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This corrigendum corrects two sentences in the
Conclusions section. The error is a result of not
altering the text in these two sentences after making
changes to the analysis following the reviewers’ com-
ments. The corrections are for the second and third
sentence of the second paragraph of the Conclusions
section and they are as follows (with corrected text
in bold):

‘This is especially true in 2062–80, where an increase of
between 0.1 and 0.6 extra events per year is expec-
ted with respect to the past period. For individual
sites and on average over the UKCP18 ensemble, at
least 13 sites show significant increases in the num-
ber of these highest severity events in the far future
period.’

We note that all the figures are correct and that
all the stated results, except for these two sentences,
are also correct and their interpretation remains
unchanged.
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Abstract
Concerns exist about the viability of food security across Europe due to multiple, potentially
adverse drivers. These include economic, political and climate forcing factors, all of which require
quantification. Here, we focus on the climate forcing, and in particular, the soil moisture change
component which crucially determines water availability for crop uptake. We estimate future soil
moisture levels at 34 sites of the UK COsmic-ray Soil Moisture Observing System (COSMOS-UK)
network. We do this by combining three platforms: the Joint UK Land Environment Simulator
(JULES) land surface model, field-scale soil moisture observations from the COSMOS-UK stations
and 2.2 km convection-permitting UK Climate Projections (UKCP18). We use COSMOS-UK data
to optimise key soil moisture-related parameters in the JULES model, based on its performance in
the contemporary period. We then force the calibrated model with UKCP18 data to produce future
soil moisture estimates. We evaluate the modelled soil moisture for an average soil depth between 0
and 35 cm to match the depth of soil moisture observations. Our main conclusions concern future
soil moisture droughts which we compare with equivalent events in the historical period,
1982–2000. We find that on average across all sites, there is an increase in the frequency of future
extreme soil moisture drought events of duration above 90 days. In 2062–80, such frequency
increase of between 0.1 and 0.6 events per year (equivalent to at least 2 and up to 12 additional
events in a 20-year period) is expected. We also show that, in 2062–80, there is an increased risk of
high or more intense soil moisture drought conditions in months between May and November,
with months between June and October being at especially high risk. The UKCP18 data
corresponds to a high-emissions future described by the RCP8.5 scenario.

1. Introduction

Recent years have seen hotter and drier summer peri-
ods in the UK (Turner et al 2021, Met Office 2022).
Prolonged periods of reduced rainfall and increased
evaporative demand can lead to exceptional drying of
soils. Such drying happened, for instance, in the sum-
mer of 2022 as recorded at the UK COsmic-ray Soil
MoistureObserving System (COSMOS-UK) network
sites (UKCEH 2022). These types of events limit the
available water a plant can access via roots impact-
ing its growth and development (Gavrilescu 2021).

Very dry conditionsmay therefore cause soil moisture
droughts (Dai 2011) posing risks to agricultural yields
and raising concerns about future food security (Scott
2022). Water resource management must account for
this, should more water be required for agricultural
needs or new adaptation strategies be considered.

As atmospheric Greenhouse Gases (GHGs) rise,
climate will change, and further intensification of hot
and dry summers is expected in the UK (Christidis
et al 2020, Hanlon et al 2021). The 2018 UK Climate
Projections (UKCP18) provide a mechanism to assess
future climate in the UK at global (60 km), regional
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(12 km) and local (2.2 km) spatial scales (Lowe et al
2018, Kendon et al 2019). The latest 2.2 km pro-
jections offer a step change in climate prediction
capability as they include local representations of
the convective storm processes (Kendon et al 2021).
Hence, they capture features of rainfall patterns,
storms and their intensity and duration (Kendon et al
2017, Chen et al 2021, Kent et al 2022). Changes
in rainfall characteristics may strongly influence soil
moisture profiles, which in turn may impact crop
growth.

There already exist studies concerning future soil
moisture predictions in the UK. Work presented
in Kay et al (2022) uses a 1 km grid hydrological
model forced by regional UKCP18 data to predict
future soil moisture across the UK. It finds signi-
ficant increases in the spatial occurrence of low soil
moisture levels, along with later soil wetting dates.
Rudd et al (2019) also use a grid-based hydrolo-
gical model forced by a large ensemble of regional
climate projections for the UK obtained from the
weather@home2 system. The results show increased
severity of soil moisture droughts in the future. The
report of Kendon et al (2019) uses directly the local
(and regional) UKCP18 data to drive the Joint UK
Land Environment Simulator (JULES) land surface
model for soil moisture estimation. Its findings point
to increased future soil moisture stress, especially in
the South East of England, with September being the
driest month.

On the broader spatial scale, Grillakis (2019)
uses a soil moisture index (SMI) to show increased
severity of future soil moisture droughts in Europe.
Samaniego et al (2018) use a multi-model climate
ensemble to drive two hydrological and two land sur-
facemodels for soil moisture drought evaluation. The
authors find that an increase in the global mean tem-
perature from 1.5 K to 3 K increases the drought area
by 40% (±24%) in Europe.

