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A B S T R A C T

The Antarctic seasonal sea-ice zone (SIZ) is one of the most extensive and dynamic habitats on Earth. In summer,
increased insolation and ice melt cause primary production to peak, sustaining large populations of locally-
breeding seabirds. Due to their hypermobility, large Procellariiformes, including albatrosses, breeding in the
subantarctic also have the potential to access the SIZ and track macroscale resource waves over the Sothern
Ocean but the extent to which they do this is poorly known. Here, we analysed the foraging movements of
breeding albatrosses and large petrels (seven species, 1298 individuals) recorded using GPS loggers and satellite-
transmitters to quantify their use of sea-ice habitats and test whether they tracked seasonal drivers of primary
production. Foraging latitudes of white-chinned petrels Procellaria aequinoctialis and black-browed Thalassarche
melanophris, grey-headed T. chrysostoma and wandering albatrosses Diomedea exulans varied sinusoidally over the
breeding season, presumably in response to lagged effects of solar irradiance on primary production. Foraging
latitudes of northern and southern giant petrels (Macronectes halli and M. giganteus), and light-mantled alba-
trosses Phoebetria palpebrata, exhibited no strong seasonal trend, but the latter two species spent ≥ 20 % of their
time in the SIZ during incubation and post-brood, prior to or at the time of the spring ice breakup. Southern giant
petrels travelled hundreds of km into the pack ice, encountering sea-ice concentrations up to 100 %, whereas
light-mantled albatrosses remained almost exclusively in open water near the Marginal Ice Zone (MIZ). The
remaining species spent up to 15 % of their time in the SIZ, typically from 5-7 weeks after breakup, and avoided
the MIZ. This supports hypotheses that sea ice presents albatrosses but not giant petrels with physical barriers to
flight or foraging, and that open-water-affiliated species use the SIZ only after primary production stimulated by
ice melt transfers to intermediate trophic levels. Given that all seven species used the SIZ, it is likely that the
phenology and demography of these and many other subantarctic-breeding seabirds are mechanistically linked
to sea-ice dynamics. Declines in Antarctic sea ice predicted under climate change could therefore modulate and
exacerbate the already unsustainable anthropogenic impacts being experienced by these populations.

1. Introduction

Foraging links the dynamics of consumer populations to the

fundamental mechanisms that regulate food availability and accessi-
bility (Morales, Moorcroft, Matthiopoulos, Frair, Kie et al., 2010).
Cyclicity in environmental drivers such as solar irradiance often gives
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rise to predictable resource pulses or waves that foraging animals track
in space and time, sometimes with lags due to latency in trophic transfer
(Abrahms, Aikens, Armstrong, Deacy, Kauffman & Merkle, 2021; Arm-
strong, Takimoto, Schindler, Hayes & Kauffman, 2016; Zurell, Gallien,
Graham & Zimmermann, 2018). Quantifying spatiotemporal use of
habitats, in which production is regulated by particular mechanisms,
can provide valuable insights into the dynamics of both consumer
populations and the wider ecosystem (Matthiopoulos, Fieberg, Aarts,
Beyer, Morales & Haydon, 2015; Morales et al., 2010). In much of the
oceans, primary production is highly seasonal (Longhurst, 1998). At mid
to high latitudes it is regulated by nutrients, vertical mixing, preda-
tor–prey dynamics and especially solar irradiance, giving rise to a
poleward advance and retreat of peak production over the annual cycle
(Arteaga, Boss, Behrenfeld, Westberry& Sarmiento, 2020; Boyce, Petrie,
Frank, Worm & Leggett, 2017; Racault, Le Quéré, Buitenhuis,
Sathyendranath & Platt, 2012; Thomalla, Fauchereau, Swart & Mon-
teiro, 2011). In turn, many wide-ranging marine predators undertake
meridional (north/south) migrations from lower latitudes in winter to
higher latitudes in summer (Abrahms, Hazen, Aikens, Savoca, Goldb-
ogen et al., 2019; Block, Jonsen, Jorgensen, Winship, Shaffer et al.,
2011; Murphy, Johnston, Hofmann, Phillips, Jackson et al., 2021). Set
within this backdrop is one of the most seasonally dynamic and exten-
sive habitats on Earth − the Antarctic sea ice, which varies in extent over
the annual cycle from a maximum of ~ 20 million km2 in September,
when it covers 40 % of the Southern Ocean, to a minimum of ~ 4 million
km2 in February (Arrigo, 2014; Gloersen, Campbell, Cavalieri, Comiso,
Parkinson & Zwally, 1992). Sea ice has profound biological effects not
only in the areas it covers but at all levels of the Southern Ocean food
web (Arrigo, 2014; Clarke, 1988; Eicken, 1992; Thomas, 2017). It reg-
ulates primary production while intact by attenuating light, concen-
trating nutrients and acting as a substrate for growth, and following
breakup, by releasing nutrients and enhancing stratification (Arrigo,
2014; Taylor, Losch & Bracher, 2013).

Seasonal variation in resource availability is a fundamental driver of
migration in marine and terrestrial systems (Aikens, Kauffman, Merkle,
Dwinnell, Fralick&Monteith, 2017; Alerstam, 1990; Zurell et al., 2018).
However, the extent to which land-breeding marine predators track
seasonal resource waves during periods of central-place constraint is
unclear (Abrahms et al., 2019; Hurme, Fahr, Network, Eric-Moise, Hash
et al., 2022). Such behaviour may be most detectable among wide-
ranging species, including albatrosses and large petrels, which can
cover vast distances rapidly and at relatively low energetic cost, by
exploiting the wind (Thorne, Clay, Phillips, Silvers &Wakefield, 2023).
The majority of albatrosses and large petrels breed over periods of 7–12
months on subantarctic islands, from where they can commute thou-
sands of km to forage, accessing areas from the subtropics to Antarctic
sea-ice zone (González-Solís, Croxall & Wood, 2000a; Péron, Delord,
Phillips, Charbonnier, Marteau et al., 2010; Phillips, Silk, Croxall &
Afanasyev, 2006; Phillips, Silk, Phalan, Catry & Croxall, 2004; Trebilco,
Gales, Baker, Terauds & Sumner, 2008; Xavier, Trathan, Croxall, Wood,
Podesta & Rodhouse, 2004).

The use of sea-ice habitats by albatrosses and large petrels has
received relatively little attention, perhaps because ship-based studies
report these species to be rare within the pack ice (Ainley, And & Boe-
kelheide, 1984; Ainley, Woehler& Lescroël, 2017; Woehler, Raymond&
Watts, 2003). However, many occur in open water within the Seasonal
Ice Zone (SIZ; areas that are ice-covered for only part of the year),
Marginal Ice Zone (MIZ; areas where waves affect ice structure, resulting
in variable but relatively low ice cover), or close to the ice edge, and prey
availability in all these zones is affected directly by sea-ice dynamics
(Arrigo, 2014; Brierley& Thomas, 2002; Eicken, 1992). Based largely on
at-sea surveys, three main seabird assemblages are recognised to use
waters south of the Antarctic Polar Front (Ainley et al., 2017): (1) Ice-
affiliated species that occur within the pack ice; (2) ice-edge (or ice-
tolerant) species that use the ice edge and adjacent cold waters where
icebergs occur regularly but avoid dense pack ice; and (3) open-water

species, confined to open, and possibly warmer waters, usually further
north. Most ice-affiliates breed on the Antarctic continent and adjacent
islands (Woehler et al., 2003), but the origin of southern giant petrels
Macronectes giganteus seen in these three habitats is uncertain, as they
breed both in the Antarctic and on subantarctic islands. The ice-avoiding
assemblage is dominated by species that breed only in the subantarctic
but migrate into Antarctic waters during the summer months, e.g. black-
browed albatrosses Thalassarche melanophris (Ainley et al., 1984; Ainley
et al., 2017). The ice-tolerant assemblage includes subantarctic
breeders, such as light-mantled albatrosses Phoebetria palpebrata. How-
ever, the age, breeding status or provenance of birds observed during
ship-based studies is rarely known.

It remains unclear what factors allow some species to subsist in the
pack ice but prevent others from doing so (Ainley et al., 2017). Several
processes concentrate euphausiids, cephalopods and fish at shallow
depths within or near sea ice (Ainley, Fraser, Sullivan, Torres, Hopkins&
Smith, 1986; Bluhm, Swadling & Gradinger, 2016; Brierley, Fernandes,
Brandon, Armstrong, Millard et al., 2002; Saenz, Ainley, Daly, Ballard,
Conlisk et al., 2020), potentially making them more accessible to alba-
trosses and large petrels, which have limited diving capabilities
(Bentley, Kato, Ropert-Coudert, Manica & Phillips, 2021). In general,
prey availability is thought to be high in the pack ice year-round but
requires adaptive specialisations to exploit, whereas prey availability
outside the pack is seasonally pulsed (Ainley, Ribic & Fraser, 1992;
Ainley, Fraser, Smith, Hopkins & Torres, 1991; Ainley, Ribic & Fraser,
1994). Dietary specialisation is not thought to confine ice-affiliated
seabirds to the pack ice because their diets are similar in adjacent
open waters (Ainley, Ribic & Spear, 1993). Instead, sea ice may physi-
cally exclude some species, for example by inhibiting dynamic soaring
among albatrosses (Ainley et al., 1984; Griffiths, 1983). If sea-ice cover
is complete, seabirds cannot access the water column (Ainley et al.,
2017; Jenouvrier, Péron & Weimerskirch, 2015), but some may never-
theless use the ice itself to scavenge or rest (Gilg, Istomina, Heygster,
Strøm, Gavrilo et al., 2016; Grunst, Grunst, Grémillet, Sato, Gentès &
Fort, 2022). Ice-edge species could specialise on prey or use foraging
techniques associated with the edges of floes, or they could prefer water
masses in which sea ice occurs (Ainley et al., 2017; Ruhl, Ellena, Wilson
& Helly, 2011). Open-water affiliates may simply be attracted to the
seasonal pulse in prey in the SIZ that follows sea-ice breakup and the
associated phytoplankton bloom (Fauchald, Tarroux, Tveraa, Cherel,
Ropert-Coudert et al., 2017; Péron et al., 2010; Smith & Nelson, 1985).

