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Abstract
Research on the direct effects of capture and tagging on post-release behaviour is typically limited to short-
term deployments. To investigate the initial and longer-term behavioural responses to capture and tagging, we 
deployed eight Cefas G7 tags (1Hz depth and temperature, and 20 Hz triaxial acceleration) for 21–94 hours and 
12 Wildlife Computers MiniPATs (depth, temperature, light and triaxial acceleration, each at 0.2 Hz) for 110–366 
days on Atlantic bluefin tuna (ABT) in the English Channel. Post-release, ABT exhibited a strong, highly active initial 
swimming response, consistent with patterns reported in previous bluefin tuna, billfish and elasmobranch tracking 
studies. Accelerometry tags revealed that activity (VeDBA g), tailbeat amplitude (g) and dominant stroke frequency 
(Hz) were greater (2.4, 3.2 and 1.4 times respectively) within the first hour post-release than the subsequent 24 
hours, stabilising at lower levels within 5–9 hours. However, lower resolution accelerometry data (0.2 Hz), obtained 
from longer periods from MiniPATs, revealed that fish then maintained this reduced activity for 11 ± 7.9 days 
(mean ± 1 SD; range: 2–26 days), during which they displayed disrupted diel patterns of activity and allocated 
on average 5 minutes of each day to burst energy events, compared to 14 minutes (max 74 minutes) during 
“recovered” periods. Subsequently, their activity levels increased again and were characterised by higher magnitude 
acceleration events (which may constitute feeding events) and became more active during the day than at night. 
Year-long deployments revealed that consistent diel vertical migration, diurnal patterns of activity, and increased 
time allocation to fast starts are normal for ABT off the British Isles in summer months, and their absence at the 
start of data collection may be related to the effect of capture and tagging, which may be longer lasting, and more 
complex than previously appreciated.
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Background
Biologging of bony fish and elasmobranchs has contrib-
uted to stock and mortality assessments [1–3], welfare 
management in recreational fisheries and aquaculture 
[4, 5], protected area designation [6], invasive species 
control [7] and fisheries management [8, 9]. Tracking of 
wild fish often requires capture, tagging and handling of 
animals prior to release, which may induce behavioural 
changes [10, 11], physiological stress [12–17], or even 
mortality [18, 19]. Hence, addressing and mitigating the 
adverse effects of capture, tagging and release is needed.

Fish in captive studies can be acclimated for a period 
of time following handling and/or tagging prior to study 
[20, 21], but this is largely unfeasible in the field, particu-
larly for large marine species. To avoid including periods 
of acclimation to attached or implanted devices, studies 
often exclude data at the start of tracking periods for a 
(usually arbitrary) period, ranging from hours to weeks 
[22–29]. However, there is a lack of baseline understand-
ing of when sub-lethal effects subside and when the 
study animal returns to “normal” [30]. This understand-
ing might be gained using high-resolution tri-axial accel-
eration data [31] but has rarely been achieved owing to 
battery power and memory capacity limitations [32]. 
Consequently, studies investigating post-release behav-
iour using accelerometry typically last from minutes [11, 
33, 34] to a few days [10, 15].

Atlantic bluefin tuna (Thunnus thynnus, hereafter 
ABT) are highly migratory pelagic predators distrib-
uted throughout the North Atlantic Ocean [8, 9, 35–37], 
whose population biomass is increasing [38]. Whilst 
electronic tagging studies have provided valuable data 
to support management of ABT stocks [3, 39, 40], there 
remains only a superficial understanding of the response 
of ABT to capture, tagging and release over timescales 
longer than a few days [41–44]. Better understanding 
of how the capture and tagging process impacts ABT 
behaviour is therefore essential to maximise the value of 
tagging data.

