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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Quantifying pesticide impacts using 
regularly monitored data is resource- 
intensive

• The InVEST® NDR model was adapted 
to estimate pesticide delivery for the 
first time

• We tested the alignment of these results 
with loads calculated from measured 
data

• There were strong positive relationships 
between measured and modelled loads

• Our modelled method could be used to 
prioritise catchments for detailed 
analysis

A R T I C L E  I N F O

Editor: Ouyang Wei

A B S T R A C T

Quantifying pesticide runoff hazard in catchments is necessary to predict the impacts and target mitigation. 
Achieving this at scale through regular, long-term water quality monitoring at multiple sites is time- and 
resource-intensive. Ideally, such monitoring should be supplemented by models that can estimate pesticide loads 
in a quicker, less costly manner, especially for unmonitored catchments.

We developed a novel modelling method combining the Integrated Valuation of Ecosystem Services and 
Tradeoffs Nutrient Delivery Ratio (InVEST® NDR) model and the UKCEH Land Cover® plus: Pesticides maps to 
estimate pesticide load across England. The InVEST NDR model is a widely used, open-source pollutant runoff 
model, but has not yet been evaluated for use with pesticides. We compared our modelled approach with a 
measurement-based (“measured”) approach. This measured approach used pesticide concentration data from the 
Environment Agency and river flow data using Qube (a water resource estimation tool) for catchments upstream 
of the sampling sites: 54 for bentazone and 21 for chlorotoluron.

The significant positive relationships between measured and modelled pesticide loads were stronger when the 
measured approach accounted for the proportionate area of arable land cover, presumably because the modelled 
approach only incorporated pesticides from arable sources, explaining up to 90 % of the variation in relative 
hazard between catchments. Thus, our modelled method forms a flexible approach to mapping relative pesticide 
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runoff hazard over large spatial extents, especially where monitoring is limited. It could also be used to rapidly 
prioritise catchments for more complex analysis to produce accurate measures of absolute loads.

1. Introduction

Pesticides are a major component of modern agriculture and are used 
to maintain high crop yields and livestock production by reducing the 
damage caused by pests and diseases. Agriculture is a major land use in 
Europe, accounting for approximately 40 % (ranging from 7.5 to >70 % 
per country) in the European Union (Eurostat, 2023), and 70 % land 
cover in the United Kingdom (UK; Marston et al., 2022). This land is 
mostly occupied by arable crops and pasture managed for livestock 
production, and pesticide applications are widespread and commonly 
used. Pesticides are formulated from many different chemicals, and their 
interaction with environmental processes (e.g. transportation as runoff) 
is affected by weather conditions, soil type, and land cover. As a result, 
they can be difficult to quantify and subsequently control (Campbell 
et al., 2004; D’Arcy et al., 2000). Pesticides are therefore one of the main 
sources of diffuse pollution in Europe (European Environment Agency, 
2018).

Pesticides in water are widely recognised as problematic: for aquatic 
ecosystems through toxicity and bioaccumulation, for human health, 
and for subsequent impacts on the economy (de Souza et al., 2020; 
Grandjean and Bellanger, 2017; Khalifa et al., 2021; Kim et al., 2017; 
Morrissey et al., 2015). Policies at local, national, and international 
scales aim to reduce pesticide pollution and its negative impacts. 
However, this remains an active issue. In Europe, there has been no 
overall improvement in ecological status over the past decade under the 
Water Framework Directive (WFD; European Environment Agency, 
2018) due to diminishing returns of existing restoration efforts, and new 
pressures such as climate change, land-use intensification and emerging 
contaminants (Haase et al., 2023). For example, neonicotinoid pesticide 
residues have been observed in non-target organisms (Fuentes et al., 
2023; Wintermantel et al., 2020; Woodcock et al., 2021) and surface 
water (Casillas et al., 2022) despite a 2013 moratorium on neonicotinoid 
insecticides in the EU.

Efforts to mitigate pesticide runoff thus continue through legislative 
(e.g. withdrawal of pesticide products), land management (e.g. buffer 
strips), and technological means (e.g. low drift spraying equipment). To 
target the application of these efforts and monitor their effectiveness, it 
is important to be able to predict where pesticide runoff is likely to 
occur, and to predict the relative hazard across river catchments or 
subcatchments. Although combining direct measurements of pesticide 
concentration and river flow is the most accurate way to estimate 
pesticide load (the total amount of pesticide for a given area over a given 
period of time, in weight per unit area), generating high-quality and 
high-frequency measured data is labour-, cost-, and time-intensive 
across large spatial extents. Conversely, modelling approaches may 
have lower accuracy but can produce estimates for chemicals in un
monitored areas or across larger spatiotemporal scales. For certain is
sues, such estimates across larger spatiotemporal scales are critical e.g. 
understanding the impact of pesticide applications on invertebrate 
population trends (Mancini et al., 2020).

Many pesticide fate models, which account for the major environ
mental processes governing pesticide fate, exist for predicting pesticide 
runoff across space (Commelin et al., 2024). These models or tools can 
provide in-depth understanding of the movement of individual chem
icals and the fine-scale spatiotemporal impacts of environmental pro
cesses and management. In a recent review, Centanni et al. (2023)
identified 17 tools used to simulate the fate and transport of pesticides. 
These differ widely in their methods, complexity and intended scale of 
use: they vary from field to basin scale and encompass a range of pes
ticides, catchment and management properties. Tools identified include 
The Soil & Water Assessment Tool (SWAT; Arnold et al., 2012), one of 

