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Abstract

DNA sequencing of diatom assemblages from biofilms has already been used to assess 
the ecological status of freshwater in the UK. However, recent work using DNA data from 
these biofilms suggests that alternate metrics that capture the broader taxonomic and 
functional information to demonstrate importance of microbial biofilms could be useful. 
Exploring this potential requires large numbers of samples over time and space to be ana-
lysed. Sample archives could be used to meet this need, but the compositional stability of 
microbial communities in stored biofilm samples for more than one year is uncertain.

This study compared changes in diatom assemblage structure using metabarcoding 
analysis of river biofilm samples before and after storage at -20 °C in an RNAlater-based 
nucleic acid preservative. We found minimal changes in the diatom assemblages in 
the samples when stored for up to three years. Slight differences in certain groups 
observed resulted in four samples changing ecological status. However, the overall 
differences were not significant across replicates, suggesting any genuine differences 
in assemblages are likely masked by sub-sampling, PCR, or primer biases. These 
findings are similar to those observed in other studies looking at variations between 
analysts and sequencing instruments. This indicates that the diatom assemblages in 
the archived biofilm samples are stable. This will give greater confidence that archived 
samples can be used for further research, including exploring broader microbial taxa 
and their responses to environmental change, potentially leading to the development of 
reliable microbial metrics for integration into biomonitoring programs.

Key words: Biomonitoring, diatom assemblage, metabarcoding, microbiome sample 
preservation, surveillance

Introduction

In the United Kingdom, environmental regulators, including the Environment 
Agency of England, employ various methods using biological indicators to 
assess the ecological status of lakes, rivers, and estuaries. One method in-
volves the use of diatoms from biofilms in rivers and lakes as proxies for wider 
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phytobenthos (Kelly et al. 2008). This assessment utilises Ecological Quality 
Ratio (EQR) metrics (European Parliment 2000) based on the Trophic Diatom 
Index (TDI) to assess ecological status. Classifications are determined based 
on the evaluation of the diatom assemblage composition using either light mi-
croscopy or high throughput sequencing (Kelly et al. 2008; Kelly et al. 2020).

In addition to the diatom assemblage, biofilms support a diverse microbial 
community embedded within a slimy matrix, which promotes their growth and 
survival (Neu and Lawrence 1997). Biofilm communities include bacteria, fungi, 
a diversity of algae, and protozoa that all contribute to important ecosystem pro-
cesses, such as primary productivity, decomposition, biogeochemical cycling, and 
pollutant degradation (Falkowski et al. 2008; McGuire and Treseder 2010; Mishra 
et al. 2021). In many European countries, microbial bioindicators have largely been 
restricted to diatoms, phytoplankton, and targeted bacterial groups, such as faecal 
indicator bacteria, for routine ecological assessments under the Water Framework 
Directive (European Parliment 2000) and the Bathing Water Directive (European 
Parliment 2006). Whilst there is recognition that a much more diverse microbial 
community exists within river biofilms, we are not fully exploiting this information 
to build new indices and metrics (Environment Agency 2023; Kelly et al. 2024).

The integration of microbial diversity and functional indicators into biomoni-
toring for the assessment of anthropogenic pressures has been advocated for 
many years, and has recently gained momentum (Jackson et al. 2016; Cordier 
et al. 2019; Sagova-Mareckova et al. 2021; Warnasuriya et al. 2023). There is a 
good foundation for the exploration of new diagnostic microbial metrics and in-
dices (Sagova-Mareckova et al. 2021), enabled by advances in high-throughput 
sequencing and computational approaches, such as machine learning (Cordier 
et al. 2019; McElhinney et al. 2022) and network analyses (Codello et al. 2022; 
Guseva et al. 2022). Such approaches allow the interrogation of relationships 
between microbial communities, their attributes, and anthropogenic pressures, 
facilitating a greater understanding of microbiomes and their responses to en-
vironmental change (e.g., Deutschmann et al. 2021; Eastwood et al. 2023).

Currently, data and models are needed to identify reliable microbial bioin-
dicators (Fontaine et al. 2023). Large spatial and temporally relevant microbi-
al datasets are required to mine and identify candidate ‘features’ of microbial 
communities that have the potential to be developed and upscaled more widely 
as bioindicators of ecosystem function and predictors of change (Astudillo-
García et al. 2019). Generating such datasets is costly due to the expense 
associated with extensive field sampling and analysis. Thousands of biofilm 
samples are collected across England’s river network as part of routine ecolog-
ical assessments using diatoms. This presents a valuable archived resource to 
further explore wider microbial bioindicators, as samples are stored in a nucleic 
acid preservative and frozen at -20 °C (Kelly et al. 2020). A previous study by 
Baricevic et al. (2022) showed that preserved biofilm samples stored at -20 °C 
remained stable for 12 months. No significant impact was observed on DNA 
quality, yield, and the overall composition of phytobenthic diatom assemblages 
that reflected the site origin. However, the stability of archived biofilm samples 
over longer timescales remains unknown. With multiple years now in storage 
across thousands of sites river biofilm samples archived by the Environment 
Agency offer a unique opportunity to explore the spatiotemporal variability of 
the river microbiome across England in a cost-effective manner.
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This study aimed to assess the stability of river biofilm samples for up to 
three years of freezer storage in preservative and used diatom assemblages 
as a proxy for the integrity of the overall microbial species in the biofilms. We 
assessed the suitability of reusing existing samples for the generation of large 
DNA datasets, which could enable the characterisation of the microbial re-
sponse to environmental change.

Methods

To assess the impact of storage time on diatom assemblages, samples col-
lected and analysed in 2019 and 2020 for routine analysis that had been stored 
concentrated in preservative were re-analysed in December 2022. The reanaly-
sis was performed twice so that differences due to storage could be disentan-
gled from the expected stochastic differences due to sub-sampling.