Quantifying the seasonal use of sea-ice habitats by different species
may help to resolve ambiguities about these causes and constraints.
Moreover, use of these habitats would imply mechanistic links between
sea-ice dynamics − driven by large-scale climatic processes (Crosta,
Etourneau, Orme, Dalaiden, Campagne et al., 2021; Isaacs, Renwick,
Mackintosh & Dadic, 2021; Stammerjohn, Martinson, Smith, Yuan &
Rind, 2008b) − and the demography of albatrosses and large petrels
(Descamps, Tarroux, Lorentsen, Love, Varpe & Yoccoz, 2016; Fraser &
Hofmann, 2003; Jenouvrier, Weimerskirch, Barbraud, Park & Cazelles,
2005). Impacts of climate change could propagate through or affect such
linkages (Bestley, Ropert-Coudert, Bengtson Nash, Brooks, Cotté et al.,
2020; Constable, Melbourne-Thomas, Corney, Arrigo, Barbraud et al.,
2014; Massom & Stammerjohn, 2010). Although this is already thought
to happen in the Arctic, where sea-ice declines have been rapid
(Descamps & Ramírez, 2021), overall sea-ice extent in the Southern
Ocean has been relatively stable (Fogt, Sleinkofer, Raphael& Handcock,
2022; Turner, Hosking, Bracegirdle, Marshall & Phillips, 2015). How-
ever, recent signs are that Antarctic sea ice has begun to decrease overall
(Turner, Guarino, Arnatt, Jena, Marshall et al., 2020), and predictions
are for this to continue under all realistic future carbon emission sce-
narios (Eayrs, Li, Raphael & Holland, 2021; Roach, Dörr, Holmes,
Massonnet, Blockley et al., 2020), making it important to understand
how this could affect the globally important seabird populations in the
region (Bestley et al., 2020). For example, changes in the timing of sea-
ice seasonality could lead to deleterious phenological mismatches with
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predators (Durant, Ottersen & Stenseth, 2007; McMeans, McCann,
Humphries, Rooney & Fisk, 2015). Although theory predicts that avian
reproductive phenology is matched to resource pulses (Lack, 1968;
Weimerskirch, Zotier & Jouventin, 1989), the extent to which the
breeding schedules of albatrosses and large petrels might be synchron-
ised to sea-ice dynamics is unknown.

South Georgia, in the southwest Atlantic Ocean (Fig. 1), holds 10–75
% of the global breeding population of seven species of albatrosses and
large petrels (Phillips, Gales, Baker, Double, Favero et al., 2016). The SIZ
occurs closer to this archipelago than to almost all other subantarctic
islands (Gloersen et al., 1992). It is both more extensive and productive
than in other sectors (Arrigo, van Dijken & Bushinsky, 2008; Vernet,
Geibert, Hoppema, Brown, Haas et al., 2019), and used by a relatively
large number of wide-ranging higher predators (Hindell, Reisinger,
Ropert-Coudert, Hückstädt, Trathan et al., 2020). The SIZ is well within
foraging range of albatrosses and petrels breeding on South Georgia, but
we would predict some niche differentiation given these are large,
sympatric populations of morphologically similar species (Croxall &
Prince, 1980). Indeed, tracking of breeding albatrosses and large petrels
from Bird Island, South Georgia since the early 1990s indicates that all
these species use the Scotia, Weddell or Bellingshausen Seas – areas that
are seasonally ice covered – to some extent, primarily during the latter
part of the summer (González-Solís, Croxall & Briggs, 2002; Granroth-
Wilding & Phillips, 2019; Phillips, Croxall, Silk & Briggs, 2008; Phil-
lips, Silk & Croxall, 2005a; Phillips et al., 2006; Phillips et al., 2004;
Wakefield, Phillips, Trathan, Arata, Gales et al., 2011; Xavier et al.,
2004).

Extensive studies of the oceanography, sea-ice dynamics and pelagic
ecology of the region have highlighted the key physical and ecological
roles of sea-ice dynamics (Lowther, von Quillfeldt, Assmy, De Steur,
Descamps et al., 2022; Murphy, Watkins, Trathan, Reid, Meredith et al.,
2007; Thorpe & Murphy, 2022; Vernet et al., 2019). The timing of
phytoplankton blooming in the Southern Ocean is tightly linked to
seasonal cyclicity in irradiance, advancing with decreasing latitude
(Ardyna, Claustre, Sallée, D’Ovidio, Gentili et al., 2017; Arteaga et al.,
2020). Bloommaxima occur in early September in the subtropical South
Atlantic, early October on the Patagonian Shelf, late November-early
December in the vicinity of South Georgia, and late December in the
Weddell Sea (Ardyna et al., 2017; Borrione & Schlitzer, 2013; Kauko,
Hattermann, Ryan-Keogh, Singh, de Steur et al., 2021; Sallée, Llort,
Tagliabue & Levy, 2015; Uchida, Balwada, Abernathey, Prend, Boss &
Gille, 2019). This macroscale pattern of light control on primary pro-
duction is modified at finer scales south of the Antarctic Polar Front by
iron supply, and within the SIZ by sea-ice retreat (Ardyna et al., 2017;
Arteaga et al., 2020). Zooplankton biomass peaks in subantarctic waters
in February and in ice-free areas of the SIZ from late summer to early
autumn (Cisewski & Strass, 2016; Clarke, 1988). Sea-ice extent and
duration, linked to large scale atmospheric processes, affect krill abun-
dance and zooplankton community structure (Atkinson, Siegel, Pak-
homov & Rothery, 2004; Loeb, Siegel, Holm-Hansen, Hewitt, Fraser
et al., 1997; Loeb & Santora, 2015; Steinberg, Ruck, Gleiber, Garzio,
Cope et al., 2015). In turn, these changes are thought to drive decadal
changes in flying seabird community structure at South Georgia
(Moreno, Stowasser, McGill, Bearhop & Phillips, 2016), but it is un-
known whether use of habitats is a mediating mechanism.

Here, our aims were to quantify the use of sea-ice habitats by a
sympatric breeding assemblage of subantarctic albatrosses and large
petrels, and to test two related hypotheses: (H1) At the macroscale, the
meridional movement of the birds tracks variation in solar irradiance,
which in turn affects prey availability. If correct, we would expect the
median foraging latitude to vary sinusoidally with days elapsed since
midwinter because the date of peak primary production in the study area
varies sinusoidally with latitude (Ardyna et al., 2017; Arteaga et al.,
2020; Cole, Henson, Martin& Yool, 2015). In addition, we would expect
a phase lag of the order of weeks to months due to latency in the transfer
of primary production to the trophic levels at which seabirds feed

(Cisewski & Strass, 2016; Conroy, Steinberg, Thomas&West, 2023; von
Berg, Prend, Campbell, Mazloff, Talley& Gille, 2020). (H2) Open-water-
affiliated seabirds use locations in the SIZ only after a lag corresponding
to the time required for the post-breakup bloom to enhance prey
availability in surface waters, whereas ice-affiliated species use the SIZ
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Fig. 1. Seasonality in sea-ice extent and breeding schedules of the study spe-
cies, and temporal coverage of tracking data. (a) Study area, showing monthly
median ice edge over the study period (1990–2023). (b) Median sea-ice extent
over the study period within the longitudinal sector used by the study pop-
ulations during the tracking period (75◦ W to 5◦ E). (c-i) Box plots show
breeding schedules at Bird Island, South Georgia. Histograms show stacked
numbers (summed across years) of individuals tracked within 3-day periods
using GPS (black) or ARGOS (grey) devices. Pre-breeding is defined here as the
period between first return to the colony and egg laying. Many male southern
giant petrels remain in or near the colony for much of the winter (Thiers,
Delord, Barbraud, Phillips, Pinaud & Weimerskirch, 2014), so the female pre-
breeding period is shown for this species.
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before breakup. To test these hypotheses, we analysed breeding-season
foraging trips made by black-browed, grey-headed T. chrysostoma, light-
mantled and wandering albatrosses Diomedea exulans, white-chinned
petrels Procellaria aequinoctialis, and northern M. halli and southern
giant petrels tracked from Bird Island over three decades, quantifying:
(1) seasonal changes in foraging latitude, (2) proportion of individuals
that use the SIZ andMIZ, (3) proportion of time spent in the SIZ andMIZ,
(4) distribution relative to the ice edge, (5) utilised sea-ice concentra-
tions, and (6) the temporal lags hypothesised above.

2. Materials and Methods

We carried out all analysis in R (R-Development-Core-Team, 2022).
Unless otherwise stated, we report means ± their standard deviations if
indices are normally distributed, and medians and the inter-quartile
ranges (IQR) otherwise.

2.1. Tracking data and behavioural classification

We analysed the movements of seven species of breeding albatrosses
and large petrels tracked from Bird Island (54◦ 00′S, 38◦ 03′W) between
1990 and 2023 (Table A1). In most cases, breeding stage (incubation,
brood-guard or post-brood chick-rearing) was recorded at the time of
tracking, but for white-chinned petrels tracked in 2022, we assigned
breeding stage based on the mean timing of hatching and thermal
emancipation (i.e., the end the brood-guard period, when chicks are left
unattended by their parents) reported by Hall (1987). Within most
species, most individuals were tracked during early to mid chick-
rearing, followed by late incubation (Fig. 1c-h). Wandering albatrosses
were tracked over most of incubation and brood-guard, and in early to
mid, but not late, post-brood chick-rearing (mid-October to late
December) (Fig. 1i). Across species, tracking data coverage was low or
nil during pre-breeding colony attendance, early incubation and late
chick-rearing.