Previous studies on ABT support that post-release, 
capture and tagging has an immediate effect on swim-
ming behaviour, with tailbeat frequencies that were 50% 
higher in the first hour post-tagging and release com-
pared to the subsequent 24  h [44] and remained high 
for up to 6 h [45]. Iosilevskii et al. [16] and Gleiss et al. 
[45] reported swimming speeds that were twice and 1.7 
times higher, respectively, in the first six hours than in 
the hours afterwards. However, although ABT recover 
well from capture and tagging [3, 8, 41, 46], as evidenced 
by observations of important behaviours (e.g. spawning) 
from tagged ABT [39, 47, 48], it is unclear if the response 
to catch-and-release persists over a longer period (e.g. 
days to weeks) rather than the short periods suggested 
to date. This may be particularly important if ABT are 

caught and tagged when they are about to perform eco-
logically significant behaviours such as spawning, which 
may be disrupted as a result of the capture and tagging 
process. Minimising the post-release response is para-
mount for their welfare [49].

In the present study, we make use of long-term deploy-
ments and retrievals of archival pop-up tags to make 
observations on the potential long-term effects of cap-
ture and tagging on ABT tracked off the British Isles.

Methods
Tag deployments
Between October 2018 and November 2021, 81 ABT 
(mean curved fork length: 198 ± 22  cm, range: 153–
242  cm) were captured off the southwest coast of 
England, Wales and the Channel Island of Jersey, by 
professional rod and reel anglers, using trolled lures 
attached to spreader bars and 50 or 80 lb class reels. Fish-
ing metrics were recorded including gear type (line test, 
hook type), fight time (duration from initial hooking to 
the fish being brought alongside the boat), handling time 
(time from which fish were boarded until release back 
to the water), and water depth at release. Captured tuna 
were assessed for their fitness for tagging and again for 
their fitness for release back to the wild (Supplementary 
Fig.  1). On-deck, their gills were irrigated with saltwa-
ter while the tagging procedure took place (for detailed 
handling methods, see [37]) and they were then returned 
to the water and towed using a ‘boga grip’ (Pratiko, Italy) 
or lip hook at the side or rear of the vessel < 5 knots to 
aid reoxygenation. Fight times ranged from 10 to 34 min, 
handling times ranged from 1.3 to 3.5  min (mean 
2.6 ± 0.5 min), and all ABT were towed for 4.3 ± 1.4 min 
(range 1.3–7.3  min) before release (Table  1). Eleven 
ABT were tagged with packages that comprised a Cefas 
G7 pDST accelerometer tag (Cefas Technology Limited 
CTL, UK), coupled with a mrPAT or mrSPOT tag (model 
375, Wildlife Computers, WA, USA) to facilitate recov-
ery of the tag following its release from the ABT. These 
packages were attached front and aft using cable ties to 
a saddle of two galvanic time releases, which corroded 
over a period of 2–4 days, eventually releasing the tag 
package. G7 tags were programmed to collect tempera-
ture and depth at 1  Hz frequency, and tri-axial accel-
eration at 20  Hz (n = 9 fish) or 30  Hz (n = 2 fish). Data 
gathered at 30  Hz were decimated to 20  Hz through 
linear interpolation using the R package “dplyr” so that 
all G7 tags could be analysed at the same frequency. A 
further 70 fish (mean curved fork length: 197 ± 23  cm, 
range: 153–242 cm) were tagged with Wildlife Comput-
ers MiniPAT tags, attached by a monofilament tether to 
a titanium dart inserted intramuscularly near the second 
dorsal fin. The tag was held in place with an additional 
loop that was also attached by an intramuscular titanium 
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dart [37, 50]. MiniPAT tags recorded depth, tempera-
ture, tri-axial acceleration and light level at 0.2  Hz (1 
data point every 5  s) or 0.067  Hz (one data point every 
15  s) for a year. A total of 27 MiniPAT tags and 8 G7 
tags were retrieved after detachment from the ABT. By 
down-sampling data from the high-resolution tags to 
various frequencies (ranging from 20 Hz to 0.05 Hz), tail-
beat signal from the lateral acceleration was lost below 
5  Hz and bursts in acceleration could only be detected 
above 0.2  Hz. Thus, the fifteen MiniPAT tags recording 
at 0.067 Hz were excluded from the present study as the 
resolution was deemed too low to retrieve post-release 
behaviour. A total of 20 recovered tags (n = 8 G7 tags and 
n = 12 MiniPAT tags) were then included in the present 
study (Table  1). The Wildlife Computers Global Posi-
tion Estimator 3 (GPE3) light geolocation model ( h t t p  s : 
/  / s t a  t i  c . w  i l d  l i f e  c o  m p u  t e r  s . c o  m /  L o c  a t i  o n - P  r o  c e s s i n g - U 
s e r G u i d e . p d f ) was used to generate 0.25 × 0.25° location 
likelihood rasters for the MiniPAT datasets, where cells 
with < 1% likelihood were omitted from further analysis. 
Mean bathymetry was extracted from General Bathymet-
ric Chart of the Ocean (GEBCO, gebco.net; resolution 
0.004°) using the R package “raster”. Mean bathymetry for 
each location was expressed as the grand mean depth of 
each raster cell, weighted by the likelihood values.