the most commonly used tools across the globe (Centanni et al., 2023), 
the Pesticide Root Zone Model (PRZM; Carsel et al., 1985), the Inte
grated Water Quality Model (iWaQa; Honti et al., 2017) and the Model- 
based approach (Mb risk; Quaglia et al., 2019). SWAT is an open-source 
integrated catchment model, including a hydrological model and a 
water quality model, and has been used for a wide range of catchment 
scales (Centanni et al., 2023). Pesticide fate models can also be com
bined with complementary models where one alone does not meet the 
user’s goal. For example, PRZM, another commonly used model 
(Centanni et al., 2023), is designed for field-scale applications but can be 
coupled with SWAT for watershed- or catchment-level pesticide expo
sure (Ghebremichael et al., 2022). Similarly, iWaQa, comprising of a 
substance transfer module and routing module, was initially designed 
for small streams (Honti et al., 2017) but has been coupled with a model 
that describes transport and fate in larger rivers to model pesticide 
concentrations across much of the Rhine basin (Moser et al., 2018). 
Finally, with the end goal of prioritising mitigation, the Mb risk 
approach uses field-scale spatial data to identify broader areas of 
pesticide risk within catchments, but it is not designed to predict 
pesticide loads (Centanni et al., 2023; Quaglia et al., 2019). Despite the 
abundance and diversity of tools available, data availability for their 
implementation and calibration, especially measured pesticide concen
trations, remains a significant limiting factor (Centanni et al., 2023). 
They can also be data intensive in terms of the inputs and parameters 
required (Moriasi et al., 2007; Neitsch et al., 2011), likely requiring high 
computational power. These models may thus be unsuitable in data-poor 
regions or where users require a rapid overview of pesticide hazard 
across river catchments over large (e.g. national) spatial extents. 
Choosing a model for simulating pesticide runoff therefore depends on 
the user’s goal in terms of output type, scale and resolution, and data 
and resource availability.

In recent years, various modelling frameworks have been designed to 
provide suites of models that produce spatial outputs, are flexible, open 
source and readily parametrised in data-scarce regions. They are 
intended to be simple to understand and operate, and balance potential 
reductions in absolute accuracy with the ability to run multiple models 
quickly over large spatial extents. One such system is Integrated Valu
ation of Ecosystem Services and Tradeoffs (InVEST®). The InVEST suite 
of models (Natural Capital Project, 2023a) aims to quantify and map 
various ecosystem services, focusing on modelling potential changes 
across space or under different scenarios. The InVEST Nutrient Delivery 
Ratio (NDR) model (also referred to in the literature as “Nutrient 
Retention Model” and “Water Purification Model” in earlier versions) 
estimates the ecosystem service of nutrient retention by vegetation 
through calculating nutrient export per grid cell, which can be summed 
to catchment level (Natural Capital Project, 2023b). The InVEST NDR 
model has been used worldwide at a variety of spatial scales to quantify 
nutrient retention ecosystem services over time or under scenarios 
(Adelisardou et al., 2021; Bagstad et al., 2020; Berg et al., 2016; Finch 
et al., 2021; Mei et al., 2017), and to understand trade-offs with other 
ecosystem services (Adelisardou et al., 2021; Sharps et al., 2017; Shi 
et al., 2021). Studies have quantified InVEST model sensitivities to 
parameter values and resolution (Anjinho et al., 2022; Benez-Secanho 
and Dwivedi, 2019; Han et al., 2021, 2020; Redhead et al., 2018; Salata 
et al., 2017; Sharps et al., 2017; Valladares-Castellanos et al., 2024), 
performed model validation against measured data (Anjinho et al., 
2022; Han et al., 2021; Redhead et al., 2018), and have produced similar 
estimates of nutrient hotspots compared to those produced by the SWAT 
model (Cong et al., 2020). The InVEST NDR model was designed to 
quantify exports, not only for nutrients, but also for any pollutant or 
contaminant (Natural Capital Project, 2023b). However, to date, its 
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ability to predict pesticide export has not yet been evaluated in peer- 
reviewed literature (not present in InVEST literature database (Natural 
Capital Project, 2024) or searches of scientific literature). In the UK, 
mapped data on pesticide applications have been produced (UKCEH 
Land Cover® plus: Pesticides maps; Jarvis et al., 2020): these too have 
not yet been used to estimate pesticide loads in peer-reviewed literature. 
Combining mapped pesticide applications with the InVEST NDR model 
thus offers a potential route for rapid assessment of pesticide runoff 
hazard in UK watercourses. If this method estimates pesticide load with 
sufficient correspondence to measured values, the InVEST NDR model 
could be a suitable substitute for more complex models like SWAT, 
PRZM, iWaQa and Mb risk in more data-scarce regions, or at least suf
ficient to act as a first pass, to identify areas where the costs of para
metrisation and running of more complex models would be best 
justified.

In this study, we tested the suitability of parametrising the InVEST 
NDR model for pesticide export and combined it in a workflow with 
existing national pesticide usage data from UKCEH Land Cover® plus: 
Pesticides to produce mapped estimates of pesticide loads. By comparing 
our modelled approach against estimated pesticide loads from measured 
concentrations, we explored the alignment of the two approaches. As a 
proof of concept, we quantified diffuse source runoff for two pesticides 
for which measured data were available to evaluate our modelled 
approach. Our aims were: 

1. Modelled approach: to quantify diffuse source agricultural pesticide 
loads for England using the InVEST Nutrient Delivery Ratio model 
and mapped estimates of pesticide application rates.

2. Measurement-based (hereon “measured”) approach: to quantify 
diffuse source agricultural pesticide loads for a set of catchments 
using measured pesticide concentration records and generated river 
flow data.

3. Evaluation: to assess the similarity between the two approaches for 
the catchments identified in the measured approach.

We hypothesised that there would be positive coefficients in re
gressions between pesticide load estimates from the two approaches. We 
also hypothesised that that adjusting for arable area in the measured 
approach (to reflect the fact that pesticide data are limited to arable land 
in the modelled approach) would explain more variation than without 
this adjustment.

2. Methods

2.1. Data: Pesticide application maps and concentration data

The UKCEH Land Cover® plus: Pesticides (LC+ Pesticides) maps 
(Jarvis et al., 2020) are 1 km resolution raster datasets of estimated total 
annual applications for 162 pesticide active ingredients across Great 
Britain (GB), averaged over the period 2012–2017. They are built using 
high resolution crop maps and national pesticide usage data. For the 
former, UKCEH Land Cover® plus: Crops (LC+ Crops) data were used, 
derived from Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 
optical satellite data to identify crop types for nearly 2 million land 
parcels across GB (Upcott et al., 2023). Pesticide usage data were ob
tained from the Fera Pesticide Utilisation Surveys (PUS; Fera, 2024) and 
the Scottish Agricultural Science Agency’s Pesticide Survey Unit 
(Scottish Agricultural Science Agency, 2024), collated by Fera. LC+
Pesticides uses aggregated county-level data of reported pesticide usage 
in terms of total crop area treated, total weight of chemical applied and 
application rate per active ingredient. Using spatial interpolation to a 1 
km resolution, LC+ Pesticides combines LC+ Crops and pesticide usage 
data to produce continuous coverage maps of average annual pesticide 
applications across GB.