The dataset analysed contained 2497 foraging trips made by 1289
birds between 1992 and 2023 (Table A1). Most birds were tracked via
GPS (72 %, n = 924 birds) and the remainder via the ARGOS satellite
system (28 %, n = 365; Table A2. for device details). The majority of
birds (75 %) were tracked in the latter half of this period but tracking
effort was patchily distributed across breeding seasons, with coverage of
1–12 (median 4) breeding seasons per species (Fig. A1). ARGOS has a
lower accuracy than GPS, and ARGOS locations have irregular time in-
tervals. We therefore interpolated ARGOS location estimates to 1 h in-
tervals and improved their accuracy as follows: First, using the
argosfilter package (Freitas, Lydersen, Fedak & Kovacs, 2008), we
removed class Z locations and those resulting in speeds> 40 m/s, which
we assumed to be unrealistic (Catry, Phillips & Croxall, 2004). We used
default values for spike angles and lengths. In addition, we removed
entire trips if they comprised < 3 ARGOS locations, because the next
step requires > 2 locations (we define a ‘trip’ as a bout of movement
beginning and ending at the colony). Using the aniMotum package
(Jonsen, Grecian, Phillips, Carroll, McMahon et al., 2023), we then fitted
a simple continuous-time state-space model to observed locations for
each trip (or logger deployment if locations had not already been split
into trips − see below) and used this to predict hourly locations. We used
the ‘optim’ optimizer, unless this failed, in which case we switched to
‘nlminb’. For all other function variables, we used the default settings.
We checked goodness of fit by examining one-step-ahead prediction
residuals (Thygesen, Albertsen, Berg, Kristensen&Nielsen, 2017). When
applied to another seabird species, this approach yielded a median error
of 6.0 km (95th percentile 44.0) for data collected before 2011, and 7.5
km (95th percentile 52.6) for data collected thereafter; the difference
reflects changes in the way that Collecte Localisation Satellites pre-
process the data (Jonsen, Patterson, Costa, Doherty, Godley et al.,
2020)). For GPS data, we standardised temporal resolution to 0.5 h by
linear interpolation using the adehabitatLT package (Calenge, 2006). In

many instances, birds had been tracked over multiple consecutive trips
and trip identity was assigned based on visual observations at the col-
ony.When this information wasmissing, we split GPS tracks into trips by
assuming that a trip comprises a bout of contiguous locations spanning
> 12 h, of which all but the first and last are > 20 km from the colony.
Prior to filtering and interpolation, the median tracking interval within
species ranged from 0.9 to 2.2 h (max 6.1) for ARGOS and 0.2 to 1.0
(max 4.1) h for GPS devices (Table A1).

Given that our principal interest was in quantifying the use of sea-ice
habitats when birds were foraging or at rest, as opposed to travelling, we
discriminated these behaviours using Hidden Markov Models (HMMs;
Langrock, King, Matthiopoulos, Thomas, Fortin & Morales, 2012).
Models were implemented in the moveHMM package (Michelot, Lan-
grock & Patterson, 2016) and fitted to step lengths and turning angles
(Bennison, Bearhop, Bodey, Votier, Grecian et al., 2018; Dean, Freeman,
Kirk, Leonard, Phillips et al., 2012; Hooten, Johnson, McClintock &
Morales, 2017), which we assumed followed vonMises and zero-inflated
gamma distributions, respectively. We checked these and other model
assumptions via pseudo-residual plots (Michelot et al., 2016). Following
McClintock (2021), we did not model individual-level random effects.
We specified a realistic range of starting parameter values for each
behavioural state within species based on previous studies (Bennison
et al., 2018; Clay, Joo, Weimerskirch, Phillips, den Ouden et al., 2020;
Dean et al., 2012) and inspection of observed step length and turning
angle distributions (Michelot & Langrock, 2022). We then randomly
drew parameters from within these ranges and fitted HMMs 25 times,
selecting the best starting values as those resulting in the model with the
highest likelihood (Michelot & Langrock, 2022). Preliminary analysis
showed that only travelling (large steps, concentrated turning angles)
vs. not travelling (small steps, dispersed turning angles) could be reli-
ably discriminated for ARGOS-tracked individuals, presumably because
HMMs are effective at classifying behavioural states only when location
error is negligible compared to the scale of movement characterising the
states of interest (Langrock et al., 2012). Moreover, putative foraging
(intermediate steps, dispersed turning angles) could not be distinguished
from resting or travelling for many GPS-tracked wandering albatrosses
and white-chinned petrels. For consistency, we therefore fitted a two-
state model for all species and logger types. Unless otherwise stated,
we carried out all subsequent analyses using non-travelling locations,
assuming these encompasses locations at which birds were either
foraging or resting.

2.2. Sea ice data

To quantify sea-ice conditions, we used gridded, daily sea-ice con-
centrations (SIC), estimated from satellite-borne radiometer measure-
ments. We define the ice edge as the 15 % SIC contour, and the SIZ as the
area between the seasonal maximum and minimum sea-ice extents
(Taylor et al., 2013). The marginal ice zone (MIZ) is that into which
waves penetrate, splitting the pack into floes, and is usually bounded by
open water on one side and the inner, closed pack on the other (Dumont,
2022). Here, we follow the common nominal definition of the MIZ as
being bounded by the 15 and 80 % SIC contours (e.g. Taylor et al.,
2013), noting however that definitions of the MIZ vary widely (Arrigo
et al., 2008; Taylor et al., 2013). We refer to SICs > 80 % as the
consolidated ice zone (CIZ), which may include areas of seasonal,
perennial or fast ice, each of which can foster different ecological con-
ditions (Brierley & Thomas, 2002; Eicken, 1992; Joiris, 1991).

We used two sea-ice datasets, with differing spatial resolutions and
temporal coverages. In order to quantify SICs experienced by birds
within the MIZ or CIZ, we downloaded ASI (AMSR2/ARTIST Sea Ice
algorithm) version 5.4 SIC data on a regular 3.125 km polar stereo-
graphic grid (Spreen, Kaleschke & Heygster, 2008) from the Institute of
Environmental Physics, University of Bremen (https://seaice.uni-
bremen.de, accessed March 1st, 2023). These data span June 2002 to
October 2011 and June 2012 to the present, a period that excludes
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approximately a third of that covered by the seabird tracking data
(Fig. A1). Hence, for the remainder of our analyses, which are less
sensitive to SIC spatial resolution, we used Sea Ice Index, Version 3
(Fetterer, Knowles, Meier, Savoie & Windnagel, 2017) data, down-
loaded on a regular 25 km polar stereographic grid from the National
Snow and Ice Data Centre (https://nsidc.org/data/g02135/versions/3,
accessed March 1st, 2023). These data span the entire tracking period.
Visual inspection showed that in both datasets, SICs around South
Georgia and adjacent subantarctic coastlines were occasionally spuri-
ously high, presumably due to uncorrected land-to-ocean spillover
(Meier, Stewart, Windnagel & Fetterer, 2022). Prior to analysis, we
therefore set all SICs within 50 km of South Georgia and land masses
north of the Antarctic Polar Front, to zero.

2.3. Habitat use

To test whether seabirds shifted their foraging effort meridionally
over the breeding season, we first determined the latitude, θ (hereafter,
foraging latitude) of the distal location (excluding travelling locations)
of each foraging trip. We then used linear models, fitted with the nlme
package (Pinheiro, Bates, DebRoy, Sarkar & R Core Team, 2022), to
model θ as a function of days, d since austral midwinter. Random in-
tercepts were included for individuals, if necessary nested within
breeding seasons. Data from most species covered less than half of the
annual cycle, so to test for trends, we first fitted linear and second order
polynomial models. When temporal coverage was sufficient, we also
fitted a sinusoidal model to test for a phase shift, which we assume re-
flects any lag between incident solar irradiance and mean foraging
latitude. The model took the form

θ = β0 + β1(sin(2πd/365) )+ β2(cos(2πd/365) )+ ∊ (1)

where β0 is the intercept, β1 and β2 are the phase shift parameters
estimated from the data and ∊ is the error. We determined the most
parsimonious of these models by comparing their AIC.

To model temporal change in use of the SIZ through the breeding
season, we classified foraging trips as having used the SIZ if any non-
travelling locations overlapped with Sea Ice Index v3 SICs > 15 %. We
then used logistic Generalised Additive Mixed-effects Models to model
the probability of use of the SIZ as a smooth function of days since
midwinter using the mgcv package (Wood 2017). We assigned trip date
as the middle day of each trip and structured smooths as cubic regression
splines, with shrinkage, using the cyclic form for wandering albatrosses
as their breeding season spans a complete annual cycle (Wood, 2017).
We specified random intercepts for birds nested within breeding seasons
and modelled serial autocorrelation using a first order autoregressive
(AR(1)) term. We used logistic Generalised Linear Models to estimate
the proportion of non-travelling time spent by birds during each
breeding stage within the SIZ, and MIZ or CIZ. We classified locations as
being within the MIZ/CIZ using ASI SIC data. We also used kernel
density estimation to quantify habitat use in terms of SIC and distance to
the ice edge (Péron et al., 2010; Reisinger, Friedlaender, Zerbini, Pala-
cios, Andrews-Goff et al., 2021), limiting these analyses to birds tracked
during the period with ASI SIC data coverage (Fig. A1).

