to make up Source Grade min assay BDH AnalaR 99.0 BDH AnalaR 99.5 BDH AnalaR 99.5 BDH AnalaR 99.5 BDH AnalaR 99.5 BDH AnalaR 99.0 BDH AnalaR 99.0 BDH AnalaR 99.0 BDH AnalaR 99.5 BDH AnalaR 99.5 BDH AnalaR 99.0 BDH AnalaR 99.0 BDH AnalaR 99.0 BDH AnalaR 99.5 BDH AnalaR 99.5 BDH AnalaR 99.0 BDH AnalaR 99.0 - BDH AnalaR 99.0 BDH AnalaR 99.0 - BDH AnalaR 99.0 - - BDH AnalaR 99.0 - - - - - - - - - - - - -	Latitude 49.44999 Longitude 103.777 Fluid chemistry from University of Calgary baseline survey Plug sample id BGSSA MPG code H637 Plug sample horizo M Evap Perf horiz M1 to M3 Not a brilliant match between location of perforated horizon (NaOH weights corrected to take account of NaOH from both a g to laboratory chemicals used to make up synthetic sou Source Grade min assay batch numbe BDH AnalaR 99.0 B829017 BDH AnalaR 99.5 K30508033 BDH AnalaR 99.5 F862257 BDH AnalaR 99.0 TA753833 BDH AnalaR 99.0 TA753833 BDH AnalaR 99.0 A225111 BDH AnalaR 99.0 A225111 BDH AnalaR 99.0 K29485908 BDH AnalaR 99.0 K29485908 BDH AnalaR 99.0 K29485908 BDH AnalaR 99.0 B368949 BDH AnalaR 99.0 B368949 BDH AnalaR 99.0 K29485908 BDH AnalaR 99.0 M368343 BDH AnalaR 98.0 B368949 	Latitude 49.44999 Longitude 103.777 Fluid chemistry from University of Calgary baseline survey Plug sample id BGSSA MPG code H637 Plug sample horizo M Evap Perf horiz M1 to M3 Not a brilliant match between location of perforated horizon (i.e. fluid sam NaOH weights corrected to take account of NaOH from both added NaOH a g to laboratory chemicals used to make up synthetic soultons. Source Grade min assay batch number mol wt BDH AnalaR 99.0 B829017 42.39 BDH AnalaR 99.5 K30508033 58.44 BDH AnalaR 99.5 F862257 74.55 BDH AnalaR 99.0 TA753833 203.30 BDH AnalaR 99.0 A225111 158.52 BDH AnalaR 99.0 A225111 158.52 BDH AnalaR 99.0 K29485908 98.08 BDH AnalaR 99.0 K29485908 98.08 BDH AnalaR 99.0 K29485908 98.08 BDH AnalaR 99.0 B368949 40.00 BDH AnalaR 98.0 B368949 40.00 BDH AnalaR 98.0 B368949 40.00 BDH ARISTAR 98.0 B368949 40.00 BDH ARISTAR 98.0 B368949 40.00 BDH ARISTAR 98.0 B368949 40.00 BDH ARISTAR 98.0 B368949 40.00 	Latitude 49.44999 Longitude 103.777 Fluid chemistry from University of Calgary baseline survey Plug sample id BGSSA MPG code H637 Plug sample horizo M Evap Perf horiz M1 to M3 Not a brilliant match between location of perforated horizon (i.e. fluid sample) and locatio NaOH weights corrected to take account of NaOH from both added NaOH and the Si standa g to laboratory chemicals used to make up synthetic soultions. Source Grade min assay batch number mol wt mol wt info BDH AnalaR 99.0 B829017 42.39 from packet BDH AnalaR 99.5 F862257 74.55 from packet BDH AnalaR 99.0 TA753833 203.30 from packet BDH AnalaR 99.0 TA753833 203.30 from packet BDH AnalaR 99.0 A225111 158.52 assumed BDH AnalaR 99.7 K28137916 84.01 from packet BDH AnalaR 99.0 A225111 158.52 assumed BDH AnalaR 99.0 K29485908 98.08 from packet BDH AnalaR 99.7 K28137916 84.01 from packet BDH AnalaR 99.7 K28137916 84.01 from packet BDH AnalaR 99.0 K29485908 98.08 from packet ANAHCO3 - NAHCO3 - NAHCO3 - NAHCO3 - NAHCO3 - NAHCO3 - NAHCO3 - NAHCO3 - NAHCO3 - NAHCO3 	Latitude 49.44999 Longitude 103.777 Fluid chemistry from University of Calgary baseline survey Plug sample id BGSSA MPG code H637 Plug sample horizo M Evap Perf horiz M1 to M3 Not a brilliant match between location of perforated horizon (i.e. fluid sample) and location of solid sample) NaOH weights corrected to take account of NaOH from both added NaOH and the Si standard solution. g to laboratory chemicals used to make up synthetic soultons. Source Grade min assay batch number mol wt mol wt info Date ordered BDH AnalaR 99.0 B829017 42.39 from packet 27/5/02 BDH AnalaR 99.5 F862257 74.55 from packet 27/5/02 	Latitude 19.44999 Longitude 103.777 Fluid chemistry from University of Calgary baseline survey Plug sample id BGSSA MPC code H637 Plug sample horizo M Evap Perf horiz M1 to M3 Not a brilliant match between location of perforated horizon (i.e. fluid sample) and location of solid sample. NaOH weights corrected to take account of NaOH from both added NaOH and the Si standard solution. g to laboratory chemicals used to make up synthetic soultions. Source Grade min assay batch number mol wt mol wt info Date ordered Notes BDH AnalaR 99.0 B829017 42.39 from packet 27/5/02 BDH AnalaR 99.5 F862257 74.55 from packet 27/5/02 BDH AnalaR 99.5 F862257 74.55 from packet 27/5/02 	Latitude 49.44999 Longitude 103.777 Fluid chemistry from University of Calgary baseline survey Plug sample id BGSSA MPG code H637 Plug sample horizo M Evap Perf horiz M1 to M3 Not a brilliant match between location of perforated horizon (i.e. fluid sample) and location of solid sample. NaOH weights corrected to take account of NaOH from both added NaOH and the Si standard solution. g to laboratory chemicals used to make up synthetic solutions. g to laboratory chemicals used to make up synthetic solutions. Source Grade min assay batch number mol wt mol wt info Date ordered Notes BDH AnalaR 99.0 B829017 4.539 from packet 27/5/02 BDH AnalaR 99.0 F862257 74.55 from packet 27/5/02 BDH AnalaR 99.0 TA753833 203.30 from packet 27/5/02 BDH AnalaR 99.0 TA753833 147.02 from packet 27/5/02 BDH AnalaR 99.0 A225111 158.52 assumed 27/5/02 BDH AnalaR 99.0 K294137916 84.01 from packet 27/5/02 BDH AnalaR 99.0 K294137916 84.01 from packet 27/5/02 BDH AnalaR 99.7 K28137916 84.01 from packet 27/5/02 BDH AnalaR 99.7 K28137916 84.01 from packet 27/5/02 BDH AnalaR 99.0 K29485908 98.08 from packet 27/5/02 BDH AnalaR 99.0 K29485908 98.08 from packet 27/5/02 BDH AnalaR 99.7 K28137916 84.01 from packet 27/5/02 BDH Apple 96.5 mayl 00058843 27/5/02 in 0.5 mol/l NaOH BDH AnalaR 98.0 B36894 90.00 from packet 27/5/02 BDH ARISTAR 95.0 K29485908 98.08 from packet 27/5/02 BDH ARISTAR 95.0 K29485908 94.0.00 from packet 27/5/02 BDH ARISTAR 95.0 K29485908 98.08 from packet 27/5/02 BDH ARISTAR 98.0 B368949 40.00 from packet 27/5/02 BDH ARISTAR 98.0 B368949 40.00 from packet 27/5/02 BDH ARISTAR

