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Abstract

Flash droughts (FDs) are distinguished by a rapid development associated with

strong precipitation deficits and/or increases in atmospheric evaporative

demand in the short-term, but little is known about the atmospheric condi-

tions underlying these events. In this study, we analyse for the first time the

atmospheric dynamics involved in the development of FDs in Spain over the

period 1961–2018. FDs are related to large-scale atmospheric circulation pat-

terns affecting the region, in particular with the positive phase of the North

Atlantic Oscillation (NAO). The NAO is the main atmospheric driver of FDs in

winter and autumn, and it is essential in explaining FD development in spring.

We also found that FDs are typically linked to strong positive anomalies in

500 hPa geopotential height and sea level pressure over the region during the

weeks prior to the onset. At the synoptic scale, the most common weather

types (WTs) recorded during the development of FDs are Anticyclonic Western

(ANT_W_AD), East (E_AD) and Northeast (NE_AD) advection, and Anticy-

clonic (ANTICYC). In particular, ANTICYC WT is the main atmospheric

driver of FDs in summer. Ridging conditions occur frequently during FDs in

all seasons, being the most important factor controlling FD development in

spring. Likewise, we noted that some of the FDs recorded in summer are

related to and/or exacerbated by Saharan air intrusions associated with pro-

nounced ridges. The results of this research have important implications for

the understanding, monitoring and prediction of FDs in Spain, providing a

detailed assessment of the main atmospheric dynamics involved in FD trigger-

ing at different spatial scales.
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1 | INTRODUCTION

Drought is one of the most damaging natural hazards,
and it is characterized by complex and diverse environ-
mental and socioeconomic impacts (Wilhite, 2000;
Wilhite & Pulwarty, 2017). Although drought is com-
monly thought of as a phenomenon that spreads slowly
over time and space, its triggering can last from a few
weeks to several months. Recently, the term “flash
drought” (Svoboda et al., 2002) has become popular to
distinguish drought events characterized by rapid devel-
opment and intensification (Lisonbee et al., 2021). These
drought episodes are typically related to anomalous pre-
cipitation deficits and/or increases in atmospheric evapo-
rative demand (AED) associated with summer heat
waves, which trigger rapid soil moisture depletion and
vegetation stress, leading to severe agricultural and envi-
ronmental impacts within a few weeks (Otkin
et al., 2018).

Important efforts have been made in recent years to
characterize flash droughts (FDs) in different regions of
the world using multiple metrics and methodological
approaches (Christian et al., 2019; Mo &
Lettenmaier, 2015, 2016; Nguyen et al., 2019; Noguera
et al., 2020; Wang et al., 2016; Yuan et al., 2018, 2019).
However, some important issues have received little
attention, especially those related to the atmospheric
dynamics that favour FD onset. While some studies
have examined the atmospheric conditions during the
occurrence of specific FDs (Liang & Yuan, 2021;
Wang & Yuan, 2021; Yuan et al., 2018; Zhang
et al., 2017b), few have analysed in detail the atmo-
spheric patterns linked to the occurrence of these
events. Focusing exclusively on the patterns in the mid-
troposphere, Ford and Labosier (2017) and Mo and Let-
tenmaier (2016) found that FDs are typically related to
a predominance of positive anomalies in geopotential
heights at 500 hPa (Z500) over the United States. Mis-
hra et al. (2021) also found positive anomalies in Z500
and sea level pressure (SLP) during FD development
over India. In contrast, Wang and Yuan (2018) found
no relevant anomalies in Z500 over China, underlining
the difficulty of associating this type of event with a
specific synoptic configuration in this region.

In Spain, drought occurrence responds to a wide vari-
ety of atmospheric dynamics operating at different spatial
scales. Numerous studies have demonstrated the influ-
ence of the frequency of daily weather types (WTs) on
precipitation (Cortesi et al., 2014; Goodess & Jones, 2002;
Paredes et al., 2006; Trigo & DaCamara, 2000) and air
temperature (Fern�andez-Montes et al., 2013; García
et al., 2002; García-Herrera et al., 2005; Peña-Angulo
et al., 2016). Likewise, the relationship between these

synoptic situations and the occurrence of droughts has
been investigated (Russo et al., 2015; Vicente-Serrano &
L�opez-Moreno, 2006). For example, Olcina-Cantos (2001)
described the persistence of anticyclonic and high-
pressure systems as the usual situations underlying the
occurrence of drought in Spain. Other authors have
examined the particular synoptic situations involved in
the development of some extreme drought events in both
cold and warm periods (García-Herrera et al., 2007;
Serrano-Notivoli et al., 2023), demonstrating the complex
atmospheric dynamics controlling drought occurrence in
Spain.