Over the study period, sea-ice cover in the longitudinal sector used
by albatrosses and large petrels peaked around 14 September (see Re-
sults). Following Stammerjohn et al. (2008a) and Kauko et al. (2021),
we defined the date of ice breakup (DBU) as the last day after this date
on which the mean SIC was < 15 % for the previous five days, with the
modification that here SIC is averaged over five days to reduce the ef-
fects of intermittent false ice detections (Meier & Stewart, 2019). For
each species, i, we defined the date of first use (DFUi,j,k), within the jth

breeding season, of all grid cells sharing the kth DBU, as the first day on
which any of those cells was used by a tracked bird of species i. In order
to estimate the approximate lag between sea-ice retreat and the first use
of SIZ locations, and to test whether this differed between species, we

modelled DFUi,j,k − DBUj as a linear function of DBUj and species, using
Generalised Least Squares regression, implemented with the nlme
package (Pinheiro et al., 2022). This analysis necessarily excludes re-
gions in which breakup occurred before tracking commenced because
within these regions an artificial minimum would be imposed on the lag
between DBU and DFU. We used an AR(1) term to model temporal
autocorrelation within species and breeding seasons. We started with a
model that included interactions between DBU and species, simplifying
by backwards selection based on likelihood ratio tests. For illustration,
we also fitted the final model rearranged as DFUi,j,k as a function of DBUj.

3. Results

3.1. Sea-ice and seabird breeding phenology

Between 1998 and 2022, sea ice retreated and advanced along a
meridional axis across most of the study area, and a southwest-northeast
axis in the eastern Weddell Sea (Fig. 1a). Within the sector used by the
tracked albatrosses and petrels, maximum and minimum sea-ice extent
occurred on average on 14 September (±6 days, range 1–28 September)
and 22 February (±4 days, range 14 February – 3 March), respectively
(Fig. 1a-b). The minimum distance between Bird Island and the median
ice edge averaged 430 ± 90 km in September and 1260 ± 240 km in
February. In February, open water extended to the Antarctic continent
across most of the study area, but in the western Weddell Sea some fast
ice and floes persisted year round.

Colony attendance by all study species except wandering albatrosses
begins around the austral spring equinox, coinciding with the sea-ice
maximum (Fig. 1c-h). Incubation occurs during the period of most
rapid sea-ice retreat and brood-guard just prior to the sea-ice minimum.
Post-brood chick-rearing begins around late January, just prior to the
sea-ice minimum, and chicks fledge about a month after the autumn
equinox, when sea-ice extent has reached around two thirds of its
maximum. Wandering albatrosses, which take > 1 year to fledge their
offspring, undertake incubation largely within the period of rapid sea-
ice retreat and minimum concentration (Fig. 1i). Brood-guard is
completed just prior to the most rapid period of autumn ice advance and
the remainder of chick-rearing occurs when sea-ice extent is greater than
half of its median value.

3.2. Behaviour and seasonal changes in meridional distribution

While at sea, birds spent on average 53–79 % of their time foraging
or resting (Table 1). Across species, space use when foraging or resting
was high around the latitude of Bird Island, especially during the brood-
guard stage. With the exception of southern giant petrels, either the
northern, southern or both latitudinal limits of space use shifted south as
the breeding season progressed (Fig. 2). Throughout the tracking period,
northern and southern giant petrels remained largely north and south of
the colony, respectively. A sinusoidal model best described the rela-
tionship between the mean foraging latitude and days since midwinter
for black-browed, grey-headed and wandering albatrosses, and white-
chinned petrels (Fig. 2, Table A3, Table A4). Mean (and 95 % CI)

Table 1
Percentage of locations of albatrosses and petrels tracked from Bird Island,
South Georgia, at which behaviour was classified by Hidden Markov Models
as travelling.

Species Median (IQR, range)

Northern giant petrel 20.8 (7.6–44.3, 0.0–98.8)
Southern giant petrel 27.7 (5.8–47.3, 0.0–93.3)
White-chinned petrel 47.4 (42.5–50.8, 26.9–68.7)
Light-mantled albatross 45.6 (39.7–52.3, 22.0–68.5)
Black-browed albatross 31.3 (20.1–43.2, 0.0–85.7)
Grey-headed albatross 41.3 (30.5–51.4, 0.0–82.5)
Wandering albatross 33.8 (22.9–44.1, 0.0–76.1)
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(L), hatching (H), thermal emancipation (TE), and fledging (F) at Bird Island. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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phase shifts for these species were 82 (70–93), 115 (94–136), 68 (53–83)
and 122 (66–178) days, respectively. An intercept-only model (i.e. no
significant seasonal trend in mean foraging latitude) was the most
parsimonious for the remaining species (Table A4). However, GLMMs
(Table A5) showed that the most northerly foraging or resting latitudes
reached by northern giant petrels and light-mantled albatrosses were
2.99◦ (approximate 95 % CI 0.54–12.78◦; p < 0.001) and 0.90◦

(0.03–2.77◦; p = 0.039) further south during chick-rearing than incu-
bation. The mean equivalent difference for southern giant petrels was
0.00◦ of latitude (− 0.26–0.47◦, p = 0.984).

3.3. Use of sea-ice habitats

Most species remained largely north of the latitude of the median ice
edge throughout the breeding season (Fig. 2), but all used the SIZ to
some extent, especially to the south and southwest of South Georgia
(Fig. 3, Fig. A2). The SIZ near the South Orkney Islands was used very
frequently, especially by southern giant petrels and light-mantled,

black-browed and grey-headed albatrosses. The three larger albatross
species used the SIZ west of the Antarctic Peninsula; southern giant
petrels used the SIZ of the northern Weddell Sea throughout the tracked
period; white-chinned petrels, black-browed albatrosses, and wandering
albatrosses used the SIZ of the north-eastern Weddell Sea from mid-
summer onwards; and light-mantled albatrosses used a wide zonal
sector of the SIZ from late spring onwards.

Two broad seasonal trends were evident in the proportion of foraging
trips entering the SIZ. Firstly, in most species, the lowest proportion of
foraging trips in the SIZ occurred during brood-guard (Fig. 4). This was
particularly marked among southern giant petrels, giving rise to a u-
shaped seasonal trend in the probability of using the SIZ. Secondly, the
probability of entering the SIZ increased from around mid-January in all
species except light-mantled albatrosses. White-chinned petrels, black-
browed albatrosses and grey-headed albatrosses visited the SIZ more
frequently as the summer progressed.

Across species, most birds spent < 15 % of their time in the SIZ, but
individual variability was high, with at least one individual within most
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species/stages spending ≥ 70 % of its foraging or resting time in the SIZ
(Fig. 5). Among northern giant petrels, only females (5 out of 39 cf. 0 of
38 males) used the SIZ – a marginally significant difference (Fisher’s
exact test, p= 0.054). Similarly, more female southern giant petrels used
the SIZ than males (23 of 49 vs. 13 of 49), but this was not significant (χ2

(1, N=98) = 0.28, p = 0.596). Southern giant petrels spent on average
26 % (95 % CI, 15–40 %) and 37 % (11–71 %) of their foraging/resting
time in the SIZ during incubation and post-brood, respectively. Light-
mantled albatrosses at these stages, and black-browed albatrosses in
post-brood spent > 25 % of their time in the SIZ. Most northern giant
petrels and wandering albatrosses spent much less time in the SIZ than
the other species. Wandering albatrosses ceased to use the SIZ frommid-
March, despite breeding throughout the year (Fig. 4). Use of the SIZ by
wandering albatrosses was mainly by males (28 of 177 vs. 5 of 175 fe-
males; χ2 (1, N=98) = 13.12, p = <0.001).

On trips that entered the SIZ, southern giant petrels tracked in in-
cubation concentrated their foraging/resting time closer to the ice edge
than most other species/stages, whereas light-mantled albatrosses
consistently occurred relatively close (<500 km) to the ice edge across
stages (Fig. 6). Wandering albatrosses, black-browed albatrosses and
southern giant petrels all concentrated their foraging/resting time closer
to the ice edge during incubation than post-brood. Only the latter two
species, and light-mantled albatrosses and northern giant petrels,
entered the MIZ on more than one occasion (Fig. 7). Southern giant
petrels entered the MIZ/CIZ regularly during incubation, spending an
average of 8 % (95 % CI, 2–19 %; range 0–75 %) of their foraging/
resting time there, but the other species spent < 0.1 % of their foraging/
resting time in areas where the SIC was> 15% (Fig. 5). Moreover, in the
case of black-browed albatrosses, themajority (~70%) of non-travelling
locations in > 15 % SIC, and therefore putatively within the MIZ/CIZ,
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were recorded < 12 km from land (Fig. A3). Detailed examination of
foraging trips plotted over contemporary SICs (Fig. 8) showed that high
SICs encountered by this species occurred close to small Antarctic
islands remote from the main ice edge, where SIC estimates can be
biased upwards (see Section 4.1). The remaining species encountered
SICs > 15 % largely in open water (Fig. 8 and Fig. S2). Of these, light-
mantled albatrosses remained almost exclusively on the seaward side
of the nominal ice edge (Figs. 6 and 8). In contrast, southern giant petrels
travelled up to 530 km into the pack ice, to areas with SICs ranging from
15 to 100 % (Fig. 8). Within species, there were no significant differ-
ences in the proportion of females vs. males entering the MIZ/CIZ
(Fishers exact tests, p > 0.05).

