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1. Background 
Fresh waters supply several essential services to society, such as water supply for 
various sectors (including drinking water, agriculture, manufacturing), the leisure 
industry (e.g. bathing water), and habitats for fauna and flora (Millenium Ecosystem 
Assessment, 2005). Indeed, they make a disproportionately high contribution to 
global biodiversity; despite accounting for only 2.3% of the Earth’s land surface 
area, fresh waters are estimated to host almost 10% of described animal species 
(Reid et al., 2019 and references therein). 
  
Despite their overwhelming importance, fresh waters around the world are under 
increasing pressure due to the interacting effects of climate change, pollution, 
overexploitation, and socio-economic change (Dudgeon et al., 2006; Tickner et al., 
2020). As a result, in Europe, only 40% of surface water bodies are achieving good 
ecological status, as required under the Water Framework Directive (European 
Environment Agency, 2018). In the UK, this figure drops down to only 14% (House 
of Commons, 2022). Compounding these trends, the research community 
continues to recognise further emerging threats to fresh waters, for which we have 
only limited insight (Reid et al., 2019; Stephenson et al., 2024). The impacts of this 
diverse array of pressures are challenging to predict, given that they may interact in 
complex ways (Jackson et al., 2016; Spears et al., 2021). It is therefore vitally 
important that we increase our understanding of freshwater ecosystem dynamics 
under current conditions and apply this enhanced understanding to make 
projections of likely future change and scenarios. Armed with such understanding, 
we would greatly facilitate adaptive management of freshwater resources and 
biodiversity.   
 
Over recent decades, scientists across the UK, and internationally, have collected a 
wealth of environmental data using an ever-increasing array of approaches and 
technologies (Blair et al., 2019a; Thackeray & Hampton, 2020; Blair & Henrys, 
2023). Long-term and high-frequency monitoring networks have been established 
and maintained (e.g. the Global Lake Ecological Observatory Network), gathering 
invaluable evidence on the changing state of fresh waters over time. In addition, 
observations are being made via remote sensing, professional survey, citizen 
science, and through the application of novel analytical techniques (e.g. molecular 
approaches, acoustics) (McCracken et al., 2024). Notwithstanding important 
challenges around the volumes, veracity, and heterogeneity of these collective 
measurements and observations (Blair et al., 2019a; Blair & Henrys, 2023), such 
data can be integrated through empirical modelling approaches and data science 
techniques to yield new insights into processes and states in fresh waters (Jarvis et 
al., 2023).  
 
Environmental data are also essential to inform, test, and drive process-based 
models. Process-based models are valuable tools in ecological research and 
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management, providing digital representations of real-world processes that allow 
the investigation of impact scenarios in “virtual experiments” (e.g. Elliott et al., 2006; 
Hutchins 2012; Salk et al., 2022). However, such models also have recognised 
limitations. Typically, models show great variety (Blair et al., 2019b). Each model 
only captures specific aspects of the freshwater environment (e.g. rivers or lakes, 
droughts or floods, hydrology or water quality), or focuses only on particular 
aspects of environmental stress (e.g. point vs. diffuse sources of pollutants, 
macronutrients, metals). Furthermore, the structure and parametrisation of process-
based models is typically static in time, limiting their ability to capture the constantly 
changing nature of the environment.  
 
The use of data for the single purpose of process-based modelling (driving data, 
calibration, validation) is not optimal given that the wealth of data available to 
scientists contains invaluable information, outside of the process-modelling arena. 
New data science technologies can also unlock new knowledge from this 
information and facilitate efforts towards increasing the resilience of freshwater 
ecosystems. As such, data and model integration provide opportunities to both 
advance our understanding of fresh waters, and to build predictive capabilities that 
can inform conservation and management.      
 
Over recent years, scientists have explored a new technological paradigm, the 
digital twin concept, to provide improved modelling capabilities that would enable 
more accurate forecasting, for potential use in decision making (Blair, 2021). The 
commonly accepted definition of a digital twin is a virtual representation of a system 
that is constantly updated to accurately represent the current state and behaviour of 
the system. In the environmental realm, the digital twin concept can be interpreted 
as a system that allows the integration of the plethora of information and technology 
available to scientists including monitoring observations, remote sensing data, 
process-based and data-driven models (Blair & Henrys, 2023). Crucially, digital 
twins include feedbacks on the way that we interact with the real environment 
(Siddorn et al., 2022), and can transform modelling into a learning process through 
the integration of incoming data (Blair & Henrys, 2023). Although digital twinning 
has a longer history in engineering (Rasheed et al., 2020; Blair, 2021) and urban 
drainage systems/utilities (Karmous-Edwards et al., 2019), recent developments 
are seeking to apply this approach in ways relevant to freshwater ecosystems. 
Examples include digital tools to address issues such as harmful algal blooms (Qiu 
et al., 2023), contaminant transport (Kim & Bartos, 2024), and water quality (Chen 
et al., 2023, Qiu et al., 2022, FLARE https://flare-forecast.org/, WaterWebTools 
https://www.waterwebtools.com/).   
 
In this study, we develop a roadmap for a surface water quality digital twin, to 
provide now-casting and short-term forecasting of a range of environmental 
pollutants and ecosystem states in both rivers and lakes. Although shorter-term 
dynamics are our focus, we note that digital twins can be applied to longer-term 
system behaviour as well. Our aim was to integrate numerous aspects of water 
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quality and UKCEH expertise in monitoring networks, data science, hydrological 
and water quality, and river and lake ecosystem modelling. Thus, we reviewed 
current data streams, available models, and data science approaches. We built 
upon the existing body of work that considers how best to conceptualise 
environmental digital twins. This included knowledge acquired through: 
 

 development of digital twins or similar systems under Land Insight (Fry et al., 
2022) and UNIFHY (Hallouin et al., 2022, https://unifhy-
org.github.io/unifhy/index.html),  

 published scientific recommendations regarding the development of 
environmental digital twins (Siddorn et al., 2022; Blair, 2021), and the need 
to consult widely when delivering decision-grade knowledge (Chambers et 
al., 2021)  

 external networks currently focussing on environmental digital twins, such as 
the NERC Constructing a Digital Environment Expert Network.   

 
When designing and developing such tools, users’ needs are an essential 
consideration. To maximise the benefits, and uptake, of the digital twin application 
by the wider community, we identified the needs of stakeholders and analysed their 
responses. 
 
The WADITI project was funded as part of the National Capability programme UK-
SCAPE (https://uk-scape.ceh.ac.uk/), Year 6. Aligned with the UKCEH Digital 
Strategy 2024-2030 (https://www.ceh.ac.uk/about-us/digital-strategy), the project is 
comprised of three inter-linked work packages (WP) (Figure 1), bringing together 
stakeholder community needs with in-depth understanding of digital twin 
architectures, data, and models.  
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Figure 1. The WADITI Work Package (WP) structure. 
 

This report presents the outcomes of the scoping study on the development of a 
water quality digital twin. The stakeholder requirements identified via WP1, 
“Community engagement”, are summarised in Section 2. A review of existing data 
and models is presented in Section 3. The proposed water quality digital twin 
roadmap is developed in Section 4, including case study examples. Finally, 
conclusions and recommendations are laid out in Section 6. 

2. Framing the requirements of a 
digital twin 

2.1 Approach to identifying stakeholder needs 

Stakeholders’ views on the creation of a water quality digital twin were sought 
through an anonymous survey composed of closed and open questions. Full 
descriptions of the questionnaire and of stakeholders’ views are reported in Dick et 
al. (2023). 
 
The questionnaire was designed by all members of the WADITI team to capture 
opinions on fundamental considerations when creating a roadmap for a water 
quality digital twin, including: 

- Spatial and temporal scale,  
- Determinands to consider,  



 

WADITI -  
Developing a roadmap for a water quality digital twin  |   

ceh.ac.uk 8 

- Outputs encompassing both content and format,  
- Foreseen risks and limitations.  

 
The questionnaire was distributed UK wide, using a snowball approach whereby 
the team encouraged respondents to share it with peers that might be interested in 
the topic, i.e., invitees invite others. The responses were delivered June/July 2023. 
On average the participants took ~20 min to complete the survey (see Dick et al. 
(2023) Annex 1 for full questionnaire). 
 

2.2 Analysis of stakeholder needs 

Fifty-nine participants responded and provided a wealth of viewpoints, from the 
perspectives of academia (~40%), industry (~25%), regulators (~15%), NGO’s 
(~15%) and policy makers (~5%). The responses were fully analysed to identify 
stakeholder needs and are summarised here.  
 
Feasible spatial scale  

The majority (75%) of respondents who expressed a single scale preference 
considered that ‘catchment scale’ was the most feasible, useful, realistic, and 
deliverable scale for a water quality digital twin. The foremost rationales for 
preferring the catchment scale reflected that it was “the usable spatial scale” and 
“more achievable to deliver”, reflecting the “specific nature of each catchment” and 
“provides the highest resolution of data/information upon which to act”. In addition, 
respondents considered that “Catchment-scale mirrors the currently active river 
basin management planning process” and it was recognised that “catchments often 
transcend national or even regional boundaries”, noting “management that doesn't 
recognise this is insufficient”. Respondents who selected national as the single 
most relevant scale tended to focus on policy objectives while the regional scale 
was considered by some as a “middle ground”.  
 
