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Abstract 
Water quality monitoring at high temporal frequency provides a detailed picture of environmental 

stressors and ecosystem response, which is essential to protect and restore lake and river health. An 

effective monitoring network requires knowledge on optimal monitoring frequency and data 

variability. Here, high-frequency hydrochemical datasets (dissolved oxygen, pH, electrical 

conductivity, turbidity, water temperature, total reactive phosphorus, total phosphorus and nitrate) 

from six UK catchments were analysed to 1) understand the lowest measurement frequency needed to 

fully capture the variation in the datasets; and 2) investigate bias caused by sampling at different times 

of the day. The study found that reducing the measurement frequency increasingly changed the 

interpretation of the data by altering the calculated median and data range. From 45 individual 

parameter-catchment combinations (six to eight parameters in six catchments), four-hourly data 

captured most of the hourly range (>90%) for 37 combinations, while 41 had limited impact on the 
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median (<0.5% change). Twelve-hourly and daily data captured >90% of the range with limited 

impact on the median in approximately half of the combinations, whereas weekly and monthly data 

captured this in <6 combinations. Generally, reducing sampling frequency had most impact on the 

median for parameters showing strong diurnal cycles, whilst parameters showing rapid responses to 

extreme flow conditions had most impact on the range. Diurnal cycles resulted in year-round intra-

daily variation in most of the parameters, apart from nutrient concentrations, where daily variation 

depended on both seasonal flow patterns and anthropogenic influences. To design an optimised 

monitoring programme, key catchment characteristics and required data resolution for the monitoring 

purpose should be considered. Ideally a pilot study with high-frequency monitoring, at least four-

hourly, should be used to determine the minimum frequency regime needed to capture temporal 

behaviours in the intended focus water quality parameters by revealing their biogeochemical response 

patterns.  

Keywords 
Water quality, high-resolution data, monitoring frequency, sampling bias, diurnal cycling, river basins  

 

1. Introduction 

 

Water quality monitoring programmes must strike a balance between resource efficiency (cost) and 

representation of changes in water conditions required to fulfil the monitoring purpose. Traditional 

water quality sampling relies on periodic sample collection and subsequent laboratory analysis but 

such manual sampling regimes cannot capture all events, and indeed biases in data can be caused by 

changing day and time of the week (Johnes, 2007; Skeffington et al., 2015), weather conditions (Rand 

et al., 2022) and extreme high or low flow conditions (Lloyd et al., 2015). Rand et al. (2022) 

compared manual and automated sensor data from the Belgrade Lakes, USA, where they found that 

manual lake sampling showed a significant likelihood to take place during “fair weather”, with lower 

windspeeds and rainfall intensity and higher air temperature than the mean. Infrequent manual 
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sampling of water chemistry, which most likely occurs during standard working hours at regular 

intervals (weekly, monthly etc.), can bias the calculation of annual average concentration, annual 

nutrient load and environmental quality standards (Cassidy and Jordan, 2011; Halliday et al., 2015; 

Johnes, 2007; Jordan et al., 2007; Skeffington et al., 2015). Extreme high or low flow conditions are 

important for nutrient transport; they can contribute to most of the total nutrient load in rivers with a 

flashy hydrology (Cassidy and Jordan, 2011). These conditions are often short-lived, only occur 

infrequently (Johnes, 2007; Lloyd et al., 2014) and will not be captured fully by infrequent manual 

sampling. High flows can promote transport of sediment-bound nutrient fractions from land to water 

or via in-channel remobilisation, whilst low flow conditions are dominated by nutrient inputs from 

sewage effluent, due to low dilution capacity (Halliday et al., 2015), as well as nutrient delivery along 

throughflow pathways including from waterlogged soils when there is drizzle (Collins et al., 2010; 

Durand et al., 2011; Evans and Johnes, 2004; Lloyd et al., 2014; Yates and Johnes, 2013). Thus, 

sampling regimes that capture such conditions are critical to reflect nutrient transport processes and 

estimate nutrient loads accurately. 

Advances in in situ sensing technologies have the potential to reduce bias associated with sampling 

periodicity. Continuous or high temporal resolution hydrochemical sampling therefore can enable an 

enhanced understanding of catchment processes (Bieroza et al., 2023; Blaen et al., 2017; Bowes et al., 

2015b; Kirchner et al., 2004; Lloyd et al., 2015; Rode et al., 2016). This is especially relevant for 

transient events and short-term biogeochemical dynamics, including diurnal or other cyclic patterns 

that are closely linked to hydrological and biological processes (Khalil and Ouarda, 2009) such as 

pollutant load estimates (Johnes, 2007) and response to storm events (Chappell et al., 2017; Jordan et 

al., 2007), as they are based on representative measured concentrations and the discharge rate. In the 

UK, increased interest in high-resolution water quality monitoring is partly driven by the recent 

implementation (April 2023) of Section 82 of the Environment Act 2021, which requires water 

companies to deploy continuous water quality monitoring up and down stream of all sewage effluent 

discharges to a water course (DEFRA, 2023; Hanson, 2023). Simultaneously, drinking water 

production is moving towards smart catchment monitoring and management with high-resolution 
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sensor technologies in source waters; for example for anoxia (Wentzky et al., 2019), iron and 

manganese concentrations (Hammond et al., 2023) and algal bloom related issues (Carey et al., 2021; 

Painter et al., 2023; Zamyadi et al., 2016). 

An important consideration in monitoring, however, is that more data are not always better (Coraggio 

et al., 2022). The optimal sampling regime must balance the minimum frequency needed to capture 

fluctuations, particularly in flashy streams, and the maximum frequency that can be collected 

sustainably (considering power demands and data costs) without returning redundant information and 

increasing potential noise in the data that masks the information required (Coraggio et al., 2022; 

Khalil and Ouarda, 2009). The objectives of the monitoring network, for example meeting certain 

environmental quality standards, detecting sources of pollution or measuring a change before or after 

a mitigation, will determine the required data analysis, which in turn sets requirements for the 

temporal resolution of the data. Determining the temporal frequency of measurement is not a static 

process. Measurement intervals can be optimised over time or in response to external stressors 

(Coraggio et al., 2022), for example adaptive monitoring (Blaen et al., 2016) aims to optimise the 

intervals in real-time when a threshold is met, like an extreme event. This study provides a systematic 

assessment of high resolution hydrochemical data from six different UK catchments to: 1) understand 

the lowest measurement frequency that can fully capture variation in different parameters; and 2) 

investigate bias induced by manual sampling at different times of the day.  