3.4. Lags in use of the seasonal ice zone

There were sufficient data to model the lag between breakup and first
use (DFU − DBU) of locations in the SIZ for five species (Table 2, Fig. 9).
The most parsimonious lag model contained DBU and species but no
interactions as explanatory covariates (Table A6). Mean lag between
breakup and first use was, respectively, one week for light-mantled al-
batrosses; ~5.5 weeks for black-browed and grey-headed albatrosses;
and ~ seven weeks for white-chinned petrels (Fig. 3). There was no
significant lag for southern giant petrels. Indeed, they used many parts
of the SIZ prior to breakup (Fig. 3, Fig. A2). Across species, the slope
Δ(DFU − DBU)/ΔDBU did not differ significantly from zero (Table 2),
suggesting lag remained constant over the breeding season.

4. Discussion

Although many albatrosses and large petrels that breed on subant-
arctic islands have previously been tracked to the seasonal and marginal
ice zones, most knowledge about their use of sea-ice habitats was hith-
erto derived from ship-based observations (Ainley et al., 1984; Ainley
et al., 2017; Woehler et al., 2003). By analysing their movements in
detail, our study provides a new perspective on the extent to which
globally important subantarctic breeding populations commute into the
SIZ to forage. At the macroscale, most species moved progressively south
over the summer, presumably following the southward propagating
resource wave driven by solar irradiance and the resulting spring
phytoplankton bloom. All species used the SIZ to some extent, but there
was substantial variation among species and seasons. Albatrosses and
white-chinned petrels largely avoided the pack ice itself and most used
the SIZ only 1–1.5 months after it had become ice free. However, light-
mantled albatrosses tracked the receding ice without appreciable delay,
using open water relatively close to the ice edge throughout the breeding
season. Some southern giant petrels, and to a lesser extent northern giant
petrels, used the SIZ and MIZ, but pack ice was only used regularly by
the former during incubation.

4.1. Limitations of the study

The tracking data analysed here were collected for a variety of
purposes − and the bulk from mid incubation to mid chick-rearing − so
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coverage was not optimal for quantifying use of sea-ice habitats.
Although we cannot therefore directly infer habitat use during other
periods, the extent of open water in the SIZ remains near its minimum
until after early incubation for all study species except wandering al-
batrosses (Fig. 1), so it is unlikely that it is used then by the open water
affiliates. However, the ice edge at that time is closer to South Georgia,
so edge-affiliated light-mantled albatrosses and ice-affiliated southern
giant petrels may have used these respective habitats extensively
without being observed. Similarly, without tracking data during the
autumn, we cannot infer how the study species respond to the formation
of new ice. Nor have there been many ship-based studies during this
period.

We were also limited in our ability to estimate lags between ice
breakup and use of the SIZ, particularly for wandering albatrosses, few
of which were tracked in November and December. Our analysis
implicitly assumes that sufficient birds were tracked to accurately esti-
mate dates of first use of groups of cells in the SIZ with particular
breakup dates (section 2.3). If insufficient birds were tracked, extents of
the range margins could have been underestimated (Soanes, Arnould,
Dodd, Sumner & Green, 2013), and the dates of first use biased late.

Simulations for albatrosses suggest that at least ~ 30 birds need to be
tracked to obtain robust estimates of 95 % utilisation distributions
(Gutowsky, Leonard, Conners, Shaffer & Jonsen, 2015). Although our
sample sizes for most species were of this order, only 3 – 10 light-
mantled albatrosses were tracked at any one time. Moreover, our lag
estimate (9 days) was only marginally significant for this species. Hence,
light-mantled albatrosses may actually use the SIZ as soon as the ice
breaks up, a supposition supported by at-sea observations (Woehler,
Raymond, Boyle & Stafford, 2010). Lags for all species could be refined
in the future by tracking of many (>30) individuals over the ice-
recession period (October-February), or by at-sea surveys, ideally in
the same area (Ainley et al., 1993).

Another limitation is the potential mismatch between the spatio-
temporal resolution of seabird tracking (typically ≤ 1 location/h, error
< 100 m) and the ASI sea-ice data (1 image/d, resolution 3.125 km). For
example, a bird location classified as being in 50% SIC based on ASI data
could, at a finer scale, be in a patch of open water or of continuous ice
cover up to 1.5 km2 in extent, or in a finer mosaic of equal amounts of
floes and open water (Kern, Lavergne, Notz, Pedersen, Tonboe et al.,
2019; Shi, Su, Heygster, Shi, Wang et al., 2021). Furthermore, sea ice is
highly dynamic, moving on average at 0.76 ± 0.54 km/h because of
currents, tides, and wind forcing in particular (Kottmeier & Sellmann,
1996; Vihma & Launiainen, 1993), so SIC and the ice edge location can
vary markedly in between the daily remotely-sensed images (Kern et al.,
2019). Given this and the additional uncertainty associated with local-
isation of the ice edge, which only nominally coincides with the 15 %
SIC contour, our data will contain spurious instances of bird locations
within the MIZ and vice versa, and imprecise estimates of distance to the
ice edge. Future analyses may resolve these ambiguities using higher-
resolution remotely-sensed data or by analysing other properties that
structure seabird habitats, such as ice age and thickness (Arrigo, 2014;
Eicken, 1992; Flores, Haas, van Franeker & Meesters, 2008). Despite
these limitations, summary statistics presented here should be unbiased
with the possible exception of SICs for black-browed albatrosses. During
at-sea surveys, this species is very rarely recorded in the MIZ (Joiris,
1991; van Franeker, 1993), yet our analysis suggested that four percent
of tracked black-browed albatrosses entered the MIZ. We suspect that
the latter is spurious because tracked black-browed albatrosses only
encountered putative high SICs near Antarctic coastlines and large ice-
bergs, where pixels are often misclassified (see Methods). This meth-
odological issue may affect black-browed albatrosses in particular
because they prefer to forage over continental and periinsular shelves
(Wakefield et al., 2011), which are relatively narrow around Antarctica.

4.2. Use of sea-ice habitats

Although our results largely conform to the existing three-
assemblage paradigm of sea-ice habitat use by seabirds inferred from
at-sea surveys (ice-affiliated, ice-tolerant and ice-avoiding species
(Ainley et al., 2017; Ainley et al., 1994)), this categorisation of our study
species was not exact. Southern giant petrels regularly commuted from
South Georgia to both the SIZ and pack ice, highlighting that not all ice-
affiliates originate from colonies along Antarctic coastlines (Trebilco
et al., 2008). Nevertheless, this species spent most of its time in open-
water habitats, or on land (especially males). Among northern giant
petrels, only females used the pack ice during the incubation period.
These patterns are consistent with previous studies which showed that
breeding northern and southern giant petrels generally forage north and
south of the Antarctic Polar Front (APF), respectively, and that males
spend more time scavenging terrestrially (González-Solís, Croxall &
Wood, 2000b; Granroth-Wilding & Phillips, 2019; Hunter, 1983; John-
stone, 1974; Reisinger, Carpenter-Kling, Connan, Cherel & Pistorius,
2020; Thiers, Delord, Barbraud, Phillips, Pinaud & Weimerskirch,
2014).

Previously, immersion data indicated that although breeding giant
petrels foraging at sea frequently alight on the water during darkness,
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individuals travelling 700–1000 km south of Bird Island to areas with no
land often spent nights stationary but not immersed (González-Solís
et al., 2002). This was tentatively interpreted to arise from roosting on
icebergs (Section 4.4) but our analyses show that in at least some of
these cases, it is likely due to birds alighting on sea ice to roost or feed.

(a)

(b)

(c)

(d)

(e)

(f)

Sea ice concentration (%)

Zoomed−in area
Annual maximum ice extent
Contemporary ice edge

Bird track
Bird location, travelling
Bird location, not travelling

Bird Island colony
0 20 40 60 80 100

Fig. 8. Examples of typical foraging trips (two per species, each made by a different bird) that entered the Marginal Ice Zone, and corresponding sea-ice concen-
trations. (a,b) southern giant petrels, (c,d) light-mantled albatrosses and (e,f) black-browed albatrosses. Round symbols highlight half-hourly locations for one focal
day for each species – 18 December 2022, 22 December 2014 and 25 December 2021, respectively. Sea-ice concentrations shown in both the top and bottom panels
are for those days and the birds’ movements on those days are shown in detail in the bottom panels, zoomed in to the extents shown by the squares in the top panels.
Scale bars 300 km.

Table 2
Generalized Least Squares model of the lag between the date of first use (DFU) of
regions in the Seasonal Ice Zone and date of breakup (DBU) in those regions as a
function of DBU and species.

Species Parameter SE t p1 Predicted lag
(95 % CI)1

All Slope − 0.2 0.1 − 1.63 0.104
Southern
giant petrel

Intercept 15.7 15.4 1.01 0.311 − 8.2 (− 19.1,
2.8)

White-
chinned
petrels

68.4 14.8 4.63 <0.001 47.9 (33.7,
62.1)

Light-
mantled
albatros

32.9 17.0 1.93 0.054 8.6 (− 7.5,
24.7)

Black-browed
albatross

57.5 13.0 4.42 <0.001 37.9 (28.7,
47.0)

Grey-headed
albatross

59.6 14.1 4.24 <0.001 38.0 (25.1,
50.9)

1For slope, p indicates the probability that Δ(DFU − DBU)/ΔDBU ∕= 0, and
therefore ΔDFU/ΔDBU ∕= 1. p is the probability that the intercept is not zero for
southern giant petrels and that it differs from that of southern giant petrels for
the other species.
2For each species, this is DFU − DBU predicted for the middle of the observed
range of DBU for that species.
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Roosting on ice may incur lower thermoregulatory and therefore ener-
getic costs than resting on the sea (Ainley et al., 2017; Grunst et al.,
2022). However, giant petrels in our study, and those from Macquarie
Island and probably Marion Island (Reisinger et al., 2020; Trebilco et al.,
2008), travelled 100 s to 1000 s of km into the pack. Due to the cost of
flying such long distances, we assume that this not just to roost but was
primarily to forage, for example on carrion associated with pupping of
pinnipeds (see Section 4.4). Year-round, southern giant petrels spend
more time not immersed at night than northern giant petrels (Thiers
et al., 2014), possibly indicating greater use of sea ice by the latter
(either to forage or roost) is not just limited to the breeding season. Our
findings underline that both species, and particularly southern giant
petrels, have the flexibility to forage not only on land and in open water,
but also within the ice edge and pack (Ainley et al., 1984; Ainley et al.,
1992; Chapman, Ribic & Fraser, 2004; Cline, Siniff & Erickson, 1969;
Ryan & Cooper, 1989; Woehler et al., 2003; Zink, 1981). However, we
also note that giant petrels breeding in Argentina do not use sea-ice
habitats, presumably due to the proximity of more profitable foraging
on the Patagonian Shelf (Quintana & Dell’Arciprete, 2002; Quintana,
Dell’Arciprete & Copello, 2010).