Feasible temporal scale 

There was no consensus on the most suitable temporal scale to deliver output from 
a water quality digital twin. Respondents considered the desired temporal scale to 
be dependent on the use envisaged for the digital twin. However, overall, 76% of 
respondents marked ‘sub-daily plus daily’ alone or in combination with other 
temporal scales as the most suitable temporal scale to deliver output from a water 
quality digital twin. This lack of agreement on temporal scale appears to result from 
respondents’ concerns on (i) the use of the digital twin output, (ii) computational 
feasibility of running detailed digital twins, and (iii) availability of data at a suitable 
temporal scale. 
 
Most important determinands 

Nutrient concentrations were considered the most important determinands of 
running and standing water quality to include in a water quality digital twin, with 
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100% of respondents scoring these as a priority. The linkage between nutrients and 
cyanobacteria was noted by several responds e.g. “Algal blooms (and therefore 
nutrient concentrations) are of greatest concern to the general public so it would be 
most useful to be able to forecast these to inform management on the ground”.  
Several other abiotic and biotic determinands were also suggested, partly 
depending on the required use of the resultant digital twin. Cyanobacteria, 
pesticides/herbicides and heavy metals were all selected by over 80% of 
respondents as being important-to-critically important to be included in a water 
quality digital twin.  
 
Output variables 

A combination of physico-chemical variables (selected by 52% of respondents) and 
biological variables (selected by 24% of respondents) were considered the most 
important outputs that a water quality digital twin should predict. However, 
respondent comments revealed the interdependencies between physico-chemical 
and biological variables e.g. “I would have selected physico-chemical and biological 
variables … as I believe the two go hand-in-hand. However, I would prioritise 
physico-chemical variables as prediction of nutrient concentrations, temperature, 
and dissolved oxygen concentration will allow better management of algal blooms 
and water for other biodiversity”. Human wellbeing and financial impact as output 
variables were considered very important for decision making, they were however, 
recognised as more difficult to model. 
 
Output format 

Most respondents selected more than one output format (76%). An interactive web 
portal with visualisations of predictions was selected by 92% of respondents (often 
in conjunction with other output formats). It is clear from the output format selected 
and the accompanying written rationale that some respondents wished to have the 
data interpretated for them while others wanted access to the data so they could 
conduct further analysis themselves. For example, one respondent wrote “Relevant 
knowledge that has been derived from the digital twin - don't make people have to 
work it out themselves…translated insights in an accessible way that doesn't 
involve more analysis”, compared to another who wrote “Really just worth having 
an API, everything else can build on top of that”.   
 
Major obstacles 

The need for (near) real time data on both water quality and quantity was 
considered by most respondents to be a major obstacle to creating a fully functional 
digital twin of running and standing water quality. However, almost twice as many 
respondents considered that this situation was worse in terms of water quality 
compared to water quantity e.g. “Water quantity is better quantified but needs to be 
linked to WQ [water quality], including monitoring at same locations”. Information on 
water quality was acknowledged by several respondents as limiting, e.g. “I consider 
the lack of near-real-time data on current water quality at sufficient representative 
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locations to parameterise and update a digital twin to be the biggest obstacle 
because of the resource required to achieve this”.  
 

3. Review of existing data and 
models 
As an organisation focussing on environmental science and encompassing a range 
of expertise from monitoring to modelling across a range of systems, UKCEH is in 
an optimal position to access/curate data, develop models, and integrate these. As 
part of this study, reviews of available data and models have been undertaken, 
focussing on those that are most relevant to the requirements identified by the 
stakeholders (Section 2). Though our reviews were not intended to be exhaustive, 
they were conducted in a way that would represent a range of different freshwater 
ecosystem types and scales (running and standing waters, catchments), 
environmental states and processes (physical, chemical, biological), and modelling 
approaches (process-based, data driven).  

The reviews were structured to address the various needs and challenges 
highlighted by our stakeholders, thus characteristics such as spatial and temporal 
resolution and the selection of determinands measured were the central aspects 
considered.  

3.1 Review of existing data 

There are two common data collection methods that provide most of our 
observational quantification of water quality in the UK, and these differ in their 
spatial, temporal, and ecological resolution. These are manual sampling, occurring 
at fortnightly-monthly intervals or less frequently, and automated high-frequency 
monitoring through sondes.  

Manual sampling and lab-based analysis often gives information on a large suite of 
nutrients, contaminants, and biological measures. However, it is labour intensive 
and does not capture temporal dynamics occurring at frequencies higher than the 
seasonal scale. Automated sonde measurements are restricted to a smaller subset 
of water quality indicators and proxy variables but can reveal insights into the high-
frequency dynamics of these variables (e.g. in response to extreme events, 
Woolway et al., 2018). Furthermore, these data have been collected over different 
spatial extents, both as part of national-scale Agency monitoring programmes, and 
also through long-term research programmes at sentinel sites (e.g. UKCEH 
monitoring in the Cumbrian Lakes, Loch Leven, and the Thames catchment). 
Increasingly, satellite remote sensing is also being used to assess the status of 
inland waters over broad spatial scales, delivering a subset of measures that are 
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observable based upon reflectance data (e.g. https://3deo-
portal.com/#/dashboard/scientificMap/UniversityOfStirling).    

A digital twin must be able to exploit these different data sources, capitalising on 
their individual strengths while robustly managing their weaknesses. Here, we give 
a summary of the existing data in each of the two main data classes identified 
above. It is, however, important to emphasize that although a significant amount of 
data is available and freely accessible, the intricacies of the data are seldom 
documented. It is therefore extremely important when using the data to establish 
close connections with data providers, to capture data particularities. Such 
intricacies can include changes in detection limit through time, operational 
deployment and redeployment of sondes. 

Manual sampling 

There is a large network of sampling sites covering most of the catchments in the 
UK (to a lesser or greater extent) where freshwater samples and measurements 
are collected. These manual sampling efforts are predominantly managed by the 
Environment Agency (EA) in England, the Scottish Environment Protection Agency 
(SEPA), the Natural Resources Wales (NRW) and the Northern Ireland 
Environment Agency (NIEA). The subset of determinands measured in these 
samples varies spatially and temporally, but there is a historical record dating back 
to the late 20th century. The measurement and analysis techniques deployed in 
these schemes has varied through time and space, including factors such as 
changing detection limits. The frequency of measurement, both temporal and 
spatial, will also vary depending on the determinand considered. Some 
determinands (e.g. biochemical oxygen demand (BOD), concentrations of nutrients, 
dissolved oxygen (DO), chloride) are routinely measured at higher temporal 
frequency than others such as metals and pesticides. 

To illustrate this higher temporal frequency for the manual sampling network, we 
consider a subset of three routinely sampled determinands within the EA Water 
Quality Data Archive (https://environment.data.gov.uk/water-quality/view/landing): 
pH, DO, and ammonia concentration.  

The evolution through time of the number of monitoring sites at which samples of 
these determinands were measured is captured in Figure 2. These are measured at 
most sites and in most samples: almost 10,000 sites within England had at least 
one sample taken where these determinands were measured in the year 2000. This 
number has been decreasing over time and stood at around 4,000 sites with a 
single sample in 2023. The number of sites where regular monthly measurements 
of these three common determinands were made is lower: around 3,000 in the year 
2000 and less than 2,000 in 2023 (again within England). 

For less frequently measured determinands, the manual sampling dataset can be 
sparse, both temporally and spatially (Table 1). Glyphosate, the most recorded 
herbicide in the data set, was not measured regularly (regularly meaning at least 11 
samples per year) at any sites in England before 2022. In 2022, heightened interest 
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in the chemical translated into increased monitoring, with 63 sites measured for 
glyphosate regularly throughout the year. Coliforms were measured regularly at 
only 18 sites throughout 2022. Measurement of heavy metal concentrations in the 
river network has decreased since 2000, with regular measurement of zinc and 
nickel occurring at over 2000 and around 500 sites, respectively, in the year 2000 
but only around 100 sites for both metals in 2022. 

 

 
Figure 2. A line plot showing the number of sites with measurements of three 
key determinands in the EA Water Quality Archive. 
 

Water quality data from long-term manual sampling of sentinel lakes and lochs are 
available from UKCEH, via the Environmental Information Data Centre (EIDC). This 
monitoring activity began in 1945 for the Cumbrian Lakes (initiated by the 
Freshwater Biological Association), and in 1968 for Loch Leven. Sampling has 
been conducted at weekly-fortnightly intervals throughout this time, and includes 
water temperature, and concentrations of oxygen, fractions of phosphorus and 
nitrogen, silica, and chlorophyll-a, as well as pH and alkalinity. Similarly, long-term 
data on a suite of physical, chemical, and biological ecosystem states have been 
collected from the River Thames and many of its tributaries, since 1997. 

