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Abstract. Ice crystal orientation fabric strongly affects the
viscous deformation of glacier ice. A popular technique to in-
vestigate ice fabric is radar polarimetry, often analysed using
the coherence method. However, in fast-flowing areas with
strong anisotropy, this method provides information of shal-
low areas below the surface only. This study proposes re-
ducing radar bandwidth to enhance the depth limit for fabric
asymmetry detection. Using data from two ice streams, we
demonstrate that reduced bandwidth significantly increases
the depth limit, depending on the centre frequency. This ap-
proach aims to improve the understanding of the spatial dis-
tribution of fabric, crucial for ice dynamics in fast-flowing
regions.

1 Introduction

The viscous deformation of glacier ice is controlled by
its temperature and the bulk ice crystal orientation fabric
(henceforth referred to as fabric). Due to the mechanical
anisotropy of ice crystals, the influence of the fabric on the
viscosity is directional: depending on the direction of de-
formation, the ice is softer or harder (Cuffey and Paterson,
2010). The orientation of the fabric depends on the past de-
formation of the ice and controls the present viscosity (Alley,
1988). However, little is known about the spatial and tempo-
ral distribution of the fabric, and, despite its importance, fab-
ric is inadequately represented in large-scale ice flow models.

The most reliable method to determine the fabric is
the analysis of ice cores (e.g. Weikusat et al., 2017). By

analysing thin sections, the orientation of the crystallo-
graphic axis (¢ axis) of each grain can be determined and
represented by a second-order orientation tensor. The differ-
ence in the horizontal eigenvalues A, and A, of this tensor
gives the horizontal fabric asymmetry:

Adgy = Ay — Ay (1)

Because ice cores are rarely drilled in ice streams, little was
known about the fabric orientation and strength of asymme-
try in the fast-flowing areas of the Greenland and Antarctic
ice sheets.

Since ice crystals exhibit both mechanical and dielec-
tric anisotropy (birefringence), horizontal fabric asymme-
try can also be estimated using polarimetric radar measure-
ments (Hargreaves, 1978). Due to the dielectric anisotropy,
the relative permittivity € and thus the propagation velocity
of the electromagnetic wave depend on the orientation of the
polarised wave. By conducting two perpendicular measure-
ments with polarisations in x” and y’ directions, the differ-
ence in permittivities Ag,/,s can be determined, allowing for
the calculation of horizontal fabric asymmetry using the fol-
lowing relationship (Gerber et al., 2023):

Agx/y/

A)\‘ Iy = ——— 2
X'y Ag’ ( )
with the maximum permittivity difference for ice-penetrating
radar frequencies of Ag’ = 0.034 (Matsuoka et al., 1997).
A widely used method for determining the difference in
permittivities is the coherence method (Dall, 2010). This in-

volves measuring the phase delay from the coherence of two
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perpendicular co-polarised signals, s3,; and sy,, due to their
propagation velocity differences. The coherence cj .,y 1s cal-
culated over depth segments containing N + 1 bins, starting
at bin i,:

in+N
Z] =i, Shh Jsvv]
9
int+N +N
\/Z;:,-n |5hh,j|2\/21n i Isuu 12

where * indicates the complex conjugate. The magnitude
|chhyy| indicates the degree of correlation, and the argument
Onnvy = arg(cppyy) gives the phase shift (range —m to ).
Its uncertainty can be estimated from the Cramér—Rao bound
(Touzi et al., 1999; Jordan et al., 2019). From the depth gra-
dient of the phase shift d¢y,y,/dz, the difference in permit-
tivity can be calculated:

3

Chhvy =

ZCO\/g ddnnvy
4r f.  dz

with the speed of light in vacuum cp, the mean (polarisation-
averaged) permittivity €, and the centre frequency f.. While
the coherence method was used successfully at ice divides
and other slow-flowing areas with weak anisotropy (Jordan
et al., 2019; Young et al., 2021; Ershadi et al., 2022), it re-
vealed the fabric asymmetry to only shallow depths in fast-
flowing areas with strong anisotropy, such as ice streams
(Jordan et al., 2022; Zeising et al., 2023). Due to propagation
velocity differences, signals with the same two-way travel
time are actually the result of scatterers at different depths.
When this difference in scatterer depth exceeds the range res-
olution of the radar system, coherence is lost (Leinss et al.,
2016). To address this, the co-registration method was devel-
oped, which shifts the depth segment of one signal to max-
imise overlap (Zeising et al., 2023).

In this study, we propose reducing the frequency band-
width of the radar system to enhance the depth range for
determining fabric asymmetry with the coherence method.
We test various bandwidths and frequency ranges using data
from a widely used ground-penetrating radar system at the
EastGRIP drill site, comparing our results with ice core anal-
yses. We then apply our improved method to the Rutford Ice
Stream, aiming to extend the depth range of fabric asymme-
try determination. In the discussion we address the frequency
dependence of the measurement and of the coherence analy-
sis.

