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Review 

Current evidence in support of insect-friendly lighting 
practices
Avalon CS Owens1, Michael JO Pocock2 and  
Brett M Seymoure3

Anthropogenic light pollution is an emerging threat to natural 
ecosystems with myriad effects on insects in particular. Insect 
conservationists are increasingly interested in mitigating this 
driver of insect declines via sustainable lighting practices. 
Current recommendations often follow the five principles for 
responsible outdoor lighting developed by DarkSky 
International, a nonprofit organization founded by astronomers. 
While these principles unquestionably increase star visibility, 
their ecological costs and benefits remain relatively unexplored. 
Herein, we review recent research into the effects of each 
principle on insect fitness broadly defined. Most studies test the 
efficacy of spectral tuning, followed by dimming, although both 
mitigation methods seem generally ineffective in practice. In 
contrast, both shielding and motion detectors show promise as 
mitigation methods but remain remarkably understudied. 
Nonetheless, a preponderance of evidence now demonstrates 
that removing unnecessary light sources from natural habitats 
can reverse their varied impacts on diverse insect taxa and 
greatly benefit insect conservation.
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Introduction
As anthropogenic light pollution continues to intensify 
[1] both within and outside of urban centers [2], insect 
conservationists have become increasingly concerned 

with the ways in which artificial light obscures or out
competes natural cues guiding insect development, 
movement, foraging, and reproduction (Figure 1; see 
Ref. [3] for an in-depth review). By causing disorienta
tion in time and space, concealing visual cues of en
vironmental resources, and inciting detrimental flight-to- 
light behavior, artificial light radically disrupts normal 
functioning in insects.

The conservation consequences for individuals, popu
lations, and communities [4,5] are now being docu
mented across a broad range of nocturnal and — 
increasingly — diurnal insect taxa including termites [6], 
ants [7,8], parasitoid wasps [9], psyllids [10], and mon
arch butterflies [11,12]. Recent research has not only 
deepened appreciation for the effects of artificial light on 
diurnal taxa but also highlighted the relative abundance 
and ecological importance of nocturnal taxa [13], which 
are especially at risk [13], including the moths and other 
insects that provide crucial pollination services at 
night [14].

Along with a growing awareness of light pollution as an 
ecological threat has come regulatory interest in redu
cing harm via sustainable lighting practices that balance 
the needs of humans and nature [15]. Five simple 
guidelines for ‘responsible outdoor lighting’ (Figure 1) 
have been developed and popularized by DarkSky In
ternational, a nonprofit organization active in 24 coun
tries that has worked since 1987 ‘to restore the nighttime 
environment and protect communities and wildlife from 
light pollution’. These ‘five principles’ to restore the 
night are well established to reduce skyglow and in
crease star visibility, reflecting the origin of the dark sky 
movement among amateur and professional astronomers. 
Ecologists, in contrast, have only recently begun to in
vestigate how the same practices may ameliorate (or 
aggravate) the effects of light pollution on wildlife.

In this review, we summarize recent advances in our 
understanding of how each of the five principles for re
sponsible outdoor lighting (addressed in reverse order) 
might benefit insect conservation (Table 1). We con
clude by highlighting several areas of growing research 
interest as well as remaining knowledge gaps.
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Figure 1  

Current Opinion in Insect Science

Five commonly recommended methods of reducing the impacts of light pollution developed and promoted by DarkSky International (left: infographic 
from darksky.org, used with permission) and four fundamental effects of artificial light on insects (right: icons from thenounproject.com). Lines 
connecting a lighting principle to a lighting impact suggest a higher potential for the former to mitigate the latter. First principles suggest that shielding 
(2) will most effectively limit temporal disorientation and fatal attraction, dimming (3) will most effectively limit spatial disorientation and visual 
confusion, timers and motion detectors (4) will most effectively limit spatial disorientation and visual confusion, and spectral tuning (5) will most 
effectively limit temporal disorientation and fatal attraction. Removal of unnecessary light (1) will eliminate all effects.  