Any model attempting to predict a suite of determinands will achieve differing levels 
of calibration and validation based on the availability of data for each selected 
determinand. While some strong proxy relationships may be captured between 
commonly observed variables and infrequently sampled contaminants, this is 
unlikely to be the case for all target determinands. By incorporating contextual 
information on land cover, land use and effluent inputs into a data-driven model, it 
may be possible to overcome the data sparsity and generate more robust estimates 
for a larger list of determinands. 
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Another challenge posed by working with data from long-running sampling regimes 
is the possibility of methodological changes in data gathering or processing 
procedures. If metadata describing these changes are available, they can be 
represented as latent variables when using the data in statistical or machine 
learning models. If the metadata are missing, further analysis of the time evolution 
of the observations may be required to search for change points. This will be 
challenging due to the many confounding factors that are present in a complex 
environmental system. 
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Table 1. Number of sites with monthly measurements for a selection of years in the 
EA Water Quality Archive (Monthly columns). The total number of sites with 
measurements is also indicated (Total columns). Only a selection of determinands 
are included.  
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Sonde measurements 

The network of sondes taking real-time measurements is small when compared to 
that of the manual sampling sites. The use of sondes by the EA dates back to 
around 2008 but their use became more widespread in 2014. Data are made 
available via the EA Hydrology Data Explorer 
(https://environment.data.gov.uk/hydrology/explore). It is important to note that 
many sondes are currently deployed for a period of 4 to 5 consecutive months. 
Furthermore, it is noteworthy that one sonde may measure several determinands at 
once. 

As illustrated in Figure 3, there are currently around 80 sondes monitoring DO, 
turbidity, water temperature, conductivity, ammonium, and pH. At a subset of these 
sites, concentrations of nitrate, chlorophyll, blue green algae and/or fluorescent 
dissolved organic matter are also monitored, and these are shown in Figure 4. 
Once again, high frequency sonde data are collected at UKCEH sentinel lake and 
river sites. 

Utilising high-frequency sonde data in a digital twin will be pivotal to embedding 
sub-seasonal dynamics into feature relationship models (e.g. machine learning 
proxy variable-based predictors) and in the assimilation of near-real time 
observations to allow responsiveness to rapidly changing conditions (e.g. in storm 
overflow events). The sub-hourly resolution of sonde measurements (generally at a 
15-minute time step) gives a very resolved view of how water quality and ecological 
state variables change in waterways. Within the proposed digital twin structure, 
operating at a daily (or coarser) time step, these high-resolution observational data 
could be used to estimate sub-temporal grid uncertainty and, to test the utility of the 
coarser time step in capturing rapidly evolving events. 

A challenge for the digital twin will be to integrate manually collected and automatic 
sonde data which may or may not be co-located in space. If true co-location does 
not occur, or is rare, it may be possible to utilise data science approaches that 
account for spatial dependencies and covariance between manual and automatic 
monitoring sites that are near neighbours. Such an approach is discussed in 
Section 3.3. 
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Figure 3. Line plots showing the number of active EA sondes measuring 
dissolved oxygen, turbidity, conductivity, temperature, ammonium, and pH 
between 2018 and 2023. 
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Figure 4. Line plots showing the number of active EA sondes measuring 
fluorescent dissolved organic matter, blue green algae, chlorophyll, and 
nitrate between 2018 and 2023. 
 
The above considerations clearly demonstrate several aspects of the “Data 
Challenge” recognised by Blair et al. (2019a) and Jagadish et al. (2014). It is clear 
that a water quality digital twin will have to contend with the “four Vs” of 
environmental data: volume, velocity, variety, and veracity. Large volumes of water 
quality data are being collected by agencies, research institutes, the water industry, 
and charitable organisations, but these data show great variety (heterogeneity) in 
their spatial and temporal extent and resolution, determinands measured, and 
methods used. The velocity of data streams varies from near-real-time, for sondes, 
to time lagged for data generated by laboratory analysis of manually collected 
samples. Given that UK water quality data are collected by various organisations, 
and by a mix of professional surveyors and citizen scientists using different 
protocols, we also should expect that the veracity (reliability) of all of these data 
streams will vary. As a specific example, although we found evidence of FAIR 
principles being enacted through the EA Water Quality Archive (the API was well 
documented, and data easy to access), there existed many closely related 
determinands (with different identifiers), which represent the same chemical 
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measure, but analysed according to a different protocol. These protocols likely vary 
in their accuracy and limits of detection, but this is currently hard to resolve with the 
available metadata. All of this underscores the need for comprehensive, machine-
readable metadata that can be streamed into the data pipelines underpinning a 
water quality digital twin, so that this information can be used in data processing. 

3.2 Review of existing models 

Within UKCEH, a variety of models have been, and are being developed for water 
quality purposes for both rivers and lakes. Within the remit of this scoping study, a 
comprehensive review, although not exhaustive, was undertaken of UKCEH 
models. To capture the breadth of models available in the water quality arena, other 
models commonly used in academia and the water industry were also added to the 
review. 

Whilst undertaking the review, the following information was gathered for each 
model: 

- Model name 
- Description 
- Developer organisation 
- Type of model (e.g. process-based, empirical, data driven) 
- Focal determinands 
- Temporal scale 
- Spatial scale 
- Potential contribution to a near real time digital twin 
- Useful links providing more detail on the model 

 
A set of 29 models was reviewed, including 6 UKCEH owned models. This set 
included 8 models specifically designed for standing water.  

Most of the models reviewed operate at a daily timestep, and several can operate 
at sub-daily timesteps as well. Some models such as LAM (Load Apportionment 
Model, (Bowes et al., 2008)), SAGIS (Source Apportionment GIS, (Comber et al., 
2018)) and NIRAMS (The Nitrogen Risk Assessment Model for Scotland (Sample 
and Dunn, 2014)), adopt coarser time scales, either monthly or annual. It is 
important to note that the temporal resolution of a model is often dictated by the 
resolution of the input data. Therefore, many models can operate at a variety of 
time resolutions, with many models reviewed providing the possibility of using daily 
or sub-daily time scales. Some models, such as LF2000-WQX (LowFlows2000 
Water Quality eXtension, (Williams et al., 2009)) adopt a stochastic approach, and 
thus describe the system in terms of long-term trends (e.g. flows and 
concentration). Such approaches allow the user to maximise the use of monitored 
data that may not have sufficient monitoring frequency (e.g. monthly water quality 
data). 
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Regarding spatial scale, most of the river models considered operate at a 
catchment and sub-catchment scale (e.g. SWAT, INCA, QUESTOR). There are 
however a few examples, such as SAGIS and LTSM (Long-term simulations of 
macronutrients (Bell et al., 2021)), that are national scale models, or that have a 
flexible scale (NanoFASE (Harrison et al., 2021)). With respect to the lake/reservoir 
focussed models, most of the models selected in this review consider a single 
lake/reservoir per simulation. Although such models may not have the innate ability 
to simulate a series of inter-linked reservoirs, this specific challenge could be 
addressed within a digital twin framework. To the authors’ knowledge, the 
AQUATOX model (Park et al., 2008) is the only model reviewed here that is 
designed to simulate a river network including streams and multiple lakes and/or 
reservoirs. 

Stakeholders identified nutrients as the priority determinands to include in a digital 
twin. These determinands are commonly modelled throughout the UK and across 
the world. Most of the models in this review can simulate nutrient loads or 
concentrations, apart from LF2000-WQX, WHAM (Windermere Humic Aqueous 
Model (Tipping et al., 2011)), some lake hydrodynamics models, and NanoFASE. 
The LF2000-WQX model was designed to represent the fate of “down-the-drain” 
chemicals in rivers, and thus focusses on those chemicals that enter the surface 
waters mainly via wastewater treatment works. WHAM is an equilibrium chemical 
speciation model that is best suited to metals in soil and water systems. NanoFASE 
was originally developed for nanomaterials and is best suited to particulate matter, 
such as microplastics, but is currently being updated to include functionality for 
pharmaceuticals. Several lake models, identified in this review, can simulate 
nutrients, including PROTECH (Phytoplankton RespOnses To Environmental 
Change (Elliott et al., 2010)), Delft3D (Deltares, 2024)), AED (Hipsey, 2022)) and 
PCLake+ (Janssen et al., 2019).  

Despite some models being capable of modelling nutrients at a sub-daily resolution, 
these models will differ in terms of their level of complexity and representation of 
the environment. For the purpose of this review, the models suitable for modelling 
nutrients at a catchment scale and daily to sub-daily resolution are captured in 
Figure 5.  
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Figure 5. Water Quality models suitable for modelling nutrients at daily/sub-
daily resolution. Note: NanoFASE, although not designed to model nutrients, 
has the flexibility to do so. 
 
To summarise, there are several models available within UKCEH that provide the 
means to address stakeholder needs. These models encompass a range of 
processes, chemicals, scales (both temporal and spatial), environments 
(running/standing freshwater) and complexities. It is important to note that often 
models are designed to address specific questions, and subsets of ecological 
processes, and are static in time. UKCEH models are often operated on their own 
and may use inputs from various data sources including those described in Section 
3.1. 