“

Agx/y/ =

2 Methods
2.1 Coherence depth limitation

The coherence method is based on the coherence of the
range-resolution cells of s;, and s,, with the same two-
way travel time. The magnitude of the coherence decreases
when the two cells are not perfectly overlapping in depth and
thus do not contain exactly the same scatterers. The overlap
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1—(Ar/AR) is positive as long as the depth deviation of the
two cells Ar is smaller then the range resolution AR of the
radar system (Leinss et al., 2016). While the range resolution
depends only on the frequency bandwidth of the radar system
B,
€0
AR=—"_, (5)
v): NG

with the polarisation averaged permittivity €, the depth devi-
ation is bandwidth independent:

Ex! —
A 6
r= \/g (6)

with the depth averaged permittivities &,/ and &,/ in x" and y’
direction and depth z.

The coherence method cannot be applied beyond the depth
at which the depth deviation exceeds the range resolution,
and there is no overlap in the range bins. The overlap is zero
when the depth deviation equals the range resolution, which
gives the coherence depth limit as

1 ¢ 7
=55 @ e @)
Thus, the depth to which coherence can be calculated de-
pends inversely on the difference in permittivity and on the
bandwidth of the radar signal. Nevertheless, the coherence
depth limit remains independent of the centre frequency.

2.2 Phase-sensitive radar data analysis

We test the effect of a reduced bandwidth on two differ-
ent polarimetric phase-sensitive radar data sets acquired with
ApRES (Nicholls et al., 2015) in fast-flowing ice:

1. multi-polarised measurements at the EastGRIP (East
Greenland Ice-core Project) drill site on the Northeast
Greenland Ice Stream (Data: PpRES_CL; Zeising and
Humbert, 2022; Zeising et al., 2023)

2. quad-polarised measurements at the Rutford Ice Stream,
Antarctica (Data: A3, Jordan et al., 2020, 2022).

The ApRES is a frequency-modulated continuous wave
radar that is operated with a bandwidth of 200MHz and
a centre frequency of 300MHz. It transmits chirps of 1s
length while it increases the frequency linearly from 200
to 400MHz. For a quad-polarised measurement, two co-
polarised (sp, and sy,) and two cross-polarised measure-
ments (s, and s,;,) were made. The multi-polarised mea-
surements at EastGRIP consist of the four quad-polarised
measurements with different azimuthal orientations. The
benefit of quad- or multi-polarised measurements is that the
full radar return from any antenna orientation can be synthe-
sised from the co- and cross-polarised measurements using a
matrix transformation (Ershadi et al., 2022).
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Table 1. Bandwidth B and centre frequency fc used in the tests for
the coherence method with resulting range resolution AR.

Code B(MHz) f.(MHz) AR (m)
B200, fc300 200 300 0.42
B100, fc250 100 250 0.84
B100, fc300 100 300 0.84
B75, fc237.5 75 237.5 1.13
B75, £c300 75 300 1.13
B50, fc225 50 225 1.69

For the specified bandwidth and frequency range, only the
corresponding part of the chirp was used for preprocessing,
which follows the methods described in Zeising et al. (2023).
We compared the full 200 MHz bandwidth with limited band-
widths of 100, 75, and 50 MHz for the centre frequencies of
300MHz and for the respective minimum available centre
frequencies (see Table 1).

After preprocessing, we synthesised sp,;, and sy, in 1° az-
imuthal intervals from O to 180°. For each azimuth, we cal-
culated the coherence (Eq. 3), and hence the phase shift, with
a moving depth segment of 20m. We unwrapped the phase,
smoothed it with a moving average of 100m, and calculated
its depth gradient with a moving window of 200 m. We then
calculated the difference in permittivity and the horizontal
fabric asymmetry.

We compare the results of the coherence method with the
fabric asymmetry derived from the co-registration method
(Zeising et al., 2023). Here, the full bandwidth of 200 MHz
was used, since the co-registration method can be applied
until the noise level depth limit, and it is thus independent of
the coherence depth limit. At the EastGRIP site, we also per-
formed a comparison of the coherence method with the fabric
asymmetry derived from the EastGRIP ice core (Stoll et al.,
2021; Weikusat et al., 2022). Based on the fabric asymmetry
of the ice core, we calculated the coherence depth limit by
using Eq. (2) to obtain the difference in permittivity from the
fabric asymmetry. At the Rutford Ice Stream, the coherence
depth limit was calculated assuming the permittivity differ-
ence derived with the co-registration method.