Table 5Recipe for making up a synthetic equivalent of the porewater from well 12-11-
6-14 (as highlighted in Table 1).

Key information	Borehole Latitude Longitude Fluid chemistry fro	12-11-6-14 49.46447 103.7995 om University o	f Calgary base	line survey						
	Plug sample id	BGS12A								
	MPG code	H638								
	Plug sample horiz									
	Perf horiz	M1 to M3								
Comments	Not a brilliant mat NaOH weights con							ble.		
Information relatir	ng to laboratory c	hemicals used	to make up	synthetic sou	ltions.					
Chemical	Source	Grade	min assay	batch numbe	r mol wt	mol wt info	Date ordered	Notes		
LiCl	BDH	AnalaR	99.0	B829017	42.39	from packet	27/5/02			
NaCl	BDH	AnalaR	99.5	K30508033	58.44	from packet				
KCI	BDH	AnalaR	99.5	F862257	74.55	from packet				
MgCl2	-	-	-			-				
MgCl2.6H2O	BDH	AnalaR	99.0	TA753833	203.30	from packet	27/5/02			
CaCl2	-	-	-	-	-	-	-			
CaCl2.2H2O	BDH	AnalaR	99.5	TA940333	147.02	from packet	27/5/02			
SrCI2	BDH	AnalaR	99.0	A225111	158.52	assumed	27/5/02	Asumed to be	anhydrous	
SrCI2.6H2O	-	-	-	-	-	-	-			
NaHCO3	BDH	AnalaR	99.7	K28137916	84.01	from packet	27/5/02			
H2SO4 (conc)	BDH	ARISTAR	95.0	K29485908	98.08	from packet	27/5/02			
Si (1000ppm sln)	BDH	Spectrosol	996±5 mg/l	OC058843			27/5/02	In 0.5 mol/I N	aOH	
NaOH	BDH	ARISTAR	98.0	B368949	40.00	from packet	27/5/02			
		7								
Original Uni. of Calg	ary analysis	Equivalent	Comments			For on	alutaa an laft	mount to odd	(ut in a militar	(Ci ala)
Location	12-11-6-14	mol/l	Comments			Ingredient	alytes on left, a	for 2 litres	for 4 litres	for 8 litres
Temp (oC)	24.0	11101/1				ingredient	TOF T IIITE	101 Z littes	IOI 4 IILIES	TOF O IILIES
pH	6.47	-								
Alk (mg/L)	537.8	8.8008E-03				NaHCO3	0.7394	1.4787	2.9574	5.914
S ²⁻ (ppm)		-1				110000	011001			-
	169.3	5.2807E-03	Omit - not st	udvina redox		-	-			
Na (mg/L)	169.3 24570	5.2807E-03 1.0687E+00	Omit - not st	udying redox	-	- NaCl	- 57.1967	- 114.3934	228.7869	457.573
Na (mg/L) K (mg/L)		-	Omit - not st	udying redox	tion 1	- NaCl KCl	- 57.1967 0.5129	- 114.3934 1.0258	228.7869 2.0516	
	24570	1.0687E+00	Omit - not st	udying redox	olution 1					4.103
K (mg/L)	24570 269.0	1.0687E+00 6.8798E-03	Omit - not st	udying redox	nt solution 1	KCI	0.5129	1.0258	2.0516	4.103 38.031
K (mg/L) Ca (mg/L)	24570 269.0 1296 476.0 nd	1.0687E+00 6.8798E-03 3.2335E-02	Omit - not st	udying redox	onent solution 1	KCI CaCl2.2H2O	0.5129 4.7539	1.0258 9.5079	2.0516 19.0158	4.103 38.031
K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L) Li (mg/L)	24570 269.0 1296 476.0 nd 30.9	1.0687E+00 6.8798E-03 3.2335E-02			mponent solution 1	KCI CaCl2.2H2O	0.5129 4.7539	1.0258 9.5079	2.0516 19.0158	4.103 38.031
K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L)	24570 269.0 1296 476.0 nd 30.9 1.425	1.0687E+00 6.8798E-03 3.2335E-02 1.9580E-02 -		drilling fluid?	Component solution 1	KCI CaCl2.2H2O	0.5129 4.7539	1.0258 9.5079	2.0516 19.0158	4.103 38.031
K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L)	24570 269.0 1296 476.0 nd 30.9 1.425 45.65	1.0687E+00 6.8798E-03 3.2335E-02 1.9580E-02 - 4.4524E-03 2.5515E-05 5.2100E-04	Omit - from (Omit - not st	drilling fluid?	Component solution 1	KCI CaCl2.2H2O	0.5129 4.7539	1.0258 9.5079	2.0516 19.0158	457.573 4.103 38.031 31.845 - - - 0.660