Light-mantled albatrosses also clearly use some sea-ice habitats for
much of the breeding season, but not pack ice. Unlike the other small
albatrosses in our study, they do not use oceanic frontal systems
extensively (Phillips et al., 2005a). Rather, our results show that they
largely remain < 400 km from the ice edge throughout the breeding
season, following it south, without appreciable delay, as it recedes in
spring and summer. Spatiotemporal distributions of light-mantled al-
batrosses tracked from other subantarctic colonies (Carpenter-Kling,
Reisinger, Orgeret, Connan, Stevens et al., 2020; Cleeland, Alderman,
Bindoff, Lea, McMahon et al., 2019; Lawton, Kirkwood, Robertson &
Raymond, 2008; Weimerskirch & Robertson, 1994), and observed from
ships (Ainley et al., 1984; Hunt, Heinemann, Veit, Heywood & Everson,
1990; Joiris, 1991; Montague, 1988; Orgeira, Alvarez & Salvó, 2022;
Ryan & Cooper, 1989; Weimerskirch et al., 1989; Woehler et al., 2010),
indicate a similar pattern of habitat use across populations. Indeed, a
higher proportion of light-mantled albatrosses (75 %) than other species
used the SIZ, so this is arguably the most ice-dependent species in our
study.

The remaining species essentially behaved as open-water affiliates
but with some important nuances. Black-browed albatrosses foraged
within the SIZ for more of the breeding season and in higher SICs than
grey-headed albatrosses. This is consistent with occasional records of
black-browed, but not grey-headed albatrosses from ships in the outer
MIZ (Ainley et al., 1984; Joiris, 1991; Ryan & Cooper, 1989; van Fra-
neker, 1993; Weimerskirch et al., 1989; Woehler et al., 2003). These
species are closely related and morphologically very similar, so their
different foraging distributions may be a secondary consequence of
other habitat or dietary preferences (Phillips et al., 2004; Xavier, Croxall
& Reid, 2003). Black-browed albatrosses prefer neritic and shelf-slope
waters (Wakefield et al., 2011) in which fast ice may persist late into
the summer. In contrast, grey-headed albatrosses select oceanic waters
and fronts (Catry, Phillips, Phalan, Silk & Croxall, 2004; Phillips et al.,
2004), mainly frequenting the SIZ late in the summer, when seasonal sea
ice has retreated. Tracking suggests that most other black-browed al-
batross populations also use the SIZ extensively − the exception being
the breeding population at the Falkland Islands, which remains on the
Patagonian Shelf, presumably due to its proximity and high productivity
(Cleeland et al., 2019; Wakefield, Phillips & Matthiopoulos, 2014;
Wakefield et al., 2011). Grey-headed albatrosses tracked from colonies
in the southern Indian and Pacific Oceans largely avoided latitudes
coinciding with the SIZ (Carpenter-Kling et al., 2020; Cleeland et al.,
2019; Kroeger, Crocker, Orben, Thompson, Torres et al., 2020; Nel,
Lutjeharms, Pakhomov, Ansorge, Ryan & Klages, 2001; Waugh, Wei-
merskirch, Cherel, Shankar, Prince& Sagar, 1999). It is unclear whether
this reflects a preference for other habitats, or the greater distance of the
SIZ from those colonies (1300 and 1100 km, respectively vs. 430 km

from South Georgia).
Wandering albatrosses and white-chinned petrels analysed here both

acted as open-water affiliates, predominantly using ice-free areas of the
SIZ in late summer. Previous ship-based and tracking observations have
reported similar patterns of habitat use in many other areas (Ainley
et al., 1984; Carpenter-Kling et al., 2020; Cleeland et al., 2019; Delord,
Bost, Cherel, Guinet & Weimerskirch, 2013; Joiris, 1991; Veit & Hunt,
1991; Zink, 1978; Zink, 1981). White-chinned petrels in our study, and
those breeding on Crozet and Marion Islands, used the SIZ only during
chick-rearing. In contrast, those tracked from Kerguelen additionally did
so during incubation (Catard, Weimerskirch & Cherel, 2000; Péron
et al., 2010; Rollinson, Dilley, Davies & Ryan, 2018; Weimerskirch,
Catard, Prince, Cherel & Croxall, 1999) and foraged much closer to the
ice edge than birds from South Georgia (200–300 km vs. 730 km; (cf.
Fig. 6 & Péron et al., 2010)). It is unclear why, given that Kerguelen is ~
1000 km further from the SIZ than South Georgia, but this may relate to
regional differences in the phenology of primary production. During
exploratory analysis, we noted that individual variability in use of sea-
ice habitats was high among both white-chinned petrels and wander-
ing albatrosses, and some individuals of both species are occasionally
recorded far south in the Weddell Sea in late summer (Orgeira et al.,
2022; Zink, 1978). Male wandering albatrosses have a more southerly
distribution than females, especially during incubation (Froy, Lewis,
Catry, Bishop, Forster et al., 2015; Jiménez, Domingo, Brazeiro, Defeo,
Wood et al., 2016; Weimerskirch, Cherel, Delord, Jaeger, Patrick &
Riotte-Lambert, 2014; Xavier et al., 2004), so we presume that the use of
the SIZ by this species is predominantly by males. The sex of white-
chinned petrels in our study was unknown.

Habitat selection is modulated by habitat availability, accessibility
and competition, so variation in the relative locations of colonies and
resource patches is expected to give rise to geographical differences in
habitat use (Matthiopoulos, 2003; Matthiopoulos, Hebblewhite, Aarts &
Fieberg, 2011; Wakefield, Bodey, Bearhop, Blackburn, Colhoun et al.,
2013). Presumably, this explains why populations of our study species
breeding elsewhere, closer to more productive habitats, do not use the
SIZ (e.g. Quintana & Dell’Arciprete, 2002; Wakefield et al., 2011).
Regardless, our results and those of studies discussed above show that
many other albatross and petrel populations breeding on subantarctic
islands use the SIZ in a similar manner to those in our study. Habitat use
during non-breeding stages, when habitat accessibility is less con-
straining, is also revealing. Adult southern giant petrels, especially fe-
males, tracked from some (Chapman et al., 2004; González-Solís, Croxall
& Afanasyev, 2007; Phillips, McGill, Dawson & Bearhop, 2011), but not
all colonies (Thiers et al., 2014), used latitudes consistent with foraging
in the pack ice during the non-breeding period, as did fledglings (Thiers
et al., 2014; Trebilco et al., 2008). Indeed, the majority of southern giant
petrels observed from ships in the pack ice in the summer are juveniles
(Ainley et al., 1984; Zink, 1981). Non-breeding light-mantled alba-
trosses tracked from two colonies used latitudes corresponding to the SIZ
during the winter (Cleeland et al., 2019; Mackley, Phillips, Silk, Wake-
field, Afanasyev et al., 2010). In contrast, non-breeding adults of the
open water-affiliated species dispersed well north of the SIZ, often to
productive areas, such as upwellings (Cleeland et al., 2019; Delord et al.,
2013; Grémillet, Wilson, Wanless & Chater, 2000; Péron et al., 2010;
Phillips et al., 2006; Phillips, Silk, Croxall, Afanasyev & Bennett, 2005b;
Rollinson et al., 2018). In summary, we are confident that the species-
specific patterns of sea-ice habitat use we observed are general, rather
than resulting from local circumstances, even though the SIZ occurs
closer to South Georgia than to most other subantarctic islands
(Gloersen et al., 1992).

4.3. Resource tracking and temporal lags

Our findings point to two distinct seasonal movement patterns,
ostensibly reflecting the main mechanisms regulating primary produc-
tion and inter-specific differences in foraging strategies. First, the mean
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foraging latitude of open-water-affiliated species varied sinusoidally,
but out of phase by 2–3 months with the sinusoidal variation in incident
solar irradiance. This was clearest for wandering albatrosses, because
they were tracked over most of their breeding period (which spans a full
annual cycle), but was also evident for black-browed albatrosses, grey-
headed albatrosses and white-chinned petrels, which were tracked for
5–6 months of their 7–8 month breeding periods. This is likely due to
cyclicity in the main drivers of primary production − principally solar
irradiance, but also vertical mixing and nutrient availability (Arteaga
et al., 2020; Boyce et al., 2017) – which give rise to a meridionally-
propagating resource wave (Abrahms et al., 2021), lagged due to the
time required for transfer of primary production up to the trophic levels
at which seabirds feed (Sommer, Adrian, De, de Senerpont Domis, Elser
et al., 2012). Similar seasonal macroscale meridional migrations occur
among other wide-ranging higher marine predators (Abrahms et al.,
2019; Block et al., 2011). For example, in the North Pacific, blue whales
Balaenoptera musculus track phytoplankton blooms northwards with a
lag of 30 days (Abrahms et al., 2019). However, although it has previ-
ously been shown that some post-breeding seabirds migrations track
seasonal meridional shifts in production (Egevang, Stenhouse, Phillips,
Petersen, Fox & Silk, 2010; Shaffer, Tremblay, Weimerskirch, Scott,
Thompson et al., 2006; Thorne et al., 2023), we are not aware of this
effect having been quantified among breeding birds. Examination of
tracking data for other populations (e.g. BirdLife-International, 2004;
Nel et al., 2001; Wakefield et al., 2011) indicates that the pattern is
common among albatrosses and petrels breeding at other subantarctic
islands. It should be considered as the backdrop to finer scale processes
of habitat selection.