3 Results
3.1 Northeast Greenland Ice Stream

At the EastGRIP drill site, the coherence depth limit for the
standard bandwidth of 200MHz is about 380m (Fig. la).
With decreasing bandwidth the depth limit increases. For
bandwidths of 100, 75, and 50 MHz, the coherence depth
limit is 530, 625, and 810 m respectively. Thus, at the East-
GRIP drill site, the bandwidth reduction from 200 to 50 MHz
increases the depth limit of the coherence method by a factor
of ~2.1.
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The ice-core-derived horizontal fabric asymmetry at the
EastGRIP drill site revealed a rapid increase from 0 to ~ 0.5
within the upper 100-500m (Fig. 1b). Below these depths it
increases only slightly up to 0.6 at a depth of 800m. The
same general distribution is shown by the co-registration
method to beyond 1000 m depth. All horizontal fabric asym-
metries estimated with the coherence method (for details
see Fig. A1) show the same rapid increase within the upper
350m. At this depth, the fabric asymmetry for the full band-
width of 200 MHz begins to differ from the ice-core-derived
asymmetry and starts to decrease rapidly. The asymmetries
derived from the smaller bandwidths of 100 and 75 MHz for
a centre frequency of 300 MHz (Fig. 1b) deviate from the ice
core-derived asymmetry from a depth of 480 m. However, the
calculated coherence depth limit for a bandwidth of 75SMHz
is 625 m, which is significantly deeper than the observed on-
set of mismatch. In contrast, the asymmetries derived from
the same bandwidths but for the reduced centre frequencies
agree with the asymmetry derived from the ice core up to at
least the calculated coherence depth limit. However, the fab-
ric asymmetry derived from ApRES data with 50 MHz band-
width remains at a high level, similar to that from the other
methods, but with larger deviations.

3.2 Rutford Ice Stream

At Rutford Ice Stream, a more detailed comparison of the
coherence magnitude and phase shows a clear improvement
for the limited bandwidth of 75MHz compared to the full
bandwidth (Fig. 2). The coherence based on the limited band-
width shows higher magnitudes (Fig. 2a and e) and clearer
visible nodes (phase difference becomes an odd multiple of
7 (Fujita et al., 2006)) in the wrapped phase (Fig. 2b and
f) down to the depth at which the coherence depth limit is
reached. Whilst the coherence depth limit is reached at 220 m
for the standard bandwidth, it is twice this depth for the lim-
ited bandwidth case (440m). Below these depth limits, the
nodes fade out. The horizontal fabric asymmetry is based on
the phase gradient of the unwrapped phase of a selected az-
imuth (Fig. 2c and g). Both the co-registration and the co-
herence methods show a rapid increase in horizontal fabric
asymmetry to a value of 0.4. Whilst the fabric asymmetry
from the co-registration method continues to increase to 0.6
at 300m depth, the fabric asymmetry from the coherence
method with standard bandwidth decreases (Fig. 2d). The
asymmetry from the reduced bandwidth matches the fabric
asymmetry of the co-registration method down to its calcu-
lated depth limit and beyond. Thus, applying the coherence
method to reduced-bandwidth ApRES data as well as ap-
plying the co-registration method revealed the strong fabric
asymmetry and its depth profile at the Rutford Ice Stream
beyond the shallow depths.

The Cryosphere, 19, 2355-2363, 2025
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Figure 1. Comparison of horizontal fabric asymmetry AA estimations. (a) Coherence depth limit of the coherence method as a function
of bandwidth, calculated based on the permittivity difference derived from the fabric asymmetry of the EastGRIP ice core. Dashed lines
show the depth limits for selected the bandwidths. (b) Fabric asymmetry determined from the co-registration (CoReg) and coherence method
for the centre frequency of 300 MHz of polarimetric ApRES measurements at EastGRIP and from weighted horizontal eigenvalues from
EastGRIP ice core (white dots) (Weikusat et al., 2022). (c¢) Fabric asymmetry determined from the coherence method for the respective
minimum available centre frequencies of polarimetric ApRES measurements at EastGRIP. The solid part of the coherence lines is above the
depth limit, while the dotted part shows the first 200 m below that limit.