This model review demonstrates the considerable expertise held within UKCEH in 
terms of water quality modelling. These models could form the basis of the 
modelling component within a digital twin but, to achieve this, the models would 
need to be translated and adapted into a modular form within a wider digital twin 
framework. Modularity is key as it would facilitate integration and thus, for instance, 
promote the interchangeability required for process representation, model linkages 
that allow simulation of connected freshwater environments, and a capacity to 
resolve processes across temporal and spatial scales.  
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Finally, the integration of models in a modular form within a digital twin would also 
allow the integration of models and available data, relaxing the static nature of 
model parameterisation, and opening up the possibility of model learning, as 
described in the following section. 

 

3.3 Integrating data and models through data science 
methodologies 

A digital twin represents an opportunity to design a system where mechanistic 
modelling and data science approaches work in tandem to harness both process 
understanding and insights from observational data. Some machine learning 
approaches may be challenging to apply in a near-real time framework where data 
are spatially and temporally sparse. It is certainly the case that the directed network 
structure of a river system creates challenges for the application of spatial statistics, 
though examples exist. Indeed, it may be the case that there is no plug-and-play 
solution currently in the literature for the specific needs of a water quality digital 
twin. We will first survey existing uses of data science in water quality research 
before examining how aspects of these methodologies might be adapted and 
combined for use in a digital twin. 
  
There are many existing applications of machine learning techniques to various 
aspects of water quality, including source identification using deep belief networks 
(Liang, 2021), anomaly detection on sensor networks (Leigh, 2019; Liu et al., 
2020), and modelling spatiotemporal relationships among sensors on an explicit 
network river structure using graph neural networks (Buchorn et al., 2023; Li et al., 
2022; Ni et al., 2023). Spatial extrapolation of water quality indicators on river 
networks has also been studied using stochastic process kriging (Cressie et al., 
2006; Garreta et al., 2009). More classical tree-based methods (random forests, 
gradient boosting trees) have been used frequently in recent years to predict 
determinands of interest from proxy variables, and to quickly identify feature 
importance between inputs and outputs (e.g. Schäfer et al., 2022; Wang et al., 
2021). More broadly, Blair & Henrys (2023) explore possible connections between 
process models and data models pertinent to digital twinning. They highlight that 
data science methods can be used at each step of a process modelling pipeline, 
from data cleaning and quality control to data assimilation and model validation. In 
addition, data science techniques can be used directly for predictive modelling, 
where their strength in pattern-finding makes them good candidates for situations 
where no mechanistic model is known – at the expense of being “black boxes” with 
little interpretability. With all these approaches, data availability in terms of spatial 
and/or temporal coverage will govern how well the model performs and generalizes. 
This constraint must guide the choice of data science approaches that are used. 
 
To set out how we could use the above approaches in a digital twin, we should take 
guidance from the modelling framework that we propose in the roadmap (Section 
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4). First, we aim to run a spatially explicit riverine model defined on river reaches 
connected in a network. A predictive data model should be able to “live” in the 
same space as the process models, therefore it should be aware of that network 
structure and should be able to receive input from and, send output to such a 
structure. Graph neural network approaches allow connectivity to be defined in this 
way, making them a good choice as an overall machine learning modelling 
framework. 
 
Second, the set of determinands that the chosen process models predict is likely to 
be a small subset of the list of all determinands that we would like to know about 
and for which we have observational data. The data model should be able to learn 
functional relationships between all members of this full list of determinands by 
combining process model outputs with data where available. Because observations 
are not always available, the data model should be robust to missing variables and 
missing timepoints and be able to make predictions to fill those data gaps. Ideally, 
the model should quantify the uncertainty of its predictions. Geostatistical methods 
that are capable of learning from contextual information (like classification of river 
reaches through neighboring land cover and land use) may be key in ameliorating 
data sparsity issues. Network kriging using stochastic processes could act as a 
baseline prediction for data gap-filling with uncertainty quantification. 
 
Third, there are likely to be variables calculated within the chosen mechanistic 
models that are not present in our list of important determinands. These extra 
model outputs could form a set of proxy variables that act as secondary inputs to 
the data model. 
 
Fourth, outside the river waterways there are data describing the catchment’s 
geography in terms of land use, topography and soil composition, and 
meteorological data that inform on processes driving water, solute, and sediment 
movement through the catchment and into the waterways. It should be possible to 
use such “external” (to the river network) data as contextual fields that the data 
model can learn from. 
  
Taking the constraints/guidance discussed in the previous paragraphs into 
consideration, an outline for implementing a data science framework alongside 
process modelling within the water quality digital twin could be the following: (i) 
“pre-processing” methods to clean, validate and gap-fill observational data; (ii) 
“processing” methods to predict variables not included in process model output; (iii) 
“post-processing” methods for anomaly and change-point detection in process and 
data model outputs, and for investigating model performance during normal and 
extreme scenarios. 
 
The pre-processing methods should make use of correlative structures in the 
contextual data sources (described above) and water quality observations to find 
outlier periods or regions in spot-sampling data. Time series data from sondes and 
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autosamplers should undergo cleaning before being used as inputs into either data 
or process models. Where possible, infilling of time series could be achieved using 
Gaussian processes. Spatial extrapolation from spot-sampling sites may be 
possible through network kriging, again making use of land cover and other 
contextual fields to constrain the problem. 
 
The predictive (“processing”) data model should have a graph structure with the 
nodes representing the river reaches in a catchment and the edges defining the 
adjacency matrix and directionality of the graph. Each node will have two input data 
streams and a single output data stream. The first input data stream will be the 
contextual data describing the geography and land use of the parcels of land 
adjoining each river reach. If possible, the subset of the upstream catchment from 
which water feeds directly into a river reach should be quantified and linked to the 
node as contextual data in the same way. The second input data stream will be 
dynamic in-river variables: model outputs of target determinands and other proxy 
variables at the current node as well as observational data on the full list of 
determinands of interest available for the current timestep. The output data stream 
is a vector of predictions and associated uncertainties for each of the water quality 
determinands at each node at the current time step. The architecture of the forward 
pass from inputs to outputs should be based on a combination of dense layers 
combining input data streams within a single node and causal graph convolutions to 
capitalise on the spatial structure inherent in the system and give the model the 
opportunity to learn how to share information across the river network. Between 
each process model timestep (each timestep of QUESTOR and PROTECH, for 
instance) the machine learning model inputs are collated, and the forward pass 
computed to generate the predictions for the full list of target determinands. 
 
The second input data stream is likely to have many gaps because of the lack of 
model outputs or observational data for most of the full list of water quality 
determinands. We suggest three possible approaches for dealing with these data 
gaps:  
 
(i) Utilising spatial statistical approaches based on kriging on the river network to 
extrapolate away from monitoring sites. This approach has the benefit of 
uncertainty quantification but may struggle with rarely observed variables and 
variables displaying strong temporal dynamics.  
 
(ii) Using the dynamic information from the process-based flow model to 
approximate movement through the network structure by constructing a flow-driven 
adjacency matrix A and solving the equation:  
 

𝑑𝑐

𝑑𝑡
=  𝐴(𝑡) 𝑐(𝑡) 

 
for each determinand, where c is a vector with length equal to the number of river 
reaches in the catchment and with values associated with the target determinand at 
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each of the river reaches. Between each model timestep [𝑡,  𝑡 + Δ𝑡] we assume the 
flow matrix 𝐴(𝑡)  can be approximated by 𝐴௧, a constant, and solve the resulting 
equation: 
 

ௗ

ௗ௧
= 𝐴௧ 𝑐(𝑡)    ⟹   𝑐(𝑡 + ∆𝑡)  =  𝑒 ∆௧𝑐(𝑡). 

 
The value 𝑐(𝑡  +  ∆𝑡) represents the current outputs propagated through the river 
network under the action of the flow and can be used to form part of the inputs to 
the machine learning model at the next time step. This gives us a way to perform 
dynamics-informed gap filling for the second input data stream. We can also think 
of this approach as providing a framework for integrating the spatially sparse high 
frequency sonde data with the temporally sparse but spatially more dense manual 
sampling network data in the situation where sondes and manual samples are not 
co-located.  
 
(iii) The data model could learn to make auxiliary predictions based solely on the 
contextual input data stream which we should always have access to. These 
predictions have value aside from the potential to fill gaps because they can act as 
a baseline prediction against which observations or other predictions can be 
compared to determine “hot spots” or “hot moments” of water quality events in the 
river network. 
 
Training such a model will require running the process models across the period 
where historical observations exist. The process models need only be used once to 
generate their outputs across the data period; then, the machine learning model 
can be run on segments of the timeseries, minimizing the error between the 
predictions and observations. These observations can be from high resolution 
sonde data, structured spot sampling, ad-hoc manual sampling or even citizen 
science water quality data. To reduce overfitting, entire catchments could be left out 
of the training set to be used as validation, if the training set included an adequate 
distribution of land cover, land use and soil types. 
 
The post-processing elements of the data science framework could be embedded 
in the digital twin model or be part of a dashboard for user interactivity and 
interrogation. Automated checks on model outputs – looking for model drift with 
respect to observational data; flagging spatially explicit change points in water 
quality to aid source identification; monitoring model performance in high-pollutant 
events – will increase the value of the digital twin system for stakeholders. 
Feedback into process or data models through data assimilation also falls under 
this heading but is covered elsewhere in this report. 
 