Sample collection and selection

River biofilm samples collected in 2019 (n=50) and 2020 (n=14) as part of the 
Environment Agency’s routine monitoring of diatoms in rivers for ecological sta-
tus assessments were used in this study. Samples were collected between April-
November and analysed between September-January of the corresponding year. 
Samples were selected for reanalysis based on the total number of reads regard-
less of sequence taxonomic assignment passing quality control for routine analysis 
(>50,000 reads), and to cover a broad spread of geographic regions across England. 
A total of 64 frozen biofilm samples were selected for re-analysis in late 2022, fol-
lowing storage in preservative for 2 or 3 years after the initial analysis (Fig. 1).

Sample collection was performed as previously described in Kelly et al. 
(2020). Briefly, biofilm-covered stones were collected in a tray and scrubbed 
with deionised or tap water using a clean toothbrush. Using a pipette, 5 ml of the 
biofilm suspension was transferred to a 15 mL tube containing RNAlater-based 
preservative (3.5 M ammonium sulphate, 17 mM sodium citrate, and 13 mM 
Ethylenediaminetetraacetic acid), transported to the laboratory via an overnight 
courier at 5±3 °C, and stored frozen at -20±5 °C prior to DNA extraction.

DNA extraction and diatom assemblage metabarcoding

All samples were processed, according to Kelly et al. (2020). Samples were 
thawed and then centrifuged at 3000× g for 15 ± 2 min at 5±2 °C to form a con-
centrated biofilm pellet. The pellet was resuspended in 0.5 mL of the superna-
tant and the rest discarded. DNA from 0.1 mL of the resuspended pellet was 
extracted using the Qiagen blood tissue kit (#69506) with an extended overnight 
lysis step in a rocking incubator at 56±4 °C. The target rbcL region was amplified 
by PCR using rbcL-646F (5’-ATGCGTTGGAGAGARCGTTTC-3’) and rbcL-998R 
(5’-GATCACCTTCTAATTTACCWACAACTG-3’) to generate an amplicon library 
for each sample. While these primers are used for the routine assessment of dia-
tom assemblages, they also amplify other non-diatom phytobenthos (Kelly et al. 
2024). The amplicon libraries were purified using solid-phase reversible immo-
bilisation (SPRI) beads. After cleaning, the libraries were tagged using Illumina 
Nextera XT unique dual-indexed adapters (#20091654) and purified. Tagged and 
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purified amplicon libraries for each sample were normalised and pooled using 
molecular grade water and sequenced on an Illumina MiSeq instrument using a 
600 cycle V3 reagents kit (#MS-102-3003). This original analysis (OG) forms the 
first sub-sample group of this study. The complete PCR conditions and clean-up 
procedures are detailed in Suppl. material 1. The remaining concentrated biofilm 
sample was stored at -20±5 °C in RNAlater-based preservative.

After storage, the samples were thawed for reanalysis by aliquoting two 
0.1 mL sub-samples (RA and RB; Fig. 2) and processed following the same 
method described above. In total, 192 samples were sequenced across the 
three sub-sample groups.

Bioinformatic analysis

Raw sequence reads were imported into the QIIME2 environment (v2022.8.3) 
(Bolyen et al. 2019). Primer sequences were removed using cutadapt, dis-
carding reads with no matching primer sequences (Martin 2011). DADA2 was 
used to denoise, dereplicate, and remove chimeras on a per run basis table 
(Callahan et al. 2016). Data were combined into a single set of amplicon se-
quence variants (ASVs) and an abundance. Taxonomy was assigned to ASVs 
using QIIME2’s scikit-learn multinomial naïve Bayes classifier against the diat.

Figure 1. Map showing the geographic spread of biofilm sampling points across England.
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barcode reference database v11.1 (2022) with a 95% confidence threshold 
(Pedregosa et al. 2011; Bokulich et al. 2018; Rimet et al. 2019). After taxonomic 
assignment, data was not filtered so both diatom and other non-target phyto-
benthos were included in all analyses.

Statistical analysis

ASV abundance and taxonomy data were imported into R (v4.1.2) using qiime2R 
(0.99.6) and phyloseq (v1.38.0), and all data was visualised using ggplot2 (v3.4.2), 
ggvenn (v0.1.10), gghighlight (v0.4.0), and ggally (v2.1.2) packages (McMurdie 
and Holmes 2013; Wickham 2016; Bisanz 2018; Schloerke et al. 2021; R Core 
Team 2022; Yutani 2022; Yan 2023). Abundance data were not rarefied (McMurdie 
and Holmes 2014), but sequencing depth and diversity were investigated using 
rarefaction curves with the rarecurve function in vegan (v2.6-4) (Oksanen et al. 
2022). For sub-samples in which the rarefaction curve did not plateau at the fi-
nal read depth, all replicates of that sample were removed from the rest of the 
analysis. To compare trends in diversity across the dataset, distances were 
calculated at the ASV level using the Bray-Curtis distance measure. Bray-Curtis 
distances were used to account for variation in ASV detection and abundance 
between and within samples. Subsequently, distances were used to evaluate the 
influence of sample storage using permutational multivariate analysis of variance 
(PERMANOVA) with the adonis2 function from vegan (Oksanen et al. 2022).

Figure 2. Experimental design: samples were collected and processed in 2019 and 
2020 (OG; n=50,14). Post-storage samples were reanalysed in 2022 on two replicate 
sub-samples from each archived sample (RA and RB). Note that 2 samples originally 
taken in 2019 from group RB failed quality control and were removed from the study.
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The presence and absence of taxa were compared at both genus and spe-
cies levels and visualised using ggvenn. The differential abundance of taxa was 
assessed using DESeq2 (v1.34.0), and relevant differences were visualised us-
ing ggplot and gghighlight (Love et al. 2014). The TDI, EQR, and classifications 
were calculated for each sample using darleq3 (v0.9.8) to assess the impact on 
ecological status classification (Kelly et al. 2020) and visualised using ggally.

The raw sequence files were deposited at the European Nucleotide Archive 
under the accession number PRJEB76460.

Results

Sample quality control

Two sub-samples failed quality control due to poor read depth, causing the 
rarefaction curves not to plateau, and as a result, all sub-samples for that sam-
ple were discarded. In total, 186 sub-samples from 62 samples passed quality 
control and were used for statistical analysis.