We used Environment Agency (EA) water quality data from the 
Water Quality Archive (WQA; previously “Water Information 

Management System” (WIMS); Environment Agency, 2023a), of pesti
cide concentration data across England. The WQA holds data collected 
by the EA of nearly four million samples collected at 58,000 sampling 
points since 2000 to measure aspects of water quality across England.

2.2. Selecting pesticide active substances

We selected pesticide active substances according to several criteria, 
based on potential impacts and data availability. Only substances of 
concern to freshwater environments were considered, as described by 
the Voluntary Initiative’s Water Protection Advice Sheets (The Volun
tary Initiative, 2024). Substances selected were used exclusively or 
predominantly for arable agriculture and not in human or animal 
medicine, or household products. This was because we were targeting 
substances that are predominantly emitted by diffuse sources to suit the 
chosen model and are associated with a single land cover type. Pesticide 
active substances also needed to be present in the LC+ Pesticides maps. 
Once data had been acquired, we also applied two further criteria: that 
they are frequently monitored (detailed in the measured approach, 
Section 2.6), and that upon removing non-independent overlapping 
catchments (also detailed in Section 2.6), there were sufficient data to 
run linear regressions. After applying all criteria, we identified two 
pesticide active substances with sufficient data: bentazone and 
chlorotoluron.

2.3. Method: Modelled approach

The modelled approach combined the LC+ Pesticides maps and 
InVEST NDR model export to generate pesticide loads per 100 m cell. 
The InVEST NDR model assesses nutrient retention by modelling 
nutrient export to watercourses from individual grid cells within a 
catchment. Despite its name, the model was designed to also simulate 
other anthropogenic contaminants such as agricultural pesticides 
(Natural Capital Project, 2023b). It uses a mass balance approach 
combined with empirical relationships to simulate contaminant reten
tion in soil and its transport through surface (and optionally subsurface) 
flow to a stream. A detailed description of the InVEST NDR model is 
available elsewhere (Natural Capital Project, 2023b), but here, we 
provide a brief overview.

In the InVEST NDR model, a user-defined LULC map determines the 
contaminant export values for every pixel per LULC class. Contaminant 
transport through the catchment is driven by the local runoff potential 
(e.g. precipitation), and the initial contaminant load is adjusted to ac
count for transport through the catchment along topographically 
determined flow pathways. These altered loads may be proportionately 
split into sediment-bound (surface or, conceptually, shallow subsurface; 
Natural Capital Project, 2023b) and dissolved (subsurface) contami
nants. If no information is available on the partitioning of surface and 
subsurface contaminants, as was in our case, the user may opt to use only 
surface flow (Natural Capital Project, 2023b), as has been previously 
implemented (Anjinho et al., 2022; Benez-Secanho and Dwivedi, 2019; 
Han et al., 2021; Redhead et al., 2018). Surface NDR is calculated per 
pixel as the ability of downslope pixels to transport contaminants 
without retention, using the maximum retention efficiency of the land 
between the pixel and the stream it flows into (flow path), which is 
capped at the maximum retention value of the LULC types in the flow 
path. Finally, an index of connectivity represents hydrological connec
tivity, as indicated by topography in a digital elevation model (DEM). 
Contaminant export is the product of the load and the NDR, and the total 
catchment outlet is the sum of the contaminant export pixels within that 
defined catchment.

2.4. Method: Measured approach

The measured approach combined pesticide concentration data (EA 
WQA) with estimated flows to generate pesticide loads for available 
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upstream catchments, across their shared spatial extent of England, 
comparable to pesticide loads generated from the modelled approach. 
Daily flow data and upstream catchments were estimated using Qube 
(developed by Wallingford Hydrosolutions in collaboration with the 
Environment Agency). Qube is a best practice tool used by UK and 
Ireland regulators and water companies to estimate natural and influ
enced flow statistics and time series in gauged (with gauging stations 
that systematically record stream flow) and ungauged catchments. The 
process involved simulating the long-term average flow at previously 
selected WQA sites. Qube uses the Integrated Hydrological Digital 
Terrain Model (Morris and Flavin, 1994, 1990) to define the drainage 
network and the contributing catchment for each location. It then esti
mates the long term natural and influenced flow statistics, with the 
natural flows relating to the 1990–2017 catchment abstraction man
agement strategy (CAMS) period of record. This includes the annual and 
monthly mean flow (Holmes et al., 2002a) and annual and mean 
monthly flow duration curves (Holmes et al., 2002b).

2.5. Implementation: Modelled approach

The data inputs to the InVEST NDR model are presented in Table 1. 
All inputs, except the biophysical table, which includes biophysical 
properties specific to each LULC class and pesticide (Table 2), were the 
same for both pesticides. Adjustments were first made to the Digital 
Elevation Model (DEM) to better define the river network and remove 
DEM artefacts: sinks filled, river network (Moore et al., 2000) etched 10 
m deeper to ensure the watercourses and catchment boundaries 

identified conformed to known actual watercourses and catchments, cell 
elevation capped at a − 20 m minimum, aggregated to 100 m resolution, 
and a 1000 m buffer added to edge of the raster with cell values of − 20 
m elevation to enable accurate catchment capture. The raster used as the 
nutrient runoff proxy raster was produced using the mean per cell of 
Had-UK Grid mean annual rainfall datasets for 2000–2017. An offshore 
pseudo-catchment was created near the origin of the catchments vector 
to align output rasters to British National Grid 1 km cells, as the version 
of InVEST used in this study (v3.14.0) aligned outputs to the catchment 
vector origin, not that of input rasters.

The biophysical table (Table 2) details LULC- and pesticide-specific 
values. Aggregate classes were taken from the LCM 2015 1 km domi
nant aggregate class dataset (Rowland et al., 2017b). As all pesticides 
used are primarily associated with arable agriculture, of the LULC 
classes only “Arable and Horticulture” was assigned a loading value. To 
note, “loading” as referred to in the InVEST NDR model, for instance in 
the biophysical table, means the same as “application” used in LC+
Pesticides. Here in the biophysical table, we used the loading variable to 
indicate whether or not a LULC class was subject to pesticide loading, 
and it thereby acts as a proportion. Retention length is the distance to 
reach maximum retention efficiency, incorporated to reduce model 
sensitivity to the LULC raster’s resolution. The model documentation 
states “In the absence of local data for land uses…you can simply set the 
retention length constant, equal to the pixel size” (Natural Capital 
Project, 2023b), so we set it here to the output pixel size of 100 m. 
“Efficiency” refers to the maximum nutrient or pesticide retention effi
ciency per LULC class. These efficiency values were calculated as fol
lows. We first calculated a topsoil carbon scaled retention factor (Fi, a 
proportion) for each LULC aggregate class i (Eq. 1): 

Table 1 
InVEST NDR model data inputs, details and sources.