It is worth noting that we have only discussed data science approaches for in-water 
data and processes, under the presumption that loads of potential contaminants 
from the terrestrial environment can be inferred from contextual layers like soil type 
and land use. The chosen water quality model may be part of a broader set of 
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models that includes terrestrial processes such as soil erosion, and therefore these 
data science considerations could also be extended to the terrestrial environment. 
The notable barrier to adopt this approach is a lack of real-time terrestrial 
monitoring data to inform such approaches. 
 

4. Roadmap 
Considering the stakeholder priorities, data sets and models identified above, there 
is a case that we should prioritise the development of a digital twin of catchment-
scale nutrient and contaminant loads and concentrations, and associated effects on 
algal growth and oxygen concentrations in connected running and standing waters. 
Such a digital twin could be built upon agency and sentinel site datasets and 
existing water quality models. Below, we outline the digital infrastructure 
considerations that would apply to such a digital twin, as well as two case study 
applications focused upon specific models and water quality processes. 
 

4.1 Cyber-physical infrastructure 

Arguably what defines a digital twin over and above a model, or set of integrated 
models, is that a digital twin should be made accessible via a federated, 
interoperable infrastructure that enables the transfer of data to and from the twin for 
real-time or near real-time parameterisation. This is often referred to as Cyber-
Physical Infrastructure (CPI), and the system by which data (information) is 
transferred through the infrastructure is one part of the so-called Information 
Management Framework (IMF). Considerations around the CPI and IMF are 
important for any digital twin, and significant work has already been done in scoping 
the requirements for an environmental Information Management Framework (IMFe) 
in a report led by the National Oceanographic Centre (NOC) and funded by NERC 
and the Met Office (Siddorn et al., 2022). Here, we further expand some of the 
concepts discussed in that report, making them more relevant to water quality 
digital twins. 
 
Enabling FAIRness through standards, interfaces, conventions, and 
semantics 

At the heart of any digital twin is the passing of data between various components – 
physical and virtual. Such operations require careful consideration of standards, 
conventions, and semantics. The overarching theme in these recommendations is 
that data and software should strictly follow the FAIR principles – ensuring they are 
Findable, Accessible, Interoperable and Reproducible. Steps that can be taken to 
meet these principles include, but are certainly not limited to: 

 Standardised interfaces for any models used in the digital twin, including 
consideration as to whether dynamic coupling (passing of data on individual 
model timesteps) is required and whether the given interface is capable of 
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this. A compelling interface that is flexible enough to be used with the types 
of spatial and dynamic models used in water quality modelling is the Basic 
Model Interface (BMI): https://bmi.readthedocs.io/en/stable/ (Hutton et al., 
2020). Another interface worth considering is OpenMI 
(http://www.openmi.org/), though notably this has a steeper learning curve 
and fewer example interfaces (only C# and Java) compared to the BMI. It 
also has not seen any significant updates since 2010, whilst the BMI is 
actively maintained. Simpler models may not require such a prescriptive 
interface as these, but still should follow standards to ease usage and 
interoperability, such as RESTful APIs (Representational State Transfer). 
REST is broadly a standard that enables the transfer of data between two 
computer systems (e.g. models), usually via the internet, in a “stateless” 
manner – meaning that requests via the interface are completely 
independent of each other and not dependent on what requests have 
already been made. 

 The use of standards and conventions around data management will 
facilitate easy passing of data between components, and minimise the risk of 
mistakes being made by, for instance, misinterpreted metadata such as grid 
projections. The standards and conventions include file formats, names of 
variables and metadata. In the context of water quality modelling, we 
recommend using NetCDF for spatial data (ideally Climate and Forecast 
(CF) compliant (Hassel et al., 2017)), or well-described text formats (e.g. 
CSVs) for lower-dimensional data. 

 The variable names that the models and data use should at the very least 
follow a coherent and documented naming convention, but ideally should 
follow standardised naming rules such as CF or CSDMS Standard Names 
(https://csdms.colorado.edu/wiki/CSDMS_Standard_Names). The latter is 
arguably the most robust and compatible with our recommendation to use 
the BMI. This reduces the risk of variables being used incorrectly and makes 
it easier for researchers to couple components. It also raises the prospect of 
automated component coupling, as discussed further in the next section on 
modularity. 

 To enable the virtual components of the digital twin to be ported to different 
cyber infrastructure, established conventions around defining computational 
environments should be used. At a bare minimum, instructions for setting up 
a computational environment for each component should be included, but 
better would be the use of robust package management (e.g. Conda), 
containerisation (e.g. Docker) and deployment (e.g. Kubernetes) tools to 
enable automation.  

 Deviations from these standards and conventions are likely. For example, 
labelling variables with CF Standard Names is often not possible (the list of 
Standard Names is finite and skewed towards climate sciences). Where 
deviations occur, metadata are vital. We recommend that every component 
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within the digital twin is thoroughly described with metadata, giving the 
relevant context, background information, instructions for use, units, 
assumptions, etc. 

Many of the above recommendations will require updates to existing models and 
data. Whilst the effort required for these updates might be significant, it is likely they 
will pay off in terms of future-proofing models and data for future use in integrated 
digital systems. By showcasing the use of standardised interfaces in our digital 
twin, we would promote the use of such standards across other developing digital 
twin systems and raise the prospect of coupling digital twin systems together 
through these interfaces. Ongoing projects such as DestinE (earth system digital 
twin), Land InSight (digital twin for UK soils; Fry et al., 2022) and BioDT 
(biodiversity digital twin) are potentially of relevance for integration with our water 
quality digital twin. 
 
Modularisation of assets into interoperable components 

The IMFe report (Siddorn et al., 2022) states that: 

“In the vision of the CPI there is no one monolithic infrastructure, but 
myriads of component parts sharing and communicating to allow a 

powerful interconnectedness of information. The components of a cyber-
physical infrastructure are modular, reusable and networked.” 

This applies to all components of a digital twin; however, it is particularly pertinent 
with regards to models as legacy models often have monolithic codebases. 
Modularisation of code is not new, and arguably the development of object-oriented 
programming arose from this need for modularity, but the modularisation of models 
required for a digital twin goes beyond this. 
 
The basic motivation for using a modular, component-based infrastructure is that it 
allows for much more flexibility. For example, components (which might represent 
individual physical processes) can be easily interchanged to provide alternative 
conceptualisations based on the scenario modelled. Indeed, it enables the 
integration of process-based descriptions with machine learning methods. It also 
brings added benefits for future model developments, enabling new components to 
be easily developed independently without disturbing the existing model, and 
making it possible for developers to work on separate components in parallel with 
each other. 
 
If these components are based on flexible cyber infrastructures, this provides 
further capacity through the potential scalability of computing resources to meet 
differing computational demands. A commonly employed software architecture 
paradigm through which to achieve this scalable modularisation is by using 
microservices. Microservices are fine-grained, loosely coupled components acting 
through standardised interfaces, which can be flexibly coupled together to provide a 
variety of broader systems. They are widely used in the tech industry and underpin 
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many of the services that are ubiquitous in modern life, from searching the internet 
to streaming music and videos, but their use in scientific computing is currently very 
limited. It goes without saying that splitting an existing model up into microservices 
is a significant undertaking, and careful consideration would need to be given to the 
optimal level of granularity. For example, examining whether a microservice should 
cover all in-stream processes in one, or whether individual processes (e.g. 
sediment deposition, chemical degradation) should be served by separate 
microservices. Finer granularity brings more flexibility, but at the expense of 
increased overhead from microservices communicating with each other. It is also 
worth considering that the interfaces between microservices and the interfaces 
between complete modelling systems might be different and need to be carefully 
thought out. The model interfaces discussed above (BMI, OpenMI) relate to full 
model systems that have, for example, timesteps and spatial grids. This might not 
be relevant for microservices that comprise the model (e.g. they might be 
dimensionless), and API standards such as REST might be more relevant here. 
Consideration should be given to if and how different interfaces are compatible with 
each other. For example, can a BMI model be implemented as a web service in a 
RESTful manner? 
 
Modularisation brings another important opportunity: self-assembled models. This 
is based on the idea that, instead of a human choosing and linking the individual 
components to make the broader system, machine learning is employed instead. 
For self-assembled models, a machine learning algorithm is presented with a set of 
potential components to use, and it optimises the arrangement of these to minimise 
some pre-defined cost, such as ability of the system to predict observational data. 
This could bring us much closer to realising “models of everywhere” (Beven, 2007; 
Blair et al., 2019b) – models that are adapted specifically to account for the 
heterogeneity of different places and time periods, thereby used as a learning 
process about those places. By enabling the digital twin to be automatically re-
assembled to best fit a given scenario, we can learn which microservices – that is, 
which physical processes – best represent reality. Arguably, a digital twin is nothing 
but a system by which we can realise the models of everywhere concept. 
 
It is worth reflecting that place-based digital twins are being proposed. For example, 
the Forth-ERA project aims to develop a “digital observatory of the Firth of Forth’s 
entire water catchment”. If this was implemented in a flexible, modular manner, 
then adapting this digital twin to another catchment would not just be possible, but it 
would also be an invaluable learning opportunity about the differences between 
catchments. 
 