Across all samples, 12.9 million reads passed quality control. The number 
of reads per sample ranged from 4,980 to 258,229, with a median frequency of 
64,151. A total of 5,138 unique ASVs were detected, and all were assumed to 
be phytobenthic algae; of these, 1,403 could be assigned to the species level, 
accounting for 59.3% of all reads, and a further 2,358 to the genus level, ac-
counting for 80.8% of all reads in total, making these suitable levels with which 
to assess taxon detection (Table 1).

Table 1. Number of reads that the taxonomy was assigned to at each rank.

Taxonomic Level Numbers of unique 
values at rank

Accumulative ASVs at 
level

Number of reads 
assigned to level or better Percentage of total reads

ASVs 5,138 NA 12,905,482 100

Species 185 1,403 7,653,091 59.3

Genus 81 2,358 10,428,673 80.8

Family 38 2,491 10,809,236 83.8

Order 21 2,563 10,902,280 84.5

Class 8 2,793 11,202,988 86.8

Phylum 5 3,673 11,973,295 92.8

Kingdom 2 3,762 12,166,798 94.3

Impact of storage on diatom assemblages and taxon detection

At the ASV level, differences in diatom assemblages were mostly due to dif-
ferences in the sample sites (PERMANOVA, R2=0.383, p=0.001). Differences 
in storage conditions between the original and repeated sub-samples ac-
counted for < 1% of the difference in diatom assemblages and were not sta-
tistically significant (PERMANOVA, R2=0.005, p=0.212, full model output in 
Suppl. material 2).

The abundance of taxa at the genus and species levels was not significant-
ly different between the original and post-storage sub-samples. At a log2fold 
change no species or genera were detected at a significantly higher abundance 
post-storage (Fig. 3).



175Metabarcoding and Metagenomics 8: 169–186 (2024), DOI: 10.3897/mbmg.8.129227

Jonathan Warren et al.: Influence of storage time on the stability of diatom assemblages

Most genera were detected in all replicate groups (84.0%; Fig. 4). However, 
seven genera were detected unevenly between the original and post-storage 
samples. All seven genera were detected only after storage and at low levels 
of detection (<1000 reads) across very few samples (1-3), whereas the original 
analysis had no unique genera (Table 2).

Similarly, at the species level 69.7% of species were detected in all replicate 
groups. However, 11 species were uniquely detected in the original samples and 
24 were detected in the post-storage (RA and/or RB Fig. 4). Of the 35 species, 
all but three belonged to genera that were more widely detected (Suppl. material 
4). Surirella solea and Placoneis constans were the only diatom species that did 
not belong to a more widely detected genus but were detected in the post-stor-
age replicates only. In addition, the non-target species Quercus robur (common 
name: English Oak) was detected in three post-storage replicates only. For most 
of the species which were differentially detected, overall reads were low (<1000 
reads) and were detected across very few samples (1-3). Pinnularia viridis was 
the only species detected at higher numbers (>1000), although this was possibly 
inflated by detection in a sample with an above-average read depth (181,687).

Table 2. Uniquely detected genera between sample replicates. Numbers in parentheses 
represent the number of samples in which the genera were detected.

Genus 
(* indicates non-diatom)

Number of reads across the replicate group
OG RA RB

Nupela 0 (0) 131 (3) 106 (3)

Bacillaria 0 (0) 98 (1) 25 (1)

Stenopterobia 0 (0) 0 (0) 26 (1)

Chaetoceros 0 (0) 0 (0) 117 (1)

Gedaniella 0 (0) 9 (1) 0 (0)

Placoneis 0 (0) 3 (1) 0 (0)

Quercus* 0 (0) 34 (2) 29 (1)

Figure 3. Volcano plot showing the fold change in abundance of the genus and species 
between the original and RA sample analyses. The horizontal dotted line denotes signifi-
cance (p <0.05), and the vertical lines denote the magnitude of difference, where the lines 
are set at the equivalent of a 4-fold difference. Points to the right denote taxa found more 
abundantly in the original analysis, and points to the left denote taxa more abundant in the 
repeat analysis. Similar pairwise comparisons were made between all three groups (OG, 
RA, and RB), which also showed no significant difference (see Suppl. material 3).
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Metric differences

TDI values generated from the diatom assemblages representative of the orig-
inal and post-storage samples were generally similar. The mean difference 
in TDI before and after storage was 3.18, st. dev=7.33 (OG vs RB: 4.03, st. 
dev=9.22). The TDI values of all three replicate groups were highly correlated 
and statistically significant (Pearson’s correlation coefficients ranged between 
0.892 and 0.980; p <0.001 for all comparisons) (Fig. 5).

When assigning ecological status classifications using TDI scores, 75.8% 
of samples were assigned to the same class across all replicates (79.0% of 
samples were the same or one class different). When comparing any two of the 
replicate groups, the OG and RA groups had the highest agreement, with 90.4% 
of samples assigned to the same class, whereas RA and RB had the highest 
agreement at the same class or one class difference at 98.4% (see Table 3).

When comparing the TDI and the derived ecological status classifications, 
there were four clear outliers: S09, S43, S51, and S55. In one instance, RB (S09) 
was an outlier, and in the other three instances, the OG replicate was an outlier.

The relative abundance of diatoms between outlier sample replicates was 
compared using bar plots at the order level (Suppl. material 5). In sample 09, the 
RB replicate contained a much larger proportion of Amphora pediculus (47.1%; 
displayed as part of order Thalassiophysales in supplementary materials bar 
plot) than the OG and RA replicates (22.2% and 17.5%, respectively); otherwise, 
the communities appeared similar. However, in the other three outlier samples, 
the differences in community compositions were more apparent compared to 
non-outliers (See Suppl. materials 5, 6).

Discussion

This study building on the work of Baricevic et al. (2022) improves our under-
standing of the impact of long-term storage on diatom assemblages. We exam-
ined samples frozen at -20 °C for up to three years in nucleic acid preservative 

Figure 4. Venn diagrams of genera (A) and species (B) common and unique to each sample type. OG is the original, and 
RA and RB are sub-samples analysed post-storage.