The above studies look at soil moisture averaged
over a depth of 1 m or, in the case of Kay et al (2022)
andRudd et al (2019), over a soil columnwhich depth
can vary from a few centimetres to several metres.
They typically use regional or global climate data
except for the report of Kendon et al (2019) which
uses convection-permitting model (CPM) UKCP18
data. Although these works provide valuable new
understanding, critically, none of them use available
soil moisture observations to calibrate and assess the
underlying hydrological or land surface model.

In Cooper et al (2021a), field-scale soil moisture
observations from 16 sites of the COSMOS-UK net-
work (Cooper et al 2021b) are assimilated into the
JULES model. Here, we combine this approach, of
calibrating the JULES model against COSMOS-UK
data, with CPM projections to generate better con-
strained future soil moisture estimates.

Specifically,

• We estimate soil moisture at 34 COSMOS-UK sites
in three time periods: 1982–2000, 2022–40 and
2062–80, with future periods following the RCP8.5
high-emissions scenario. We do this by merging
the JULES land surfacemodel, COSMOS-UK field-
scale soil moisture observations and the 2.2 km
CPM UKCP18 data.

• We investigate the implications for soil moisture
droughts by looking at the frequency of the drought
events and how they affect individual months.

We evaluate themodelled soil moisture for an average
value over a depth between 0 and 35 cm as guided by
the COSMOS-UK observation depth. Although root-
ing zones of some UK crops can reach 1 m or more,
most, such as wheat, oat and barley, have majority
of their roots in the upper 30 cm (Fan et al 2016).
Knowledge of moisture in the topmost layers of soil
is especially relevant in the early plant growth stages
when all roots occupy shallower depths.

2. Methods

2.1. COSMOS-UK observations
COSMOS-UK is the UK’s state-of-the-art in situ
soil moisture monitoring network (Evans et al 2016,
Cooper et al 2021b). Since its start in 2013, it has
established 51 observation stations spread across the
UK, with the majority located in the South.

The primary product measured at the sites is soil
moisture obtained using the Cosmic-Ray Neutron
Sensing (CRNS) method (Zreda et al 2012). The
measurement has a horizontal footprint of approx-
imately 12 Ha and a vertical footprint between 20
and 30 cm. The exact values of these footprints vary
with soil moisture (Köhli et al 2015). Averaging spa-
tially over micro-scale soil moisture heterogeneity
(for instance macropores which are not represented
in JULES) is the key benefit of using this measure-
ment, over point sensors, for calibrating the JULES
model for soil moisture estimation.

Associated with this measurement technique is
statistical noise, which we suppress by using a longer
time-average, daily soil moisture product. Alongside
soil moisture, half-hourly meteorological variables
necessary for driving the JULES model are also recor-
ded at the COSMOS-UK sites (table 1).

2.1.1. COSMOS-UK site selection
We calibrate the JULES model at 26 sites using soil
moisture observations from one selected full year
at each location (one site-year). The site-year selec-
tion (supplementary section S1.1) is mostly based
on strict completeness criteria for precipitation data,
recognising its importance as a primary driver of
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Table 1.Meteorological variables and their units required for
driving the JULES land model.

Variable Units

Precipitation Kg m−2 s−1

Temperature K
Downward shortwave radiation Wm−2

Downward longwave radiation Wm−2

Specific humidity Kg kg−1

Wind speed m s−1

Pressure Pa

Figure 1.Map of COSMOS-UK sites used in this study.
Each location is marked with the standard COSMOS-UK
identifying site code. The places of calibration (also used for
forward projections) are marked as blue dots and sites of
forward projections only as green dots. The site labelled in
red is used for calibration, but not forward projections due
to the presence of large soil moisture biases in the modelled
data (section 2.3.1).

soil moisture variations. We also avoid peatland sites,
as our modelling methodology is designed for min-
eral soils, and woodland sites, as CRNS soil moisture
estimates are known to be less accurate there.

The future predictions of soil moisture are then
performed at 34 sites: 25 calibration sites and nine
extra (non-calibration) sites of direct prediction.
For the non-calibration sites, we select the remain-
ing non-peatland and non-woodland sites. We also
exclude one of the calibration sites (hence leav-
ing 25) due to the presence of particularly large
biases there when assessing the model (section 2.3.1).
Figure 1 shows a map of the full set of 35 sites and
supplementary section S1.2 explains their vegetation
characteristics.