The second seasonal pattern was that birds tracked the spring retreat
of the ice edge southwards across the SIZ. Open-water species did so
with a lag of 1–2 months, whereas ice-edge-affiliated light-mantled al-
batrosses did so with little or no lag. The most parsimonious explanation
for the latter species’ behaviour is that sea ice physically impedes their
foraging or movement (Ainley et al., 2017) (section 4.4). This could also
be the case for the open-water-affiliated species but does not explain
their lagged response to the receding ice. Instead, we assume it is due to
latency in trophic transfer: Primary production within the pack increases
in spring in response to solar irradiance, peaking in late spring or
summer, just prior to the breakup (Arrigo, 2014). Melting stimulates
primary production in the upper water column by releasing nutrients
concentrated in the pack formed the previous winter. It also freshens the
water, thereby stabilizing the mixed layer (Smith & Nelson, 1985;
Taylor et al., 2013). In addition, zooplankton, including Antarctic krill,
respond to increasing photoperiod, plus the altered trade-off between
predation risk and foraging reward caused by the burgeoning food
supply, by ceasing diel vertical migration and concentrating in surface
waters (Ainley, Ballard, Jones, Jongsomjit, Pierce et al., 2015; Cisewski
& Strass, 2016; Clarke, 1988; Siegel & Watkins, 2016), making them
more accessible to air-breathing predators (Ainley et al., 1986; Beltran,
Kilpatrick, Breed, Adachi, Takahashi et al., 2021). Primary production
typically peaks 2–6 weeks after break up (Cisewski & Strass, 2016;
Conroy et al., 2023; von Berg et al., 2020) and zooplankton abundance
2–3 weeks after that (Conroy et al., 2023) – i.e. 4–9 weeks after break up,
which is very similar to the lag we observed for open-water affiliated
seabirds first using the SIZ.

We did not detect a clear seasonal shift in latitudes of tracked giant
petrels. Potentially, this is because any trend in pelagic distribution is
masked by the predominance of terrestrial foraging by males, particu-
larly northern giant petrels, throughout much of the breeding season
(González-Solís et al., 2000b; Granroth-Wilding & Phillips, 2019;
Hunter, 1983). The southward shift in the northern range limit of
northern giant petrels between incubation and chick-rearing implies
that seasonal changes in pelagic productivity do nevertheless affect this
species (light-mantled albatrosses were likewise affected). Southern
giant petrels may be less affected by open-water productivity because
they frequently forage terrestrially on carrion, and among pack ice. They

used the SIZ both before and after breakup (large positive and negative
residuals in Fig. 5), presumably because they are unimpeded by sea ice
(Section 4.4). On average, however, they first used locations in the SIZ
around the time of breakup, so the ice edge itself may also be an
important habitat. Wandering albatrosses were not tracked during the
period of most rapid ice recession but given the overall seasonal trend in
their foraging latitude, we hypothesise that their use of the SIZ was
lagged similarly to the other open-water affiliates.

While our results are consistent with the hypothesis that wide-
ranging marine predators track seasonal pulses in resources (Abrahms
et al., 2019; Durant et al., 2007; Lack, 1968), our study was necessarily
correlational so it is prudent to consider other potential causes of sea-
sonal meridional movements. For example, seasonal changes in wind
could conceivably affect habitat accessibility. However, winds at high
latitudes become lighter in summer, which would impede dynamic
soaring (Weimerskirch, Louzao, de Grissac & Delord, 2012), having the
opposite effect to that observed. Alternatively, birds could move to
higher latitudes to increase available daylight for foraging. This too is
inconsistent with our results: daylight would be maximised by switching
to high latitudes by midsummer, not after a lag that we observed. We
also caution that the hypothesised effects of light limitation and ice
breakup could be confounded, not least because the former ultimately
drives the latter. A more detailed analysis would be required to separate
these effects, but we note that ice breakup does not simply proceed along
the meridional axis in our study area (Fig. 1a and 3), because it is also
caused by wind (Kohout, Williams, Dean &Meylan, 2014; Thorne et al.,
2023; Turner, Holmes, Caton Harrison, Phillips, Jena et al., 2022).
Future analyses should consider these effects in more detail, as well as
those of nutrient supply and stratification, which also regulate local
primary production (Ardyna et al., 2017; Arteaga et al., 2020).

Although relatively sparse, other studies largely support the hy-
pothesis that seabirds track resource waves induced by sea-ice dy-
namics. For example, in Prydz Bay, East Antarctica, seabird assemblages
affiliated with the pack ice and ice edge moved meridionally in concert
with the seasonal recession and advance of the ice edge (Woehler et al.,
2003). In the Weddell Sea, peak seabird diversity and abundance fol-
lowed the spring retreat of the ice edge but with a spatial lag of ~ 7–10
km (Fraser & Ainley, 1986). Moreover, GPS-tracked Antarctic petrels
Thalassoica antarctica behaved like the ice-edge affiliates during the
spring, targeting waters that had become open 10 days previously, but
later in the summer, when sea ice was near its minimum, they behaved
like open-water affiliates, selecting areas 50–60 days post-breakup
(Fauchald et al., 2017). Notably, these lags are very similar to those
we found for these two groups.

4.4. Adaptations to sea-ice habitats

Our study and others support the view that ice- and ice-edge-
affiliated species (southern giant petrels and light-mantled albatrosses,
respectively) track those habitats year-round, whereas open-water spe-
cies track seasonal pulses in productivity (Ainley et al., 1994), rather
than any particular biophysical niche (Lambert & Fort, 2022). This
implies that although prey in open water at high latitudes are seasonally
pulsed (section 4.3), they remain relatively abundant throughout the
year, albeit not necessarily accessible to non-ice specialists in, and near
the pack ice. This prompts the questions: what adaptations facilitate or
hinder use of sea-ice habitats, and how do these adaptations maintain
niche partitioning?

Several mechanisms have been hypothesised to limit use of pack ice
by albatrosses and large petrels. Firstly, dynamic soaring, the principle
mode of flight for this group, could be inhibited by sea ice (Ainley et al.,
1984; Griffiths, 1983). Of the species tracked during our study, only
southern giant petrels flew far (100 s of km) into the pack ice (e.g.,
Fig. 8). Possibly giant petrels are able to do this because the aspect ratio
of their wings is relatively low (Obst & Nagy, 1992; Thorne et al., 2023;
Warham, 1977), allowing them to proceed by flapping, rather than
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dynamic soaring flight (Ainley et al., 2017; Pennycuick, 2008). How-
ever, giant petrels observed from land and sea use flapping flight only
marginally more than albatrosses (Obst & Nagy, 1992; Pennycuick,
1982), and we are not aware of any studies that have documented the
flight style used by giant petrels when crossing sea ice. Secondly,
specialist adaptation could be required to forage on or among ice floes
(Griffiths, 1983). Giant petrels are well adapted for bipedal locomotion,
(Prince & Morgan, 1987; Warham, 1996), which uniquely among large
procellariiforms, allows them to compete for food effectively on land,
where both species, and particularly males, frequently consume seal and
penguin carrion (Mills, Morley, Votier & Phillips, 2021; Raya Rey,
Polito, Archuby & Coria, 2012; Ridoux, 1994). Bipedal proficiency may
also allow them to scavenge competitively on ice floes, because they are
the only large procellariiform observed to do so (Marchant & Higgins,
1990). Diet within the pack ice is poorly known but is thought to be
dominated by carrion (Ainley et al., 1992; Ainley et al., 1993; Conroy,
1972). Indeed, both giant petrel species may use the pack ice more
frequently during incubation (Trebilco et al., 2008) because this co-
incides with pupping by crabeater Lobodon carcinophaga, Ross Omma-
tophoca rossii and leopard Hydrurga leptonyx seals. These seals give birth
on floes between October and November (Würsig, Thewissen & Kovacs,
2017), making placentae and dead pups available. Giant petrels may
also scavenge in association with other predators within the MIZ
(Ridoux, 1994) and capture live prey from the water near floes (Conroy,
1972).