K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L)	24570 269.0 1296 476.0 nd 30.9 1.425	1.0687E+00 6.8798E-03 3.2335E-02 1.9580E-02 - 4.4524E-03 2.5515E-05 5.2100E-04	Omit - from o	drilling fluid?	Component solution 1	KCI CaCl2.2H2O MgCl2.6H2O - - -	0.5129 4.7539 3.9807 - -	1.0258 9.5079 7.9614 - -	2.0516 19.0158 15.9228 - -	4.103 38.031 31.845 - -
K (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L)	24570 269.0 1296 476.0 nd 30.9 1.425 45.65 0.276	1.0687E+00 6.8798E-03 3.2335E-02 1.9580E-02 - 4.4524E-03 2.5515E-05 5.2100E-04 2.0096E-06	Omit - from (Omit - not st	drilling fluid?		KCI CaCl2.2H2O MgCl2.6H2O - - SrCl2 -	0.5129 4.7539 3.9807 - - - 0.0826 -	1.0258 9.5079 7.9614 - - 0.1652 -	2.0516 19.0158 15.9228 - - - 0.3304 -	4.103 38.031 31.845 - - 0.660
K (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L) Si (mg/L)	24570 269.0 1296 476.0 nd 30.9 1.425 45.65 0.276	1.0687E+00 6.8798E-03 3.2335E-02 1.9580E-02 - 4.4524E-03 2.5515E-05 5.2100E-04 2.0096E-06	Omit - from (Omit - not st	drilling fluid?	5	KCI CaCI2.2H2O MgCI2.6H2O - - SrCI2 SrCI2 Si std sln	0.5129 4.7539 3.9807 - - 0.0826 - 19.2300	1.0258 9.5079 7.9614 - - 0.1652 - 38.4600	2.0516 19.0158 15.9228 - - 0.3304 - 76.9200	4.103 38.031 31.845 - - - 0.660 - 153.840
K (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L) Si (mg/L) Cl (mg/L)	24570 269.0 1296 476.0 nd 30.9 1.425 45.65 0.276 19.23 37855	1.0687E+00 6.8798E-03 3.2335E-02 1.9580E-02 - 4.4524E-03 2.5515E-05 5.2100E-04 2.0096E-06 6.8459E-04 1.0678E+00	Omit - from (Omit - not st	drilling fluid?	5	KCI CaCl2.2H2O MgCl2.6H2O - - SrCl2 - Si std sln From above of	0.5129 4.7539 3.9807 - - 0.0826 - 19.2300	1.0258 9.5079 7.9614 - - - 0.1652 - 38.4600 nis element to	2.0516 19.0158 15.9228 - - - 0.3304 - 76.9200 vary from measurement	4.103 38.031 31.845 - - - 0.660 - 153.840 sured values
K (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L) Si (mg/L) Cl (mg/L) SO₄ (mg/L)	24570 269.0 1296 476.0 nd 30.9 1.425 45.65 0.276 19.23 37855 3900	1.0687E+00 6.8798E-03 3.2335E-02 1.9580E-02 - 4.4524E-03 2.5515E-05 5.2100E-04 2.0096E-06	Omit - from (Omit - not st	drilling fluid?	5	KCI CaCI2.2H2O MgCI2.6H2O - - SrCI2 SrCI2 Si std sln	0.5129 4.7539 3.9807 - - 0.0826 - 19.2300	1.0258 9.5079 7.9614 - - 0.1652 - 38.4600	2.0516 19.0158 15.9228 - - 0.3304 - 76.9200	4.103 38.031 31.845 - - - 0.660 - 153.840
K (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L) Si (mg/L) Cl (mg/L) SO₄ (mg/L) Acetate (mg/L)	24570 269.0 1296 476.0 nd 30.9 1.425 45.65 0.276 19.23 37855 3900	1.0687E+00 6.8798E-03 3.2335E-02 1.9580E-02 - 4.4524E-03 2.5515E-05 5.2100E-04 2.0096E-06 6.8459E-04 1.0678E+00	Omit - from (Omit - not st	drilling fluid?	5	KCI CaCl2.2H2O MgCl2.6H2O - - SrCl2 - Si std sln From above of	0.5129 4.7539 3.9807 - - 0.0826 - 19.2300	1.0258 9.5079 7.9614 - - - 0.1652 - 38.4600	2.0516 19.0158 15.9228 - - - 0.3304 - 76.9200 vary from measurement	4.103 38.031 31.845 - - - 0.660 - 153.840 sured values
K (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L) Si (mg/L) Cl (mg/L) SO ₄ (mg/L)	24570 269.0 1296 476.0 nd 30.9 1.425 45.65 0.276 19.23 37855 3900	1.0687E+00 6.8798E-03 3.2335E-02 1.9580E-02 - 4.4524E-03 2.5515E-05 5.2100E-04 2.0096E-06 6.8459E-04 1.0678E+00	Omit - from (Omit - not st	drilling fluid?		KCI CaCl2.2H2O MgCl2.6H2O - - SrCl2 - Si std sln From above of	0.5129 4.7539 3.9807 - - 0.0826 - 19.2300	1.0258 9.5079 7.9614 - - - 0.1652 - 38.4600	2.0516 19.0158 15.9228 - - - 0.3304 - 76.9200 vary from measurement	4.103 38.031 31.845 - - - 0.660 - 153.840 sured values