Model data input 
(data type)

Details Dataset name and source or 
value

DEM (raster) Raster elevation map. Integrated Hydrological 
Digital Terrain Model (
Morris and Flavin, 1994, 
1990)

LULC (raster) Raster map of LULC classes. 
All classes have 
corresponding entries in the 
biophysical table.

Land Cover Map 2015 (25 m 
raster; Rowland et al., 
2017a)

Nutrient runoff 
proxy (raster)

Raster map per year of runoff 
potential: annual 
precipitation or quickflow 
index.

Mean per cell of HadUK- 
Grid mean annual rainfall 
2000–2017 (1 km raster; 
Met Office et al., 2023)

Watersheds (vector 
polygon)

Vector map of catchment/ 
watershed boundaries to 
aggregate model results.

Water Framework Directive 
Management Catchment 
Cycle 1 (Environment 
Agency, 2023b)

Biophysical table 
(CSV)

Table where each LULC class 
corresponds to biophysical 
properties of contaminant 
load and retention.

See Table 2

Calculate 
phosphorus 
retention (true/ 
false)

Tell model to calculate 
phosphorus (or other 
nutrient/contaminant to 
exclude subsurface 
modelling) retention and 
export.

True

Threshold flow 
accumulation 
(number)

Using the DEM, the number 
of upslope raster pixels that 
must flow into a given pixel 
before it is classified as a 
stream.

1000

Borselli K 
parameter 
(number)

Calibration parameter 
determining the shape of the 
relationship between 
hydrological connectivity 
(likelihood of contaminant 
on pixel to reach the stream) 
and NDR (percentage of 
contaminant that reaches the 
stream). Default is 2.

2

Table 2 
Biophysical table of values for bentazone and chlorotoluron for the InVEST NDR 
model and subsequent analysis in this study. Additionally, critical length of 
nutrient retention at maximum capacity was 100 m (pixel size) for all LULC 
classes.

Aggregate 
class

LULC class Loading 
(kg ha− 1 

year− 1)

Efficiency: 
bentazone

Efficiency: 
chlorotoluron

Broadleaf 
woodland

Broadleaved 
Woodland

0 0.605 0.675

Coniferous 
woodland

Coniferous 
Woodland

0 0.740 0.900

Arable Arable and 
Horticulture

1 0.569 0.615

Improved 
grassland

Improved 
Grassland

0 0.599 0.665

Semi-natural 
grassland

Neutral 
Grassland

0 0.680 0.800

Calcareous 
Grassland

0 0.680 0.800

Acid Grassland 0 0.680 0.800
Fen, Marsh 
and Swamp

0 0.680 0.800

Mountain, 
heath and 
bog

Heather 0 0.668 0.780
Heather 
Grassland

0 0.668 0.780

Bog 0 0.668 0.780
Inland Rock 0 0.668 0.780

Saltwater Saltwater 0 0.500 0.500
Freshwater Freshwater 0 0.500 0.500
Coastal Supra-littoral 

Rock
0 0.647 0.745

Supra-littoral 
Sediment

0 0.647 0.745

Littoral Rock 0 0.647 0.745
Littoral 
Sediment

0 0.647 0.745

Saltmarsh 0 0.647 0.745
Built-up areas 

and 
gardens

Urban 0 0.635 0.725
Suburban 0 0.635 0.725
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Fi =
Ci × 0.8

Cmax
(1) 

where average soil carbon per LULC class (Ci) was derived from Coun
tryside Survey data (Thomas et al., 2020), because pesticide adsorption 
can be affected by soil organic carbon, which differs between land cover 
classes. Cmax refers to the maximum of these values across LULC classes. 
A scaling factor of 0.8 was used to scale down Ci values below full 
retention of 1, since we assume that even land cover classes associated 
with high levels of soil carbon do not retain 100 % of pesticide. Then, per 
land cover type i and pesticide j, we calculated preliminary maximum 
retention efficiency (eff pi,j, Eq. 2, SM Table 1): 

eff pi,j = Fi ×Rj (2) 

where relative retention values (Rj) of 0.6 and 1 for bentazone and 
chlorotoluron, respectively, were based on qualitative compound sum
maries of each pesticide’s ability to bind to soil carbon (bentazone: “very 
high to high mobility” in soil (National Center for Biotechnology In
formation, 2023a); chlorotoluron: “adsorption dependent on the per
centage of organic matter present in the soil… moderate mobility in soil” 
(National Center for Biotechnology Information, 2023b)). Preliminary 
analysis suggested that eff pi,jvalues were too low due to insufficient 
pesticide retention (SM Table 2). As a result, we proportionately raised 
the eff pi,jvalues to produce finalised versions of these (eff ai,j, Eq. 3, 
Table 2): 

eff ai,j = eff pi,j +

(
1 − eff pi,j

)

2
(3) 

This had the effect of reducing the regression intercept values to
wards 0 while producing the same coefficients and R2 values compared 
to preliminary results (SM Table 2), making them more suitable for use 
in this study.

The InVEST NDR models were run at 100 m resolution, as previous 
analyses suggested that finer resolutions than this add little to accuracy 
at the expense of greatly increased runtime (Redhead et al., 2018). 
Usually, a user would supply per LULC values representing pesticide 
loading, but because we have a gridded map of pesticide loading or 
application (LC+ Pesticides) that allows us to capture far greater vari
ation in loadings than simply assigning the same loading to all arable 
cells, we set all loading values for arable land to one. Because of this, our 
model output values for each cell were proportions between 0 and 1, 
representing the proportion of applied pesticide expected to reach the 
watercourse. To produce modelled pesticide loads, the 100 m raster of 
pesticide export proportions (i.e. InVEST NDR model output) needed to 
be combined with the 1 km LC+ Pesticides maps for each pesticide. 
Because pesticides were assumed to be applied only to arable land, we 
evenly split the 1 km pesticide loading value among the 25 m arable cells 
(using the LCM) within it, and then summed these values to 100 m cells. 
Each 100 m cell of pesticide export proportion from the NDR model was 
then multiplied by its spatially correspondent cell of arable pesticide 
application, generating modelled pesticide runoff or load from each cell 
across England at 100 m resolution. Once the catchments of interest 
were finalised (Section 2.6), modelled pesticide loads were summed per 
catchment to compare with measured loads.