BА
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to assess the impact of storage on DNA recovery and to understand whether 
diatom assemblages exhibited any significant change in their composition. 
Diatom assemblages were used as a proxy for inferring impacts on the wid-
er microbiome because they are the only microbial component of the biofilm 
currently assessed as part of the Environment Agency’s routine monitoring pro-
gram that has metabarcoding data to benchmark storage impacts. Archived 
samples collected as part of large routine monitoring programmes provide 

Table 3. Matrix showing differences in the number of samples assigned to each eco-
logical status class (bad, poor, moderate, good, high) between replicates. The samples 
assigned to the same class by two replicate tests are highlighted in green. Samples that 
were different by one class are highlighted in yellow. Samples in which the difference 
between replicates is greater than one class are highlighted in bold.

OG RA

B P M G H B P M G H

RA B 0 0 0 0 0

P 0 6 1 1 0

M 0 0 9 1 0

G 0 0 1 10 0

H 0 1 1 0 31

RB B 0 0 0 0 0 0 0 0 0 0

P 0 4 4 2 0 0 6 3 1 0

M 0 2 5 1 0 0 2 5 1 0

G 0 0 2 8 0 0 0 2 8 0

H 0 1 1 2 31 0 0 0 1 33

Figure 5. Correlogram of TDI scores showing differences between sample types and Pearson’s correlation between scores. 
All Pearson correlations were highly significant (p<0.001). Histograms show the distribution of TDI scores across replicates.
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unique opportunities to generate large comprehensive spatial and tempo-
ral datasets cost effectively to facilitate the development of new diagnostic 
metrics and indices.

The results of this study show that the storage of biofilm samples for up 
to 3 years in preservative frozen at -20 °C resulted in no significant difference 
in diatom assemblage diversity at the ASV level (PERMANOVA, R2= 0.005, 
p=0.212), differences in 2 and 3 years of storage time were also compared 
and were equally insignificant (PERMANOVA, R2= 0.011, p=0.216). Similar find-
ings were found by Baricevic et al. (2022), where storage conditions of up to 
one year were insignificant. In both of these studies, it is likely that some of 
the small statistically insignificant differences were due to variability arising 
from analytical repeats; differences in diatom diversity at the ASV level ob-
served in this study were similar to those reported by Kelly et al. (2018) when 
comparing differences observed between different analysts and different se-
quencing instruments.

Other studies have compared other microbial groups and storage conditions 
in similarly dense microbial sample types, reporting varying differences in the 
impact on the observed community. Tap et al. (2019) observed minimal effects 
of storage time on bacterial communities in faecal samples. Communities 
from samples stored for 5 years in preservative at -80 °C were comparable to 
the reference samples. Other studies have investigated the impact of storage 
conditions on bacterial communities in faecal material at shorter timescales, 
with similar findings (Bundgaard-Nielsen et al. 2018; Dully et al. 2021; Kim et 
al. 2023). However, Delavaux et al. (2020) found that the use of RNAlater sig-
nificantly affected bacterial communities compared to samples frozen in liquid 
nitrogen and stored at -80 °C, but only at one of the two sites tested. They also 
investigated the impact on fungal communities but found no significant differ-
ences due to any of the storage conditions tested.

In the present study, when comparing individual taxonomic groups across 
replicate groups, there were no significant differences. At the species and 
genus levels, there were no statistically significant differences in the relative 
abundance. Similarly, although there was uneven detection of some taxa at the 
species and genus levels between replicates, these were only observed at low 
levels and in a few samples. No other similar studies compared detection but 
Tap et al. (2019) found no difference on the relative abundance of dominant 
bacterial taxa, and analysis using DESeq2 found that there were no taxa at the 
OTU level that were significantly different.

When comparing ecological status metrics, this study found highly signifi-
cant and strong correlations in TDI values between replicates of the same orig-
inal sample (Pearson’s correlation coefficients ranged from 0.892 to 0.980 with 
all comparisons p<0.0001) which is similar to the trends observed in specific 
pollution-sensitivity index (SPI) values by Baricevic et al. (2022), with small, 
insignificant differences between samples from the same site regardless of 
the time stored or preservation technique. Unlike Baricevic et al. (2022) who 
found no differences in Specific Pollution-sensitivity Index classes at the six 
sites compared, this study found differences in assigned water quality class. 
Four samples were assigned a greater than one class difference, although the 
difference was dependent on which replicates were compared. As no species 
were differentially abundant between replicate groups across all samples, 
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this suggests that the differences in these outlier replicates are not likely due 
to fundamental differences caused by sample storage. To elucidate the dif-
ferences within these outlier samples further replication would be required 
during the original analysis.

We speculate that the cause of these insignificant but observed differenc-
es in sub-sample assemblages and at the taxon levels are due to differences 
caused by sub-sampling of the original biofilm samples and/or stochastic vari-
ation in the communities exacerbated by PCR amplification. Subtle differences 
caused by sample and PCR variations have been widely reported in the litera-
ture and are common caveats of routine monitoring data (Mathieu et al. 2020; 
Shirazi et al. 2021; Gold et al. 2023). We have come to this conclusion as there 
was no significant difference in the relative abundance of taxa in samples after 
storage, and differences in detection of taxa only found in original or repeat-
ed analyses were typically in taxa that were detected at low levels and across 
few samples, and detection of these rare taxa were more likely impacted by 
sub-sampling. All but two diatom species (Surirella solea and Placoneis con-
stans) with different levels of detection across replicates belonged to genera 
that were more widely detected across replicate groups, suggesting that the 
observed differences in composition were unlikely to be caused by the break-
down of cells or DNA or influenced by the evolutionary relationships (phyloge-
netic differences) among the species.

Overall, our observed (insignificant) findings suggest that any differences in 
diatom assemblages are likely masked by variations in the assemblages due 
to sub-sampling, inter-analyst, and inter-instrument biases, all of which existed 
between the original and replicate analyses. As a result, diatom assemblag-
es from biofilm samples stored frozen in nucleic acid preservative were not 
affected by storage for up to three years and are suitable for use in further 
research. We do, however, suggest caution when extrapolating the results to a 
wider microbial community because research on the stability of bacterial com-
munities by 16S metabarcoding is contradictory and difficult to compare to the 
samples used in this study due to differences in sample type and storage con-
ditions (Song et al. 2016; Tap et al. 2019; Delavaux et al. 2020). Little research 
has been conducted on the impact of storage conditions on fungi or protists 
(Delavaux et al. 2020). The extent to which DNA from other microbial groups 
may have degraded in biofilms frozen in preservatives is unknown and should 
be considered when interpreting the analysis of any big data generated using 
these archived samples.