Table 6

Recipe for making up a synthetic equivalent of the porewater from well d8-23-6-14 (as highlighted in Table 1).

Key information	Borehole Latitude	d8-23-6-14 49.49359								
	Longitude	103.7995								
	Fluid chemistry fro		of Calgary base	line survey						
	Plug sample id	BGS14A								
	MPG code	H639								
	Plug sample horiz Perf horiz	o M3 M1 to M3								
Comments	Reasonable match Synthetic solution NaOH weights cor	predicted to b	e some 8% ric	her in CI comp	ared to Unive	ersity of Calgary	analysis.			
Information relatin	g to laboratory c	hemicals used	to make up	synthetic sou	ltions.					
Chemical	Source	Grade	min assay	batch numbe	mol wt	mol wt info	Date ordered	Notes		
LiCl	BDH	AnalaR	99.0	B829017	42.39	from packet	27/5/02			
NaCl	BDH	AnalaR	99.5	K30508033	58.44	from packet				
KCI	BDH	AnalaR	99.5	F862257	74.55	from packet				
MgCI2		-	-	-	-	-	-			
MgCl2.6H2O	BDH	AnalaR	99.0	TA753833	203.30	from packet	27/5/02			
CaCl2	-	-	-	-	-	- '	-			
CaCl2.2H2O	BDH	AnalaR	99.5	TA940333	147.02	from packet	27/5/02			
SrCl2	BDH	AnalaR	99.0	A225111	158.52	assumed	27/5/02	Asumed to be	anhydrous	
SrCI2.6H2O		-	-	-	-	-	-		2	
NaHCO3	BDH	AnalaR	99.7	K28137916	84.01	from packet	27/5/02			
H2SO4 (conc)	BDH	ARISTAR	95.0	K29485908	98.08	from packet	27/5/02			
Si (1000ppm sln)	BDH	Spectrosol	996±5 mg/l	OC058843			27/5/02	In 0.5 mol/I N	laOH	
NaOH	BDH	ARISTAR	98.0	B368949	40.00	from packet	27/5/02			
Original Unit of Colo		7								
Original Uni. of Calg	ary analysis	Equivalent	Comments					amount to add	(wt in a ml for	Si sln)
		Equivalent	Comments			For an	alytes on left, a		(wt in g, ml for for 4 litres	
Location	ary analysis d8-23-6-14 33.5	Equivalent mol/l	Comments					amount to add for 2 litres		Si sln) for 8 litres
Location Temp (oC)	d8-23-6-14		Comments			For an	alytes on left, a			
Location Temp (oC) pH	d8-23-6-14 33.5		Comments			For an	alytes on left, a for 1 litre		for 4 litres	for 8 litres
Location Temp (oC)	d8-23-6-14 33.5 7.00	mol/l 7.7028E-03		udying redox		For an	alytes on left, a	for 2 litres		for 8 litres
Location Temp (oC) pH Alk (mg/L)	d8-23-6-14 33.5 7.00 470.7	mol/l	Comments Omit - not st	udying redox		For an	alytes on left, a for 1 litre	for 2 litres	for 4 litres	for 8 litres
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm)	d8-23-6-14 33.5 7.00 470.7 188.6	mol/l 7.7028E-03 5.8827E-03		udying redox		For and Ingredient NaHCO3 -	alytes on left, a for 1 litre 0.6471 -	for 2 litres 1.2942	for 4 litres 2.5884	for 8 litres 5.176 467.393
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750	mol/l 7.7028E-03 5.8827E-03 1.0766E+00		udying redox		For an Ingredient NaHCO3 - NaCl	alytes on left, a for 1 litre 0.6471 - 58.4242	for 2 litres 1.2942 - 116.8483	for 4 litres 2.5884 - 233.6966	for 8 litres 5.176 467.393 6.162
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0	mol/l 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02		udying redox		For and Ingredient NaHCO3 - NaCl KCI	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703	for 2 litres 1.2942 - 116.8483 1.5406	for 4 litres 2.5884 - 233.6966 3.0811	for 8 litres 5.176 467.393 6.162 39.880
Location Temp (oC) pH Alk (mg/L) S ^{2·} (ppm) Na (mg/L) K (mg/L) Ca (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02		udying redox		For and Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850	for 2 litres 1.2942 - 116.8483 1.5406 9.9701	for 4 litres 2.5884 233.6966 3.0811 19.9401	for 8 litres 5.176 467.393 6.162 39.880
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02	Omit - not st			For and Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850	for 2 litres 1.2942 - 116.8483 1.5406 9.9701	for 4 litres 2.5884 233.6966 3.0811 19.9401	for 8 litres 5.176 467.393 6.162 39.880
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02 8.5548E-06	Omit - not st Omit - minor	drilling fluid?	Component solution 1	For and Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850	for 2 litres 1.2942 - 116.8483 1.5406 9.9701	for 4 litres 2.5884 233.6966 3.0811 19.9401	for 8 litres 5.176 467.393 6.162 39.880
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Li (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47 8.696	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02 8.5548E-06 1.2530E-03	Omit - not st Omit - minor Omit - from o	drilling fluid?		For and Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850	for 2 litres 1.2942 - 116.8483 1.5406 9.9701	for 4 litres 2.5884 233.6966 3.0811 19.9401	5.176 467.393 6.162 39.880 36.027
Location Temp (oC) pH Alk (mg/L) S ^{2·} (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47 8.696 1.377	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02 8.5548E-06 1.2530E-03 2.4655E-05	Omit - not st Omit - minor Omit - from o	drilling fluid?		For and Ingredient NaHCO3 - NaCI KCI CaCI2.2H2O MgCI2.6H2O - - -	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850 4.5034 - -	for 2 litres 1.2942 - 116.8483 1.5406 9.9701 9.0068 - -	2.5884 233.6966 3.0811 19.9401 18.0135 - -	5.176 5.176 467.393 6.162 39.880 36.027