Table 1 

Recent studies that explicitly test whether responsible outdoor lighting principles can mitigate the impacts of artificial light on insects. 
Here, positive phototaxis refers to fatal attraction and negative phototaxis to its opposite, light avoidance. Dimming (3) is considered 
effective only when dimmed treatments measure 5 lux or above at ground level, as illumination below this level is likely to be too dim to 
meaningfully support human use and enjoyment of outdoor spaces at night. 

Responsible outdoor lighting principle Citation Lighting impact on insects in question Evidence for mitigation?

1 Useful All All Yes (highly effective)
2 Targeted Bolliger et al., 2022 Positive phototaxis Yes

Dietenberger et al., 2024 Positive phototaxis Yes
van Koppenhagen et al., 2024 Positive phototaxis No

3 Low level Moubarak et al., 2023 Visual confusion Yes
Owens and Lewis, 2022 Visual confusion Yes
Levy et al., 2024 Temporal disorientation Yes
Levy et al., 2023 Temporal disorientation No
Cieraad et al., 2022 Temporal disorientation No
Dyer et al., 2023 Temporal disorientation No
van Koppenhagen et al., 2024 Positive phototaxis Mixed
Jägerbrand et al., 2023 Positive phototaxis No
Dietenberger et al., 2024 Positive phototaxis No

4 Controlled Hao et al., 2023 Positive phototaxis No
Kasai and Hironaka, 2024 Positive phototaxis No
Heinen et al., 2023 Community effects No (harmful)

5 Warm colored Hao et al., 2023 Positive phototaxis No
Kunhe et al., 2021 Positive phototaxis No
Owens et al., 2022 Positive phototaxis No
Spoelstra et al., 2023 Positive phototaxis No
van Koppenhagen et al., 2024 Positive phototaxis No
Bolliger et al., 2022 Positive phototaxis Yes
Schofield et al., 2023 Positive phototaxis Yes
Mészáros et al., 2022 Negative phototaxis Yes
Sanders et al., 2022 Community effects Yes
Cieraad et al., 2022 Community effects Mixed
Owens et al., 2022 Visual confusion No (harmful)
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Principle 5. Limit the amount of short- 
wavelength light
Each artificial light source produces a characteristic mix 
of wavelengths, known as its spectral distribution, and 
each animal has a tendency to detect certain wave
lengths over others, known as its spectral sensitivity. 
Spectral sensitivities vary widely across taxa, with insects 
tending to be most sensitive to short-wavelength light 
[16]. Spectral distributions of modern LEDs are easily 
modified (e.g. [17,18]), leading some researchers to 
wonder whether intentional spectral tuning of artificial 
light might reduce its impact on insect species of con
servation concern.

Recent studies confirm that short-wavelength UV and, to 
a lesser extent, blue light are most attractive to light-at
tracted insects [7,17,19]. Shifting to longer wavelengths 
can therefore ameliorate or even eliminate flight-to-light 
behavior (positive phototaxis), one of the better under
stood detrimental effects of artificial light on insects (but 
see counterexamples in Refs. [20,21]). Be that as it may, 
there remains scant evidence for any substantial differ
ence in insect attraction to cool white versus warm white 
LEDs [17,22–24], probably because the two often vary 
only slightly in the amount of blue light they emit. 
However, monochromatic red light has repeatedly proven 
minimally attractive to light-attracted insects [17,20], 
most of which lack red photoreceptors [16].

Other colors of monochromatic light have been shown to 
either attract (blue light [25]) or repel (green light [18]) 
particular insect species of interest, leading to the re
structuring of insect communities [19] (but see Ref. 
[26]). Combinations of monochromatic light can achieve 
an even more targeted effect [18], either increasing (UV 
and green; [27]) or decreasing (green and amber; [28]) 
the attraction of particular insect species relative to 
broad-spectrum white light while also enabling human 
color vision. To humans, combinations of monochro
matic red, green, and blue components are indis
tinguishable from broad-spectrum cool white light but 
significantly reduce mosquito attraction and the risk of 
mosquito-borne disease transmission [29].