This study has further evidenced RNAlater-based preservation of freshwa-
ter biofilms, as an alternative to ethanol, one of the standard recommended 
methods (CEN 2018). Whilst recognising the importance of standardisation to 
ensure high-quality and comparable data, standardised methods still need to 
be pragmatic and cost effective in order to ensure uptake by regulatory bod-
ies. For logistic, and health and safety reasons the Environment Agency has 
restrictions on the use of ethanol, and therefore sought alternatives for the 
sampling and storage of biofilm samples (Kelly et al. 2018). The results of this 
study extend the utility of historic raw biofilm samples stored in nucleic acid 
preservative allowing regulators to maximise their value, by reusing samples 
for other purposes such as monitoring other non-microbial taxonomic groups 
(Rivera et al. 2023).
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Conclusion

This study determined the stability of diatom assemblages in biofilm sam-
ples analysed before and after storage in a preservative for up to three years 
using metabarcoding. Differences in diatom assemblages in samples be-
fore and after storage were minimal and likely due to bias in sub-sampling 
of the original samples, as taxa varied equally before and after storage, 
and (insignificant) differences in beta-diversity were similar to those previ-
ously observed when assessing between-analyst and between-instrument 
variation. This suggests that the diatom assemblages are well preserved 
within biofilm samples up to 3 years old if stored as pellets in a preser-
vative at -20 °C.

Additional information
Conflict of interest
The authors have declared that no competing interests exist.

Ethical statement
No ethical statement was reported.

Funding
This work was funded by the Environment Agency under the research project SC220036. 
The views expressed in this paper are the authors’ and do not necessarily represent 
those of the Environment Agency. DSR was supported by NERC grant NE/X015947/1. 
JDT was supported by NERC grant NE/X012204/1.

Author contributions
Jonathan Warren: Conceptualization, methodology, formal analysis, writing - orig-
inal draft, visualization, funding acquisition; Kerry Walsh: Conceptualization, writ-
ing - original draft, funding acquisition; Laura Hunt: Writing - original draft/ review 
and editing; Sean Butler: Investigation, resources, writing – review and editing; 
Nick Evens: Resources, writing – review and editing; Joe Taylor: Formal analysis, 
writing – review and editing; Lindsay Newbold: Formal analysis, writing – review 
and editing; Dan Read: Writing – review and editing; Martyn Kelly: Writing – re-
view and editing.

Author ORCIDs
Jonathan Warren  https://orcid.org/0000-0003-3381-3852
Sean Butler  https://orcid.org/0009-0003-4484-5339
Laura Hunt  https://orcid.org/0000-0002-4600-5689
Lindsay Newbold  https://orcid.org/0000-0001-8895-1406
Daniel S. Read  https://orcid.org/0000-0001-8546-5154
Joe D. Taylor  https://orcid.org/0000-0003-0095-0869
Kerry Walsh  https://orcid.org/0000-0001-8619-8895

Data availability
All of the data that support the findings of this study are available in the main text or 
Supplementary Information.

https://orcid.org/0000-0003-3381-3852
https://orcid.org/0009-0003-4484-5339
https://orcid.org/0000-0002-4600-5689
https://orcid.org/0000-0001-8895-1406
https://orcid.org/0000-0001-8546-5154
https://orcid.org/0000-0003-0095-0869
https://orcid.org/0000-0001-8619-8895


181Metabarcoding and Metagenomics 8: 169–186 (2024), DOI: 10.3897/mbmg.8.129227

Jonathan Warren et al.: Influence of storage time on the stability of diatom assemblages

References

Astudillo-García C, Hermans SM, Stevenson B, Buckley HL, Lear G (2019) Microbi-
al assemblages and bioindicators as proxies for ecosystem health status: Poten-
tial and limitations. Applied Microbiology and Biotechnology 103(16): 6407–6421. 
https://doi.org/10.1007/s00253-019-09963-0

Baricevic A, Chardon C, Kahlert M, Karjalainen SM, Pfannkuchen DM, Pfannkuchen M, 
Rimet F, Tankovic MS, Trobajo R, Vasselon V, Zimmermann J, Bouchez A (2022) Rec-
ommendations for the preservation of environmental samples in diatom metabar-
coding studies, 349–365. https://doi.org/10.3897/mbmg.6.85844

Bisanz JE (2018) qiime2R: Importing QIIME2 artifacts and associated data into R ses-
sions. https://github.com/jbisanz/qiime2R

Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Greg-
ory Caporaso J (2018) Optimizing taxonomic classification of marker-gene ampli-
con sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1): 1–17. 
https://doi.org/10.1186/s40168-018-0470-z

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm 
EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, 
Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener 
C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, 
Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann 
B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, 
Kaehler BD, Kang K, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps 
J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin 
BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, 
Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss 
ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS II, Rosenthal P, Segata N, Shaffer 
M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh 
P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, 
Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson 
CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) 
Reproducible, interactive, scalable and extensible microbiome data science using QIIME 
2. Nature Biotechnology 37(8): 852–857. https://doi.org/10.1038/s41587-019-0209-9

Bundgaard-Nielsen C, Hagstrøm S, Sørensen S (2018) Interpersonal Variations in Gut 
Microbiota Profiles Supersedes the Effects of Differing Fecal Storage Conditions. 
Scientific Reports 8(1): 1–9. https://doi.org/10.1038/s41598-018-35843-0

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: 
High-resolution sample inference from Illumina amplicon data. Nature methods 13: 
581–583. https://doi.org/10.1038/nmeth.3869 

CEN (2018) CEN/TR 17245:2018 Water quality - Technical report for the routine sam-
pling of benthic diatoms from rivers and lakes adapted for metabarcoding analy-
ses. https://standards.iteh.ai/catalog/standards/cen/31e578ee-1135-49d8-9446-
94b56d9c267e/cen-tr-17245-2018