Data processing
To account for differing tag attachment orientation on 
each tuna, accelerometry data were calibrated follow-
ing rotations of known angles using the R package “tag-
tools”, once data were processed to 20  Hz for G7 tags. 
This enables each tag’s frame of reference to be aligned 
with the tuna’s axes and be comparable between indi-
viduals. The accelerometry data from the MiniPAT (col-
lected a 0.2 Hz) were processed in the same way. Depth 
was temperature corrected using the R package “tag-
tools”. “Activity” was defined using accelerometery data, 
which comprises two components, (i) low-frequency 
static acceleration and (ii) high-frequency dynamic accel-
eration. The static component relates to the inclination 
of the tag with respect to the earth’s gravitational field 
(which is analogous to the ABT’s body posture) and was 
obtained by individually smoothing each of the three 
acceleration channels with a running mean of two sec-
onds for the G7 tags (following [51]). Dynamic accelera-
tion relating to the tuna’s movement [52] was obtained 
by subtracting the static acceleration from the raw accel-
eration in all three axes and then expressed as Vectorial 
Dynamic Body Acceleration (VeDBA; [53]). A spectro-
gram of the lateral acceleration was generated in Ethog-
rapher ver. 2.04 [54] in Igor Pro (Igor Pro 8, WaveMetrics 
Inc., Lake Oswego, USA), calculated by continuous wave-
let transformation using the Marlet wavelet function with 
a minimum cycle of 0.125  s and maximum cycle of 2  s 

Table 1 Electronic tag deployments on Atlantic Bluefin Tuna (one fish per row) tagged in the south-west UK (2018–2021). * NR refers 
to no complete record of tow duration
Tuna ID Tag type Sampling 

frequency
Deployment 
date

Deployment 
duration 
(days)

Displace-
ment 
distance 
(km)

Tag location 
to pop-up 
distance (km)

Curved 
Fork 
length 
(cm)

Esti-
mated 
weight 
(kg)

Fight 
time 
(min)

Tow 
time 
(min)