Several studies have also shown the relationship
between large-scale atmospheric circulation patterns and
drought severity in Spain at the monthly/seasonal scale
(Manzano et al., 2019; Vicente-Serrano & L�opez-
Moreno, 2006). In this regard, the North Atlantic Oscilla-
tion (NAO) is widely considered as the main atmospheric
mechanism controlling precipitation in Spain (Martín
Vide & Fern�andez, 2001; Rodriguez-Puebla et al., 1998;
Trigo et al., 2004), and its influence on droughts in the
Iberian Peninsula is well known (Manzano et al., 2019;
Trigo et al., 2013; Vicente-Serrano et al., 2011; Vicente-
Serrano & L�opez-Moreno, 2006). In addition, other
regional atmospheric circulation mechanisms such as the
Mediterranean Oscillation (MO) (Conte et al., 1989) and
the Western Mediterranean Oscillation (WeMO) (Martin-
Vide & Lopez-Bustins, 2006) also play a relevant role in
precipitation variability over Mediterranean regions
(Dünkeloh & Jacobeit, 2003; Rodríguez-Puebla
et al., 2001) and, consequently, in the occurrence of
droughts. Some authors have evidenced the link between
these large-scale atmospheric circulation patterns
(i.e., NAO, MO, WeMO) and air temperature over the
Iberian Peninsula and Mediterranean regions (Castro-
Díez et al., 2002; El Kenawy et al., 2012; Rodríguez-
Puebla et al., 2010; S�aenz et al., 2001a, 2001b; Xoplaki
et al., 2003), which could have a certain role in triggering
drought conditions in the warm season.

Spain is also affected by other specific atmospheric
configurations and mechanisms that can trigger drought
conditions. The presence of ridge and blocking structures
over the Iberian Peninsula or in its close vicinity can play
a crucial role in causing both precipitation deficits and
notable AED increases in Spain related, for example, to
heat wave episodes (Ionita et al., 2017; Serrano-Notivoli
et al., 2022; Sousa et al., 2016, 2018). In particular, the
occurrence of Saharan air intrusions, frequently associ-
ated with pronounced ridges that promote additional
solar heating under clear skies, as well as warm horizon-
tal advection and vertical downward air mass movements
that further warm the surface, have an important role in
promoting heat waves in the Iberian Peninsula in
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summer (Sousa et al., 2019). Thus, Saharan air intrusions
may be a relevant atmospheric mechanism for triggering
and/or exacerbating FDs associated with extreme temper-
ature episodes during the summer months in Spain.
Although FDs in Spain are mainly driven by precipitation
variability, the role of AED is essential to explain the
development of FDs over southern and southeastern
regions during the warm season (Noguera et al., 2022).
Therefore, these mechanisms could have important
implications for the triggering of this type of event in
Spain.

In summary, we can state that several studies have
analysed the variety of atmospheric conditions involved
in the occurrence of drought episodes in Spain
(Vicente-Serrano, 2021), but there is a gap in the
knowledge of the atmospheric dynamics associated with
FDs. Although the complex atmospheric dynamics driv-
ing drought variability in Spain have been studied
(Manzano et al., 2019; Olcina-Cantos, 2001), their role
in the occurrence of FDs is poorly understood. Conse-
quently, we present the first characterization of the
atmospheric dynamics involved in the development of
FDs in Spain. With this aim we will (i) evaluate the
influence of some of the main large-scale atmospheric
circulation patterns in Spain (i.e., NAO, MO and
WeMO) on FD onset, (ii) analyse the atmospheric con-
figurations at the synoptic scale (WTs) associated with
FDs, (iii) investigate the possible role of ridge and
blocking structures as well as Saharan air intrusions in
triggering FDs, and finally (iv) determine which of
these atmospheric drivers are the most relevant in the
development of FDs.

2 | DATA AND METHODS

2.1 | Meteorological data

We used a high spatial resolution (1.21 km2) gridded
dataset of meteorological data for mainland Spain and
the Balearic Islands for the period 1961–2018. This data-
set includes weekly data on precipitation, maximum and
minimum air temperature, relative humidity, sunshine
duration and wind speed, and was generated using all
available daily observations from the National Spanish
Meteorological Service (AEMET). The observations were
subjected to a thorough quality control (Tom�as-Burguera
et al., 2016). Details on the construction and validation of
the dataset can be found in Vicente-Serrano et al. (2017).
The FAO-56 Penman–Monteith equation (Allen
et al., 1998) was used to calculate the AED from the
gridded data of air temperature, relative humidity, wind
speed and sunshine duration.

2.2 | Flash drought identification and
development phase

We identified FDs using the Standardized Precipitation
Evapotranspiration Index (SPEI) (Vicente-Serrano
et al., 2010), one of the most widely used drought indices
worldwide (Mukherjee et al., 2018). It is calculated in a
similar way to the Standardized Precipitation Index (SPI),
but the SPEI is based on the climatic water balance
rather than on precipitation. The climatic water
balance compares the water available (i.e., precipitation)
with the atmospheric evaporative demand (AED). This
difference between precipitation and AED is calculated at
different time scales (e.g., 1, 3, 6, 12 months) and fitted to
a log-logistic probability distribution to obtain standard-
ized units that are comparable over the time and space
(Beguería et al., 2014). By including the role of the AED,
the SPEI can capture the effect of rising temperatures on
drought severity, which is essential for a reliable drought
assessment in the current global warming context (Cook
et al., 2014). Thus, the SPEI is sensitive to precipitation
variability, but also to increases in AED, especially during
dry and warm periods when AED is more important in
triggering drought (Tom�as-Burguera et al., 2020). Numer-
ous studies have used the SPEI to analyse the response of
hydrological (McEvoy et al., 2012; Peña-Gallardo
et al., 2019a; Vicente-Serrano & L�opez-Moreno, 2005;
Zhang et al., 2015), agricultural (Peña-Gallardo
et al., 2019b; Potop et al., 2012; Potopov�a et al., 2016) and
environmental (Caminero et al., 2018; Vicente-Serrano
et al., 2013; Xu et al., 2018; Zhang et al., 2017a) systems
to drought. Previous studies have also demonstrated the
good performance of SPEI in identifying and quantifying
FDs under different climatic conditions (Hunt
et al., 2014; Noguera et al., 2020, 2021).