2.2. The JULES land surface model
The JULES model simulates physical land surface
processes and quantities, including soil moisture
(Best et al 2011). The model solves the Darcy-
Richards equation to represent water movement
between four soil layers: 0–10, 10–35, 35–100 and
100–300 cm. The amount of water retained in the
layers depends on soil hydraulic characteristics which
are related to easier-to-measure soil properties, such
as soil texture, via pedotransfer functions (PTFs)
(Van Looy et al 2017). A well calibrated set of PTFs
ensures a better representation of the physical pro-
cesses necessary for soil moisture estimation.

We run the JULES standalone model, for 1D sim-
ulations, in a configuration described in Cooper et al
(2022) which closely matches the RAL3M configur-
ation, a recent update on the Regional Atmosphere
and Land configuration RAL1 (Bush et al 2020).
We source soil textures for the selected COSMOS-
UK sites from the Harmonized World Soil Database
(HWSD) (Fischer et al 2008). These soil textures
are considered constant over the entire 300 cm
depth.

2.3. Calibration of the JULESmodel with
COSMOS-UK observations
We use methodology from Cooper et al (2021a) to
optimise 12 parameters of Cosby PTFs using the
COSMOS-UK soil moisture observations, thereby
improving JULES soil moisture outputs. The PTF
parameters are common to all studied soil types. We
use the LaVEnDAR four-dimensional ensemble vari-
ational data assimilation framework (Pinnington et al
2020, 2021) which here minimises a cost function
with two terms: the difference between the mod-
elled and observed soil moisture, and the differ-
ence between prior and posterior values of the 12
PTF parameters. These two terms are weighted by
their corresponding errors: observation error and
that of the prior PTF parameters respectively. The
method therefore considers both prior parameter
and observational uncertainties and combines them
within the cost function. Here, we assume a 10%
error on the prior PTF parameters and inflated
uncorrelated observation errors of 50% of the mean
soil moisture value at each site as described in
Cooper et al (2021a). The high observation error
includes contributions from instrument error and,
crucially, representativity error between the mod-
elled and measured soil moisture (Waller et al
2018).

To produce the modelled soil moisture for the
PTF parameter optimisation, we first perform a
model spin-up at each of the 26 selected sites for one
year preceding the calibration year (supplementary
table S1). We repeat the spin-up process twice so that
it is equivalent to three years of spin-up. Here, we use
the hourly ERA5-Land data (Muñoz Sabater 2019)
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Figure 2. Schematic of the protocol for generating historical and future soil moisture estimates (for periods 1982–2000, 2022–40
and 2062–80). Blue boxes indicate stages of the JULES model calibration. Red boxes refer to final future soil moisture predictions
given the calibrated JULES model which is forced by UKCP18 data. The top-right panel is an output from JULES, for a
representative site (COSMOS-UK code ‘FINCH’), showing observational data and JULES predictions before and after calibration
(i.e. prior and posterior respectively). Abbreviation ‘met’ stands for ‘meteorological’ and notation ‘a× b site-years’ denotes b years
at each of the a sites. We note that while we initially consider 35 sites for the future predictions (blue boxes to the right), in the
final analysis (red boxes), we use 34 sites due to the presence of a large soil moisture bias in the modelled data for one of the sites.

for all driving variables listed in table 1 due to the
incompleteness of the COSMOS-UK observations for
the required sites and years. We convert the hourly
ERA5-Land drivers to half-hourly values to match
the temporal resolution used in our main simula-
tions. We note that either hourly or half-hourly resol-
utions would be suitable given that we use daily mean
soil moisture values in our analysis. We move from
the spin-up period to the simulation period on 1st
January when soil is likely close to saturation, which
reduces the effect of any biases between the driving
meteorology.

We then force the JULES model with the half-
hourly COSMOS-UK observations (table 1), for the
selected calibration year at each site, to estimate soil
moisture at four depth layers listed in section 2.2.
For comparison with observations, we apply depth
weightings to the different modelled soil moisture
layers to correspond to the measurement depth (sup-
plementary section S1.4). We then input the result-
ing modelled daily soil moisture, alongside soil mois-
ture observations and the prior PTF parameters, into
the data assimilation algorithm to produce a single
posterior set of PTF parameters which we later also
use for non-calibration sites. Details of COSMOS-UK
and ERA5-Land data processing are given in supple-
mentary section S1.3. Figure 2 (blue) shows a schem-
atic of the calibration protocol. The prior and pos-
terior PTF parameters are listed in supplementary
table S4.

2.3.1. JULES model assessment
We assess the modelled soil moisture at all 26
calibration sites and the nine non-calibration sites.
We use two continuous years of COSMOS-UK obser-
vations, where possible, to compare themeasured and
modelled daily soil moisture. In the case of calibra-
tion sites, this includes the calibration year. We use
biases between the modelled output and the obser-
vations, and the corresponding unbiased root-mean-
square errors as metrics to assess the model (supple-
mentary section S1.6). When comparing soil mois-
ture predictions using prior and posterior PTFs to
observations, there is an improvement in both met-
rics for most of the sites following data assimilation
(supplementary table S5). For the posterior PTFs,
most of the sites show negative soil moisture biases,
indicating an overall underestimation of the mod-
elled soil moisture. We note that one of the calibra-
tion sites, Lizard, has a very significant model bias
and therefore we exclude it from the future soil mois-
ture analysis, leaving 34 sites in total for the future
runs.