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47 8.696 1.377 39.11 nd	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02 8.5548E-06 1.2530E-03 2.4655E-05 4.4636E-04 -	Omit - not st Omit - minor Omit - from o	drilling fluid?	2 Component solution 1	For an Ingredient NaHCO3 - NaCl KCl CaCl2.2H2O MgCl2.6H2O - - SrCl2 -	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850 4.5034 - - 0.0708 -	for 2 litres 1.2942 - 116.8483 1.5406 9.9701 9.0068 - 0.1415 -	for 4 litres 2.5884 233.6966 3.0811 19.9401 18.0135 - - 0.2830	for 8 litres 5.176 467.393 6.162 39.880 36.027 0.566
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Ba (mg/L) Si (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47 8.696 1.377 39.11 nd 11.99	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02 8.5548E-06 1.2530E-03 2.4655E-05 4.4636E-04 -	Omit - not st Omit - minor Omit - from o	drilling fluid?	2 Component solution 1	For and Ingredient NaHCO3 - NaCl KCl CaCl2.2H2O MgCl2.6H2O - - SrCl2 - SrCl2 - Si std sln	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850 4.5034 - - 0.0708 - 11.9900	for 2 litres 1.2942 - 116.8483 1.5406 9.9701 9.0068 - 0.1415 - 23.9800	for 4 litres 2.5884 233.6966 3.0811 19.9401 18.0135 - 0.2830 47.9600	for 8 litres 5.176 467.393 6.162 39.880 36.027 0.566 95.920
Location Temp (oC) pH Alk (mg/L) S ² (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Mg (mg/L) Li (mg/L) Fe (mg/L) Ba (mg/L) Si (mg/L) Cl (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47 8.696 1.377 39.11 nd 11.99 36880	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02 8.5548E-06 1.2530E-03 2.4655E-05 4.4636E-04 - 4.2684E-04 1.0403E+00	Omit - not st Omit - minor Omit - from o	drilling fluid?	2 Component solution 1	For an Ingredient NaHCO3 - NaCl KCl CaCl2.2H2O MgCl2.6H2O - - SrCl2 - Si std sln From above of	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850 4.5034 - - 0.0708 - 11.9900 thlorides - so th	for 2 litres 1.2942 - 116.8483 1.5406 9.9701 9.0068 - - 0.1415 - 23.9800 his element to	for 4 litres 2.5884 - 233.6966 3.0811 19.9401 18.0135 - - 0.2830 - 47.9600 vary from meas	for 8 litres 5.176 467.393 6.162 39.88 36.027
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Si (mg/L) Si (mg/L) SO ₄ (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47 8.696 1.377 39.11 nd 11.99 36880 3320	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02 8.5548E-06 1.2530E-03 2.4655E-05 4.4636E-04 - 4.2684E-04 1.0403E+00 3.4562E-02	Omit - not st Omit - minor Omit - from o Omit - not st	drilling fluid? udying redox	2 Component solution 1	For and Ingredient NaHCO3 - NaCl KCl CaCl2.2H2O MgCl2.6H2O - - SrCl2 - SrCl2 - Si std sln	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850 4.5034 - - 0.0708 - 11.9900	for 2 litres 1.2942 - 116.8483 1.5406 9.9701 9.0068 - 0.1415 - 23.9800	for 4 litres 2.5884 233.6966 3.0811 19.9401 18.0135 - 0.2830 47.9600	for 8 litres 5.176 467.393 6.162 39.88 36.027
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Si (mg/L) Cl (mg/L) Acetate (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47 8.696 1.377 39.11 nd 11.99 36880 3320 15.47	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02 8.5548E-06 1.2530E-03 2.4655E-05 4.4636E-04 - -	Omit - not st Omit - minor Omit - from o Omit - not st Omit - not st	drilling fluid? udying redox udying organic	2 Component solution 1	For an Ingredient NaHCO3 - NaCl KCl CaCl2.2H2O MgCl2.6H2O - - SrCl2 - Si std sln From above of	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850 4.5034 - - 0.0708 - 11.9900 thlorides - so th	for 2 litres 1.2942 - 116.8483 1.5406 9.9701 9.0068 - - 0.1415 - 23.9800 his element to	for 4 litres 2.5884 - 233.6966 3.0811 19.9401 18.0135 - - 0.2830 - 47.9600 vary from meas	for 8 litres 5.176 467.393 6.162 39.880 36.027 0.566 95.920
Location Temp (oC) pH Alk (mg/L) S ²⁻ (ppm) Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Mn (mg/L) Li (mg/L) Fe (mg/L) Sr (mg/L) Si (mg/L) Si (mg/L) SO ₄ (mg/L)	d8-23-6-14 33.5 7.00 470.7 188.6 24750 404.0 1359 538.5 0.47 8.696 1.377 39.11 nd 11.99 36880 3320 15.47	mol/1 7.7028E-03 5.8827E-03 1.0766E+00 1.0332E-02 3.3907E-02 2.2151E-02 8.5548E-06 1.2530E-03 2.4655E-05 4.4636E-04 - -	Omit - not st Omit - minor Omit - from o Omit - not st	drilling fluid? udying redox udying organic	ent solution 2 Component solution 1	For an Ingredient NaHCO3 - NaCl KCl CaCl2.2H2O MgCl2.6H2O - - SrCl2 - Si std sln From above of	alytes on left, a for 1 litre 0.6471 - 58.4242 0.7703 4.9850 4.5034 - - 0.0708 - 11.9900 thlorides - so th	for 2 litres 1.2942 - 116.8483 1.5406 9.9701 9.0068 - - 0.1415 - 23.9800 his element to	for 4 litres 2.5884 - 233.6966 3.0811 19.9401 18.0135 - - 0.2830 - 47.9600 vary from meas	for 8 litres 5.176 467.393 6.162 39.880 36.027