Following Noguera et al. (2020), we employed the
SPEI at a short time scale (1 month) and weekly fre-
quency to identify rapid and strong changes in SPEI that
are characteristic of a FD onset (Otkin et al., 2018;
Svoboda et al., 2002). In order to be considered a FD, a
candidate event must fulfil several conditions, namely:
(i) a minimum length of 4 weeks in the development
phase; (ii) a decline in SPEI equal to or less than 2 z-
units; and (iii) a final SPEI value equal to or less than
−1.28 z-units (corresponding to return periods of
10 years). Further details of the method used to identify
FD events are available in Noguera et al. (2020), which
also provides a full characterization of the seasonal spa-
tial pattern of FDs in Spain, as well as the temporal evo-
lution of these phenomena over the last six decades.

To analyse the atmospheric dynamics involved in the
development of FDs in Spain, we focused on the atmo-
spheric conditions recorded during the 4 weeks prior to
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the onset (i.e., the development phase according to
Noguera et al., 2020). This 4-week temporal lapse estab-
lished for the development phase of the FDs agrees with
some of the most widely used definitions for the assess-
ment of FDs (Anderson et al., 2013; Chen et al., 2019;
Christian et al., 2019; Mukherjee & Mishra, 2022; Osman
et al., 2021), as it allows to capture rapid variations in
humidity conditions but persisting long enough to have
an impact. By focusing on the development phase, we
could determine the atmospheric conditions driving the
rapid declines in SPEI values associated with short-term
anomalies in precipitation and AED that trigger FDs. We
conducted our analysis on the events with the largest
affected area in each season over the domain of study in
order to capture representative seasonal characteristics of
FDs for the whole of Spain. Thus, we selected the top-10
FDs identified in each season (winter: DJF, spring:
MAM, summer: JJA and autumn: SON) for the period
1961–2018 according to the percentage of the area of
mainland Spain and Balearic Islands area affected in a
given week.

2.3 | Atmospheric data

We used several sources of atmospheric information.
First, we obtained daily SLP and Z500 data from the
National Centers for Environmental Prediction (NCEP)–
National Center for Atmospheric Research (NCAR)
(https://psl.noaa.gov/data/) for the domain study area
(25�–70�N, 30�W–30�E) over the period 1961–2018 at 5�

spatial resolution. We then computed weekly anomalies
in SLP and Z500 over the development phase of each of
the top-10 FDs identified in each season. The anomalies
are relative to the average SLP and Z500 recorded for the
period 1961–2018.

SLP data from NCEP–NCAR reanalysis were used to
compute three large-scale atmospheric circulation indi-
ces, namely the North Atlantic Oscillation (NAO), the
Mediterranean Oscillation (MO) and the Western Medi-
terranean Oscillation (WeMO). We calculated the NAO
index (NAOi) following the classical approach of Jones
et al. (1997), which is based on the differences between
normalized SLP at the points 36�N, 5�W (Gibraltar, UK)
and 65�N, 20�W (Reykjavik, Iceland). The MO index
(MOi) was originally defined as the difference of stan-
dardized SLP at the point 36.4�N, 3.1�E (Algiers, Argel)
and 30.1�N, 31.4�E (Cairo, Egypt) by Conte et al. (1989),
but in this case we adopted the method proposed by Palu-
tikof (2003), which is based on the differences between
normalized SLP at the points 36�N, 5�W (Gibraltar, UK)
and 31�N, 34�E (Lod, Israel). Finally, to compute the
WeMO index (WeMOi), we adopted the original

approach proposed by Martin-Vide and Lopez-Bustins
(2006) based on the difference between normalized SLP
at the points 36�N, 6�W (San Fernando, Spain; in this
case extended from Gibraltar due to its proximity) and
45�N, 11�E (Padua, Italy). We then calculated the average
anomalies recorded for each index over the development
phase of each of the top-10 FDs identified in each season
between 1961 and 2018.

Using SLP and Z500 data, we also applied a daily WT
classification by means of an improved Jenkinson and Col-
lison (1977) approach, which allows for the consideration
of atmospheric conditions at both surface and mid-
troposphere (see details in Mir�o et al., 2020). The method
classifies daily WTs into 15 categories: West advection
(W_AD), Anticyclone West advection (ANT_W_AD),
Northwest advection (NW_AD), North advection (N_AD),
Northeast advection (NE_AD), East advection (E_AD),
East Advection with cut-off above (E_AD_CUT), South
advection (S_AD), Southwest advection (SW_AD), Trough
(TROUGH), Cyclone (CYCLONIC), Thermal low
(THERMAL_L), Anticyclonic (ANTICYC), Thermal anticy-
clone (THERMAL_ANTIC) and Shallow Cyclone (SHA).
Figures S1 and S2 show the composites of the average Z500
and SLP conditions associated with each WT. The percent-
age of days under each one of the WTs was summarized
over the development phase of each of the top-10 FDs iden-
tified in each season. In addition, we calculated the sea-
sonal frequency anomalies for each WT (expressed as % of
days) compared to the climatological average of these WTs
for the period 1961–2018.