2.4. Future soil moisture runs with the local 2.2 km
UKCP18 data
The local 2.2 kmUKCP18 are very high spatial resolu-
tion numerical simulations consisting of 12 ensemble
members. These simulations are generated by nest-
ing the CPM (HadREM3-GA705)within 12members
of the regional model (HadREM3-RA11M), which is
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nestedwithin 12members of the global climatemodel
(HadGEM3-GC3.05). The same CPM structure and
parameterisation are used for all 12 simulations
of the local UKCP18. However, parameterisations
in regional and global models differ between the
ensemble members. The ensemble, therefore, cap-
tures uncertainties due to alternative parameter val-
ues describing the climate system and due to inter-
annual natural variability. The main advantage of
the CPM is that it allows the explicit representation
of convective storms, resulting in better estimates
of the statistical structure of localised, hourly rain-
fall. The CPM-generated data covers three time peri-
ods: 1 December 1980–30 November 2000 (1981–
2000), 1 December 2020–30 November 2040 (2021–
40) and 1 December 2060–30 November 2080 (2061–
80). Eachmodelledmonth consists of 30 days, and the
two future periods follow the high-emissions scenario
RCP8.5. We note that new transient simulations have
data for periods 2001–20 and 2041–60 (Kendon et al
2023), but this was not the case during the time of
producing the results.

We use the whole ensemble of the local UKCP18
data released in July 2021 with rectified calcula-
tions removing earlier errors in the representation of
graupel. We select meteorological variables required
to drive the JULES model, nearest to the selected sta-
tions, and convert them to match the ones in table 1
(supplementary section S1.8.1). We then individu-
ally bias correct all 12 ensemble members during the
period 1981–2000 using the long-term, observation-
based, daily CHESS meteorological data gridded at
1 km resolution (Robinson et al 2020) (supplement-
ary section S1.8.2). We apply the bias correction to
past and future UKCP18 data and ensure that all driv-
ing variables are at an hourly resolution (supplement-
ary section S1.8.3). The first year of driving data (for
each period, site and ensemble member) is used for
the calibrated JULES model spin-up and, therefore,
is not included in the final analysis. We perform the
model spin-up three times and move to the simu-
lation period on 1st January. The remaining years
of each period are then used to drive the calibrated
JULES model (section 2.3) and produce 12 realisa-
tions of daily soil moisture at 34 sites for the three
time periods (figure 2, red). Given the dry model
biases (supplementary table S5) present in the con-
temporary period, we also consider a second scen-
ario of bias-corrected soil moisture (section 2.5.4).
We note that each of the time periods ends on 29th
rather than 30th November due to our model con-
figuration. We use an average of the top two mod-
elled soil moisture layers, up to 35 cm in total, as this
approximately corresponds to the CRNS depth. We
apply weightings of 10/35 and 25/35 for layers 0–10
and 10–35 cm respectively to account for the two dif-
ferent layer thicknesses.

Table 2. Plant water stress categories.

Plant water stress category SMI range

Less intense/ moderate −2< SMI⩽ 0
High/severe −4< SMI⩽−2
Extreme SMI⩽−4

2.5. Data analysis
We analyse the generated soil moisture data in the
context of plant water stress (PWS) which we use to
identify soil moisture droughts. A plant experiences
water stress when the fraction of available water
(FAW), accessible via roots, falls below a certain
threshold, commonly defined as 0.5 (Allen et al 1998,
Hunt et al 2009, Grillakis 2019). It is based on find-
ings of (Baier 1969) which shows that evapotranspir-
ation is soil water-limited below this threshold. We
choose this generic threshold for our fixed soil depth
as a guide for the future PWS impact. With this, we
calculate a daily SMI (Hunt et al 2009) defined as

SMI=−5+ 10FAW (1)

and

FAW =
θ− θWP

θFC − θWP
, (2)

where θ is the soil water content, θFC is the field capa-
city (FC) and θWP is the permanent wilting point
(PWP). We define PWP and FC as the soil water con-
tents at a soil matric potential of−1500 and−33 kPa
respectively (Kirkham 2014). SMI values decreasing
from zero indicate increasing PWS up to PWP (when
FAW = 0 and so SMI=−5). We apply three SMI
bands to categorize the intensity of different stress
levels (table 2).