16P1231 MiniPAT 0.2 Hz 23 Aug 2019 265 11,417 1208 212 148 15 03:22
16P2365 MiniPAT 0.2 Hz 25 Aug 2019 121 3649 682 199 116 11 04:11
17P1004 MiniPAT 0.2 Hz 03 Sept 2019 365 16,224 135 203 134 12 04:59
18P0812 MiniPAT 0.2 Hz 02 Nov 2018 278 13,432 288 175 81 18 NR
18P0837 MiniPAT 0.2 Hz 02 Sept 2019 365 15,745 794 181 90 15 03:33
18P0932 MiniPAT 0.2 Hz 23 Oct 2019 337 14,134 35 238 211 34 03:11
19P0137 MiniPAT 0.2 Hz 18 Nov 2019 314 8964 77 166 80 NA NR
19P0206 MiniPAT 0.2 Hz 02 Oct 2019 362 19,599 7 221 141 28 05:40
20P0084 MiniPAT 0.2 Hz 09 Sept 2020 362 14,145 44 229 155 12.67 04:59
20P1136 MiniPAT 0.2 Hz 12 Sept 2020 365 15,733 193 194 107 12.68 05:03
20P1137 MiniPAT 0.2 Hz 16 Sept 2020 359 14,520 197 201 129 18 07:16
21P0468 MiniPAT 0.2 Hz 04 Sept 2021 110 2016 224 153 51 10.88 NR
A15884 G7 pDST 30 Hz 08 Sept 2019 3.93 380 193 113 10 NR
A17240 G7 pDST 20 Hz 09 Sept 2020 1.85 175 196 98 11.12 03:08
A17247 G7 pDST 20 Hz 09 Sept 2020 0.89 172 205 127 15 04:46
A17248 G7 pDST 30 Hz 21 Oct 2019 2.15 177 212 152 30 NR
A17890 G7 pDST 20 Hz 11 Sept 2020 3.73 172 212 124 10 01:16
A17891 G7 pDST 20 Hz 15 Sept 2020 3.64 173 204 131 10 03:00
A17893 G7 pDST 20 Hz 13 Sept 2020 3 113 207 149 30 05:52
A17939 G7 pDST 20 Hz 15 Nov 2021 3.68 158 185 98 10 03:54

https://static.wildlifecomputers.com/Location-Processing-UserGuide.pdf
https://static.wildlifecomputers.com/Location-Processing-UserGuide.pdf
https://static.wildlifecomputers.com/Location-Processing-UserGuide.pdf
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for each fish [54]. Tailbeat amplitude (TBA; g) was calcu-
lated for each 1 s interval using the Peak Tracer function 
in Igor Pro. Dominant stroke frequency (DSF) was calcu-
lated using the R package “tagtools”, with tailbeat period 
(TBP) calculated as the inverse of DSF, in seconds. TBA, 
TBP and DSF for each ABT were divided by the curved 
fork length to correct for size. Since ABT tailbeat signal is 
lost below 5 Hz sampling frequency, TBA, TBP and DSF 
metrics were only extracted for the G7 tags. To investi-
gate whether the activity of G7-tagged ABT differed from 
those tagged with MiniPATs, G7 data were down-sam-
pled to 0.2 Hz to match the MiniPAT tags and expressed 
using VeDBA calculated over a 10  s smoothing window 
(Supplementary Fig. 2). Due to differences in attachment 
styles between tag types, fine scale movement of the tag 
(“wobble”) differed slightly between tag types (see discus-
sion below).

Immediate response post-release
For G7 tags, a mean value was calculated for VeDBA, 
TBA, DSF and TBP for each hour, per fish, for the first 
24  h of deployment, and metrics were deemed to have 
stabilised once mean values had plateaued (right-sided 
asymptote). The overall plateau time, representing the 
mean timing at which swimming metrics plateaued, was 
calculated across all fish. Mean hourly VeDBA was also 
calculated for MiniPAT tags and for the down-sampled 
G7 accelerometry data for each hour of deployment. 
Trends in mean hourly activity for the first 24  h post-
release (considered ‘immediately post-release’) were 
visualised using the “geom_smooth” function in R using 
the formula y ~ s(x) from the family “loess”. Other large 
billfish and tuna species have previously been observed 
making an initial, sudden near vertical dive following 
release, which is thought to be linked to a physiological 
stress response, and/or perhaps thermoregulatory behav-
iour. They often remained at depth for an atypically long 
period before returning to shallower waters [55–57]. In 
the current study, the duration of the first dive (defined 
as > 10  m and lasting at least 20  s, before returning to 
< 10  m, following [57]) was plotted against fight time. 
Depth data from G7 tags were down-sampled to match 
the sampling frequency of the MiniPAT tags. Depth data 
for both tag types were then smoothed to a 10 s running 
mean.