We assessed the role of ridge and blocking structures
employing a recently developed dataset that contains a
complete catalogue of all ridges and blocks that occurred
over the Iberian Peninsula. This catalogue includes the
ridge and blocking (classified into Omega, Rex hybrid
and Rex pure) structures recorded at daily scale (see
details in Sousa et al., 2021). We considered those ridges
and blocks recorded between the latitudes 30�–45�N and
between the longitudes 20�W–10�E for the period 1961–
2018. The percentage of days under each of these struc-
tures (i.e., ridge, omega block, rex hybrid block and rex
pure block) was summarized over the development phase
of each of the top-10 FDs identified in each season. In
addition, we calculated the seasonal frequency anomalies
of each structure (expressed as % of days) compared with
the climatology average of these structures for the period
1961–2018.

Finally, to specifically examine the possible role of
Saharan intrusions in summer FDs, we used a daily data-
set that records all Saharan air intrusion episodes affect-
ing the Iberian Peninsula for the period 1961–2018 (see
details in Sousa et al., 2019). We considered as Saharan
air intrusion conditions those days when air masses with
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desertic characteristics (i.e., very hot and dry) originating
from Africa were recorded north of 35�N and between
the longitudes 10�W–5�E. The percentage of days under
Saharan air intrusions was summarized over the develop-
ment phase of each of the top-10 FDs identified in sum-
mer. In addition, we calculated the frequency anomalies
in Saharan air intrusions (expressed as % of days) com-
pared with the climatology average of Saharan air intru-
sions in summer for the period 1961–2018.

2.4 | Stepwise logistic regression

To determine which atmospheric drivers are most relevant
in explaining FDs, we applied a stepwise logistic regression
model based on a forward selection. The logistic regression
model is an advantageous technique to examine the possi-
ble relationship between a dependent variable or response
(i.e., the presence or absence of FD development condi-
tions) and different independent variables or predictors
(i.e., anomalies in NAOi, MOi and WeMOi, days (%) under
each WT, days (%) under each ridge and blocking structure
and days (%) under Saharan air intrusions) (Hosmer
et al., 1989; Peng et al., 2002). We used a stepwise forward
procedure to select the most relevant predictors in explain-
ing the occurrence of a response (i.e., the most important
atmospheric drivers to explain FD development) according
to statistical criteria (Desboulets, 2018). Thus, the model
starts with no variables, and progressively adds the predic-
tors that most improve the fit, until the inclusion of new
ones no longer improves the model. The model was run
using the StepAIC function, based on the Akaike informa-
tion criterion (AIC) (Akaike, 1974), as it makes possible to
automate the stepwise forward selection process and
remove the possible multicollinearity of the predictors
(Venables & Ripley, 2002). We focused on the development
weeks of the top-10 FDs identified in each season to
unravel which variables are most relevant in triggering
flash droughts. The stepwise logistic regression analysis
provides information on both the significance (p-values)
and relevance (z-standardized coefficients) of each predic-
tor selected for the model. The results shown include only
those predictors with a p < 0.05 (95% of confidence inter-
val) for each season.

3 | RESULTS

3.1 | Diversity of atmospheric dynamics
underlying FDs in Spain

To illustrate the wide variety of atmospheric dynamics
that can be involved in the development of FDs

seasonally, events with different characteristics are
shown in Figures 1 and 2. Thus, we selected FDs
occurred during cold periods that were mainly associated
with strong precipitation anomalies (i.e., 1962 and 1997
FDs), as well as FDs occurred during warm periods that
were closely related to remarkable anomalies in AED
(i.e., 1978 and 2015 FDs).

In general, important variations were observed
between the atmospheric configurations prior to the
onset of FDs in cold (Figure 1) and warm (Figure 2) sea-
sons, as well as in the atmospheric mechanisms driving
their onset (Table 1). For example, the synoptic configu-
ration preceding the Feb 1962 FD showed the predomi-
nance of patterns typically associated with strong
precipitation deficits over Spain during winter
(Figure 1a), namely NE_AD and ANTICYC WTs
(Table 1). These preceding weeks reveal a relatively stable
pattern characterized by a very high-pressure system over
the Iberian Peninsula and a dominant omega block struc-
ture, resulting in strong precipitation deficits over Spain.
The large-scale NAO pattern was in a positive phase in
the weeks preceding the onset of the FD, with anomalies
around one z-unit in the NAOi. Similarly, positive anom-
alies were recorded in the MOi during these weeks. The
synoptic configuration during the development weeks
leading to Feb 1997 FD also exhibited omega and rex
hybrid patterns usually linked to the absence of precipita-
tion over Spain in winter and autumn (Figure 1b). Block-
ing patterns were frequent during these weeks (including
Omega and Rex types). Unlike the Feb 1962 event, the
dominant synoptic patterns in this case were
the ANT_W_AD, followed by ANTICYC WT (Table 1).
This event was strongly driven by a positive NAO (3.24
z-units) and the presence of very anomalous high-
pressure systems affecting southern Europe.