2.6. Implementation: Measured approach

We included data from rivers and streams with at least six records per 
year, at least three in the wetter six months (August–January) and at 
least three in the drier six months (February–July), for at least two of the 
years in the period 2000–2021, to reduce within- and between-year 
temporal bias while maintaining enough catchments for analysis. This 
resulted in 210 sites for bentazone and 174 sites for chlorotoluron. 
Concentration of each pesticide was converted from μg L− 1 to kg m− 3. 
Catchments in which pesticide concentrations were only given as below 

detection limits (e.g. “≤ 0.04”) were removed from further analysis, as 
these do not adequately reflect variation in pesticide concentration for 
calculation of loads.

Daily influenced river flow time series (Young and Jeans, 2019) data 
from January 2000 to December 2021 were estimated for each of the 
identified catchments. The artificial influences in England included in 
Qube corresponded to the Environment Agency Water Resources 
Geographical Information System (WRGIS) database exported in August 
2022. Total daily flow was estimated by multiplying up m3 sec− 1 to m3 

day− 1.
We then estimated mean pesticide loads and standard error with the 

Beale Ratio Estimator (BRE; Beale, 1962) function “beales” from the R 
package “funtimes” (Lyubchich et al., 2023; R Core Team, 2024). The 
BRE calculates total pollutant load based on the sample concentrations 
and the corresponding river flows or discharges. It assumes a constant 
ratio of load to flow, with the ratio of average load to average flow 
equalling the ratio of observed load to observed flow for the site and 
time period of interest. This assumption is not always true, as high flows 
may carry higher loads immediately after pesticide application than the 
same high flow later after application, but it is one we acknowledge and 
is managed in part through our data cleaning methods. BRE is a robust 
method to use when there are fewer concentration measurements than 
flow (Beale, 1962), as for our data, and retains the approach used for 
previous evaluation of the InVEST NDR model in the UK (Redhead et al., 
2018).

Some Qube-defined catchments had very small overlaps 
(2500–7500 m2) with adjacent catchments. These were handled by 
assigning the intersected area to the catchment polygon it appeared to 
be intruding into. The catchments generated by Qube from the sampled 
points were filtered, owing to large size discrepancies between catch
ments and catchment nesting, which could result in bias and non- 
independence of catchments. The largest 5 % and smallest 5 % catch
ments were first removed to reduce bias associated with atypical 
catchments. Where the remaining catchments were nested (one inside 
another), preference was given to catchments where data were available 
for both pesticides to estimate the validity of the method regardless of 
the substance selected, otherwise, the outermost catchment was 
retained. Where catchments were nested but there were two or more 
inner catchments independent of one another (rather than nested within 
themselves), the inner catchments were retained to provide more 
catchments for statistical analysis. Finally, upon examining regression 
diagnostic plots and statistics, one outlying catchment had a dispro
portionately high sample quantile for a negligible amount of arable land, 
whereas a second had an extremely small sample quantile value: these 
two catchments were swapped for their outer and inner, respectively, 
nested catchments. This resulted in 54 final catchments for bentazone 
and 21 for chlorotoluron.

2.7. Evaluation of modelled vs. measured loads

We used linear regressions to assess the relationships between loads 
estimated via the two approaches, with data transformed using a natural 
log to correct for skew. We assessed the relationships between the two 
approaches using a nonparametric test to explore the relationship be
tween relative loads (i.e. ranked data). We used Kendall rank correlation 
which is slightly more efficient and robust than the Spearman’s rank 
correlation in the presence of outliers (Croux and Dehon, 2010). The 
Kendall rank correlation assesses the degree of similarity between two 
sets of paired rank data, to examine the relationships according to the 
sets’ ordinal values. The correlation coefficient, Kendall’s Tau (τ), is 
calculated by dividing the difference between the number of concordant 
and discordant pairs by their total, giving a value between − 1 and 1.

We ran three sets of comparisons: (1) arable area and measured 
loads, (2) measured loads and modelled loads, and (3) measured 
multiplied by the proportion of arable area in the catchment and 
modelled loads. We included an adjustment to the measured load in the 
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final set of regressions (3) to account for non-arable sources by multi
plying the measured value by the proportion of arable land use in the 
catchment (similar to the adjustment to account for point-source re
leases of nutrients used in Redhead et al. (2018). Within these sets, we 
used (a) linear regressions of loads (logged due to data spread) to assess 
the ability of the model to estimate catchment loads, and (b) Kendall 
rank correlations of ranked loads to estimate the model’s ability to assess 
relative pesticide hazard.

We expected a relationship between arable area and measured re
sults, since increased runoff where a greater area of the catchment is 
covered by arable land is a logical expectation for an arable pesticide. 
Set (1) is therefore a control, equivalent to assessing the catchment 
pesticide runoff hazard by arable area alone. It might also be expected 
that some pesticide runoff detected in the measured data may come from 
sources other than diffuse arable runoff, for example, the use of agri
cultural pesticides in urban greenspaces, where application rates and 
subsequent runoff can both be very high (Meftaul et al., 2020). There
fore, we also adjusted our measured loads to try to isolate only the 
proportion expected to be from arable sources, and thus captured by the 
modelled approach, giving comparison set (3).