Well and selected core stick information	core stick inforn	nation								
Well	Latitude	Longitude	Date drilled	Core number	Box Number	base (m)	Depth interval (m)	top (m)	Deposit. Type	Perf. horizon
14-13-6-14W2 14-1-6-14W2	49.479112 49.449992	103.777038 103.777038	1956 1958		7 2	1404.15 1439.20	0.67 1.43	1403.48 1437.77	Intershoal Shoal	Intershoal M. evap. to M3 Shoal M1 to M3
12-11-6-14W2 B8-23-6-14W2	49.464468 49.493589	103.799454	1957 1991		8 10	1426.89 1399.36	1.13	1425.76 1397.94	Shoal Intershoal	M1 to M3 M1 to M3
Core sample information	mation									
Well	Plug no.	Rock type	Plug orient.	Plug diam. (mm)	Plug depth (m)	Gas perm. (mD)	Porosity (%)	Grain dens. (g cc ⁻¹)	Comment	Approx. Cl content of pore water (mg l ⁻¹)
14-13-6-14W2	BGS2A	M. Marly	Vertical	54	1403.54	7.40	29.3	2.85		39440
14-1-6-14W2	BGS5A	M. Evaporite	-	-	1437.91	0.03	8.02	2.86		60565
12-11-6-14W2	BGS12A	M. Vuggy			1426.85	56.81 ° 04	15.21	2.71	Frac. Perm.	37855
B8-23-6-14W2	BGS14B	M. Marly	* * *	**	1398.50	NA NA	28.10	2.82		36880
NA = data not available $^{***} = 2$ pieces of whole core were used for this sample rather than a plug	lable hole core were u	sed for this sample	e rather than a plu	<u>50</u>						
				1						