In summer, the atmospheric dynamics that trigger
FDs vary considerably, with important differences even
between FD events (Figure 2). The development of the
Aug 1978 FD showed a pattern related to a heat wave
that affected Spain in mid-July (Figure 2a), with a domi-
nance of NE_AD and N_AD WTs (Table 1). A high-
pressure system was observed at sea level during the
weeks preceding the onset of the FD, while the mid-
troposphere pattern at Z500 varied considerably, with
some days under Saharan air intrusions (�23%) associ-
ated with the dominance of ridging conditions during
these weeks. Different atmospheric patterns were
observed during the weeks previous to the Jul 2015 FD
(Figure 2b); recording anticyclonic conditions (E_AD,
NE_AD and ANT_W_AD) over the Iberian Peninsula,
which resulted in a heat wave in July with several epi-
sodes of extreme temperatures that caused a dramatic
decrease in humidity. This event was also closely related
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FIGURE 1 Weekly composites of the average Z500 (metres) and SLP (hPa) during the development of the winter (a) Feb 1962 and

(b) Feb 1997 FDs.
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FIGURE 2 Weekly composites of the average Z500 (metres) and SLP (hPa) during the development of the summer (a) Aug 1978 and

(b) Jul 2015 FDs.
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to Saharan air intrusions (�57% of the days during the
event) associated with pronounced ridge conditions in
the mid-troposphere (Table 1). These four examples illus-
trate the diversity of the atmospheric drivers that can
trigger FD conditions in Spain seasonally.

3.2 | Relationship between the
atmospheric dynamics and FDs
development

The development of the top-10 FDs in Spain exhibits a
close relationship with the large-scale atmospheric circu-
lation patterns affecting Spain (Figure 3). In general, the
triggering of FDs corresponds to periods of positive
anomalies in NAOi, although the average amplitude of
these anomalies varies notably among seasons. The larg-
est anomalies in NAOi are found in winter, with average
values around 1.5 z-units during the development of the
recorded top-10 FDs. Strong anomalies in the NAOi were
also found during the triggering of FDs in spring and
autumn, with average values of �1.2 and �0.8 z-units,
respectively. Positive anomalies were also recorded in
MOi during the development of the top-10 FDs in all sea-
sons. The strongest MOi anomalies during the triggering
of the FDs occur in winter and spring, with average
values around 0.7 and 0.5 z-units, respectively. The
WeMOi anomalies during the periods of FD development
were small and close to zero in all seasons, suggesting a
lower influence on the FD onset compared to the NAOi
and the MOi.

In Spain, FD development is typically associated with
positive SLP and Z500 anomalies centred northwest of

the Iberian Peninsula (Figure 4). These positive anoma-
lies correspond to an Azores High displaced towards
northern Iberia associated with an enhanced ridge in the
mid-troposphere, both features inhibiting the usual
West–East movement of mid-latitude low-pressure sys-
tems. These conditions are observed during the previous
weeks to the onset of FDs in all seasons, albeit with con-
siderable stronger signal in winter (for both SLP and
Z500) than in summer (Figure 4).

Table 2 shows the percentage of days under each WT
category during the development of the top-10 FDs in
each season, as well as the corresponding frequency
anomalies. In general, ANT_W_AD and E_AD were the
most frequent WTs during the development of the FDs in
Spain, with more than 19% of the days regardless of the
season; while THERMAL_L, THERMAL_ANTIC,
TROUGH, CYCLONIC and SHA were the least frequent,
with percentages less than 1%. In winter, ANT_W_AD,
E_AD, ANTICYC and NE_AD WTs recorded important
positive frequency anomalies. Likewise, spring FDs were
characterized by unusually high frequencies of
ANT_W_AD, E_AD, NE_AD and ANTICYC WTs in
comparison with the climatological frequency of these
WTs. The smallest frequency anomalies were found in
summer, being ANT_W_AD and ANTICYC those that
show the largest positive anomalies. Finally, the highest
positive frequencies of WTs associated with FDs in com-
parison to the autumn climatology were E_AD,
ANT_W_AD, NE_AD and ANTICYC. Therefore, we can
summarize that the following four WTs: ANT_W_AD,
E_AD, NE_AD and ANTICYC were generally the most
frequent during the development of FDs. It is also impor-
tant to stress that several WTs present consistent negative

FIGURE 3 Average anomalies in North Atlantic Oscillation index (NAOi), Mediterranean Oscillation index (MOi) and Western

Mediterranean Oscillation index (WeMOi) during the development phase of the top-10 FDs for each season over the period 1961–2018. The
box represent the 1st and 3rd quartiles, while the brackets show the maximum and minimum values. Horizontal lines in the boxplot

represent the median and the points represent the average.
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TABLE 1 Average anomalies in large-scale circulation indices (NAOi, MOi and WeMOi) and percentage of days under each WT, ridge

and block structure (RIDGE, OMEGA and REX HYBRID) and Saharan intrusions (SAHARAN_INT) during the development (i.e., 4 weeks

prior to the onset) of 1962, 1978, 1997 and 2015 FDs.