3. Results

There were sufficient suitable data for 54 catchments for bentazone 
(mean area = 46,050 ha, range = 1689 ha - 193,638 ha) and 21 for 
chlorotoluron (mean area = 48,293 ha, range = 720 ha - 180,071 ha; 
Fig. 1.); 7 of these catchments had data for both pesticides. A map of 
sample site locations in relation to their upstream catchments are in SM 
Fig. 1, and their coordinates from the EA WQA are in SM Table 3. Fig. 1
shows the modelled loads across England and Wales, the coverage of 
which reflects the distribution of arable land in England. Using the 
measured approach, catchments with sufficient data for bentazone 
covered more parts of England (northwest, central, east and south) than 
for chlorotoluron (England-Wales border, east, south; Fig. 2). Catch
ments with higher bentazone per hectare were more concentrated in the 
northwest, the border of the East Midlands and East of England, and 
southern England, while catchments with higher chlorotoluron per 

hectare were similarly located in the south of England (Fig. 2).
Figs. 3 and 4 show linear regression and Kendall rank correlation 

graphs demonstrating the relationships between the two approaches: 
between arable area and measured values (models 1a and 1b), measured 
and modelled values (models 2a and 2b), and measured multiplied by 
the proportion of arable area and modelled values (models 3a and 3b) 
for each pesticide. Table 3 provides statistical linear regression results 
for unranked data and Table 4 provides Kendall rank correlation results 
for ranked data. There was a weakly positive effect of arable area on 
measured bentazone loads (Fig. 3, Tables 3 and 4; models 1a and 1b), 
which was stronger for chlorotoluron (Fig. 4, Tables 3 and 4; models 1a 
and 1b).

Modelled results were generally higher in absolute terms than 
measured for both pesticides (Figs. 3 and 4; models 2a and 3a), sug
gesting that our implementation of the InVEST NDR model generally 
overestimated catchment pesticide load. For chlorotoluron, the gradi
ents were close to one, so this overestimation was very consistent, 
whereas this was more variable for bentazone. Adjusting the measured 
values by multiplying by arable proportion effectively removes the ef
fect of non-arable sources of pesticides, which are not accounted for in 
the modelled approach. These relationships explained the most varia
tion in the regression models: 70 % for bentazone and 90 % for chlor
otoluron (Figs. 3 and 4, Table 3; model 3a), representing a considerable 
increase for bentazone at over seven times higher compared to model 2a. 
Preliminary results showed that, while the coefficient and R2 values 
remained the same as the main study results in the modelled and 
measured, the intercept values were higher and further from 0 (SM 
Table 2). The ranked results also increased in effect size (Figs. 3 and 4, 
Table 4; model 3b).

4. Discussion

4.1. Comparison of modelled and measured approaches

Our results demonstrate that the InVEST NDR model can be suc
cessfully used to predict pesticide loads in watercourses, producing re
sults that show a strong positive correspondence with equivalent values 

Fig. 1. Modelled pesticide loads at a 100 m resolution. Values were capped at 30 g ha− 1 yr− 1 (0.095 % values >30 g ha− 1 yr− 1 for bentazone and 0.180 % for 
chlorotoluron) for ease of interpretation in this figure only.
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derived from measured data. Several studies have researched other ways 
in which to improve the prediction of pesticide loads in a catchment 
when evaluated against measured data, adopting a more passive moni
toring approach (Zhang et al., 2016) or a modelling approach (Bach 
et al., 2001; Holman et al., 2004; Luo et al., 2008; Morselli et al., 2018). 
However, these studies are often restricted spatially, with loads given at 
a coarser resolution or only assessing a few catchments. Within this 
study, we were able to produce estimated pesticide loads at a gridded 
resolution of 100 m at a national extent. Thus, the InVEST NDR model 
enables us to estimate loads at the same fine resolution to the full extent 
of data inputs, including for unmonitored catchments omitted from the 
measured approach. Reducing pesticide risk through reducing use is 
often identified as a key facet of increasing farm sustainability (López 
Rodríguez et al., 2024; Storkey et al., 2024). As national agricultural 
policy goals aim to improve sustainability (Defra, 2024, 2023), at the 
same time as meeting other, potentially conflicting targets such as net 
zero greenhouse gas emissions, or food security, there is a need for 
models to explore scenarios of change in land management that can 
indicate trade-offs and synergies between different aspects of sustain
ability. The reliability of our results, at least relatively between catch
ments, suggest that the InVEST NDR model could be used to add 
estimates of pesticide runoff hazard to such assessments, through 
feeding the model with future scenarios of land use in place of current 
land use maps (Natural Capital Project, 2023a), alongside the other 
ecosystem services modelled by the InVEST suite of models.

Converting pesticide load values to ranks brought the relationship 
between modelled and measured data closer to a 1:1 ratio. Given that 
the InVEST models are designed to produce results that are indicative of 
the direction and magnitude of change in ecosystem services under 
different ecosystem scenarios (Natural Capital Project, 2023a, 2023b), it 
is not surprising that the results show a stronger correspondence when 
ranked, assessing the ability of the model to predict relative loading 
hazard rather than absolute loads; similar results have been found in 
studies validating InVEST NDR model exports (Redhead et al., 2018) and 
other InVEST model-derived ecosystem service outputs (Karimi et al., 
2021). Thus, our results show that combining the InVEST NDR model 
with gridded estimates of pesticide application can give estimates of 
relative load hazard that show a similar correspondence to measured 

pollutant data, as do other InVEST models which have been evaluated 
over large spatial scales (e.g. water yield (Gosal et al., 2022) and 
nutrient runoff (Redhead et al., 2018)). This means our modelled 
approach could be used to make reliable estimations of relative pesticide 
load hazard across the landscape, even where measured pesticide con
centration records are absent, although further exploration of the 
approach would be valuable given that other studies have found vari
ability (Sharps et al., 2017) or consistent underestimation (Berg et al., 
2016) in InVEST NDR model results compared to measured equivalents.