Cloud based cyber infrastructure 

Though we have not explicitly said so until now, it is important to reflect that the 
resulting digital twin is expected to be “cloud native” – runnable in and accessible 
from the internet, if for no other reason than to allow easy data transfer between 
measurement instrumentation, the digital twin and end users. This obviously 
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requires cloud servers, or use of serverless technologies. Adopting the 
recommendations above around containerisation and deployment (namely, using 
Kubernetes or similar) and microservices (with the potential to use serverless 
computing platforms such as Amazon Web Services Lambda) has the added 
advantage that there is no need to purchase or maintain the physical server(s) 
hosting the digital twin. If the digital twin is deemed confidential enough to preclude 
hosting on external services, then using conventional containerisation and 
deployment tools would make setting up a computing system on internal systems, 
such as the UKCEH private cloud, easily achievable. 
 
Physical infrastructure 
 
The physical infrastructure element of the CPI relates largely, in the case of a water 
quality digital twin, to the monitoring network that provides data to the cyber 
infrastructure. A key aspect of digital twinning is the ability to learn from model 
predictions, and part of this learning could be used to refine the monitoring network. 
For example, model predictions may indicate a particular geographical location that 
is more dynamic than others, such as having more rapidly changing or a broader 
range of determinand concentrations. If this location is not well monitored by the 
existing network, this raises the possibility of moving monitoring sensors to better 
cover this area, potentially resulting in better model predictions. This ability to 
optimise not just model configuration, but also monitoring network configuration, is 
fundamental to what separates a digital twin from a digital clone or shadow that 
have largely one-way data flows. 
 
 

4.2 Graphical interfaces, portals, and visualisations  

A key consideration that arose from the stakeholder consultation (Section 2.2) is 
that stakeholders perceive a graphical user interface as important (92% of 
respondents saw the need for a such an interface). This is understandable, given 
that this would dramatically increase the accessibility of the digital twin, enabling 
users to visualise and analyse data without them having to implement their own 
analysis routines. Given that the output data from the digital twin is likely to be 
spatial and therefore use binary file formats like NetCDF, analysing such data 
without a visual interface would likely require programming skills. 
 
The obvious contender for a visualisation platform for a catchment-based water 
quality digital twin is a map-based portal, most likely accessible via a web browser 
and ideally compatible with mobile/tablet viewing. Ideally, it would be possible to 
visualise time series at distinct catchment locations as well (e.g. observational data 
streams, model simulations, forecasts with associated uncertainty). The effort 
required to create such a system should not be underestimated, and we strongly 
recommend thorough investment in user-experience (UX) and user-interface (UI) 
experts throughout the creation of the twin. Given that this portal is likely to be what 
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most users access the twin through, it is imperative that it is as functional, intuitive, 
and as useful as possible, with well thought out visualisations that present the 
underlying data in intelligible ways. Websites such as Our World In Data 
(https://ourworldindata.org/) could be taken as inspiration due to their success in 
making complex data accessible to the public. Stakeholder co-design and robust 
testing (such as A/B testing) will be essential to the development of such 
visualisations. There is a significant amount of expertise within UKCEH in 
producing successful visualisation platforms, such as the UK Water Resources 
Portal (https://eip.ceh.ac.uk/hydrology/water-resources/). 
 
Not all users will want access solely through a web portal, and as such it is also 
important to provide access to the underlying data by other means, ideally as a 
well-documented API following a standard interface such as REST. The ability to 
select and download data through the web portal would also be welcome. 
 

4.3 Sustainability and long-term maintenance 

“How will this be funded in the long-term?” might well be the most asked and also 
most difficult question to answer when it comes to discussing software systems. 
Typically, especially in scientific funding streams, funding is provided to create the 
system, but not to maintain the system beyond the lifetime of the project. In reality, 
long-term funding is essential to update the system: ideally, with the latest 
knowledge, but at minimum to fix security vulnerabilities and to keep it working. The 
same considerations apply to digital twins, but with the added complication of the 
network of instruments providing observational data. Another important aspect 
requiring funding consideration is long-term user support, such services are 
important to secure a positive organisational reputation.  
 
Most importantly, there needs to be an acceptance, by funders but also by 
institutions developing digital twins, that a digital twin is infrastructure and needs to 
be treated as such. One wouldn’t expect to fund the creation of a laboratory without 
available capital for the associated overheads (servicing machines, purchase of 
consumables, securing energy needs, etc). In the same way, one cannot expect to 
fund the creation of a digital twin in the expectation that it will remain functional in 
perpetuity without long-term funding. 
 
Although beyond the scope of this study, careful consideration regarding long-term 
funding streams will be required. Ultimately, potential funding streams may be 
decided based upon who the beneficiaries of such a digital twin are. These 
beneficiaries are likely to come from various sectors including, for example, water 
companies, to support decision making, and public organisations or agencies to 
foster public awareness and support policy makers and regulators. It is important 
that digital twin developers are clear to their funders from the outset that the twin 
will only be functional for as long as funding remains available. 
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5. Case studies  
Considering the stakeholder requirements (Section 2) and the models and data 
available (Section 3), it is clear that there is scope to develop a water quality digital 
twin with capabilities including forecasting of nutrient and algal dynamics in 
connected freshwater systems (rivers and lakes). Here we consider two case 
studies, each exploring a possible digital twin building on, and capitalising on, 
UKCEH current modelling expertise coupled with data currently available within the 
UK. These case studies showcase the use of some of the UKCEH models reviewed 
in Section 3.2 and data available, as presented in Section 3.1. The use of UKCEH 
developed models ensures the flexibility required for implementation of a digital 
twin, as highlighted in Section 4. 
 

 Case study 1 was chosen as it focusses on utilising a water quality model 
that structurally complies to many requirements of digital twin. It lends itself 
to modularisation into a component-based system that will allow us to fully 
realise the vision of digital twins as a two-way learning process, where not 
only are models informed by monitoring data, but model output is used to 
reconfigure the model to best suit the given environment (offering a learning 
opportunity about that environment), and to optimise the monitoring network 
to provide the most pertinent data to the model and stakeholders. The model 
could relatively easily be adapted to model nutrients in rivers and lakes. 

 In contrast, case study 2 was selected as it represents an opportunity to 
strengthen, within a digital twin framework, a methodology of model coupling 
already in place within UKCEH. This work focuses on the simulation of 
nutrient and phytoplankton dynamics in rivers and lakes. Crucially, this 
model coupling is currently underdeveloped, relying on manual approaches 
to transferring data between river and lake models. Here, digital twinning 
would create an opportunity to strengthen considerably UKCEH capabilities 
in modelling water quality and ecological states in connected freshwater 
ecosystems; automating model coupling and data integration and boosting 
our capacity to understand cross-system linkages that are ecologically and 
societally important. These models operate at waterbody scales but could be 
incorporated into a structure similar to that proposed in case study 1, adding 
considerable potential to simulate catchment scale processes and capture 
terrestrial-aquatic processes.  
 

Thinking more broadly, there is also potential to implement both case studies within 
the same digital twin. There are multiple ways in which this case study integration 
could be implemented. If the determinand(s) of interest is common to both case 
studies, then either machine learning could be used to configure which (part of 
each) case study model(s) is used for predictions based on which best fits 
monitoring data, or alternatively an ensemble approach could be used where 
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(weighted) average results from both case studies could be used. If different 
determinands are of interest and they are not common to both case studies, then 
the case studies could be used separately to predict different determinands. Taken 
together, these case studies represent an opportunity to greatly enhance our 
capabilities in understanding and predicting water quality change and deterioration; 
an issue that has considerable social and political resonance.  
 

5.1 Case study 1: FASE 

The FASE (Fate And Speciation in the Environment) model is a catchment-or-
broader scale spatiotemporal multimedia contaminant fate and exposure model. It 
was originally developed for nanomaterial exposure models and released as the 
NanoFASE model (Harrison et al., 2021) (Figure 6), but it is currently undergoing 
adaptation to pharmaceuticals and microplastics. In its current formulation, it is 
particularly suited to predicting terrestrial and surface water concentrations of 
particulates. 

 

 

Figure 6. Example NanoFASE model outputs showing nano-TiO2 
concentrations in soils (left) and surface waters (middle, right) in the Thames 
catchment. 

 
It is a gridded model, with a default (but flexible) spatial resolution of 5 km. 
Therefore, by default, it offers coarser spatial resolution than many traditional water 
quality models, such as QUESTOR. Again, by default, it uses a daily timestep, 
though this is split internally into sub-daily timesteps for surface waters when the 
model determines that daily timesteps would cause numeric instabilities. In terms of 
surface waters, it models rivers and estuaries and an extension to lakes and 
reservoirs is currently being developed, though this is not likely to be as 
sophisticated a model as dedicated standing water models such as PROTECH. 
Like other water quality models, inputs via atmospheric deposition must be 
provided by input data, and there is no atmospheric resuspension removal/transport 
process (which might be relevant for contaminants with hydrophobic properties 
such as PFAS, which can undergo significant atmospheric resuspension and 
transport (Sha et al., 2022)). 