Flash droughts Feb 1962 Aug 1978 Feb 1997 Jul 2015

NAOi 1.03 −0.08 3.24 0.23

MOi 1.39 0.73 0.49 −0.19

WeMOi 0.48 0.21 0.82 −0.28

RIDGE 19.36 25.81 57.14 70.00

OMEGA 85.71 37.50 33.33 0.00

REX HYBRID 0.00 0.00 33.33 0.00

SAHARAN_INT 0.00 22.58 0.00 56.66

W_AD 0.00 0.00 7.14 6.66

ANT_W_AD 6.45 16.13 50.00 13.33

NW_AD 3.23 0.00 0.00 10.00

N_AD 6.45 35.48 0.00 3.33

NE_AD 38.70 41.94 7.14 26.66

E_AD 0.00 6.45 10.71 30.00

E_AD_CUT 0.00 0.00 0.00 3.33

ANTICYC 19.35 0.00 25.00 6.66

SHA 3.25 0.00 0.00 0.00

Note: We have excluded from this table the WTs and block structures that did not occur during any of the four events.

FIGURE 4 Composite of the anomalies in Z500 (metres) and SLP (hPa) during the development of the top-10 FDs in each season over

the period 1961–2018.
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frequency anomalies during the top-10 FDs. This is
clearly the case of three WTs that are often associated
with higher than usual precipitation over Spain in winter,
spring and autumn: W_AD, NW_AD and CYCLONIC.

Table 3 shows the percentage of days with the pres-
ence of different synoptic structures (i.e., ridge, omega
block, rex hybrid block, rex pure block) around the Ibe-
rian Peninsula during the development of the FDs in
each season, as well as the frequency anomalies in
comparison with the climatological frequency of these
structures. Overall, the ridge and omega block are the
most frequent structures during FD triggering in every
season. In winter, omega block and ridge structures are
the most frequent, with very noticeable positive fre-
quency anomalies in omega blocks compared to the aver-
age climatology. Spring FDs are characterized by a high
percentage of days under ridge and omega structures,
with positive frequency anomalies above 6%. In summer,
ridges are the most frequent structures during the devel-
opment stages of the top-10 FDs. However, these patterns
are so prevalent during the summer months that FD fre-
quency anomalies are neglectable. Omega blocking is
also relatively frequent (�24%), but this percentage is
smaller in comparison with the climatology. In autumn,
while blocking structures show frequencies close to the
average climatology, ridges are associated with frequency
anomalies above 9%, illustrating its relationship with FDs
occurrence.

We also found that some of the FDs recorded in sum-
mer developed during episodes of Saharan air intrusion.
Nevertheless, there are no relevant differences between
the Saharan intrusion conditions reported during FDs
triggering (11%) and the climatology (11.7%). It is note-
worthy, however, that the development of 4 of the top-10
FDs recorded in summer was characterized by the occur-
rence of Saharan intrusion conditions, and in 3 of them
these conditions were recorded on at least 22% of the FD
development days (e.g., Figure 2).

3.3 | Key atmospheric dynamics
explaining FDs development

After assessing the relationship between FDs and differ-
ent atmospheric dynamics, we employ a stepwise proce-
dure to select the optimal set of predictors
(i.e., atmospheric drivers) using a logistic regression
model. Table 4 shows the standardized coefficients and
p-values of the model predictors that significantly explain
the development of the top-10 FDs identified in each sea-
son over the period 1961–2018. The NAO is the main
driver to explain FDs triggering in winter, with a strong
relationship between positive anomalies in NAOi and the
development of FDs. Besides, there is a close relationship
between a low percentage of days under W_AD and
SW_AD WTs and FD triggering in winter, which shows a

TABLE 2 Percentage of days under each WT during the development of the top-10 FDs and frequency anomalies (%) recorded in each

season over the period 1961–2018.