4.2. Strengths and limitations of the modelled approach

For both pesticides that we studied, regression variation was best 
explained when the measured load was adjusted to account for non- 
arable sources. Improvements in the relationship with this adjustment 
in place demonstrates the value added by the model’s inputs and pro
cesses. This both increased the amount of variation explained and 
resulted in regression coefficients closer to one, especially for bentazone. 
Even though we selected pesticides that are predominantly used in 
arable settings, bentazone may be used in amenity grasslands and in
dustrial turfcare settings (EFSA, 2015), which are not accounted for in 
the LC+ Pesticides data, nor does amenity grassland belong to its own 
independent LCM class on account of it being land use and not land 
cover. An adjustment to the model could be made if average application 
rates for such uses were available (or if the gridded pesticide application 
data encompassed these uses). We note that for chlorotoluron, which is 
more restricted to cereal crops and therefore to the LCM’s arable land 
cover class than bentazone, the impact of adjusting for arable area was 
much lower. This difference in the purity of pesticide usage per land 
cover type is likely the cause of high measured bentazone estimates in 
some catchments in the northwest of the country, where arable coverage 
was disproportionately small (indicated by sparser cells of modelled 
estimates). Here, it is possible that bentazone is applied more to 
improved grassland than in other catchments, as seen in another 
grassland-heavy catchment (Khan et al., 2020). Additionally, the LC+
Pesticides dataset was created through processes including interpolation 
(Jarvis et al., 2020), which resulted in some high outlying values where 
modelled pesticide load was spatially coincident with areas of 

Fig. 2. Measured pesticide loads per hectare for each catchment.
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proportionately less agriculture. However, these constituted only a very 
small (< 0.2 % over 30 g ha− 1 yr− 1) proportion of modelled load values. 
The LC+ Pesticides dataset allow for spatial variability in pesticide loads 
within the arable land cover class and thus should increase the accuracy 
of the model beyond the default InVEST NDR model approach (which 
would apply a uniform loading coefficient for all arable cells). In regions 
without an equivalent pesticide application map, or pesticide usage data 
and a crop map to create one, this default approach may be the only one 
available, although subclasses of arable land could be created to allow 
pesticide loads to vary by crop rotation, management type or sub-region, 
where these data exist.

While modelled pesticide loads show a strong, positive relationship 
with measured loads, modelled pesticide loads per catchment were 
generally greater than measured loads. This might be expected, given 
the simplicity of our modelling approach and the InVEST NDR model. In 
effect, this model takes a “worst case scenario”, assuming that all pes
ticides applied to a 1 km cell are available for potential surface runoff 
and that no further reduction of the original pesticide load takes place 
once a pesticide leaves the cell (although it can be retained by down
stream cells). As bentazone and chlorotoluron are applied as post- 
emergence products, some active ingredients will be intercepted by 
the crop canopy and target weed species. Subsequent pesticide fate is 

Fig. 3. Linear regressions and Kendall rank correlations for bentazone. Solid red lines show linear regression (a) and Kendall rank correlation (b) results, and dashed 
grey lines show a coefficient of 1 at intercept 0 (1:1 ratio). All relationships are significant at p < 0.05, but the strength of these relationships varies widely (Tables 3 
and 4). Standard error data were available for the measured approach only and are shown as error bars.
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Fig. 4. Linear regressions and Kendall rank correlations for chlorotoluron. Solid red lines show linear regression (a) and Kendall rank correlation (b) results, and 
dashed grey lines show a coefficient of 1 at intercept 0 (1:1 ratio). All relationships are significant at p < 0.05, but the strength of these relationships varies widely 
(Tables 3 and 4). Standard error data were available for the measured approach only and are shown as error bars.

Table 3 
Linear regression results.

Pesticide Model Description Coefficient Intercept p R2

Bentazone 
(N = 54)

(1a) Log arable area vs. log measured 0.24 − 0.72 0.039 0.07
(2a) Log measured vs. log modelled 0.52 2.37 0.022 0.10
(3a) Log (measured × arable proportion) vs. log modelled 1.29 3.08 < 0.001 0.70

Chlorotoluron 
(N = 21)

(1a) Log arable area vs. log measured 0.78 − 5.78 < 0.001 0.60
(2a) Log measured vs. log modelled 0.74 3.03 < 0.001 0.65
(3a) Log (measured × arable proportion) vs. log modelled 0.90 3.75 < 0.001 0.89
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then governed by complex interactions between soil, water and bio
logical activity (Gosal et al., 2022). Though nutrients degrade over time, 
the chemical processes, factors affecting degradation and timeframe are 
different for pesticide degradation, resulting in half-lives varying from 
days or weeks to months in soil (National Center for Biotechnology In
formation, 2023a, 2023b). The InVEST NDR model in its current state 
does not account for the complexities of nutrient degradation, let alone 
pesticide degradation. Indeed, it is the complexity of these processes and 
the difficulty in obtaining the necessary parameters to run models of 
pesticide fate over large spatial extents that led us to explore whether a 
simpler approach can at least predict the relative pesticide runoff haz
ard, perhaps akin to the Mb risk map (Quaglia et al., 2019). Future 
research could involve comparing results from our modelled approach 
using the InVEST NDR model with those as generated by the SWAT 
model, which can account for degradation (Neitsch et al., 2011) and 
may give improved estimates. Some studies have compared outputs 
produced by InVEST models and SWAT, with one study demonstrating 
general consensus between hotspots estimated by the InVEST NDR 
model and SWAT (Cong et al., 2020). These studies recommend that 
choice of model depends on purpose and geographical context (Cong 
et al., 2020; Dennedy-Frank et al., 2016).

The InVEST NDR model does not take soil type as an input. Soil type 
is relevant to diffuse source pollution estimations (Campbell et al., 2004) 
because soil adsorption depends on soil organic carbon, and soil organic 
carbon differs between land cover classes. Therefore, we based our 
retention factors on scaled soil carbon estimates per land cover class 
(Thomas et al., 2020). The likely reality is that soil type varies within 
land cover classes, but we cannot incorporate this variability into the 
InVEST NDR model. The model also cannot account for certain 
catchment-specific physical properties, as demonstrated by the variation 
in catchments’ responses when changing the Borselli K parameter 
(Redhead et al., 2018). There is a general lack of empirical data on 
pesticide retention rates at the land cover class scale for England, less 
still that differentiate between surface and subsurface flow and so 
potentially limited our modelled approach in this way. This is particu
larly important given the InVEST NDR model sensitivity to inputs 
identified in previous research (Anjinho et al., 2022; Benez-Secanho and 
Dwivedi, 2019; Han et al., 2021, 2020; Redhead et al., 2018; Salata 
et al., 2017; Sharps et al., 2017), as different data sources or choices of 
calculations may produce different outputs to those we produced in this 
study. In preliminary analyses, using lower pesticide retention values 
than in this study, we saw weaker relationships between the two ap
proaches. While the gradients remained the same, the modelled in
tercepts were greater than the measured and even further from 0. This 
again alludes to the sensitivity of the InVEST NDR model to its input 
values. It would be possible to further calibrate this model for a more 
true-to-life output with careful consideration of model-sensitive inputs; 
while studies focus on calibrating the model’s Borselli K and Threshold 

Flow Accumulation calibration parameters (Han et al., 2021; Redhead 
et al., 2018; Valladares-Castellanos et al., 2024), less is known about the 
effects of calibrating the model’s other input values, which may also 
affect model estimates (Valladares-Castellanos et al., 2024). These could 
include values in the biophysical table, spatial input data, and the ratio 
of surface to subsurface flow per pesticide active ingredient from the 
model workbench, or the relative retention values and carbon scaling 
factor which we also used here. However, this lies beyond the scope of 
this study. There are also dangers in calibrating the model close to the 
measured data, since the measured data do not necessarily represent a 
true picture of pesticide loads.