2. Materials and methods 

2.1 Catchment characteristics 

High-frequency water quality data were collected at least every hour using in situ sensors, in six 

different UK rivers (Figure 1): the Wylye (Hampshire Avon catchment), Enborne (Kennet 

catchment), Blackwater drain (Wensum catchment), Thames (Thames catchment), Hiraethlyn (Conwy 

catchment) and Newby Beck (Eden catchment).  
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Figure 1: Catchments in the UK that were used for this study. 

The monitoring stations in the Hampshire Avon (Lloyd et al., 2015; Lloyd et al., 2019; Outram et al., 

2014), Wensum (Cooper et al., 2018; Outram et al., 2014) and Eden (Outram et al., 2014; Owen et al., 

2012; Perks et al., 2015) catchments were part of the DEFRA funded Demonstration Test Catchments 

(DTC). The Enborne monitoring station was part of the LIMPIDS programme and UKCEH Thames 

Initiative (Bowes et al., 2018; Bowes et al., 2015a; Halliday et al., 2014; Wade et al., 2012) and the 

Conwy catchment was monitored as part of the DOMAINE programme (supplied by Chris Yates and 

Penny Johnes, University of Bristol, Bristol, UK; underpinning data set as referenced by Mackay et al. 

(2020) and Yates et al. (2023)). The Thames monitoring station at Goring-on-Thames was part of 

UKCEH Thames Initiative monitoring (unpublished data, supplied by Mike Bowes, UK Centre for 

Ecology & Hydrology, Wallingford, UK, and the UK Environment Agency; referenced in Rode et al. 

(2016) and Moorhouse et al. (2018)). The studied catchments cover a wide range of catchment 

characteristics related to geology and climate, like the base flow index (BFI) and mean flow (Table 1). 

Moreover, they vary significantly from 13 to 4634 km
2
 in area, and there is a marked difference in 

land use (Table 1). Further details about the catchments can be found in the papers referenced in 

Table 1. The list of monitored parameters varied slightly per site, but all included temperature, water 

level or discharge, pH, electrical conductivity (EC), dissolved oxygen (DO), turbidity, chlorophyll-a 
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(Chl-a), nitrate (as N) and total reactive phosphorus (TRP). At some sites, total phosphorus (TP) and 

ammonium (as N) were also measured. Full details of all equipment and sampling regimes, including 

monitoring frequency (Table S1 in supplementary materials), as well as details on required data 

conversions can be found in the supplementary materials. 
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Table 1: Catchment characteristics of the six UK catchments studied and the exact period of high-frequency monitoring. 

River Hiraethlyn Enborne Wylye Thames Blackwater Drain Newby Beck 

Catchment Conwy Kennet Hampshire Avon Thames Wensum Eden 

Monitored location Bodnant Brimpton Brixton Deverill Goring-on-Thames Kiosk F - Park Farm Newby 

Latitude 53.2260 51.3803 51.1600 51.5235 52.7771 54.5853 

Longitude -3.7990 -1.1838 -2.1901 -1.1435 1.1491 -2.6202 

Size of catchment (km
2
) 20.5 (g) 148.0 50.2 4633.7 (h) 19.7 12.5 

Elevation of sampling 

point (m a.s.l.) 

11 (f) 62 189 (a) 30 43 (a) 233 (i) 

Annual average rainfall 

(mm) 

1200 (f) 810 (d) 967 (d) 680 (d) 655 (a) 1167 (a) 

Baseflow Index (BFI) 0.46 (f) 0.54 (d) 0.93 (a) 0.64 (d) 0.66 (c) 0.39 (a) 

Mean flow (m
3
/s) 0.54 (l) 1.06 (l) 0.47 (l) 23.0 (l) 0.094 (c) 0.33 (l) 

Dominant land use Improved grassland (g) Arable and 

grassland 

Livestock and 

cereals 

Arable/horticulture, 

improved grassland (h) 

Intensive arable 

cultivation 

Livestock 

(dairy and 

meat) 

% Urban 0.3 (g) 6.5 7.0 7.3 1.0 2.0 (d) 

Land use distribution 
   

 
  

Monitoring start date 19/06/2015 01/11/2009 13/03/2012 29/12/2013 08/03/2011 14/09/2011 

Monitoring end date 30/09/2017 29/02/2012 05/03/2014 13/10/2015 31/12/2014 01/01/2016 

a: Robson and Reed (1999); b: https://www.landis.org.uk/soilscapes/ (accessed: 24/06/2021); c: Cooper et al. (2018); d: Marsh and Hannaford (2008); e: 

https://en-gb.topographic-map.com/maps/iu/United-Kingdom/ (accessed: 24/06/2021); f: Estimate based on Yates et al. (2023) and Marsh and Hannaford 

(2008); g: Yates et al. (2019a); h: Gauging station Thames at Reading https://nrfa.ceh.ac.uk/  (accessed: 24/06/2021); i: Outram et al. (2014); j : Lloyd et al. 

(2019); k : Bowes et al. (2015b); l: Calculated from dataset. Legend for land use distribution pie-charts: 
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2.2 Analysis 

2.2.1 Data manipulation – artificial decimation 

At each site, the sensors logged data at time intervals ranging from 15 minutes to one hour (Table S1). 

The high-resolution datasets were sub-sampled at predefined intervals to create a subset of smaller 

datasets. This artificial decimation (Johnes, 2007) process was executed in two different ways, to test 

a) the influence of reduced sampling frequency on median and range, and b) the influence of intra-

daily variation. Methods are described below: 

2.2.2 Temporal frequency effects (a) 

Some data in this study were collected every 15-min, but for consistency the lowest available 

frequency in all catchments was used for this comparison, which was hourly data. Artificial 

decimation was used to create one version of an hourly (every day at every whole hour), four-hourly 

(every day at 00:00, 04:00, 08:00, 12:00, 16:00 and 20:00), twelve-hourly (every day at 00:00 and 

12:00), daily (every day at 12:00), weekly (every Wednesday at 12:00), and monthly dataset (every 

second week of the month, on Wednesday at 12:00). Artificially created datasets with four-hourly, 

twelve-hourly, daily, weekly, and monthly data were compared to the hourly data, to assess the 

influence of a reduced frequency on the percentage of the total hourly range captured in the data set 

and the percentage change in the median.  