Winter Spring Summer Autumn

FDs Anomalies FDs Anomalies FDs Anomalies FDs Anomalies

W_AD 3.69 −7.77 1.99 −6.22 3.56 1.09 2.97 −4.99

ANT_W_AD 28.19 11.47 23.92 8.25 24.92 7.38 24.42 6.46

NW_AD 4.70 −5.12 5.32 −5.39 7.12 −1.14 4.29 −4.69

N_AD 6.38 −1.17 10.30 −1.30 14.56 −1.54 7.92 −0.72

NE_AD 12.08 4.53 17.61 6.01 18.12 −4.70 13.53 4.30

E_AD 19.46 6.43 23.92 6.51 23.95 0.99 27.06 8.23

E_AD_CUT 2.68 −1.08 1.66 −1.26 1.29 −0.15 3.63 0.43

S_AD 3.36 −0.37 3.32 0.68 0.65 −0.01 2.64 −1.36

SW_AD 1.68 −6.21 1.66 −2.93 0.97 0.31 2.31 −4.91

TROUGH 0.00 −0.97 0.00 −0.86 0.65 0.18 0.33 −0.54

CYCLONIC 0.34 −4.19 0.33 −5.78 0.00 −1.84 0.66 −4.04

THERMAL_L 0.00 0.00 0.00 −1.29 0.65 −3.44 0.00 −1.21

ANTICYC 16.78 6.25 9.30 5.22 3.56 2.87 8.91 3.23

THERMAL_ANTIC 0.34 0.09 0.00 −0.22 0.00 0.00 0.33 0.18

SHA 0.34 −1.88 0.66 −1.42 0.00 0.00 0.99 −0.37

Note: Bold indicates the most remarkable positive and negative frequencies anomalies at each season.
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negative relationship between the occurrence of these
WTs and FDs. In spring, FDs were mainly related to a
high percentage of days with ridging conditions and posi-
tive values of the NAOi; moreover, a low percentage of
days under W_AD and CYCLONIC WTs is also essential
in explaining FD onset. In contrast, summer FDs are
closely associated with a high percentage of days under
ANTICYC WT, which is the main driver of FDs in this
season. In autumn, results show again a close link
between positive anomalies in NAOi and FD develop-
ment. Likewise, a low percentage of days under SW_AD,
CYCLONIC and NW_AD WTs shows a close and nega-
tive relationship with the triggering of FDs in autumn.

4 | DISCUSSION

This study has analysed for the first time the atmospheric
dynamics associated with the development of FDs in
Spain. Despite the efforts made in recent years to charac-
terize FDs in different regions of the world (Christian
et al., 2019; Mo & Lettenmaier, 2015, 2016; Nguyen
et al., 2019; Noguera et al., 2020; Wang et al., 2016; Yuan
et al., 2018, 2019), few studies have focused on the atmo-
spheric conditions underlying the occurrence of FDs
(e.g., Ford & Labosier, 2017). To achieve this aim, we

have evaluated the role played by a wide range of atmo-
spheric circulation patterns, including both large
(e.g., NAO, blocking structures) and synoptic (e.g., WTs)
scales, and considering the lower (SLP) and mid-
troposphere (Z500) layers. Thus, we demonstrate that
diverse atmospheric dynamics can be involved in FD trig-
gering over Spain, with important seasonal contrasts.
Among others, we identified certain key atmospheric
drivers that are crucial in explaining the development
of FDs.

FD development is closely related to NAO patterns.
The relationship between positive NAO and low precipi-
tation over the Iberian Peninsula is well known, espe-
cially in winter (Rodríguez-Puebla et al., 2001; Trigo
et al., 2004), but also during autumn and, to a lesser
extent, in spring (Martín Vide & Fern�andez, 2001). In this
way, we found that the NAO is the most important factor
for FD development in winter and autumn, but it is also
essential for FD triggering in spring. During these sea-
sons, the development of FDs in Spain responds mainly
to precipitation deficits (Noguera et al., 2022), so it is rea-
sonable that the NAO plays a key role since it strongly
controls precipitation variability over Spain (Esteban-
Parra et al., 1998). Similarly, previous studies evidenced
the strong influence of the NAO in triggering drought
conditions over Iberian Peninsula (Manzano et al., 2019;

TABLE 3 Percentage of days under each ridge and blocking structure (ridge, omega block, rex hybrid block, rex pure block) during the

development of the top-10 FDs and frequency anomalies (%) recorded in each season over the period 1961–2018.

Winter Spring Summer Autumn

FDs Anomalies FDs Anomalies FDs Anomalies FDs Anomalies

Ridge 42.33 2.96 58.18 6.10 52.62 −2.28 54.12 9.81

Omega 45.91 20.80 34.37 6.87 23.56 −6.89 23.21 −1.54

Rex Hybrid 9.60 −5.70 13.25 −2.82 5.42 1.44 3.38 −2.44

Rex Pure 1.72 −3.61 3.40 −3.61 1.48 0.52 0.00 −1.66

TABLE 4 Logistic regression standardized coefficients and p-values for model parameters that showed a significant relationship (p-value

<0.05) with the development of the top-10 FDs for each season in the period 1961–2018.

Winter Spring Summer Autumn

Z value p-value Z value p-value Z value p-value Z value p-value

NAOi 4.19 <0.01 2.00 0.04 - - 2.50 0.01

RIDGE - - 2.22 0.02 - - - -

W_AD −2.49 0.01 −2.65 <0.01 - - - -

NW_AD - - - - - - −2.06 0.03

SW_AD −2.27 0.02 - - - - −2.22 0.03

ANTICYC - - - - 2.92 <0.01 - -

CYCLONIC - - −1.98 0.04 - - −2.07 0.04
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Trigo et al., 2013; Vicente-Serrano et al., 2011; Vicente-
Serrano & Cuadrat, 2007). Although some studies have
also noted a certain link between the occurrence of
droughts in some regions of Spain and WeMO and MO
patterns (Manzano et al., 2019), we did not find a clear
influence of these patterns on FDs. However, it should be
noted that the effect of WeMO and MO on precipitation
over Spain shows important regional contrast (Martin-
Vide & Lopez-Bustins, 2006), so their possible influence
could be masked by focusing on FDs events that affected
large areas.