Table 7General information about the solid samples used in this study (data from
Pearce and Springer (2001) and Springer (pers. comm.).

Table 8Comparison of pressure transducer outputs between those used in the lab and a
Druck PTX 610 transducer having external calibration. Note that the ISCO
260D pressure control pump is within 1.5% of the externally-calibrated
transducer, and that the secondary pressure transducers give readings virtually
identical to the ISCO 260D pump.

Approximate	Primary calibration	ISCO 260D	Readout	ISCO 260D		Batch equipment	ipment	
pressure (bar)	Druck PTX 610 transducer (psi)	syringe pump reading (psi)	difference (%)	syringe pump reading (bar)	Second PT11	Secondary pressure transducer readings (bar) PT12 PT13	nsducer readings (PT13	(bar) PT14
					(CO2 expts)	(N2 expts)	(N2 expts)	(CO2 expts)
0	0	0	0.0	0	0	0	0	0
14	198	200	1.0	20	20	20	20	20
28	396	400	1.0	40	40	40	40	40
41	589	600	1.8	60	60	60	60	60
55	786	800	1.8	80	80	80	80	80.5
69	985	1000	1.5	100	100	100	100.5	100.5
83	1180	1200	1.7	120	120	120	120.5	120.5
97	1377	1400	1.6	140	140	140	141	140.5
110		1600	1.6	160	160	160	161	160
124		1800	1.6	180	180	180	181	180
138		2000	1.6	200	200	200	200	200
152		2200	1.5	220	220	220	220	220
165		2400	1.5	240	240	240	240	240
179		2600	1.5	260	259.5	259.5	260	260
193		2800	1.6	280	279.5	279.5	280	280
207	2953	3000	1.6	300	299.5	299.5	300	300
221	3149	3200	1.6	320	319.5	319.5	320	320
234	3347	3400	1.6	340	340	340	340	340
248	3544	3600	1.6	360	360	360	360	360
262	3740	3800	1.6	380	380	380	380	380
276	3937	4000	1.6	400	400	400	400	400

Table 9Preliminary listing of possible experiments that it is hoped to complete during
the study (T = initial test experiments, Y = main experiments, P = possible
experiments if resources permit).