Codello A, Hose GC, Chariton A (2022) Microbial co-occurrence networks as a biomon-
itoring tool for aquatic environments: A review. Marine and Freshwater Research: 
409–422. https://doi.org/10.1071/MF22045

Cordier T, Lanzén A, Apothéloz-Perret-Gentil L, Stoeck T, Pawlowski J (2019) Embracing 
Environmental Genomics and Machine Learning for Routine Biomonitoring. Trends in 
Microbiology 27(5): 387–397. https://doi.org/10.1016/j.tim.2018.10.012

https://doi.org/10.1007/s00253-019-09963-0
https://doi.org/10.3897/mbmg.6.85844
https://github.com/jbisanz/qiime2R
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/s41598-018-35843-0
https://doi.org/10.1038/nmeth.3869
https://standards.iteh.ai/catalog/standards/cen/31e578ee-1135-49d8-9446-94b56d9c267e/cen-tr-17245-2018
https://standards.iteh.ai/catalog/standards/cen/31e578ee-1135-49d8-9446-94b56d9c267e/cen-tr-17245-2018
https://doi.org/10.1071/MF22045
https://doi.org/10.1016/j.tim.2018.10.012


182Metabarcoding and Metagenomics 8: 169–186 (2024), DOI: 10.3897/mbmg.8.129227

Jonathan Warren et al.: Influence of storage time on the stability of diatom assemblages

Delavaux CS, Bever JD, Karppinen EM, Bainard LD (2020) Keeping it cool: Soil sample 
cold pack storage and DNA shipment up to 1 month does not impact metabarcod-
ing results. Ecology and Evolution 10(11): 4652–4664. https://doi.org/10.1002/
ece3.6219

Deutschmann IM, Lima-Mendez G, Krabberød AK, Raes J, Vallina SM, Faust K, Logares 
R (2021) Disentangling environmental effects in microbial association networks. Mi-
crobiome 9: 1–18. https://doi.org/10.1186/s40168-021-01141-7

Dully V, Rech G, Wilding TA, Lanz A, Mackichan K, Berrill I, Stoeck T (2021) Comparing 
sediment preservation methods for genomic biomonitoring of coastal marine eco-
systems. Marine Pollution Bulletin 173: 113129. https://doi.org/10.1016/j.marpol-
bul.2021.113129

Eastwood N, Zhou J, Derelle R, Abdallah MA-E, Stubbings WA, Jia Y, Crawford SE, Da-
vidson TA, Colbourne JK, Creer S, Bik H, Hollert H, Orsini L (2023) 100 years of an-
thropogenic impact causes changes in freshwater functional biodiversity. bioRxiv: 
2023.02.26.530075. https://doi.org/10.1101/2023.02.26.530075

Environment Agency (2023) Using DNA to understand river diatom communities. Envi-
ronment Agency. gov.uk.

European Parliment (2000) DIRECTIVE 2000/60/EC OF THE EUROPEAN PARLIAMENT 
AND OF THE COUNCIL. Official Journal of the European Union 43: 1–44.

European Parliment (2006) Directive 2006/7/EC of the European Parliament and of the 
Council of 15 February 2006 concerning the management of bathing water quality 
and repealing Directive 76/160/EEC. Official Journal of the European Union 53: 1–12.

Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s bio-
geochemical cycles. Science 320(5879): 1034–1039. https://doi.org/10.1126/sci-
ence.1153213

Fontaine L, Pin L, Savio D, Friberg N, Kirschner AKT, Farnleitner AH, Eiler A (2023) Bacterial 
bioindicators enable biological status classification along the continental Danube river. 
Communications Biology 6(1): 1–11. https://doi.org/10.1038/s42003-023-05237-8

Gold Z, Shelton AO, Casendino HR, Duprey J, Gallego R, Van Cise A, Fisher M, Jensen 
AJ, D’Agnese E, Allan EA, Ramón-Laca A, Garber-Yonts M, Labare M, Parsons KM, 
Kelly RP (2023) Signal and noise in metabarcoding data. PLoS ONE 18(5): 1–21. 
https://doi.org/10.1371/journal.pone.0285674

Guseva K, Darcy S, Simon E, Alteio LV, Montesinos-Navarro A, Kaiser C (2022) From 
diversity to complexity: Microbial networks in soils. Soil Biology & Biochemistry 169: 
108604. https://doi.org/10.1016/j.soilbio.2022.108604

Jackson MC, Weyl OLF, Altermatt F, Durance I, Friberg N, Dumbrell AJ, Piggott JJ, Tiegs 
SD, Tockner K, Krug CB, Leadley PW, Woodward G (2016) 55 Advances in Ecologi-
cal Research Recommendations for the Next Generation of Global Freshwater Bio-
logical Monitoring Tools. 1st edn. Elsevier, 615–636. https://doi.org/10.1016/bs.ae-
cr.2016.08.008

Kelly M, Juggins S, Guthrie R, Pritchard S, Jamieson J, Rippey B, Hirst H, Yallop M (2008) 
Assessment of ecological status in U.K. rivers using diatoms. Freshwater Biology 
53(2): 403–422. https://doi.org/10.1111/j.1365-2427.2007.01903.x

Kelly M, Boonham N, Juggins S, Kille P, Mann DG, Pass D, Sapp M, Sato S, Glover R 
(2018) Environment Agency A DNA based diatom metabarcoding approach for Water 
Framework Directive classification of rivers, 157 pp.