4.3. Strengths and limitations of measured data

Our results are not a true validation of the model, instead being an 
evaluation of the model against estimated loads, which are themselves 
not likely to be fully accurate representations of the total pesticide load 
in a catchment, for a number of reasons. Firstly, loads were calculated 
from measured concentrations and generated flows: there is an element 
of modelling in the measured approach. We decided to obtain flow data 
using Qube rather than other methods, e.g. the National River Flow 
Archive (NRFA; Dixon et al., 2013) as used in Redhead et al. (2018). 
Qube can estimate flows in both gauged and ungauged catchments, 
allowing flows to be generated precisely where required, unlike NRFA 
data which must be spatially coincident with EA WQA sites to calculate 
pollutant loads. Qube is also a best practice tool used by UK government 
agencies and water companies, so it is trusted as a quality tool to 
generate real-world flows across the country. Secondly, there were far 
fewer concentration records than flow data, with generated flow data 
available daily but concentration samples taken less frequently. There
fore, concentration values would only be truly indicative of those mo
ments in time. Thirdly, the inconsistency of concentration samples taken 
across different catchments means that some catchments may be more 
“true-to-life” than others. While some sites were sampled less than 
monthly, others were sampled biweekly; some in only a couple of years 
while others for most of two decades. This may have introduced within- 
year or between-year bias where there were fewer concentration re
cords, which could shift averages more in favour of abnormal values. 
However, we considered the BRE would be suitably robust for our 
method as it has been shown to perform better than other estimators in 
terms of bias and efficiency (Swain and Dash, 2020), even with low 
sampling frequency (Lee et al., 2016). Fourthly, while we accounted for 
non-arable applications and/or point-source pesticide releases by 
including the arable proportion in our calculation, we assumed that 
loads per unit arable area are the same as those per unit non-arable area. 
While this is similar to previous handling of point-source data (Redhead 
et al., 2018), there remains difficulty in accurately quantifying arable vs. 
non-arable and diffuse-source vs. point-source pesticide loads.

There are also limitations in the steps required to convert measured 
concentrations to total annual loads. Although we aligned data years as 
much as possible while reducing bias from fluctuations, a complete 
temporal overlap between shorter-term data (LCM products, WFD data) 
with longer-term data (Qube, WQA, HadUK-Grid) was not always 
possible. In assessing the WQA data, we found that concentrations were 
often recorded using a minimum threshold value of detection (e.g. 
“<0.04”). At some sites, a plateau of a single threshold value existed 
through all records, while others had more than one threshold value, as 
different detection thresholds applied over time: these results were 
omitted from our study but did substantially decrease the amount of 
usable data. While the Beale Ratio Estimator is designed to work with 
missing data, our measured results would be more accurate if there were 
more high-precision concentration data available, and our ability to 
calibrate the model and explore the alignment of measured and 
modelled approaches under different situations (e.g. for smaller vs 
larger catchments, or additional pesticides) would be improved. An 
alternative to using measured concentration and generated flow data 

Table 4 
Kendall rank correlation results.

Pesticide Model Description z 
Coefficient

p τ

Bentazone 
(N = 54)

(1b) Rank arable area vs. 
rank measured

2.19 0.029 0.21

(2b) Rank measured vs. 
rank modelled

2.48 0.013 0.23

(3b) Rank (measured x 
arable proportion) 
vs. rank modelled

7.63 < 0.001 0.71

Chlorotoluron 
(N = 21)

(1b) Rank arable area vs. 
rank measured

170 < 0.001 0.62

(2b) Rank measured vs. 
rank modelled

175 < 0.001 0.67

(3b) Rank (measured x 
arable proportion) 
vs. rank modelled

189 < 0.001 0.80
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would be to measure both, such as combining the EA WQA with NRFA 
data. However, this would likely further reduce the number of catch
ments with sufficient data if both records were not taken simulta
neously. Ultimately, these issues demonstrate the challenge of relying on 
measured data, and the need for reliable models – measured data are, 
due to cost and time constraints, inevitably patchy.

5. Conclusions

Pesticide sampling campaigns are costly in time, money and effort, 
and are thus often restricted in space and time (in both length and fre
quency of record). Therefore, we must rely on more efficient modelled 
approaches for a large-scale picture of pesticide loads in both monitored 
and unmonitored catchments, and over a longer timeframe. Our study 
presents the view that the InVEST NDR model is a useful tool to use in 
making these estimations, at least where a rapid assessment of relative 
pesticide loadings to water between catchments is the desired outcome. 
If the end goal is to produce closer to a 1:1 ratio of measured to modelled 
results, so that the model could be used as a proxy for the measured, 
further work must go into and calibrating our model and evaluating its 
performance, in part through closer examination of retention rates in the 
InVEST NDR model. Although future work may strengthen our modelled 
approach and increase its accuracy, our model in this study already 
provides a good indication of the relative pesticide runoff hazard across 
and within catchments when we use ranked data, so could be accepted 
as a “worst case” hazard estimate. Our approach is, therefore, poten
tially useful for informing policy concerning the reduction and mitiga
tion of pesticides in the environment, especially in terms of high-level 
spatial targeting or scenario exploration across a multi-catchment region 
of interest (Weissteiner et al., 2014). This can then be used to target and 
prioritise more detailed work for catchments identified as showing 
greater relative pesticide hazard. At these smaller spatial scales targeted 
measuring campaigns become more feasible and the data required to 
parametrise more complex models (e.g. SWAT) are more likely to be 
available. Our modelling approach thus adds a potentially valuable tool 
to the existing pool of ecosystem service models for assessing agricul
tural sustainability, for other regions, nations and countries with suffi
cient data on pesticide use.
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