 
FASE requires a variety of meteorological, hydrological, and terrestrial input data 
(Figure 7). Usually, a separate hydrological model is used to provide surface and 
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subsurface runoff, which the model then routes in its surface water network. In the 
context of a digital twin, with the potential for real-time river flow monitoring data, 
this routing could be bypassed and flow data from monitoring could be used, likely 
supplemented by the data science approaches described above. 

 

 

Figure 7. Typical data requirements and other models required to use the 
FASE model. Whether atmospheric model is required is dependent on the 
determinand being modelled. 
 

Benefits of digital twinning for FASE 

Over and above the next case study, FASE offers the potential advantage of 
including a specific model of the terrestrial environment, and it can be adapted to 
broader-than-catchment scales (though there was limited stakeholder demand for 
this). If the focus of the digital twin is anthropogenic contaminants such as plastics 
or down-the-drain chemicals, FASE already offers a framework for modelling such 
contaminants, and may be more easily adapted for this purpose than nutrient-
focussed models. However, it is worth noting that the model does not currently 
simulate nutrient dynamics, which was seen as a key stakeholder need. Extension 
of the model could be made to facilitate this, though if the other advantages of 
using the model are not relevant for the particular use case, then it would be more 
logical to use a nutrient model like QUESTOR. 

The model is written in modern Fortran, has been used extensively in cloud 
environments and is well tested within open-source software stacks. Therefore, its 
technical implementation in the cyber infrastructure hosting the digital twin should 
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be straightforward. Dynamic coupling can be achieved through a prototype 
implementation of the Basic Model Interface (Hutton et al., 2020), which so far has 
been used to test coupling the model to a hydrological model framework 
(eWaterCycle, Hut et al., 2022). Another advantage of FASE is that flexibility and 
modularity were a core requirement for its design, thus the model is written using 
an object-oriented approach. It is thus worth highlighting in the context of digital 
twins that, UKCEH has an Envision PhD project beginning in October 2024 that will 
be working to split the FASE model up into a component-based model using 
microservice architecture (see Section 4.1). 

FASE within a digital twin 

In its simplest form, the entire FASE model could be used in a digital twin system to 
predict near real-time water quality using sensor data, such as water flows from the 
National River Flow Archive. However, this would not embrace the aforementioned 
modularity and would be more akin to a digital “shadow” – there would be no two-
way learning to optimise model results, it would simply be the monitoring network 
providing data to the model. 

A more sophisticated approach would be to employ the FASE model as a set of 
components, e.g. microservices, and use the monitoring data to optimise exactly 
which components are used in a given scenario – a so-called self-assembled model 
system. This idea is outlined in Figure 8. More specifically: 

 Each component could represent a particular physical process, such as soil 
erosion. For some processes, multiple algorithms will be available, and 
which algorithm produces the most realistic results is likely to depend on 
many factors, such as geographical location, catchment characteristics, or 
time of year. 

 Driving data for the model, such as water flows, temperature, and pH, could 
be provided as input from the monitoring network. This may require the 
development of a data science approach to process the point data into the 
spatially gridded format required by the model. A “best guess” model 
configuration (selection of components) would be used to produce initial 
water quality predictions. For catchment scale predictions, this might also 
mean the implementation of a new or modified monitoring network, likely 
based on automated sonde measurements to provide (near) real-time 
observations at high frequency. 

 If the monitoring network is capable of measuring any of the prediction 
variables, e.g. suspended sediment concentrations, then the predictions 
would be compared against these data and an error calculated. Again, a 
data science approach may be needed to process monitoring data. There is 
less need for these monitoring data to be real-time, and so here we could 
rely on manual sampling data, for example from the EA Water Quality 
Archive.  
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 This process would be repeated iteratively within either a numerical solver or 
another appropriate data science method, whereby the choice of 
components is varied until the optimum model configuration – i.e. the one 
with the smallest error – is chosen. The same principle could apply to 
calibration parameters required by individual components. This configuration 
is used to produce final water quality predictions, which are fed to a data 
visualisation platform for users to view. 

 There is also the potential for model predictions to help refine the monitoring 
network itself, for example by moving sondes or sampling locations to 
regions that the model indicates are most relevant to study, such as where 
there are dynamic fluctuations in drivers or determinands, and high levels of 
prediction uncertainty. 

This optimisation could be implemented on a cloud server (or serverless 
technology) as an automated process that happens continually, thereby always 
providing the best model configuration. If the digital twin is applied across a broad 
domain (e.g. at the national scale), the model system could be configured 
separately for different parts of this domain to produce the best fit. For example, 
different catchments might benefit from different model configurations, such as the 
use of different soil erosion algorithms for upland and lowland areas. This enables 
us to enact the models of everywhere paradigm within the same model system and 
without the requirement to configure and provision separate models for separate 
regions. It also lets us use the model as a learning process – to teach us about the 
physical processes that dominate in different domains. 

The model is somewhat computationally intensive, and this might make iterative 
model runs in a numerical solver a lengthy process. If this became prohibitive to 
this vision of a digital twin, another option would be to create a model emulator, i.e. 
a machine learning algorithm that is trained to produce outputs as close to the 
process-based model as possible. The emulator could be periodically tested 
against the process-based model, and regularly against observational data, raising 
the prospect of using the emulator to identify improvements to be made to the 
process model. 
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Figure 8. Schematic example of using FASE as a microservice-based 
configurable framework that is automatically configured based on monitoring 
network data. 
 
 

5.2 Case study 2: nutrient and phytoplankton dynamics in 
rivers and lakes 

The construction of a digital twin of nutrient and phytoplankton dynamics is much 
needed and highly relevant to current public water quality concerns. Such a tool 
would directly address key determinands identified by our stakeholders and provide 
functionality to advance understanding and management of pollution from 
wastewater treatment infrastructure and agricultural land (priorities identified by 
Stephenson et al., 2024). Furthermore, current UKCEH modelling activities in this 
arena have brought us to a state of readiness to develop such a twin. As a 
foundation we have, and are using, suitable models, namely: 

- LAM (Load Apportionment Model)   

- QUESTOR (Quality Evaluation and Simulation Tool for River Systems) 

- PROTECH (Phytoplankton Responses to Environmental Change)  

Inputs for these models are available and pre-processed outside the remit of the 
modelling suit. Similarly outputs from these models are currently analysed using a 
range of visualisation tools outside the modelling suit. What is currently missing is 
the integration of these disparate activities through advanced digital infrastructures. 
Here, we provide a brief description of the set of models currently in use. 
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LAM quantifies point and diffuse nutrient inputs by modelling their contribution to 
river nutrient concentrations as a power-law function of flow (Bowes et al., 2008). It 
is a statistical model that uses observed data (empirical component) for water 
quantity and water quality. It apportions sources of nutrients and other pollutants 
and predicts impacts on nitrogen and phosphorus loads of changing sewage 
treatment regimes, climate, and water flows. It is a simple model that does not 
require other catchment and land use information. The full version of the model is 
available as an Excel spreadsheet using macros. A newer version for phosphorus 
is available in R and will in time be deposited onto EIDC. This new version can 
access input data via CSV files or directly from the data source (e.g. NRFA data 
and Water Quality Archive data) via APIs where possible. 
 
QUESTOR is an hourly 1-D model of river networks used for simulating 
eutrophication including dynamic solute transport based on a mass-balance 
approach (Pathak et al., 2021 & 2022). The river model produces time series (daily 
or hourly) of flow, temperature, nutrient and sediment concentrations, chlorophyll 
(phytoplankton biomass) and dissolved oxygen. The model has been used to 
assess water quality in a variety of UK river catchments ranging from small 
catchments of circa 50 km2 to large river basins of approximately 10,000 km2 (e.g. 
Hutchins et al., 2020; Hutchins et al., 2021). The river network is user-defined as a 
set of interconnected reaches bounded by different types of influences, namely 
weirs, abstractions, effluents, and tributary rivers. The model is programmed in 
Fortran and the input data required are stored within ASCII files. QUESTOR 
provides a comprehensive representation of biogeochemical processes driven by 
rates calibrated using water quality observations or estimated from other 
applications or literature.  
 
PROTECH is a daily 1-D process-based phytoplankton community model that 
simulates the development of multiple algal populations or algal types in a lake or 
reservoir. Its developmental history and applications over the last two decades are 
well documented (Elliott et al., 2010; Elliott 2021). The basis of PROTECH is the 
interaction between the species-specific growth equations and the algae’s 
environment. The bulk of the model is the environmental simulation which first 
feeds the biological response equations (e.g. for growth, grazing, movement) and 
then calculates the environmental impact for the next iteration. The logic relies on a 
series of loops, invoking a series of interdependent subroutines.  
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Benefits of digital twinning for PROTECH, QUESTOR and LAM 

Currently, the linking of these models follows a data-coupling approach, achieved 
through the manual transfer of output files from one model to be used as input files 
by the other, as shown in Figure 9. This implementation, and the use of static input 
files, prevent near-real time configuration. Furthermore, the river and lake results 
are currently decoupled, and the outputs of the lake model PROTECH do not feed 
back into the catchment scale river model QUESTOR.  