Sample type	ID number	State	Duration			Run condition	ns (all at 60°C)		
					~15	i0 bar		~2	50 bar
				Batch - CO2	Batch - N2	Column - CO2	Column - N2	Batch - CO2	Batch - N2
Midale Marly	BGS2A	250-500µm	1 w	Т	Т	· -	-	-	-
	(HTL 134)		3 w	Т	Т	-	-	-	-
			6 w	Т	Т	-	-	-	
			8 w	Т	Т	-	-	-	-
		<250 µm	8 w	Т	Т	-	-	Y	Y
		Monolith	12 w	Р	Р	-	-	Р	Р
	BGS14A	250-500µm	2 w	Y	Р		-	-	-
	(HTL 137)		4 w	Y	Y	-	-	-	
			8 w	Y	Р	-	-	-	
			12 w	Y	Y	-	-	-	-
		<250 µm	8 w	Y	Y			Y	Y
			6 m	Y	Y	-	-		-
		125-250 µm	6 m	-	-	Y	Y	-	-
		Monolith	2 w	Y	Y	-			
		mononui	4 w	Ŷ	Ŷ	-	-		
			8 w	Ŷ	Ŷ	-	-		
			12 w	Ŷ	Ŷ		-	-	-
Midale Evaporite	BGS5A	250-500µm	2 w	Y	Y			-	
	(HTL 135)		4 w	Y	Y	-	-	-	-
	, ,		8 w	Y	Y	-	-	-	
			12 w	Y	Y	-	-	-	
		<250 µm	8 w	Y	Y		-	Y	Y
			6 m	Y	Y	-	-	-	
		Monolith	2 w	Y	Y	· ·	-	-	
			4 w	Y	Y	-	-	-	-
			8 w	Y	Y	-	-	-	-
			12 w	Y	Y	-	-	-	
Midale Vuggy	BGS12A	250-500µm	2 w	Y	Y	-	-	-	-
	(HTL 136)		4 w	Y	Y	-	-	-	-
			8 w	Y	Y	-	-	-	-
			12 w	Y	Y	· ·	-	-	-
		<250 µm	8 w	Y	Y			Y	Y
		200 pm	6 m	Ŷ	Ŷ	-	-		:
		Monolith	4 w	Y	Y	-	-	-	-
			8 w	Y	Y	-	-	-	
			12 w	Y	Y	-	-	-	-
Borehole cement		250-500µm	12 w	Y	Y	-	-	Y	Y
		<250 µm	8 w	Р	Р	· ·	-	Р	Р
		Monolith	12 w	Y	Υ	-	-	Р	Р
Borehole steel		Monolith	12 w	Y	Y	-	-	Y	Y

Table 10Listing of a range of possible analytes, instrument detection limits, likely
detection limits given likely dilution factors, and an estimation of uncertainty
(note that other analytes will probably be studied, and these will be detailed in
later reports).

Analyte	Detection limits	Likely detec	Likely detection limits #		
	(instrument)# (mg l ⁻¹)	mg l ⁻¹	mol l ⁻¹	percentage ± uncertainty †	
Li	0.025	0.5	7.2 x 10 ⁻⁵	10	
Na	0.35	7	3.0 x 10 ⁻⁴	<5	
К	0.5	10	2.6 x 10 ⁻⁴	<5	
Mg	0.01	0.2	8.2 x 10 ⁻⁶	<5	
Са	0.1	2	5.0 x 10 ⁻⁵	<5	
Sr	0.002	0.04	4.6 x 10 ⁻⁷	<5	
Ва	0.002	0.04	2.9 x 10 ⁻⁷	<5	
Mn	0.002	0.02	3.6 x 10 ⁻⁷	5-10	
Total Fe	0.01	0.2	3.6 x 10 ⁻⁷	5-10	
Cr	0.002	0.04	7.7 x 10 ⁻⁷	10	
Al	0.01	0.1	3.7 x 10 ⁻⁶	10	
Total P	0.01	0.1	3.2 x 10 ⁻⁶	10	
Total S	0.25	2.5	7.8 x 10 ⁻⁵	5-10	
Si	0.075	0.75	2.7 x 10 ⁻⁵	5-10	
SiO ₂	0.16	1.6	2.7 x 10 ⁻⁵	5-10	
Cl	0.1	2	5.6 x 10 ⁻⁵	<5	
Br	0.03	6	7.5 x 10 ⁻⁵	5	
NO ₃	0.04	0.8	1.3 x 10 ⁻⁵	5-10	
SO4 ²⁻	0.3	60	6.3 x 10 ⁻⁴	10	
HCO ₃ -	22	22	3.6 x 10 ⁻⁴	5	
CO ₃ ²⁻	22	22	3.6 x 10 ⁻⁴	<5	
ТОС	1	3.6	3.0 x 10 ⁻⁴	5	

Limits of quantification can be described in more than one way. Firstly there is the actual instrument limit for an 'ideal' dilute solution. However, more concentrated solutions (i.e. saline porewaters) have to be diluted prior to analysis as high concentrations of total dissolved solids cause analytical problems. Dilution causes an effective worsening of the detection limits. During this study, samples are likely to be diluted 10x or 20x prior to analysis.

[†] Illustrative uncertainties considered 'typical' for the concentration ranges likely to be found in this study. Concentrations <10x the detection limit have uncertainties \geq 10%, concentrations >10x the detection limit have uncertainties typically \leq 5%.