It is unclear what adaptations facilitate use of the waters adjacent to
the ice edge by light-mantled albatrosses. Morphologically, they are
very similar to congeneric sooty albatrosses Phoebetria fusca, which
forage mainly north of the polar front (Bentley, Phillips, Carpenter-
Kling, Crawford, Cuthbert et al., 2024). It is unlikely therefore that
P. palpebrata possess gross morphological adaptations to ice-edge
foraging. Both species consume krill, fish, carrion and squid (Cooper
& Klages, 1995; Prince &Morgan, 1987; Thomas, 1982). Light-mantled
albatrosses are smaller billed (Bentley et al.), so specialisation on prey
associated with sea ice could contribute to the observed pattern of
habitat use. For example, the commonest squid in their diets at South
Georgia are Galiteuthis glacialis and Psychroteuthis glacialis (Prince &
Morgan, 1987). These and other frequently consumed prey, such as
Antarctic krill and the Antarctic silverfish Pleuragramma antarctica
(Thomas, 1982), aggregate at shallow depths under floes and near the
ice edge (Brierley et al., 2002; Davis, Hofmann, Klinck, Piñones &
Dinniman, 2017; Nesis, Nigmatullin & Nikitina, 1998). Hence, light-
mantled albatrosses could occur near but not within the pack ice
because they forage at the edges of isolated floes and bergs. Large ice-
bergs enhance local biological production and aggregate zooplankton
(Smith, Sherman, Shaw & Sprintall, 2013). They are particularly
abundant in the study area due to north-eastward advection out of the
Weddell Sea along the so called “iceberg alley” (Stuart & Long, 2011),
where light-mantled albatrosses and southern giant petrels have previ-
ously been reported associating with 2 – 39 km long icebergs (Ruhl et al.,
2011). During exploratory analysis of our data, we noted that in-
dividuals of both species occasionally followed the edges of large tabular
icebergs, but data resolution was insufficient to establish whether they
were searching for prey or simply avoiding an obstacle. Conceivably,
affiliation with the pack ice edge by light-mantled albatrosses could also
arise secondarily due to their prey preferring water masses that coincide
with the ice edge. Consistent with this hypothesis, the southern limit of
light-mantled albatrosses observed in the Ross Sea was not defined by
the presence of ice but by the − 0.5 ◦C isotherm (Ainley et al., 1984).
Moreover, the prey noted above also occur not only in association with
ice but also in open water south of the APF.

Habitat use relative to sea ice by the open-water-associated species is
consistent with previous observations (Ainley et al., 2017). We assume
they lack the morphological adaptations necessary to forage within the
MIZ. Patentley, given their winter distributions (Clay, Manica, Ryan,
Silk, Croxall et al., 2016; Mackley et al., 2010; Phillips et al., 2005b),

they are not restricted by dietary specialisation to foraging in high
latitude waters. Hence, they use the SIZ only when prey become su-
perabundant following the seasonal breakup of the pack ice, with a lag
due to the time required for trophic transfer. This implies another
adaption to sea ice: phenological matching. It has been argued that the
breeding schedule of most subantarctic albatrosses and petrels is timed
so that brood-guard, when central-place constraint is greatest, coincides
with prey abundance near the colony (Lack, 1968; Weimerskirch et al.,
1989). Notably, brood-guard of most species in our study occurs
approximately a month after the peak phytoplankton bloom around
South Georgia (cf. our Fig. 1c-i and Fig. 7 in Borrione& Schlitzer, 2013).
During post-brood, both parents can range further from the colony but
must feed both themselves and their offspring. Therefore, a refinement
to this hypothesis implied by our results is that post-brood (among those
species that use the SIZ, other than wandering albatrosses, which have a
more protracted breeding period) is timed to coincide with the post-
breakup pulse in prey availability in the SIZ.

Differences in phenological matching could also contribute to
maintaining niche differentiation among some taxa: For example, the six
week earlier breeding of northern vs. southern giant petrels (Fig. 1) is
hypothesised to reduce competition between these congeners (Hunter,
1987), with the former timing hatching to coincide with the seasonal
peak in availability of Antarctic fur seal Arctocephalus gazella carrion at
South Georgia (Hunter, 1983). Phenological synchrony between incu-
bation in southern giant petrels and carrion availability within the pack
ice could further maintain niche differentiation.

4.5. Connectivity, and implications of climate change

Our results prompt the question of how seabirds breeding in the
subantarctic affect ecosystems in the SIZ, and vice versa. Regarding the
first part of the question, subantarctic-breeding seabirds may link sea-
ice-dominated and subantarctic ecosystems in a similar way to that
previously recognised for some pinnipeds (Boyd, Staniland & Martin,
2002; Labrousse, Sallée, Fraser, Massom, Reid et al., 2017). For
example, the seasonal influx of seabirds into Antarctic waters exerts top-
down control on pelagic ecosystems in the SIZ (Croxall, Prince & Rick-
etts, 1985; Murphy, Cavanagh, Drinkwater, Grant, Heymans et al., 2016;
Warwick-Evans, Kelly, Dalla Rosa, Friedlaender, Hinke et al., 2022),
facilitates rapid nutrient recycling (Wing, Gault-Ringold, Stirling, Wing,
Shatova & Frew, 2017), and may result in a net flux of biological carbon
and nutrients northwards from the SIZ, in some cases across the APF,
likely stimulating primary production around subantarctic islands
(Otero, De La Peña-Lastra, Pérez-Alberti, Ferreira & Huerta-Diaz, 2018;
Shatova, Wing, Gault-Ringold, Wing & Hoffmann, 2016). Our results
imply that these processes intensify over the summer as open water af-
filiates forage in the SIZ more frequently, bolstered by the many smaller
but more numerous subantarctic petrels that also exploit the SIZ
(Navarro, Cardador, Brown & Phillips, 2015; Ryan & Cooper, 1989;
Shaffer, Weimerskirch, Scott, Pinaud, D.R. et al., 2009).

Regarding the second part of the question, seabird populations are
regulated in part via the effects of food supply on chick growth and
breeding success (Cairns, 1992; Weimerskirch, 2002). Unsurprisingly,
there is considerable evidence that sea ice regulates the demography of
Antarctic-breeding ice-affiliated seabirds via its effects on prey avail-
ability and accessibility (Barbraud, Delord & Weimerskirch, 2015;
Labrousse, Fraser, Sumner, Le Manach, Sauser et al., 2021; Trivelpiece,
Hinke, Miller, Reiss, Trivelpiece &Watters, 2011). Sea-ice variability is
mechanistically linked, mainly via wind, to large scale atmospheric
processes such as the El Niño Southern Oscillation and Southern Annular
Mode (Crosta et al., 2021; Isaacs et al., 2021; Stammerjohn et al.,
2008b), presumably contributing to correlations between the demog-
raphy of ice-affiliates and indices of these modes (Descamps et al., 2016;
Fraser & Hofmann, 2003; Jenouvrier et al., 2005). The demographic
rates of subantarctic-breeding albatrosses also correlate with these
modes, but the underlying causal mechanisms are poorly understood
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(Barbraud, Marteau, Ridoux, Delord & Weimerskirch, 2008; Cleeland,
Pardo, Raymond, Tuck, McMahon et al., 2021; Gianuca, Votier, Pardo,
Wood, Sherley et al., 2019; Nevoux, Weimerskirch & Barbraud, 2007;
Pardo, Forcada, Wood, Tuck, Ireland et al., 2017). Our findings suggest
that these could include mechanisms mediated by foraging in the SIZ.
For example, open water affiliates would be affected by the impact of
sea-ice dynamics on zooplankton abundance and community structure
(Arrigo, 2014; Loeb et al., 1997; Murphy et al., 2007), especially during
the later part of the summer. Similarly, all of the species might be
impacted by the limiting effects of sea-ice extent and persistence on
habitat availability (Barbraud et al., 2015). These hypotheses should be
considered in future demographic studies, alongside the potentially
confounding effects of other mechanisms linked to climatic modes
(Lovenduski & Gruber, 2005), and wind-mediated variation in accessi-
bility (Thorne et al., 2023; Weimerskirch et al., 2012). However, even
the most ice associated species in our study − southern giant petrels and
light-mantled albatrosses − spent only around 20–30 % of their time in
the SIZ. Hence, effects mediated via other features, such as water
masses, oceanic fronts, and bathymetry (e.g. Ainley, Jacobs, Ribic &
Gaffney, 1998; Bost, Cotté, Bailleul, Cherel, Charrassin et al., 2009;
Carpenter-Kling et al., 2020; Cleeland et al., 2019; Péron et al., 2010;
Reisinger et al., 2020; Ribic, Ainley, Glenn Ford, Fraser, Tynan &
Woehler, 2011; Wakefield et al., 2011) may have bigger demographic
impacts.

Explaining linkages between demography and sea ice has a growing
imperative due to perturbations in sea-ice dynamics expected under
climate change (Bestley et al., 2020; Morley, Abele, Barnes, Cárdenas,
Cotté et al., 2020). These will be additional to bycatch and other
anthropogenic stressors (Cleeland et al., 2021; Gianuca et al., 2019),
already causing unsustainable declines among albatrosses and petrels
(Phillips et al., 2016). In the Arctic, severe declines in sea ice and
changes in its phenology are already negatively impacting seabirds
(Descamps & Ramírez, 2021; Hipfner, 2008; Nishizawa, Yamada, Hay-
ashi, Wright, Kuletz et al., 2020; Ramírez, Tarroux, Hovinen, Navarro,
Afán et al., 2017). Antarctic sea ice has been relatively stable over the
satellite era but in recent summers seasonal sea ice has retreated early
and reached record lows (National Snow & Ice Data Center 2023;
Raphael & Handcock, 2022; Turner et al., 2020; Turner et al., 2022).
Given the use of sea-ice habitats by seabirds in our study, these changes
could impact the breeding success and ecosystems roles of substantial
populations of subantarctic-breeding seabirds. Ultimately, projected
future reductions in the extent of Antarctic sea ice (Eayrs et al., 2021;
Roach et al., 2020) is expected to result in large shifts in the breeding
distributions of ice-associated species (Ainley, Russell, Jenouvrier,
Woehler, Lyver et al., 2010; Ainley et al., 2017; Jenouvrier, Holland,
Stroeve, Serreze, Barbraud et al., 2014). More detailed study should be
directed to determining how subantarctic breeders will respond (Krüger,
Ramos, Xavier, Grémillet, González-Solís et al., 2018) and how this may
disrupt the connectivity they provide between Antarctic and global
ecosystems (Murphy et al., 2021).
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