An alternative to the PWS index is a statistical
index (Sheffield et al 2004, Samaniego et al 2013)
which quantifies drought relative to the climatology
of a given location with a recommendation of at least
30 years of historical data (Mckee et al 1993). We
choose the PWS index since we have 19 years of his-
torical data, and it directly relates to the agricultural
quantity of interest based on FC and PWP paramet-
ers obtained from the calibrated JULES model. To
address the danger ofmaking our drought predictions
overly extreme given the present dry bias, we also con-
sider a second soil moisture scenario with dry biases
removed (section 2.5.4). These two scenarios provide
an upper and lower limit for the final drought analysis
results.

2.5.1. Soil moisture drought events
We define a soil moisture drought event at a given site
as a time interval when SMI is continuously below or
equal to zero, allowing positive SMI values for inter-
vals of at most five days after the event starts. Each
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drought event is characterised by the average SMI
value over the event duration and the total duration.
Where the average SMI value of an event falls within
the SMI range in table 2, the event is assigned the
corresponding stress severity category. For instance,
if the average SMI value is−3, the event is categorised
as a high/ severe drought event. Additionally, we also
assign three event duration categories, up to 30 days,
between 31 and 90 days, and above 90 days.

2.5.2. Frequency of soil moisture drought events
For each site s, ensemble member k and UKCP18
time periodT (1982–2000, 2022–40 and 2062–80), we
count the number of drought events, nT_sk, of a given
category. An average frequency of an event (per year,
per site) for each T and k can then be computed as

FT_k =

∑
s nT_sk

NSNY
, (3)

where NS = 34 is the number of sites and NY = 19 is
the number of years in a time period T. We note that
FT_k can be higher than one because more than one
event of a given category can occur within one year.
When comparing future FT_k with the past period, we
use an absolute frequency difference,DT_k, defined as

DT_k = FT_k − FPast_k, (4)

where subscript ‘Past’ refers to the past period 1982–
2000. We choose absolute as opposed to relative dif-
ferences to avoid dividing by very small numbers due
to some historical events being rare.

2.5.3. High stress months and their probability
Ahigh stressmonth is defined as amonthwith SMI⩽
−2 (table 2) for a total of at least 16 days in this
month.

For each month m (January–December), site s,
ensemble member k and time period T, we count the
number of high stress months (nT_msk). The probab-
ility that a month is classified as a high stress month
across all sites, for each T and k is

pT_mk =

∑
s nT_msk

NSNY
. (5)

Similarly to equation (4), we use absolute probab-
ility differences to compare future pT_mk with the past
period,

D ′
T_mk = pT_mk − pPast_mk. (6)

2.5.4. Uncertainty analysis
The metrics of interest in this study are frequency of
drought events (section 2.5.2, equations (3) and (4))
and probability of high stress months (section 2.5.3,
equations (5) and (6)). The corresponding uncer-
tainty analysis considers both climate model and land
surface model uncertainties. For the climate model
uncertainty, we calculate a given metric for each of

the 12 soilmoisture simulations which vary due to the
variations in theUKCP18 ensemble.We then consider
a range between the minimum and maximum values
of the resulting 12 metric values. For the land surface
model uncertainty, we consider results derived using
two scenarios: soil moisture output from the calib-
rated JULES model (θ ′) and that same output with
biases removed as a post-processing stage after run-
ning the model (θ). The bias corrected soil moisture
output is defined as

θT_sk = θ ′
T_sk − bs, (7)

where T is the UKCP18 time period, s is site, k
is the ensemble member and bs is the site-specific
model bias calculated in the contemporary period
with respect to field-scale soil moisture observations
(given in supplementary table S5 and defined in
equation S16 of supplementary section S1.6). We use
the bias-corrected soil moisture scenario alongside
the non-bias-corrected version to address how the
negative (dry) model bias present at most of the sites
may impact our drought conclusions. It provides a
more conservative drought analysis given the obser-
vations, and we treat both scenarios as feasible. We
note that we only bias correct sites with a negative
model bias as correcting for positive biases often res-
ulted in unrealistically low soil moisture values in the
future. It also further provides a scenario with wetter
soils.

Combining soil moisture simulations resulting
from the climate model and land surface model
uncertainties, we obtain 12 × 2 simulations. Our
final results of changes in drought event frequency
(equation (4)) and high stress month probability
(equation (6)) are expressed as the upper and lower
limits of the values derived from the 24 simulations.

3. Results

The aggregated future changes in soil moisture and
precipitation, with respect to the historical period,
are plotted in figure 3. On average, across all 34 sites
and 12 ensemble members, a decrease in soil mois-
ture is expected, especially in the summer, late spring
and early autumn. This is consistent with an average
decrease in precipitation during this time of year and
may also be partly due to an increase in evapotran-
spiration due to higher temperatures. In the winter,
future precipitation is, on average, higher than in the
past period which reduces the negative soil mois-
ture changes. The following subsections show how
these soilmoisture changes affect the frequency of soil
moisture drought events and PWS intensity in indi-
vidual months.