Relatively few studies address how spectral tuning 
might be used to reduce the impacts of artificial light on 
insects beyond flight-to-light behavior. The results of 
these studies tend to be highly species, system, and 
habitat dependent. For example, monochromatic blue or 
green light decreases the parasitism efficiency of diurnal 
parasitoid wasps without inducing flight-to-light beha
vior [30], increasing populations of their aphid hosts. 
Monochromatic red [31] or green [30] light increases 
plant growth while lowering plant defenses, culminating 
in greater overall insect herbivory. Relative to natural 
darkness, artificial light of unnatural spectral distribution 
can also radically alter the visibility of moths [32] and 

moth-pollinated plants [33], with unknown but poten
tially far-reaching consequences for ecosystem function.

Principle 4. Use light only when it is needed
Automatic timers and motion activators, referred to to
gether as lighting controls, limit the use of artificial lights 
to periods of greatest human activity. Timers are often set 
to automatically dim or extinguish their associated light 
sources later in the evening, often around midnight, when 
fewer people are likely to be active outdoors. So-called 
part-night lighting schemes likely have limited benefit for 
most nocturnal flying insects, which are dis
proportionately active around and just after dusk [34]. 
The majority of light-attracted insects aggregate between 
1 and 3 hours after sunset [17,35] when timer-controlled 
light sources would still be lit. Part-night lighting could 
perhaps allow uninjured insects to escape from their orbit 
earlier than they otherwise would. Part-night lighting 
likely has even greater benefits for the subset of insects, 
primarily some moths, that aggregate around artificial 
lights 5–6 hours after sunset [35].

As noted previously, flight-to-light behavior is far from 
the only consequential effect of artificial light on insects. 
Physiological disruptions to the internal clock can alter 
daily, monthly, and yearly cycles of development and 
behavior in both nocturnal and diurnal taxa. Part-night 
lighting produces a highly unnatural pattern of intense 
daylight fading into relatively dim anthropogenic light 
followed by an immediate switch to darkness; full-night 
lighting reduces brightness contrast between day and 
night but maintains a natural cycle of light and relative 
darkness. The consequences of this distinction are lar
gely unexplored but may help explain why some aphid 
colonies perform worse under part-night than full-night 
lighting [36].

Motion activators briefly activate their associated light 
sources in response to a movement trigger, dramatically 
reducing the total amount of artificial light in the en
vironment over time, especially in natural and semi- 
natural areas where fewer people are active at night. 
Insects are far too small to trigger most motion detectors 
and, in such areas, should be able to perform nocturnal 
behaviors largely undisturbed. Note, however, that even 
brief pulses of light are capable of disrupting the internal 
clocks of insects (specifically crickets) in the laboratory 
[37]. As motion activators come into greater use, future 
studies should seek to understand the effects of inter
mittent light exposures on insect physiology and beha
vior in the field.

Principle 3. Light should be no brighter than 
necessary
Artificial light sources, especially LEDs, tend to be far 
brighter than they need to be to support human activity 
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and safety. Dimming them to the lowest acceptable in
tensity can greatly reduce the total amount of artificial 
light in the environment. Dimming artificial light only 
slightly (to < 30 lux) is sufficient to ameliorate or reverse 
its inhibitory effects on courtship and mating in fireflies 
[38,39] by allowing for successful transmission of biolu
minescent signals. However, the benefits of dimming for 
other insect groups are much less clear, especially as the 
lowest acceptable intensity for humans may still be far 
too bright for most nocturnal insects.

Nocturnal insects tend to have extremely sensitive eyes 
capable of rapidly adapting to the ambient light en
vironment (summarized in Ref. [40]). This is likely why 
recent studies have shown that even severely dimmed 
artificial light (< 5 lux) still significantly alters foraging 
patterns in ground beetles [41] and inhibits feeding 
behavior, pheromone release [42], and diapause induc
tion [43] in moths while also inducing flight-to-light 
behavior [44]. Severe dimming does however ameliorate 
the impact of artificial light on the oviposition patterns of 
diurnal wasps [9]; see also Refs. [37,45], suggesting that 
the conservation benefits of dimming may depend on 
the temporal niche of the insect species in question.