Percentage of the total range captured was calculated for each parameter accordingly (Equation 1):  

Equation 1: 
𝑀𝐴𝑋(𝑥)−𝑀𝐼𝑁(𝑥)

𝑀𝐴𝑋(ℎ𝑜𝑢𝑟𝑙𝑦)−𝑀𝐼𝑁(ℎ𝑜𝑢𝑟𝑙𝑦)
∗ 100  

where x is the artificially created datasets e.g. four-hourly, twelve-hourly, daily, weekly and monthly 

data. Parameter behaviour is determined by the median, 25% and 75% interval and data distribution, 

which can be visualised by the width of a violin boxplot (the width of the boxplot depends on the 

number of datapoints at each value). 

Percentage change in the median was calculated for each parameter accordingly (Equation 2): 
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Equation 2: 
𝑀𝑒𝑑𝑖𝑎𝑛 (𝑥)−𝑀𝑒𝑑𝑖𝑎𝑛 (ℎ𝑜𝑢𝑟𝑙𝑦)

𝑀𝑒𝑑𝑖𝑎𝑛 (ℎ𝑜𝑢𝑟𝑙𝑦)
∗ 100 

where x is the artificially created datasets e.g. four-hourly, twelve-hourly, daily, weekly and monthly 

data. 

2.2.3 Intra-daily variation (b) 

Artificial decimation was repeated for multiple initial conditions to create different versions of a daily 

dataset (Halliday et al., 2015; Johnes, 2007); Daily with different times of the day: every day at 00:00, 

04:00, 08:00, 12:00, 16:00, 20:00, resulting in six different daily datasets. 

To determine intra-daily variation, for each of these timeframes a new dataset was created which 

included the median for each day. The difference between the median and the corresponding 

datapoints in the six artificially decimated daily datasets was calculated and compiled in one dataset 

(Figure 2). For example, the intra-daily variation data consisted of a calculated difference for each of 

the six times of day (00:00, 04:00, 08:00, 12:00, 16:00, 20:00) for every day in the multi-year dataset. 

The outcome was tested for significant differences using Kruskall-Wallis analysis of variance and 

Dunn’s post-hoc test (Rstudio version 2023.06.2+561, R version 4.2.1 (2022-06-23 ucrt)). Each 

dataset was then banded by significance, with data that showed no significant differences grouped 

together (denoted by the same colour). Variation for the multi-year datasets was plotted as boxplots 

(with significant outliers removed to enable better visualisation on the y-axis).  
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Figure 2: Artificial decimation process to calculate intra-daily variation. Daily median and six new daily datasets from six 

selected times of day were created to calculate intra-daily variation for the whole dataset. 

3. Results 

3.1 Seasonality 

Variation in all parameters recorded in the full datasets from each site prior to artificial decimation 

(Figure 3) indicated a considerable temporal and spatial difference in range, median as well as 25% 

and 75% interval. The seasonal effect depended on the catchment and varied by parameter (Figure 3). 

Median nitrate, total phosphorus and total reactive phosphorus concentrations calculated per month 

(in multi-year datasets) highlight important biogeochemical processes and dominant transport 

mechanisms that occur throughout the year, which are catchment dependent (Figure S2 in 

supplementary materials).  
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Figure 3: Boxplots (without outliers) for water quality data from the six study catchments. Bl. Drain = Blackwater Drain. 

Seasons are defined as follows; spring: March, April, May; summer: June, July, Augustus; autumn: September, October, 

November; winter: December, January, February. 
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3.2 Temporal frequency effects 

Reducing the temporal frequency had a different impact on the captured range (Table 2), median 

(Table 2) and data distribution (histogram; the width of the violin boxplot visualises the number of 

datapoints at that value, Figure S3 in supplementary materials), depending on the parameter and 

catchment. Reduced frequency showed the largest percentage change in median for turbidity, 

dissolved oxygen, temperature, TP and TRP, and had the largest overall impact on total range of 

turbidity captured (Table 2), but there are many nuances dependent on the catchment. Monthly 

frequency impacted dissolved oxygen concentrations in the Wylye and turbidity in Blackwater Drain, 

changing the median by >13% whilst capturing 53% and 8% of total range, respectively (Table 2). In 

general, reducing frequency had the least impact on median and range for nitrate and electrical 

conductivity, followed by dissolved oxygen, temperature, and pH, although this was largely catchment 

dependent. Reducing to monthly frequency had a relatively small impact on nitrate concentration 

observations in Newby Beck and electrical conductivity in the Hiraethlyn, where the median changed 

by <2% whilst 88% and 90% of the total range was recorded, respectively (Table 2).  

The percentage of the total range captured and percentage change in the median were not always 

similarly affected by a reduction in frequency. For example, daily data for dissolved oxygen in the 

Wylye almost captured the total range of the hourly data variation (99%) but had a large impact 

(>10% change) on the calculated median (Table 2). The opposite pattern, with a large impact on total 

range captured and relatively small impact on median, was also present in some catchments (Table 2), 

for example in weekly observations of EC in Blackwater Drain (28% of total range captured, 0% 

change in median).  

In the six catchments, the change in median for turbidity was most consistent, decreasing (negative) at 

monthly compared to hourly data, but this was not the case for every temporal frequency studied 

(Table 2). There was no consistent direction (increase or decrease) of change in the median with 

reduced temporal frequency for any of the studied catchments (Table 2).  
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Table 2: Percentage of total range captured and percent median change, comparing reduced frequencies to hourly data. Reduced temporal frequency datasets were artificially created at: four-

hourly, twelve-hourly, daily, weekly and monthly frequency. Figure S3 violin boxplots visualise this data and the data distribution. Colours in the percentage of total range table are added to 

clarify the trend, with a continuous green-yellow-red scale to indicate 100-50-0 percent of total range captured by the reduced frequency datasets. 