4 Discussion

By evaluating the impact of bandwidth on the coherence
method, we show that limited bandwidth allows the determi-
nation of the horizontal fabric asymmetry to a significantly
greater depth. However, we find that the selected centre fre-
quency also affects the quality of the results. To further in-
vestigate the frequency dependence, we first computed the
signal-to-noise (SNR) ratio of the polarimetric ApRES mea-
surement conducted at the Rutford Ice Stream. To this end,
we stacked the recorded chirps and calculated the power
spectrum for subbands of 75MHz with centre frequencies
spanning from 237.5 to 362.5 MHz by applying a short-time
Fourier transform. For each subband, we calculated the sig-
nal power as a function of depth and the noise power be-
low the basal return. We then averaged the SNR across all
four polarisations (Fig. 3a). However, the estimated SNR ex-
hibits no frequency dependence. Next, we applied the coher-
ence method to the same subbands but for an azimuth of 45°
at which the maximum fabric asymmetry occurs (Fig. 3b—
d). This analysis reveals that the derived horizontal fabric
asymmetry is largely independent of the centre frequency
for frequencies below 300 MHz. However, for higher centre
frequencies, errors occur at shallow depth. Low coherence
values at a depth of 150m result in errors in the phase un-
wrapping, leading to an inaccurate estimation of the fabric
asymmetry.

The reason for the low coherence observed at a depth of
150m for higher centre frequencies remains unclear. En-
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hanced roughness of radar layers can lead to frequency-
dependent decorrelation or depolarisation, which was con-
sidered by Jordan et al. (2022) as a reason for the reduced
coherence at Rutford Ice Stream. In addition, it is also pos-
sible that the antenna radiation pattern is dependent on the
frequency range. The pattern of the skeleton slot antennas
utilised for the polarimetric ApRES measurements has not
been measured. We cannot discard that frequency-varying
gain, in either nadir direction or off-vertical sidelobes, might
greatly increase the clutter relative to the nadir signal.

The determined fabric asymmetry at EastGRIP using the
bandwidth of 75 and 50 MHz corresponds to the fabric asym-
metry of the ice core even deeper than the coherence depth
limit. One possible reason could be the application of Black-
man windowing before the Fourier transformation, which de-
creases the effective bandwidth by a factor of 1.6. Thus, the
coherence depth limits for these frequencies shown in Fig. 1a
would instead correspond to 47 and 31 MHz, with deeper
limits than without windowing.

A reduced bandwidth is required to increase the overlap
of the range-resolution cells in the coherence method. In the
co-registration method (Zeising et al., 2023), the increase in
overlap is achieved by shifting the cells. However, this re-
quires a phase variation of less than 27 rad within the range-
resolution cell, which is achieved by zero padding (Brennan
et al., 2014). Our comparison of the coherence and the co-
registration methods shows that the co-registration method is
still preferable as it bypasses the depth limitation and pro-
vides higher resolution.
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5 Conclusions

We show that the maximum depth at which ice fabric can
be analysed using the coherence method on polarimetric
radar data depends strongly on the frequency range used.
We demonstrate that reducing both the bandwidth and cen-
tre frequency improves the depth to which coherence can be
determined, which is particularly important in areas of strong
anisotropy such as ice streams. Our findings are supported by
radar theory and field observations. Existing high-bandwidth
data, such as those acquired with the widely used ApRES
radar system, allow the reduction of the bandwidth at the
data processing stage. Therefore, the method presented in
this study can be applied to improve measurements of fabric
asymmetry, and thus ice viscosity, using existing data. Fu-
ture studies should further investigate the reason behind the
frequency dependence of the coherence method applied to
ApRES data. Knowledge of the spatial distribution of fabric
asymmetry, especially over greater depths, will be important
in the future when large-scale ice flow models are able to
account for the effects of fabric on viscosity.
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Appendix A: EastGRIP coherence analysis
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Figure A1l. Coherence analysis of multi-polarised ApRES measurements at EastGRIP drill site. (a—d) Analysis of the standard 200 MHz
bandwidth ( fc = 300 MHz), (e~h) bandwidth 100 MHz ( f. = 250MHz), (i-1) bandwidth SO0MHz (f. =237.5 MHz), and (m—p) bandwidth
50MHz (f. =225MHz). The columns show (a, e , i, m) the magnitude of coherence for synthesised azimuths, (b, f, i, n) the wrapped phase
shift, (¢, g, k, 0) the unwrapped phase shift, and (d, h, i, p) the derived horizontal fabric asymmetry of selected azimuths. The selected
azimuths are marked by solid black lines (a—c, e-g, i—k, m—o). The horizontal dashed lines mark the coherence depth limit, and the blue line
shows the co-registration result.
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Data availability. Raw data of the multi-
polarised ApRES measurements at EastGRIP
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Humbert, 2022) and crystal ¢ axes of ice core sam-
ples are published at the World Data Center PANGAEA
(https://doi.org/10.1594/PANGAEA.949248, Weikusat et al.,
2022). Raw data of the quad-polarised ApRES measurements
at Rutford Ice Stream are published at the NERC’s Polar Data
Centre (https://doi.org/10.5285/d5b7e5al-b04d-48d8-a440-
c010658ec146, Jordan et al., 2020).
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