Principle 2. Direct light so it falls only where it 
is needed
At their most basic, shielded fixtures prevent artificial 
light from going directly up into the atmosphere and 
reducing star visibility. In addition to these benefits for 
astronomy, shielding could have real ecological benefits: 
recent work suggests that upwelling light is especially 
disorienting to light-attracted insects [46], which tend to 
orient themselves in flight such that the brighter half of 
their visual field is kept overhead. Yet, the degree to 
which shielding actually reduces flight-to-light behavior, 
especially given that many insects are active below the 
height of a standard streetlight, is just beginning to be 
tested [22,24,47]. Its effects on the high-altitude navi
gation of migrating insects, known to orient with respect 
to natural light sources [48], remain entirely unexplored.

Modern shielded fixtures are increasingly designed to 
direct artificial light at particular areas of the ground, 
such as walking paths, and minimize light trespass onto 
bordering vegetation [49] and into rivers [23], where it 
has been shown to dramatically alter the local distribu
tion of insects. One recent test compared fixtures that 
were individually tailored to minimize light leakage 
against conventional streetlights of the same intensity 
and spectral distribution and found that careful direction 
of artificial light alone can significantly reduce flying 
insect attraction [47]. Similar tests of fixtures that focus 
artificial light in a single direction against those that 
diffuse it outward have seen significant declines in the 
attraction of flying insects [22] but not ground dwellers 

[24], with mixed influence of the intensity and spectral 
distribution of the artificial light source itself [22]. While 
more research is needed to understand how factors such 
as fixture type, fixture height, and surface reflectance 
influence effectiveness, shielding certainly appears to be 
a ‘no regrets’ action for insect conservation.

Principle 1. Use light only if it is needed
Relative to fully dark controls, artificial light of all colors, 
timings, shapes, and intensities has profound impacts on 
insect behavior and fitness, many of which are still being 
discovered. For example, recent studies show that dis
proportionate numbers of predators, parasitoids, sca
vengers, and parasites aggregate around artificial lights 
[50], threatening herbivorous caterpillars [51,52], while 
others show that artificial light disrupts circadian path
ways [53–55] in mosquitoes [56] and crickets [53]. The 
simplest method of mitigating these and other fitness 
consequences discussed above (Figure 1) is also by far 
the most effective: removal of unnecessary light and 
restoration of natural darkness.

Conclusion
The past decade has seen a burgeoning of research into 
the behavioral impacts of artificial light on insects. Most 
studies still focus on either alterations to movement ac
tivity (especially flight-to-light behavior) or disruptions 
to ecological functioning (especially insect–plant inter
actions), and standard study systems have emerged for 
each impact type: adult moths for flight-to-light beha
vior, crickets for circadian disruption, and aphids and 
their natural enemies for community effects. While 
knowledge gaps persist regarding, for example, the 
movement ecology of light-averse taxa [57], the devel
opmental physiology of pre-adult insect life stages (but 
see Ref. [53]), and the cascading effects on ecological 
communities, the overall message is clear: unrestricted 
use of artificial light poses a threat to insects.

Recent research by entomologists relevant to the five 
principles for responsible outdoor lighting has focused 
mostly on spectral tuning and, to a lesser extent, dim
ming. Yet neither of these mitigation measures have 
turned out to be sufficiently effective methods of re
ducing insect flight-to-light behavior or ameliorating 
other impacts of artificial light on insects. Nor does the 
relatively scant body of existing research (including that 
on the timing of nocturnal insect activity) clearly support 
the use of part-night lighting. Remarkably little research 
has been done on the benefits of either shielding or 
motion detectors, which is especially striking because 
both evidence and theory suggest that these mitigation 
measures are likely to be highly effective methods of 
minimizing the total exposure of insects to artificial light.

Clearer communication of the nuanced, widespread, and 
alarming impacts of artificial light on insects is urgently 
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needed to inform outdoor lighting policy, which, when 
addressing light pollution at all, currently prioritizes 
practices that have been conclusively demonstrated to 
prevent artificial light from illuminating the night sky. 
Truly responsible outdoor lighting should offer a win- 
win: allowing people to safely use and enjoy outdoor 
spaces at night while retaining both star visibility and the 
ability for humans and insects to coexist within natural 
spaces.
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