At the synoptic scale, FD development in Spain is
normally associated with high-pressure systems and
atmospheric stability over the Iberian Peninsula. Strong
positive anomalies in SLP and Z500 were found in win-
ter, spring and autumn due to strong anticyclones dis-
placed towards northwestern Iberia (see Figure S3),
leading to strong precipitation deficits (Muñoz-Díaz &
Rodrigo, 2006), which are essential for triggering FDs in
these months (Noguera et al., 2022). In summer, when
atmospheric stability and low-pressure gradients are
dominant over Spain (García-Valero et al., 2012), the cli-
matology is more favourable for FD development and
large anomalies in SLP and Z500 are not essential. In
general, the percentage of days under WTs associated
with anticyclonic situations, such as ANT_W_AD, E_AD,
NE_AD and ANTICYC (see Figures S1 and S2), recorded
positive anomalies compared to the climatological fre-
quency of these WTs. In particular, ANTICYC WT, which
results in atmospheric stability that promotes the absence
of precipitation and higher temperatures during the
warm season (Martin-Vide & Olcina-Cantos, 2001;
Molina, 1981), is the main driver of FDs in summer. On
the contrary, WTs commonly associated with atmo-
spheric instability and precipitation such as W_AD,
NW_AD, SW_AD, TROUGH, CYCLON and SHA gener-
ally recorded negative anomalies during the development
of FDs. In fact, some of these WTs exhibit a close and
negative relationship with FDs in winter (i.e., W_AD
and SW_AD), spring (i.e., W_AD and CYCLONIC) and
autumn (i.e., NW_AD, SW_AD and CYCLONIC), which
obviously shows that a low percentage of days under
these WTs is essential for FDs occurrence.

FDs development is also usually associated with a
high percentage of days with a ridge structure in all sea-
sons, which generally leads to precipitation scarcity over
Spain as it prevents the arrival of storms in the region
(Santos et al., 2009; Sousa et al., 2016, 2018). In particu-
lar, anomalous ridging conditions are highly frequent
during spring FDs, being the main atmospheric driver of
FDs in this season. The anomalies recorded in the fre-
quency of omega blockings in the winter FDs, which usu-
ally result in a lack of precipitation (Sousa et al., 2021)

are relevant but are not among the main predictors of
FDs in these months. We also found that some of the
summer FDs occurred during Saharan air intrusion epi-
sodes associated with pronounced ridges that promote
the arrival of warm air masses to the Iberian Peninsula
(e.g., 2015 FD). Although the advection of these dry and
warm air masses from northern Africa contributes to the
temperature increase (García-Herrera et al., 2005) and,
consequently, favours FD conditions, we did not find any
relevant frequency anomalies.

Our findings illustrate the diversity of large-scale
atmospheric circulation patterns, synoptic situations and
atmospheric mechanisms that may underlie the trigger-
ing of FDs. Although the atmospheric conditions that
drive FDs could be very variable worldwide, it is expected
that these events may be associated with high-pressure
systems and atmospheric stability leading to low precipi-
tation, clear skies or increases in AED that drive FD
development (Otkin et al., 2018). In this way, the patterns
observed prior to the onset of FDs in Spain are very con-
sistent with those found in previous studies over India
(Mishra et al., 2021) and the United States (Ford &
Labosier, 2017; Mo & Lettenmaier, 2016), which reported
positive anomalies at sea level and 500 hPa during the
development of FDs. In addition, we noted important
seasonal variations in the atmospheric dynamics involved
in the triggering of FDs in Spain. The results suggest that
the development of FDs occurring during winter, spring
and autumn responds mainly to large-scale atmospheric
circulation patterns, which control precipitation variabil-
ity (e.g., NAO). While in the summer, when the precipita-
tion is very low in most of Spain (Serrano et al., 1999),
thermodynamic processes associated with atmospheric
stability conditions promoting temperature and AED rise
seem to be more relevant in explaining FDs. It is expected
that these patterns can be extended to other regions in
the mid-latitudes where the atmospheric mechanisms
driving drought usually show a marked seasonality.

5 | CONCLUSIONS

In this study, we analysed for the first time the atmo-
spheric dynamics involved in the development of FDs in
Spain. To achieve this, we examined in detail the atmo-
spheric conditions observed during FD development in
each season over Spain, including; large-scale atmo-
spheric circulation patterns and synoptic situations. The
main findings of this research are as follows:

1. The atmospheric dynamics underlying FDs show
important seasonal differences in Spain. In winter,
spring and autumn, large-scale atmospheric
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circulation patterns strongly control the occurrence of
FDs. Whereas in summer, when the climatology is
more propitious for FD development, other thermody-
namic processes may be more relevant to trigger FD
conditions.

2. The positive NAO is the main atmospheric driver of
FDs in winter and autumn, and it is also essential in
explaining FD development in spring.

3. FDs are typically associated with high-pressure sys-
tems and anticyclonic situations over the Iberian Pen-
insula. Thus, positive and notable anomalies in Z500
and SLP were observed over western Europe and the
Iberian Peninsula during the weeks prior to FD onset.

4. In general, the WTs Anticyclonic Western
(ANT_W_AD), East (E_AD) and Northeast (NE_AD)
advection, and Anticyclonic (ANTICYC) were the
most frequent during the development of FDs and
also showed the highest frequency anomalies in com-
parison with the climatology of WTs in Spain.

5. Ridge and omega blocking structures are usually fre-
quent during FD development. In spring, ridging con-
ditions are the main atmospheric driver of FDs.
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