  
 

% Total range captured Median % change 

River 

Paramete

r 

4 Hourly 

(%) 

12 Hourly 

(%) 

Daily 

(%) 

Weekly 

(%) 

Monthly 

(%) 

4 Hourly 

(%) 

12 Hourly 

(%) 

Daily 

(%) 

Weekly 

(%) 

Monthly 

(%) 

Hiraethlyn 

Temperat

ure 100 88 82 74 62 0.00 -0.18 -0.18 -0.26 -0.62 

DO 

(mg/L) 80 73 64 44 38 0.11 0.43 2.46 1.98 4.98 

pH 94 94 94 92 54 -0.15 0.00 0.31 0.62 -0.77 

EC 98 98 96 95 90 0.00 0.00 0.00 -0.73 -0.97 

Turbidity 100 19 19 3 1 33.33 100.00 200.00 0.00 -33.33 

NO3-N 82 80 79 59 36 0.00 0.31 -0.62 -2.15 0.31 

TRP NA NA NA NA NA NA NA NA NA NA 

TP NA NA NA NA NA NA NA NA NA NA 

Enborne 

Temperat

ure 97 93 93 87 74 0.00 0.97 0.97 -4.85 -7.28 

DO 

(mg/L) 99 81 80 74 65 0.06 2.02 5.03 9.74 10.60 

pH 100 88 74 65 47 0.00 0.13 0.25 0.13 0.13 

EC 83 83 75 52 48 0.00 0.00 0.63 0.95 0.95 

Turbidity 83 48 48 8 6 0.85 1.69 -1.69 -6.78 -0.85 

NO3-N 93 90 79 67 54 0.00 0.18 0.18 0.55 -0.36 

TRP 97 85 80 80 53 0.61 0.00 -5.32 1.23 -9.20 

TP NA NA NA NA NA NA NA NA NA NA 

Wylye 

Temperat

ure 100 81 80 69 64 0.00 1.28 7.95 7.70 5.99 

DO 

(mg/L) 99 99 99 88 53 0.00 1.49 10.55 10.18 14.38 

pH 99 96 95 83 73 0.00 0.13 1.29 1.23 1.94 

EC 98 85 85 58 11 0.00 0.00 -0.32 -0.16 0.32 

Turbidity 100 52 51 33 3 0.00 -3.13 -9.38 -6.25 -12.50 

NO3-N 95 95 95 55 17 -0.06 -0.05 0.12 -0.10 1.43 
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TRP 93 84 52 48 11 0.00 0.00 0.00 0.00 -3.92 

TP 98 60 42 38 9 0.21 0.00 0.00 -0.22 -7.29 

Thames 

Temperat

ure 99 97 97 95 78 0.07 0.07 0.59 0.63 3.97 

DO 

(mg/L) 97 96 75 74 68 0.00 0.27 0.27 2.71 -2.58 

pH 100 67 67 65 59 0.00 0.00 0.12 -0.12 -0.49 

EC 100 96 94 94 84 0.00 -0.04 -0.03 -0.34 -0.94 

Turbidity 68 68 68 12 12 -0.57 0.85 1.70 6.75 -12.00 

NO3-N 99 99 99 39 31 0.00 -0.11 -0.11 -0.79 -0.07 

TRP 87 85 82 82 71 0.00 1.46 1.46 1.46 -6.58 

TP 71 69 66 59 48 0.00 0.00 1.88 1.61 -0.27 

Blackwater 

Drain 

Temperat

ure 98 89 88 80 57 -0.19 0.84 6.00 2.44 3.61 

DO 

(mg/L) 98 95 91 80 73 0.00 0.60 2.05 3.50 6.70 

pH 98 77 77 55 41 0.00 0.00 0.26 0.26 0.26 

EC 100 67 66 28 19 0.00 0.00 0.00 0.00 -0.13 

Turbidity 100 89 89 15 8 0.00 -1.64 -9.84 -11.48 -13.11 

NO3-N 99 98 98 90 39 0.00 0.21 0.64 0.64 4.06 

TRP 92 89 87 29 18 0.00 0.00 0.00 0.00 0.00 

TP 96 57 57 17 11 0.00 0.00 0.00 0.00 -12.50 

Newby Beck 

Temperat

ure 99 89 87 85 71 -0.11 -0.21 0.96 0.53 0.85 

DO 

(mg/L) 59 59 59 43 23 0.09 0.83 4.86 4.95 6.42 

pH 97 92 92 87 73 0.00 0.12 0.87 1.00 1.06 

EC 98 96 73 72 51 0.00 0.20 0.39 0.39 -0.99 

Turbidity 100 100 100 36 11 0.00 0.00 -4.17 -6.25 -12.50 

NO3-N 98 97 97 91 88 -0.11 0.11 0.11 0.44 -1.31 

TRP 100 82 56 44 43 0.00 0.90 1.74 -0.41 1.74 

TP 100 100 99 67 42 0.00 2.86 4.57 0.56 4.01 
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Four-hourly data captured most of the parameter behaviour (Figure S3, supplementary materials), as 

well as the percentage of total range captured and percentage change in median compared to hourly 

data (Table 2). From all 45 individual parameter-catchment combinations (six to eight parameters in 

six catchments), four-hourly data captured most of the hourly range (>90%) for 37 combinations, and 

41 had limited impact on the median (<0.5% change). The Wylye and Blackwater Drain four-hourly 

datasets captured 92%-100% of the total range for all parameters in the hourly data, which is a higher 

overall range captured than the other four catchments at four-hourly frequency (Table 2). The Newby 

Beck four-hourly dataset captured 95-100% of the total range apart from for DO, where only 59% was 

recorded (Table 2). The other catchments captured >90% for most parameters at four-hourly 

measurement frequency, except for DO and nitrate at the Hiraethlyn; turbidity and EC at the Enborne; 

and turbidity, TP and TRP at the Thames (Table 2). Twelve-hourly and daily data represented >90% of 

the range with limited impact on the median (<0.5% change) in approximately half of the 

combinations. Daily measurements captured >90% of total range for certain parameters; nitrate (4 of 6 

catchments), pH (3 of 6 catchments), EC (2 of 6 catchments) and DO (2 of 6 catchments). Most 

parameters at weekly frequency did not cover >90% of total range, except for the pH and EC at the 

Hiraethlyn; EC and temperature at the Thames; nitrate at the Blackwater Drain and nitrate at Newby 

Beck (Table 2), which all had <1% change in median. Monthly data frequency resulted in generally 

low percentages of range captured for all catchments, with some exceptions (Table 2). Monthly data 

from the Hiraethlyn revealed the lowest percentage of range captured; 1% of the hourly range in 

turbidity, but also the highest percentage of range captured; 90% of the hourly range in EC (Table 2). 

3.3 Intra-daily variation 

Most parameters and catchments displayed significant differences in variation between the six 

different times of day (denoted by differing colour bands in Figure 4).  
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Figure 4: Intra-daily variation for all study catchments based on six versions of a daily dataset. Datapoints were selected 

from different times of day; 00:00, 04:00, 08:00, 12:00, 16:00, 20:00. Significance bands bar colours indicate for each 

individual plot (each catchment within each parameter) the significance between the six different times of day from the 
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Kruskall-Wallis analysis of variance and Dunn’s post-hoc test; bars with the same colour are not significantly different from 

each other, whilst different colours denote significant difference. 