3.1. Frequency of soil moisture drought events
Figure 4 summarises the evolution of soil moisture
drought events for different intensity and duration
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Figure 3. Projected changes in the modelled soil moisture and the UKCP18 precipitation for future time periods, 2022–40
(labelled as 2030) and 2062–80 (labelled as 2070). The changes are presented as differences with respect to the past time period
1982–2000 (labelled as 1990). To obtain the plots, for each COSMOS-UK site (figure 1) and each UKCP18 ensemble member,
interannual means (of precipitation or soil moisture) across years of each future time period are calculated, followed by
differencing between the future and past time periods. The differences are averaged across all 34 sites and then aggregated across
the 12 ensemble members by: averaging (thick continuous lines) and minimising and maximising (spreads of the 12 values for
each day). The black horizontal dashed lines mark y-values of zero in each subplot.

Figure 4. Frequency of soil moisture drought events averaged over sites, ensemble members and years for different intensity
(subplots (a)–(c), see section 2.5.1) and duration regimes (different colour shades). Each subplot contains information for three
time periods, 1982–2000 (labelled as 1990), 2022–40 (labelled as 2030) and 2062–80 (labelled as 2070) and for three
time-durations. The subplots are additionally divided (left or right of vertical dashed line) into two sections which show results
derived using modelled soil moisture without (left) and with (right) bias correction. Upper and lower black bars denote the
maximum and minimum, respectively, across the UKCP18 ensemble.

categories, cumulatively across all sites (equation (3))
and ensemble members. For all three intensity levels
(less intense/ moderate, high/ severe and extreme,
panels (a)–(c), there is an average decline or a very
small increase of the short-term (1–30 days) and

medium-term (31–90 days) events in a changed
future climate.We note, however, that the uncertainty
on this finding is large. Such decreases or very gentle
increases can be expected because lower-intensity and
shorter-duration events evolve into higher-intensity
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Table 3. Temporal comparison of two types of events between time periods 2062–80 and 1982–2000. The events are frequency of
extreme drought events above 90 days (per site, per year) and probability of a selected month being classified as a high stress month
(across all sites and years of a time period). The comparison metric is frequency difference (equation (4)) in the former and probability
difference (equation (6)) in the latter case. The minimum and maximum are calculated based on values obtained from 12 UKCP18 soil
moisture simulations with and 12 without bias-correction (24 simulations in total) (section 2.5.4). Probabilities used to produce
probability differences have range between 0 and 1.

Absolute frequency difference Absolute probability difference

Extreme drought events (above 90 d)

A month is classified as a high stress month

May Jun Jul Aug Sep Oct Nov

Minimum 0.1 0.04 0.16 0.20 0.25 0.21 0.13 0.02
Maximum 0.6 0.29 0.61 0.53 0.44 0.48 0.51 0.21

Figure 5.Maps showing frequency differences for extreme events (as defined in section 2.5.1 and shown in figure 4(c) for periods
above 90 days. Presented here geographically is the difference between periods 2062–80 (labelled as 2070) and 1982–2000
(labelled as 1990) for 34 calibrated and predictive calculations at the individual COSMOS-UK sites under study. The differences
are averaged across all UKCP18 ensemble members. Maps on the left and right are based on JULES soil moisture without and
with bias correction respectively.

and longer-duration events under the rising GHGs
(scenario RCP8.5). This is shown in figure 4(c),
where extreme events above 90 days increase signi-
ficantly in the future. These long-term events will
likely spread over most of the driest season replacing
medium-duration events. This result is of particular
policy concern as under the considered uncertainties
(section 2.5.4), an increase of between 0.1 and 0.6 per
year is expected in the frequency of extreme events
above 90 days in 2062–80 (table 3). This is equival-
ent to at least two and up to 12 additional events in
a 20 year period. When considering the soil mois-
ture scenario with modelled negative biases removed
(right-hand bars of figure 4(c)), such a drought event
is expected to occur every 4.5 years.

With the impact implications of long-duration
drought conditions likely to be of most interest to cli-
mate adaptation planning, we disaggregate geograph-
ically the frequency of extreme drought events for
durations above 90 days. This is shown in figure 5
as the difference between ensemble-average frequen-
cies in periods 2062–80 and 1982–2000. In the case
of soil moisture without bias correction (figure 5(a)),
27 sites are projected to have frequency increases
above 0.15 per year (equivalent to extra three events
in a 20 year period) in 2062–80. In the wetter, bias
corrected case (figure 5(b)), 13 sites show such fre-
quency increases. In the bias corrected scenario, we
see that most of the increases occur in the highly pop-
ulated South East, East of England and East Midlands
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Figure 6. Probability a month is classified as a high stress month across all sites and years of a given time period (equation (5)),
averaged over the ensemble members. Upper and lower black bars indicate the maximum and minimum across the ensemble
respectively. The two subplots correspond to results derived using soil moisture without and with bias correction. Each subplot
contains information for three time periods, 1982–2000 (labelled as 1990), 2022–40 (labelled as 2030) and 2062–80 (labelled as
2070).

regions. However, we note that the number of sites in
the other regions is relatively small.