Kelly M, Juggins S, Mann DG, Sato S, Glover R, Boonham N, Sapp M, Lewis E, Hany U, 
Kille P, Jones T, Walsh K (2020) Development of a novel metric for evaluating diatom 

https://doi.org/10.1002/ece3.6219
https://doi.org/10.1002/ece3.6219
https://doi.org/10.1186/s40168-021-01141-7
https://doi.org/10.1016/j.marpolbul.2021.113129
https://doi.org/10.1016/j.marpolbul.2021.113129
https://doi.org/10.1101/2023.02.26.530075
https://doi.org/10.1126/science.1153213
https://doi.org/10.1126/science.1153213
https://doi.org/10.1038/s42003-023-05237-8
https://doi.org/10.1371/journal.pone.0285674
https://doi.org/10.1016/j.soilbio.2022.108604
https://doi.org/10.1016/bs.aecr.2016.08.008
https://doi.org/10.1016/bs.aecr.2016.08.008
https://doi.org/10.1111/j.1365-2427.2007.01903.x


183Metabarcoding and Metagenomics 8: 169–186 (2024), DOI: 10.3897/mbmg.8.129227

Jonathan Warren et al.: Influence of storage time on the stability of diatom assemblages

assemblages in rivers using DNA metabarcoding. Ecological Indicators 118: 106725. 
https://doi.org/10.1016/j.ecolind.2020.106725

Kelly MG, Mann DG, Taylor JD, Juggins S, Walsh K, Pitt J-A, Read D (2024) Maximis-
ing environmental pressure-response relationship signals from diatom-based me-
tabarcoding in rivers. The Science of the Total Environment 914: 169445. https://doi.
org/10.1016/j.scitotenv.2023.169445

Kim JH, Jeon JY, Im YJ, Ha N, Kim JK, Moon SJ, Kim MG (2023) Long-term taxonom-
ic and functional stability of the gut microbiome from human fecal samples: 1–8. 
https://doi.org/10.1038/s41598-022-27033-w

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and disper-
sion for RNA-seq data with DESeq2. Genome Biology 15(12): 1–21. https://doi.
org/10.1186/s13059-014-0550-8

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequenc-
ing reads. EMBnet.Journal 17(1): 10–12. https://doi.org/10.14806/ej.17.1.200

Mathieu C, Hermans SM, Lear G, Buckley TR, Lee KC, Buckley HL (2020) A systemat-
ic review of sources of variability and uncertainty in eDNA data for environmental 
monitoring. Frontiers in Ecology and Evolution 8: 1–14. https://doi.org/10.3389/
fevo.2020.00135

McElhinney JMWR, Catacutan MK, Mawart A, Hasan A, Dias J (2022) Interfacing Ma-
chine Learning and Microbial Omics: A Promising Means to Address Environmen-
tal Challenges. Frontiers in Microbiology 13: 851450. https://doi.org/10.3389/
fmicb.2022.851450

McGuire KL, Treseder KK (2010) Microbial communities and their relevance for eco-
system models: Decomposition as a case study. Soil Biology & Biochemistry 42(4): 
529–535. https://doi.org/10.1016/j.soilbio.2009.11.016

McMurdie PJ, Holmes S (2013) phyloseq: An R package for reproducible interactive 
analysis and graphics of microbiome census data. PLoS ONE 8(4): e61217. https://
doi.org/10.1371/journal.pone.0061217

McMurdie PJ, Holmes S (2014) Waste Not, Want Not: Why Rarefying Microbiome 
Data Is Inadmissible. PLoS Computational Biology 10(4): e1003531. https://doi.
org/10.1371/journal.pcbi.1003531

Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S (2021) Recent Advanced Technolo-
gies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial 
Communities. Frontiers in Bioengineering and Biotechnology 9: 632059. https://doi.
org/10.3389/fbioe.2021.632059

Neu TR, Lawrence JR (1997) Development and structure of microbial biofilms in river 
water studied by confocal laser scanning microscopy. FEMS Microbiology Ecology 
24(1): 11–25. https://doi.org/10.1111/j.1574-6941.1997.tb00419.x

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Soly-
mos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Bor-
card D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista HBA, FitzJohn R, 
Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette M-H, Ribeiro 
Cunha E, Smith T, Stier A, Ter Braak CJF, Weedon J (2022) vegan: Community Ecology 
Package. https://cran.r-project.org/package=vegan

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot 
M, Duchesnay E (2011) Scikit-learn: Machine Learning in Python. Journal of Machine 
Learning Research 12: 2825–2830.

https://doi.org/10.1016/j.ecolind.2020.106725
https://doi.org/10.1016/j.scitotenv.2023.169445
https://doi.org/10.1016/j.scitotenv.2023.169445
https://doi.org/10.1038/s41598-022-27033-w
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.3389/fevo.2020.00135
https://doi.org/10.3389/fevo.2020.00135
https://doi.org/10.3389/fmicb.2022.851450
https://doi.org/10.3389/fmicb.2022.851450
https://doi.org/10.1016/j.soilbio.2009.11.016
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.3389/fbioe.2021.632059
https://doi.org/10.3389/fbioe.2021.632059
https://doi.org/10.1111/j.1574-6941.1997.tb00419.x
https://cran.r-project.org/package=vegan


184Metabarcoding and Metagenomics 8: 169–186 (2024), DOI: 10.3897/mbmg.8.129227

Jonathan Warren et al.: Influence of storage time on the stability of diatom assemblages

R Core Team (2022) R: A Language and Environment for Statistical Computing. 
https://www.r-project.org/

Rimet F, Gusev E, Kahlert M, Kelly MG, Kulikovskiy M, Maltsev Y, Mann DG, Pfannkuchen 
M, Trobajo R, Vasselon V, Zimmermann J, Bouchez A (2019) Diat.barcode, an open-ac-
cess curated barcode library for diatoms. Scientific Reports 9(1): 1–12. https://doi.
org/10.1038/s41598-019-51500-6

Rivera SF, Vasselon V, Bouchez A, Rimet F (2023) eDNA metabarcoding from aquatic 
biofilms allows studying spatial and temporal fluctuations of fish communities from 
Lake Geneva. Environmental DNA 5(3): 1–12. https://doi.org/10.1002/edn3.413

Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisen-
dle U, Elersek T, Fazi S, Fleituch T, Frühe L, Gajdosova M, Graupner N, Haegerbaeumer 
A, Kelly AM, Kopecky J, Leese F, Nõges P, Orlic S, Panksep K, Pawlowski J, Petrusek A, 
Piggott JJ, Rusch JC, Salis R, Schenk J, Simek K, Stovicek A, Strand DA, Vasquez MI, 
Vrålstad T, Zlatkovic S, Zupancic M, Stoeck T (2021) Expanding ecological assess-
ment by integrating microorganisms into routine freshwater biomonitoring. Water 
Research 191: 116767. https://doi.org/10.1016/j.watres.2020.116767

Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley J 
(2021) GGally: Extension to “ggplot2.” https://cran.r-project.org/package=GGally

Shirazi S, Meyer RS, Shapiro B (2021) Revisiting the effect of PCR replication and se-
quencing depth on biodiversity metrics in environmental DNA metabarcoding. Ecolo-
gy and Evolution 11(22): 15766–15779. https://doi.org/10.1002/ece3.8239

Song SJ, Amir A, Metcalf JL, Amato KR (2016) Microbiome Stability, Affecting. Msys-
tems.Asm. Org 1: 1–12. https://doi.org/10.1128/mSystems.00021-16

Tap J, Cools-portier S, Pavan S, Druesne A, Öhman L, Törnblom H, Simren M, Derrien M 
(2019) Effects of the long-term storage of human fecal microbiota samples collected 
in RNAlater.: 1–9. https://doi.org/10.1038/s41598-018-36953-5

Warnasuriya SD, Udayanga D, Manamgoda DS, Biles C (2023) Fungi as environmen-
tal bioindicators. The Science of the Total Environment 892: 164583. https://doi.
org/10.1016/j.scitotenv.2023.164583

Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer, New York. 
https://doi.org/10.1007/978-3-319-24277-4_9

Yan L (2023) ggvenn: Draw Venn Diagram by “ggplot2.” https://cran.r-project.org/pack-
age=ggvenn

Yutani H (2022) gghighlight: Highlight Lines and Points in “ggplot2.” https://cran.r-proj-
ect.org/package=gghighlight

Supplementary material 1

Extended methods

Authors: Jonathan Warren, Sean Butler, Nick Evens, Laura Hunt, Martyn Kelly, Lindsay 
Newbold, Daniel S. Read, Joe D. Taylor, Kerry Walsh

Data type: pdf
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.8.129227.suppl1

https://www.r-project.org/
https://doi.org/10.1038/s41598-019-51500-6
https://doi.org/10.1038/s41598-019-51500-6
https://doi.org/10.1002/edn3.413
https://doi.org/10.1016/j.watres.2020.116767
https://cran.r-project.org/package=GGally
https://doi.org/10.1002/ece3.8239
https://doi.org/10.1128/mSystems.00021-16
https://doi.org/10.1038/s41598-018-36953-5
https://doi.org/10.1016/j.scitotenv.2023.164583
https://doi.org/10.1016/j.scitotenv.2023.164583
https://doi.org/10.1007/978-3-319-24277-4_9
https://cran.r-project.org/package=ggvenn
https://cran.r-project.org/package=ggvenn
https://cran.r-project.org/package=gghighlight
https://cran.r-project.org/package=gghighlight
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.8.129227.suppl1


185Metabarcoding and Metagenomics 8: 169–186 (2024), DOI: 10.3897/mbmg.8.129227

Jonathan Warren et al.: Influence of storage time on the stability of diatom assemblages

Supplementary material 2

PERMANOVA output for ‘site’ and ‘frozen’

Authors: Jonathan Warren, Sean Butler, Nick Evens, Laura Hunt, Martyn Kelly, Lindsay 
Newbold, Daniel S. Read, Joe D. Taylor, Kerry Walsh

Data type: pdf
Explanation note: Variable ‘frozen’ indicated whether the sample was analysed as part 

of the original analysis or the repeat. Variable ‘site’ is which original sample and sam-
pling site each replicate is from and is included in the models to account for the 
expected variation between different locations.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.8.129227.suppl2

Supplementary material 3

Comparison of differential log2fold abundance between each replicate 
group

Authors: Jonathan Warren, Sean Butler, Nick Evens, Laura Hunt, Martyn Kelly, Lindsay 
Newbold, Daniel S. Read, Joe D. Taylor, Kerry Walsh

Data type: pdf
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.8.129227.suppl3

Supplementary material 4

Distribution of uniquely detected species between sample replicates

Authors: Jonathan Warren, Sean Butler, Nick Evens, Laura Hunt, Martyn Kelly, Lindsay 
Newbold, Daniel S. Read, Joe D. Taylor, Kerry Walsh

Data type: pdf
Explanation note: Numbers in parentheses represent number of samples where genera 

were detected.
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.8.129227.suppl4

http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.8.129227.suppl2
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.8.129227.suppl3
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.8.129227.suppl4


186Metabarcoding and Metagenomics 8: 169–186 (2024), DOI: 10.3897/mbmg.8.129227

Jonathan Warren et al.: Influence of storage time on the stability of diatom assemblages

Supplementary material 5

Taxonomic bar plots of diatom taxa at the order level of the 4 outlier TDI 
samples 09, 43, 51, and 55

Authors: Jonathan Warren, Sean Butler, Nick Evens, Laura Hunt, Martyn Kelly, Lindsay 
Newbold, Daniel S. Read, Joe D. Taylor, Kerry Walsh

Data type: pdf
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.8.129227.suppl5

Supplementary material 6

Taxonomic bar plots of diatom taxa at the order level of all samples

Authors: Jonathan Warren, Sean Butler, Nick Evens, Laura Hunt, Martyn Kelly, Lindsay 
Newbold, Daniel S. Read, Joe D. Taylor, Kerry Walsh

Data type: pdf
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.8.129227.suppl6

Supplementary material 7

Merged data and matadata

Authors: Jonathan Warren, Sean Butler, Nick Evens, Laura Hunt, Martyn Kelly, Lindsay 
Newbold, Daniel S. Read, Joe D. Taylor, Kerry Walsh

Data type: xlsx
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.8.129227.suppl7

http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.8.129227.suppl5
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.8.129227.suppl6
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.8.129227.suppl7

	Influence of storage time on the stability of diatom assemblages using DNA from riverine biofilm samples
	Abstract
	Introduction
	Methods
	Sample collection and selection
	DNA extraction and diatom assemblage metabarcoding
	Bioinformatic analysis
	Statistical analysis

	Results
	Sample quality control
	Impact of storage on diatom assemblages and taxon detection
	Metric differences

	Discussion
	Conclusion
	Additional information
	References