3.1.2 Physico-chemical parameters  

The intra-daily variation in water temperature can be used to interrogate the patterns of significance 

shown, as this parameter has a predictable cyclic pattern throughout the day, with cooler temperatures 

at night and warming throughout daylight hours. This physical process persists throughout different 

seasons and is expected to reveal a strongly significant intra-daily variation pattern for this multi-year 

analysis. The variation is calculated as the parameter value at one of the six selected times of day 

minus the parameter median of the whole day, collated for each day in the dataset. The outcome 

plotted for the six selected times of day allows a comparison of variation within a day (intra-daily). 

Throughout the dataset there are cooler temperatures at night-time, which result in a more negative 

variation value (for all days in the dataset, the value at that time is lower than the daily median), and 

warmer temperatures at daytime which cause a more positive variation (higher values than the daily 

median) (Figure 4). The variation for the water temperature was significantly different for every time 

of day in almost all catchments, which means the described pattern was consistent throughout the 

whole dataset and all seasons (denoted by differing colours in Figure 4). Relative to the median 

temperature each day, 04:00 or 08:00 was the coldest and 16:00 was the warmest in every catchment. 

The Thames had the smallest range in variation, followed by the Enborne. 

A cyclical day-night pattern for DO and pH was also visible in all catchments, albeit more pronounced 

in some, such as the River Wylye and Newby Beck (Figure 4). In most of the catchments there was a 

strong connection between DO and pH, where they both followed the same day-night trend. However, 

in the Blackwater Drain and Hiraethlyn, DO had maximum positive variation four hours earlier than 

pH. Electrical conductivity (EC) revealed a significant diurnal trend in most catchments, apart from 

the Enborne and Thames. The variation in EC followed the opposite trend of pH and DO in the Wylye 

and Newby Beck, DO in the Hiraethlyn and pH in the Blackwater Drain. Intra-daily variation for 

turbidity in the Enborne, Thames, Blackwater Drain and Newby Beck showed significantly more 
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positive variation at night and significantly more negative variation during the day (Figure 4), whilst 

the Hiraethlyn and Wylye didn’t show any trends. 

3.1.4 Total reactive phosphorus, total phosphorus and nitrate 

Intra-daily variation in nutrients revealed less clear significant patterns than the physico-chemical 

parameters, and these patterns were catchment dependent (Figure 4). Nitrate had significant intra-

daily variation in most catchments, apart from the Thames, with the clearest diurnal cycle (most 

significant differences between the timesteps) in the Blackwater Drain. There was a general trend 

towards more positive variation (higher values compared to the median for each day) from early 

morning until mid-day and more negative variation (lower values compared to the daily median) from 

late afternoon until midnight (Figure 4), except for the Hiraethlyn in which this pattern seemed to be 

reversed. Total reactive phosphorus (TRP) and total phosphorus (TP) showed significant intra-daily 

variation in some catchments, but there was often no clear diurnal trend. The Enborne showed the 

clearest diurnal cycle in TRP with most positive variation in early morning and most negative 

variation in the afternoon. Newby Beck and the Blackwater Drain had similar patterns for TRP and TP 

and revealed a general tendency for more negative variation in the morning. TRP in the Enborne and 

TP in the Blackwater Drain followed similar intra-daily variation patterns to turbidity (Figure 4).   

Differences in intra-daily variation depending on the season will not be visible in Figure 4, as the 

datasets consisted of multiple whole years which would even out any intra-daily variation pattern that 

only existed seasonally. Examples for the Enborne and Newby Beck are presented here to show intra-

daily variations by season (Figure 5), while all other results are visualised in supplementary materials, 

Figure S4. Nitrate and TRP concentrations for the Enborne and Newby Beck, with intra-daily 

variation separated by season (Figure 5), illustrate the influence of season on intra-daily variation 

patterns in nutrients. Nitrate concentrations in the Enborne didn’t show an impact of season on intra-

daily variation, but Newby Beck had a much clearer diurnal cycle in spring, summer and autumn 

compared to winter (Figure 5). TRP concentrations in the Enborne had clear diurnal cycle in spring, 

summer, and autumn but not in winter, whereas Newby Beck had only minor diurnal fluctuations in 

summer (Figure 5).  
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Figure 5: Nitrate (as N) and total reactive phosphorus (TRP) intra-daily variation separated by season for the Enborne and 

Newby Beck. Datapoints were selected from different times of the day; 00:00, 04:00, 08:00, 12:00, 16:00, 20:00, which are 

indicated by different colours. 

4. Discussion  
Catchment characteristics such as size, land use (urban and agriculture) and dominant flow paths 

(groundwater, throughflow or overland flow) which are primarily controlled by catchment geology, 

are a first order control of variation in these datasets. Previous assessments have demonstrated that 
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monthly sampling cannot capture the full variation of physical and biogeochemical parameters, and 

even that monitoring at less than daily frequency can alter nutrient load assessments (Wade et al., 

2012). Infrequent sampling and random sampling effects may result in the same water body being 

misclassified under legislation such as the Water Framework Directive (Halliday et al., 2015; 

Skeffington et al., 2015), with multiple classes possible depending on sampling frequency for the 

determinand of interest. However, different parameters display different patterns in different 

catchments, seasons and times of the day, so exploring high-resolution data and signposting when, 

where and what frequency observation is necessary is critical for optimising sampling regimes.   

4.1 Reduced temporal frequency effects 

Reducing temporal frequency creates the risk that the data will not capture the “real” median and 

range, a phenomenon termed ‘aliasing’ (Chappell et al., 2017). Reducing measurement frequency 

from hourly to four-hourly, twelve-hourly, daily, weekly, and monthly in this study increasingly 

changed the interpretation of the data by altering data distribution, median and range, with catchment- 

and parameter-specific effects. In general, turbidity, dissolved oxygen, temperature, TP and TRP 

showed the largest percentage change in median with reduced frequency of observation, whilst the 

greatest overall impact on total range was for turbidity, although this effect was catchment dependent. 

These parameters, where reduced frequency has the largest impact, are expected to have a large data 

variability due to rapid rainfall response (turbidity which is controlled by sediment mobilisation and 

transport, and overland flow-generated phosphorus transfers such as for TP) or strong diurnal cycles 

(temperature and dissolved oxygen). 