3.2. Probability of high stress months
Figure 6 shows probabilities of individual months
being classified as high stress months, cumulatively
across all sites (equation (5)) and ensemble mem-
bers. These probabilities peak in July, August and
September for the past and future time periods.
Relative to the past period, the risk of high (or more
intense) drought conditions increases significantly for
months between June and September in 2022–40 and
between May and November in 2062–80. Here, we
only select months where the maximum value of the
historical period is lower than the minimum value of
a future period. In the far future, of particular con-
cern are months between June and October which see
especially significant absolute increases with respect
to the considered uncertainties and against a high
baseline risk (1982–2000). For the simulations with
bias correction, the probability increase for August
and September would, on average, lead to high stress
months more than every second year increasing the
risk of multi-year droughts, and slower recovery of
water resources. Months May and November are also
alarming as these see large proportional increases, but
with respect to a relatively low historical baseline.
Table 3 lists the expected minimum and maximum
absolute probability increases between periods 2062–
80 and 1982–2000 for months between May and
November.

4. Discussion

Our results project an increased frequency of future
long duration, extreme soil moisture drought events.
This finding is broadly consistent with other analyses
also reporting more severe future soil moisture
droughts in the UK (Grillakis 2019, Kendon et al
2019, Rudd et al 2019), but here with the added bene-
fit of direct knowledge of soilmoisture features gained
from COSMOS-UK data. Our projected increases in
future probabilities of high (or more intense) PWS
betweenMay andNovember imply that these months
will increasingly experience exceptionally dry soils.
Such dry soils in autumn will delay the effect of sub-
sequent wetting days, agreeing with Kay et al (2022).

Of particular note is the higher autumn stress
which will affect autumn sown cereals, for instance
winter wheat, at the beginning of their foundation
phases, potentially reducing yields. The autumn stress
may also lead to the prolongation of water-limited
grazing productivity. The drought conditions in the
early spring and summer will influence crops in their
growing stages. Work in Slater et al (2022) finds that
on average, for broad UK regions, climate change
is likely to have beneficial impacts on wheat yields.
Nevertheless, the authors highlight that the increased
likelihood of prolonged, extreme weather will gener-
ate conditions outside of the typical current climatic
envelope posing risks to future farming.

Very dry soils will also have a negative impact on
grasslands which are important for biodiversity and
as grazing resources (Bengtsson et al 2019). The dry
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soilsmay intensify heatwaves (Miralles et al 2019) and
lead to increasing wildfire risks, especially in the case
of highly organic soils and peatlands.

Although our modelling strategy of first optim-
ising the PTF parameters provides an improvement
in predictive capability, some features of our repara-
meterization may contain compensating errors lead-
ing to themodelled soil moisture biases (supplement-
ary table S5). These biases may partially be due to
the provided soil textures which have not been meas-
ured at COSMOS-UK sites, but instead sourced from
the HWSD. Site-specific geology, which is not con-
sidered in our JULES configuration, may also con-
tribute towards the observed soil moisture biases. As
an example, some COSMOS-UK sites, especially in
southern England, have soils overlaying chalk which
if not included in the JULES configuration may lead
to significant differences between the modelled and
measured soil moisture (Le Vine et al 2016).

Another limitation is the length of observational
records. We took a very cautious approach, carefully
selecting sites and years where precipitation data was
mostly complete. We also used two years at each
site to assess the JULES model in the contempor-
ary period for each individual location, noting that
the test dataset includes one year of training data for
the calibration sites. In the future, we hope there will
be more long-term and complete datasets to allow
non-overlapping and longer timeseries for parameter
optimisation and evaluation phases. Further, as the
period of record lengthens, it may be possible to use
routinely the COSMOS-UKmeteorological measure-
ments, instead of CHESS data, for bias correction of
climate data. This highlights the importance of main-
taining high quality, complete and long-term meas-
urement records.