Integrating these models within a digital twin framework would permit near-real time 
water quality predictions of higher accuracy. Digital twinning would allow us to 
bridge important omissions currently identified in the manual coupling approach: 

- Complete integration over catchment scale: currently the fluxes of algae 
biomass and nutrients are only considered from the river to a lake. In a 
digital twin, the entire catchment can be represented, including transfer of 
algal biomass from lake to river. This would enable better understanding of 
spatiotemporal changes in the water quality status of the whole system. 
Such a tool would be especially useful in a lentic-lotic continuum system 
(Figure 10), for the representation of algal flushes during high-flow periods.  

- Access to near-real time data: As demonstrated in the data review (Section 
3.1), water quality data can be sparse, in particular at a daily and/or sub-
daily resolution. The NRFA data, and both the Water Quality Archive data 
and the sonde measurement data collected by the EA can be accessed 
automatically from the data provider via APIs. Such data access would 
enable near-real time water quality estimations. For example, data-driven 
models like LAM and other machine learning methods (Section 3.3) enhance 
continuous data integration. As such, this integration of approaches could 
improve process-based model performance and predictability. Including the 
use of remote sensing (e.g. UKCEH Land Cover map, NASA Surface Water 
and Ocean Topography data) and earth observation approaches would add 
considerable value to the digital twin.  

To address these issues and achieve the inclusion of these modelling building 
blocks (LAM, QUESTOR and PROTECH) within a digital twin, the models will need 
to be re-written using a modular, component-based infrastructure such as the one 
described in Case Study 1 (Section 5.1).  

Ecological and water quality forecasting is an important application of such a digital 
twin. The integration of the above modelling building blocks within a digital twin, 
along with data streams from multiple sensors, machine learning models, and 
process-based models, creates opportunities for more accurate and timely 
forecasting of impending high-risk events in the river network. This, in turn, 
enhances our ability to give early warnings, and determine mitigation options before 
events become critical. For example, the digital twin would enable the simulation of 
reservoir ecological status and algal bloom risk using information from connected 
rivers and could be used to test the impacts of different droughts scenarios (Elliott & 
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Bowes, 2022). The use of short-term river flow forecasts, such as Hydrological 
Outlook data, as input into a LAM approach could produce short-term forecasts of 
nutrient concentrations in the catchment system. Such an approach has been 
applied to estimate changes in nutrient concentrations under climate change 
(Charlton et al., 2018), and would build upon prior experience of applying 
PROTECH to short-term forecasting (Page et al, 2018). Then, QUESTOR could be 
used to assess changes at the river network scale, in a time series map of the 
watershed. 

  

 

Figure 9. Typical data requirements and model linkages currently in place to 
simulate nutrient and phytoplankton dynamics in rivers and lakes. The red 
connection is anticipated to occur in future via twinning technology. 
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Figure 10. A conceptual diagram example of lentic-lotic continuum system. 
 

We recognise that there are opportunities to integrate satellite data with in situ data 
streams, and models, within an operational digital twin forecasting system. Such 
integration would include important pre-processing steps: 

1. Derivation of real-time temperature, rainfall, and river discharge estimates from 
relevant satellite products. Real-time temperature data can be generated from 
ERA-5 LAND (Munoz Sabater, 2019), precipitation from the NASA GPM IMERG 
v06 satellite constellation dataset (Huffman et al., 2019), and water flow from 
NASA’s MODIS and upcoming SWOT mission. These data could be accessed and 
processed by Google Earth Engine, and then collated at a daily resolution for 
integration with in situ monitoring data.  

2. Bias correction of satellite data through comparison with in situ monitoring data. 
Suitable in situ meteorological data are available from the UK Met Office, and flow 
data from the UK NRFA. Data-driven statistical or machine-learning models could 
be applied to eliminate biases in data distributions through matching of historical in 
situ and satellite data. Once pre-processed, these bias-corrected data could be 
used as part of the water quality monitoring framework described above. Process 
modelling using the bias corrected data would then yield estimations of several 
important system states (e.g. nutrient concentrations, dissolved oxygen, BOD, and 
chlorophyll-a concentration) at a catchment scale.  

Key to such a forecasting system, though, is the co-design and agreement of 
suitable alerts and data visualisations that will be most useful to stakeholders in 
providing notice of possible water quality extremes (e.g., pollution discharge, 
combined sewer overflows discharge, high phosphate or nitrate water moving down 
the river system). 
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6. Conclusions & 
Recommendations 
Based upon our survey of stakeholder needs, and upon our reviews of model and 
data availability, there is great potential to develop a digital twin focused on the 
cycling of nutrients through catchments of interconnected rivers and lakes, and of 
knock-on effects on algae (phytoplankton) growth and oxygen concentrations. Such 
a digital twin would also align well with recent priorities for fresh water, identified 
through the British Ecological Society (Stephenson et al., 2024). UKCEH, through 
decades of freshwater water quality and ecosystem modelling expertise, has 
developed a range of models that are suitable to form the core of this new 
technology. This digital twin could be developed through the integration of existing 
process modelling elements (QUESTOR, PROTECH), empirical models (LAM, 
machine learning), and existing water quality observational data from both manual 
sampling and automatic sondes. There is potential also to build upon this approach, 
adding the dynamics of other contaminants and adopting a component-based 
modelling system using FASE. 
 
There is likely to be significant work required in re-engineering these models to 
make them best suited to a digital twin system. There will be a need to realise 
advances in automation and near-real time processing of data and running of 
models. Linking with other projects where such tasks are already seeing focussed 
efforts – such as the Net Zero UK-SCAPE integration project (where a code base 
has been created to automate the running of the JULES land surface model, along 
with the near-real time downloading and downscaling of meteorological driving 
data) and the Land Insight Digital Twin exemplar (where interactive dashboards for 
querying Digital Twin outputs were created) – will allow unified approaches to 
shared problems across the organisation. This will require software engineering 
expertise, which we are confident the organisation has or will have due to a recent 
focus on employing research software engineers (amongst other relevant roles 
such as software architects and user design experts). 
 
Our findings on the heterogeneity of observational data availability (and likely 
quality), as well as stakeholder concerns regarding a lack of sufficient water quality 
data, suggest that initial work should identify areas with dense data coverage, for 
multiple determinands. It would be especially beneficial to focus on locations with 
high resolution sensor data that can be incorporated into data assimilation 
algorithms. These locations would be optimal for the development of place-based 
digital twins. The intricacies of heterogeneous data must also be considered, such 
as changes in detection limits, operational deployment and redeployment of 
sondes. These metadata are not accessible when accessing the data using modern 
technologies such as APIs. It is therefore vital to involve data providers during the 
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design and throughout the lifetime of the digital twin to ensure that the data are 
used in the most appropriate manner. 
 
Based upon this report, we have identified several important steps that would need 
to be undertaken as part of the overall roadmap towards integrating existing models 
and data within a digital twin: 
 

1) Identify any other digital twins in development that could federate with that 
proposed here, and opportunities to share learning and realise linkages 
between twin architectures. 

2) Rewrite and implement the process models in a component-based, 
interoperable architecture, such as using microservices. Engineer data 
interfaces for initialisation and model driving that can utilise observed or 
estimated data and can be generalised for use in state or parameter update 
data assimilation methodologies. 

3) Define data requirements: this includes selecting variables to predict (based 
upon community priorities) and assessing input data availability, resolution, 
and quality. An assessment of the accessibility and velocity of monitoring data 
(e.g., automated, manual) would also be conducted at this stage. 

4) Write data processing pipelines, to enable the collection, quality assurance, 
modification, and delivery of data. This step is often referred to as data 
integration. It will contain a set code to retrieve and manipulate data required 
as an input, and a set of code to manipulate and disseminate output data. The 
latter will most likely occur via an API to provide data accessibility, including 
use of digital twin output in a portal. This step will also need to consider long-
term data storage. 

5) Define data science methodologies to enclose process models: preparatory 
methods to clean, validate and gap-fill observational data for input into data 
models and process models; predictive data models to sit alongside process 
models to target wider list of water quality indicators; post-processing methods 
to automate insight generation and monitor model performance. 

6) Write a time-based job scheduler script to schedule the run of the digital twin 
at specific times, regularly draw data from APIs, run pre- and post-processing 
pipelines, automate model performance monitoring tasks and schedule 
regular backups. 

 
One delivery mechanism for this development is the single-centre National 
Capability programme (“ACCESS-UK”), which will bring together sustained data 
collection at intensively monitored sites (Cumbrian Lakes, Loch Leven, the River 
Thames) with digital tools and expertise, known local-regional stakeholder 
communities, and mechanisms to co-design digital twin development with the wider 
UK academic, regulatory, and policy communities.  
 
Successful delivery of a functional digital twin, or perhaps several that can federate 
when required, will require a strong collaborative ethos across and beyond UKCEH. 
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The data, models, ecosystem and process understanding, and data science and 
software engineering expertise required for delivery, span sites and Science Areas. 
As such, we must invest time, energy and resources into bringing together and 
sustaining a transdisciplinary team that can deliver this new capability at the whole-
UKCEH scale and, in doing so, demonstrate community leadership. 
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