Reduced temporal frequency did not always affect the captured range and the median simultaneously, 

since the range could be impacted without any changes in the median and vice versa. Data variability 

for each parameter in every catchment can be influenced by some or all of; time of day (diurnal 

cycle), season (seasonal cycle) and extreme weather (rainfall-response and flow pathway activation 

and separation) (Figure 6). Parameters which are less strongly controlled by the latter, and in 

particularly with overland flow or near-surface throughflow pathways, such as nitrate and electrical 

conductivity in some study catchments, can potentially be measured at lower temporal frequencies 
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without compromising the median and range, but this depends on the monitoring purpose and the 

catchment flow activation regime.  

 

Figure 6: Processes that can impact data variability and their effect on median, range and data distribution. 

Variability caused by time of day has the largest impact on the median, as diurnal cycles cause intra-

daily variation in some parameters, which won’t be fully represented in the data set (Figure 6). 

Variability caused by seasonality alone will have relatively little effect on median and range at 

reduced frequency. However, in nutrient load calculations by Williams et al. (2015), the summer 

season was more biased and less precise for nitrate (as N) and dissolved reactive phosphorus (DRP). 

Moreover, seasonality can influence the diurnal cycle, illustrated by the nitrate and total reactive 

phosphorus concentration presented in this study (Figure 5). Variability caused by extreme weather 

responses will have the largest impact on range, because reduced frequency will not fully capture high 

concentration flux responses to short-term extreme events (Figure 6), unless the sample happens to 

accidentally capture the peak of such an event, which can then positively bias annual load estimates 

(Johnes, 2007; Jordan et al., 2007). Variability caused by all three factors will have an impact on data 

distribution (histogram), by not capturing the full width of the data variation. 

 

Reducing the measurement frequency not only impacts the range and variability of the data, but also 

the distribution (Figure S3 in supplementary materials), as demonstrated by Cassidy and Jordan 

(2011) for TP, Johnes (2007) for total dissolved phosphorus (TDP) and TP and Lloyd et al. (2014) for 
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these same fractions plus for nitrate. This result indicates that monthly or weekly sampling fails to 

capture important extreme events, and potentially underestimate (or overestimate) median and 

subsequent annual load calculations (Johnes, 2007). While the median did change in this study, our 

data showed no consistent under- or over-estimation. This can be partially attributed to the nature of 

the analysis, as sub-sampling was done at only one selected time of day (daily), day of the week 

(weekly) and week of the month (monthly), based on common manual sampling regimes. These 

conditions, however, would have had an impact on the direction of percentage change in the median, 

as the time of day would have skewed the results, especially for parameters with strong diurnal cycles 

like dissolved oxygen (Rand et al., 2022). 

4.2 Optimal frequency 

From all 45 analysed parameter-catchment combinations (six to eight parameters in six catchments), 

four-hourly data captured most of the hourly range (>90%) for 37 combinations, and 41 out of 45 had 

limited impact on the median (<0.5% change). Twelve-hourly and daily data captured >90% of the 

range in 17 and 15 combinations respectively, with limited impact on the median in 30 and 19 

combinations, respectively. Weekly data captured >90% of the hourly range in 6 combinations and 16 

had limited impact on the median. Monthly data didn’t capture >90% of the hourly range in any 

combination, whilst 10 had limited impact on the median. The individual parameters that were most 

affected by reducing frequency depended on the catchment.  

Mathematical methods can define an optimum sampling frequency for any water quality parameter by 

calculating the point at which an increase in frequency does not provide an increase in information. 

Coraggio et al. (2022), for example, used high-frequency monitoring data from Bristol Harbour and 

mathematically determined the optimum sampling frequency for water temperature, electrical 

conductivity, dissolved oxygen, and turbidity as 9 hours, 6 hours, 5 hours, and 3 hours, respectively. 

Parameters with a rapid response to extreme events, such as turbidity and total or particulate 

phosphorus fractions, need to be monitored at a higher frequency to capture full data variability. 

Parameters with a diurnal cycle, like pH, dissolved oxygen and electrical conductivity need to be 

monitored frequently enough to capture these cycles or could be monitored at an appropriate, but 
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standardised time on each day to calculate an average, depending on the monitoring purpose. 

Changing the time of day at which observations are captured, within any monitoring programme 

could bias the resulting data sets.   

To determine the optimal monitoring frequency for a parameter, which captures sufficient data 

without using excess resources, the following factors need to be considered; (I) Parameter & 

catchment and (II) Monitoring purpose. 

I) Parameter & catchment 

Parameter and catchment interaction determined the effect of reduced temporal frequency on the 

range, median and data distribution. No parameter in this study was found to behave consistently for 

the six different catchments, hence parameter behaviour was largely dependent on catchment specific 

characteristics that define its response to biogeochemical cycling processes and hydrological regime 

(Figure 6).  

Catchment characteristics 

As observed in previous work on P fractions alone (Johnes, 2007; Jordan et al., 2007) catchment 

characteristics such as the contribution of groundwater to river flow (base flow index), land use 

(urban and agriculture) and size have a strong impact on water quality data variability (Table 1). 

Catchment size can strongly influence data distribution, with biogeochemical changes damped or 

subject to lag times (Creed et al., 2015). Year-round high flows in the Thames (Table 1) were found to 

mask local biogeochemical effects, which is possibly a result of the large catchment size and 

subsequently large river flow volume (Williams et al., 2000). Diurnal biogeochemical patterns in 

rivers are often stronger during stable, non-turbid, low flow conditions as riverine biological processes 

are more prominent (Bowes et al., 2016; Scholefield et al., 2005). 

Catchments with a high base flow index (BFI) have notable groundwater contributions which 

influence temperature and nutrient concentrations. This is illustrated in the Wylye, where groundwater 

nitrate inputs vary inversely with overland flow inputs (Outram et al., 2014; Yates and Johnes, 2013). 

Nutrient concentrations are also strongly influenced by agriculture and urban land use (Salvia-

Castellví et al., 2005). Intensive livestock farming and urban wastewater discharges cause a similar 
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biogeochemical reaction as their effluents are both rich in ammonium (Donald et al., 2011). Rivers 

with a more urbanised catchment will receive a larger proportion of wastewater discharges, from 

sewage treatment works (STW) or septic tanks, especially during low flow conditions (Macintosh et 

al., 2011; Yates et al., 2019b). STW discharges are often related to increased turbidity, EC, 

temperature and ammonium and phosphorus, whilst triggering microbial activity; nitrification 

(production of nitrate) and the decomposition of organic material, which can in turn reduce dissolved 

oxygen (Halliday et al., 2015) and change the composition of the nutrient pool instream (Yates et al., 

2019b).   