As noted in Koster et al (2009), modelled soil
moisture depends not only on model-specific soil
parameters, but also on formulations of other water
balance variables such as evaporation and runoff. Due
to the dependency between water balance variables,
data assimilation of soil moisture observations may
impact these other variables which then may affect
future soilmoisture predictions. To that end, compar-
ison against observations for otherwater balance vari-
ables would be ideal, but since we do not have such
dataset, we can only assess changes before and after
model calibration.We therefore compare evaporation
and runoff variables before and after data assimil-
ation for the contemporary period (supplementary
section S1.7). We find that overall, our data assim-
ilation has a relatively small impact on the timeser-
ies of both variables, especially evaporation, and the
JULES-derived values of these two variables appear
reasonable. We also note that the risk of compensat-
ing errors fromother parts of themodel affects almost
every aspect of simulating climate. That said, even
with the risk of compensating errors, the reduction

of bias for a strategic state variable such as soil mois-
ture will also in general improve a model’s projec-
tion of its future value (Michibata and Suzuki 2020,
Zhao et al 2022). Future work could include run-
ning the optimised model at sites where other water
balance observations are available, noting here that
Pinnington et al (2021) reports improved sensible and
latent heat fluxes when using this method, albeit for
a different observation set. Additionally, authors of
Cooper et al (2022) use soil parameters calibrated in
this way in gridded JULES runs and evaluate mod-
elled river flow against observations. Their findings
show an improvement of modelled river flow for
some gauges, but degradation of the output at other
sites, so it is not conclusive. Further, an optimisation
constraining multiple water balance variables is an
active research area in this topic, also suggested as an
outlook in Cooper et al (2022).

Finally, for the climate model uncertainty, the
local UKCP18 data assumes a single, high emissions
scenario RCP8.5 and a single structure of the Earth
System Model (ESM). The ensemble does, however,
capture large-scale uncertainties due to natural cli-
mate variability and parametric uncertainties in the
driving ESM. The parameters of the local UKCP18
CPM itself are not varied, however, it is an ongoing
research at the UKMet Office to sample uncertainties
originating from the CPM physics.

5. Conclusions

This study looks at future soil moisture at 34
COSMOS-UK observation sites in two time peri-
ods: 1 December 2021 till 29 November 2040 and
1 December 2061 till 29 November 2080, with ref-
erence to the past period 1 December 1981 and 29
November 2000. For modelling soil moisture, we first
calibrate the JULESmodel with COSMOS-UK obser-
vations and then drive the calibrated model with
convection-permitting UKCP18 data. We analyse the
results in the context of soil moisture droughts. We
define soil moisture drought events according to their
maximum PWS characteristics: less intense/ moder-
ate, high/ severe and extreme (table 2), and duration:
up to 30 days, between 31 and 90 days, and above
90 days.

On average over the studied sites, we find a sig-
nificant increase in frequency of extreme drought
events above 90 days in both future time periods.
This is especially true in 2062–80, where an increase
by a factor between 1.8 and 2.8 is expected with
respect to the past period. For individual sites and
on average over the UKCP18 ensemble, at least 16
sites show significant increases in the number of
these highest severity events in the far future period.
Finally, in 2022–40, an increasing number of months
between June and September experience high ormore
intense stress for at least 16 days. In 2062–80, this
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period stretches to betweenMay and November, with
months between June and October seeing especially
significant increases (table 3).

Future soil moisture modelling is an active
research area (Seneviratne et al 2010). Our work is
the first case study of future soil moisture predictions
based on an observational soil moisture network. It is
also a good example of using the CPM data in such
modelling framework, with an outlook to expand the
analysis to the whole UK, to better determine land
impacts under future climate.

Data availability statement

The COMOS-UK data (up to 2022) is available
through the Environmental Information Data
Centre (EIDC, hosted by UKCEH) under the Open
Government License: COSMOS-UK (Stanley et al
2023). The more recent data can be accessed via
an API (https://cosmos-api.ceh.ac.uk/docs). The
Environment Agency 15-minute rainfall data is avail-
able from the Hydrology Data Explorer (https://
environment.data.gov.uk/hydrology/doc/reference)
under the Open Government Licence 3.0 (www.
nationalarchives.gov.uk/doc/open-government-
licence/version/3/). The 2.2 km Local UKCP18 data
is available from the UK Met Office (www.metoffice.
gov.uk/research/approach/collaboration/ukcp/data/
index). The particular version of data we used is
from a mirror of the UKCP18 data, accessed in year
2022 and hosted on the JASMIN server. We used the
most recent version of the CHESS-Met data, freely
available from the EIDC portal (https://catalogue.
ceh.ac.uk/documents/2ab15bf0-ad08-415c-ba64-
831168be7293). The ERA5-Land hourly data is avail-
able from the Copernicus Climate Change Service
(C3S) Data Store at https://doi.org/10.24381/cds.
e2161bac. JULES source code, instructions for access
and running are available from the JULES FCM
repository (https://code.metoffice.gov.uk/trac/jules/
wiki/WaysToRunJules) which requires registration to
access (https://jules-lsm.github.io/). The specific con-
figurations and namelists used to run the experiments
in the paper are available at https://code.metoffice.
gov.uk/trac/jules with the suite ids: u-ct670 for the
optimisation and present-day runs at the calibration
sites, u-cw973 for all the future runs and u-cx443 for
the present-day runs at the extra sites.

The data that support the findings of this study are
openly available at the following URL/DOI: https://
doi.org/10.5281/zenodo.10645188 (Slater et al 2022).
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