Dominant impact on data variability 

Temporal effects 

Our analyses show that all catchments had a clear intra-daily water temperature pattern, coldest in the 

early morning and warmest late afternoon. Dissolved oxygen and pH also showed intra-daily variation 

in every catchment, positive in the afternoon and negative in the early morning as a result of 

photosynthesis-respiration cycles. Driven by diurnal water temperature and solar energy cycles, 

daytime photosynthesis removes (acidic) carbon fractions and produces oxygen, whilst night-time 

respiration does the opposite (House, 2003; Scholefield et al., 2005). The amplitude of this biological 

diurnal cycling depends on the temperature, light availability, and the relative contribution of 

autotrophic and heterotrophic organisms (Nimick et al., 2011). More abundant submergent plant 

communities in certain catchments, particularly chalk streams like the Wylye (Evans and Johnes, 

2004; Lloyd et al., 2019; Yates and Johnes, 2013), would explain its more prominent diurnal cycle for 

DO and pH. Electrical conductivity had intra-daily variation, negative in the afternoon and positive in 

the early morning, in most catchments apart from urbanised rivers Enborne and Thames, which is 

most likely due to uptake and release (or lack of uptake) of free ions with diurnal biological activity. 

Intra-daily variation for turbidity, negative (lower values than the daily median) in the afternoon and 

positive (higher values than the daily median) in the early morning, occurred in most catchments apart 

from the Wylye and Hiraethlyn, which might be a result of night-time bioturbation: sediment 

resuspension caused by the feeding and movement of fish and invertebrates like crayfish (Cooper et 

al., 2020; Cooper et al., 2016; Halliday et al., 2015). These natural biogeochemical patterns can be 
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masked by, for example, the volume of flow, shading from bankside growth, a large groundwater 

influx with lower temperatures or a large influx of non-natural water such as sewage outflows. 

Nitrate as (N), total reactive phosphorus and total phosphorus can also follow diurnal cycles as a 

response to nutrient uptake by biological activity in the river, which results in a typical diurnal cycle 

of lowest concentrations in the late afternoon and highest in the early morning (Cooper et al., 2020; 

Nimick et al., 2011; Palmer-Felgate et al., 2008; Scholefield et al., 2005). However, in most rivers, 

this is not the dominant process all year round, because of minimal biological activity in the winter 

months and the alteration of natural cycles by anthropogenic influences (agriculture or wastewater 

discharges) (Jordan et al., 2007; Nimick et al., 2011; Pellerin et al., 2009). In urbanised catchments, 

electrical conductivity, turbidity, nitrate (as N) and phosphorus fractions (TRP, TP) can also exhibit 

diurnal cycles because of consistent daily patterns in wastewater effluent discharges to these rivers 

(Halliday et al., 2014; Palmer-Felgate et al., 2008; Withers and Jarvie, 2008). High-frequency data 

from the River Cut, of which 36%-90% of flow consists of STW effluent, revealed a double-peak 

daily EC signal, during midday and late evening, a delayed response to peak domestic water usage in 

the morning and evening (Palmer-Felgate et al., 2008; Withers and Jarvie, 2008), though such effects 

will become less evident in larger rivers with greater dilution capacity. The same parameters can 

exhibit diurnal signals in agricultural catchments because of consistent daily discharges from dairy 

farm operations (milking) (Foy and Kirk, 1995), which might also have a delayed response. 

Diurnal cycles can also be influenced by seasons, so although seasonal cycles themselves will most 

likely be captured with a reduced temporal monitoring frequency (monthly), it is critical to understand 

the influence of seasonal signals on daily, and sub-daily (for example, extreme weather) events. In 

certain catchments, episodic short-lived extreme events can play a major role in biogeochemical 

processes, and it is important to fully capture their data variability.  

II) Monitoring purpose 

Optimal temporal frequency depends on the purpose of monitoring; long-term trend analysis, load 

calculations and storm-induced solute transport modelling require different inputs and therefore have 

unique data frequency demands (Coraggio et al., 2022). Sub-sampling high-frequency data to pre-
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determined lower frequencies can be done iteratively to contain multiple initial conditions, and 

determine the optimal monitoring frequency for specific purposes (Chappell et al., 2017; Coraggio et 

al., 2022; Crockford et al., 2017; Johnes, 2007; Reynolds et al., 2016; Skeffington et al., 2015; 

Williams et al., 2015). Previous analyses have suggested that seasonal variation or long-term trends 

can be captured with monthly or up to half-yearly frequency (Coraggio et al., 2022). For basic 

statistical calculations, for example to assign Water Framework Directive classifications, for 

phosphorus fractions, dissolved oxygen, pH and temperature (Skeffington et al., 2015), or to detect 

trends in nitrate data such as mean concentration, peak concentration, drinking water standard 

exceedance and flux (Reynolds et al., 2016), weekly or daily sampling is recommended. In annual 

load estimates (Bowes et al., 2009; Crockford et al., 2017; Johnes, 2007; Williams et al., 2015) daily 

sampling gives the more robust and reliable results but weekly is also acceptable provided the 

uncertainties associated with load estimates are also reported (Lloyd et al., 2014). This largely 

depends on the nutrient fraction, the season and catchment characteristics as those influence reaction 

time and variability. Williams et al. (2015) found optimal frequency for dissolved reactive phosphorus 

(DRP) was every 13-26 hours and nitrate (as N) every 2.7-17.5 days. When modelling 

biogeochemical response during storm events (Chappell et al., 2017; Lloyd et al., 2015; Outram et al., 

2014), a higher measurement frequency is required to capture this accurately, with Chappell et al. 

(2017) arguing for  sampling rates of less than 120 minutes to greater than 600 minutes. However, 

these studies, and our data demonstrate that minimum temporal frequency can change over time, and 

between catchments and parameters, with a higher frequency needed when there is more variation and 

depending on the variable of interest and its environmental behaviour in each catchment. 

4.4 Sensor uncertainty implications for monitoring design 

The data variability captured by any monitoring campaign is subject to the limitations of the 

equipment used for measurement. Where data fluctuations are within the uncertainty bounds of a 

technique, or when measurements are subject to bias, limiting the availability of data points by 

reducing measurement frequency can be problematic. It is therefore critical that uncertainty bounds 

are known to ensure relevant fluctuations can be captured. The uncertainty of the sensor 
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measurements used in this study is well-quantified, by comparison between laboratory samples for TP 

and nitrate (as N) and the sensor data at Brixton Deverill on the Wylye (Lloyd et al., 2015). The 

headline uncertainty bounds of ±0.15 mg/L for TP and ±0.75 mg/L for nitrate (as N) calculated by 

Lloyd et al. (2015) suggest that the daily variation patterns that we have identified could fall within 

the range of uncertainty. The maximum daily variation without outliers that we identified in the six 

studied catchments is ±0.05 mg/L for TP and ±0.5 mg/L for nitrate (as N). However, where the sensor 

data display daily variation, the uncertainty bounds of the data also vary according to the antecedent 

conditions, so the signal is unlikely to fluctuate between the highest and lowest bounds at adjacent 

time points. This temporal autocorrelation effect means that the variations revealed in our data are 

likely to be a real signal, even if they fall within the overall sensor uncertainty. It is therefore 

imperative that data users have a strong understanding of the measurement capabilities of the chosen 

device.  

4.5 Recommendations 

Reliance on weekly or monthly data means the likelihood of capturing total data variability (range and 

median) is small for most catchments. A balance is therefore required to determine the most cost-

effective yet representative sampling regimes for different catchments. High-frequency sensor data 

cannot be captured everywhere, so instrumentation should be selected and deployed for the target 

chemistries of interest. It is also important to note that sensors cannot currently measure all 

parameters of interest, so optimal sampling programmes are likely to combine both high resolution 

sensor networks with manual or automated sample collection paired with laboratory analyses where 

tighter quality assurance and quality control can reduce uncertainties, albeit at a lower temporal 

sampling resolution. Jordan and Cassidy (2022) created an overview with important considerations to 

select a fit-for-purpose monitoring strategy, for example stakeholder engagement and evidence for 

policy or land-use management changes. 

Our analysis of sensor datasets here shows that the size of the catchment, land use, baseflow index 

and the degree of urbanisation with associated sewage discharges to rivers will determine the most 

important biogeochemical cycles for each parameter in each season, and hence the required sampling 
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frequency when relying on sensor-derived observations. An additional challenge is that the minimum 

temporal frequency is not static but can vary per season and per year. This variability might also 

increase in the future, with warmer, wetter years and a greater frequency of sudden, intense rainfall 

are predicted (Ockenden et al., 2016). Optimising the measurement frequency over time or in real-

time as a response to external stressors (extreme events) with adaptive monitoring strategies (Blaen et 

al., 2016; Coraggio et al., 2022), can improve data collection for extreme weather driven parameters. 

For parameters affected by diurnal cycles, possible methods to prevent bias are to sample at 

standardised times of the day or taking 24 samples every seven hours (the 24/7 sampling approach), 

which samples every hour of the day over the course of a week (Halliday et al., 2012). The 24/7 

approach was designed for the use of auto-samplers which require samples to be returned to the lab 

for analysis, but has the potential to be a cost-effective measurement frequency regime for sensor 

optimisation to capture dynamic river conditions (Halliday et al., 2012; Jordan and Cassidy, 2022).  

In general, when deciding a minimum measurement frequency for a sensor suite, the median, 25% 

and 75% intervals and the data distribution as well as the range should be investigated relative to 

hourly data. The minimum required sampling frequency can only be determined with high-frequency 

observations at that location, which are often unavailable when a monitoring programme is designed. 

As a result, sampling frequency recommendations are typically done retrospectively, as with our 

analyses that suggested a minimum of four-hourly frequency. We therefore recommend flexible high-

frequency monitoring installations, including sensors or autosamplers, that can be deployed for trial 

periods to understand the behaviour of the catchment before the long-term sampling regime 

commences, so this can be optimised to reduce resource expenditure which capturing representative 

environmental behaviours for the determinands of interest. We also caution that the data should be 

captured with a clear focus on understanding what questions will be asked, whether the sensors 

selected have uncertainty bounds beyond the expected variability, and whether capturing the full 

range of behaviour of all parameters is indeed necessary.  
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5. Conclusions 
Variation in water quality data is strongly controlled by measurement frequency, but also time of day 

and time of year. Different catchments have different responses to biogeochemical and hydrological 

events, thus the measurement regime required to capture the true range of variation will itself be 

variable. Nutrient concentrations, flow regimes and temperature drive much of the in-stream 

biological activity and their temporal variations can in turn affect variability in other water quality 

parameters, such as DO and pH. Most catchments included in this study showed significant intra-daily 

trends in physico-chemical parameters, often clearly defined diurnal cycles, highlighting the 

importance of considering which time of day to monitor. If the data variation is small, fluctuations are 

harder to capture with a sensor that has a large uncertainty, hence an understanding of the sensor 

response is required before deployment for data capture. All catchments in this study showed that for 

almost every parameter, a four-hourly data frequency was required to capture most of the variation 

across all determinands monitored, although for some parameters most variation could be captured 

with twelve-hourly or daily frequency. In many cases, particularly in routine national monitoring 

programmes, manual sample collection cannot physically be done more than weekly or monthly, 

unless increased resources are made available. For these situations calculating, reporting, and 

minimising sampling bias is critical, while reporting data with resultant uncertainty bands is essential, 

to inform the user of the uncertainties in the evidence base thus generated.  Before a monitoring 

regime is established, the purpose must be truly considered to effectively direct resource. In research-

driven research, or where greater certainty is required to produce a robust and reliable evidence base 

to support a programme of action, pre-monitoring optimisation periods are recommended. These will 

allow researchers to understand how an individual catchment responds and should include high-

frequency (<twelve-hourly, ideally four-hourly) measurements, and a combination of periodic (same 

time every day) and random samples to assess the frequency required to capture the necessary 

information. Lastly, it is crucial to re-assess the monitoring network periodically in case of changes in 

the catchment and the environment as well as changes in sensor performance, and differences in 

management priorities as they emerge.  
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https://eidc.ac.uk/. Wylye, Blackwater Drain and Newby Beck (Demonstration Test Catchments) data 

and contact details for data requests are available on the Agricultural and Environmental Data 

Archive: http://www.environmentdata.org/.  
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Graphical abstract 

 

Highlights  
- Measurement timing and frequency influenced water quality data interpretation. 

- Four-hourly monitoring was the lowest frequency that captured data variation.  

- Diurnal data patterns alter the median, response to extreme weather alters the range. 

- Sampling at specific times of day can introduce bias, due to intra-daily variation. 

- Identify catchment characteristics and required data resolution for optimised monitoring. 