Longer term patterns of behavior
To determine whether activity and depth patterns of each 
ABT for the first seven days following capture and tagging 
differed from the overall behavioural patterns observed 
in the first month post-release, a resampling test using 
similarity values was performed following [19] on the 12 
MiniPAT tags. Pair-wise correlation coefficients of mean 
hourly VeDBA and depth values for MiniPAT data were 

calculated daily, for the first and last 30 days post-release 
separately (i.e. day 1 against day 2, day 1 against day 3, 
... day 30 against day 1 etc.) using the function “ccf” in 
R with zero lags, with activity and depth analysed sepa-
rately. Cross-correlation values ranged between − 1 and 1 
(perfect negative and positive correlation, respectively), 
while values of 0 indicated no association. Median cor-
relation values (from here on ‘daily similarity values’) 
were then calculated for each day. Days with dissimilar 
patterns of behaviour would be expected to have values 
lower than 0. Days were then ranked from 1 to 30 based 
on daily similarity values, from lowest (day most dissimi-
lar to the overall pattern) to highest (day most similar to 
the overall pattern). The rank of daily similarity values 
for each fish was shuffled 10,000 times without replace-
ment using the R package “resample” and the first seven 
values from each reiteration sampled to represent days 
1–7 post-release. Values falling below the 5th percentile 
of the distribution of resampled values for each day were 
considered significantly different to the overall behav-
ioural pattern. Following [19], post-release behaviour in 
the first week following release was considered different 
if at least one of the first seven days’ similarity values was 
lower than the 5th percentile of resampled values, as well 
as the average rank of the first 7 days being below 15 (i.e. 
the lower half of correlation values) (see Tables 2 and 3).

Since fish exhibited inconsistent behavioural patterns, 
as indicated by low daily similarity values and a lack of 
clear diel behaviour (see “Overall diel patterns of activity 
and depth” methods below) for periods extending beyond 
the first week, a criterion was established to determine 
when they resumed a consistent pattern of diel behav-
iour. Return of diel behaviour was defined as occurring 
when fish displayed at least three days of diurnal behav-
iour within a seven-day window (e.g. vertical red line in 
Fig. 2). Owing to small sample sizes and multiple possible 
interacting variables, ABT length, weight, fight time, total 
handling time, ambient temperature and lunar phase 
were tested independently for influence on the timing 
of the return of cyclical pattern of activity, using linear 
regressions.

Finally, the 11th month of tracking data (last 30 days 
of deployment for fish with over 330 days tracking days, 
n = 6 fish) was used as a control to compare activity and 
depth patterns with the first 30 days post-release. By this 
point, ABT had returned to locations similar to where 
they were initially captured and were experiencing condi-
tions and bathymetry comparable to those prior to tag-
ging. While the sublethal effects of capture and tagging 
were expected to have subsided within a month, ABT 
activity and depth use are known to vary with migration 
phases [58], so behavioural patterns observed outside of 
their English Channel feeding grounds may not reflect 
how the ABT would typically be behaving had capture 
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and tagging not occurred. We therefore excluded any 
comparisons of months 2–10 post-release due to the 
ABT likely being in different places or at different times 
to when there were initially tagged.

Impact of capture, tagging and release on the 
spatiotemporal variation in “fast start” events
‘Fast starts’ are sudden, brief, acceleration bursts, poten-
tially associated with predator-prey encounters and/or 
other feeding activities [59]; though without simultane-
ous video validation [60] or archival tags measuring the 
heat increment of feeding [61], foraging behaviour can-
not be confirmed. Fast starts were determined in the 
present study following methods in [62] as events where 
VeDBA values were above the 99th percentile of the 
entire deployment period for MiniPAT tags (Supplemen-
tary Fig.  3). The time allocated to fast start events per 
week during the first and last 30 days post-release was 
then compared.

Overall diel patterns of activity and depth
Sunrise and sunset times derived from light levels (via 
GPE3 outputs) were used to partition periods of day 
and night. For each MiniPAT tagged ABT (n = 12), a 
mean VeDBA and mean depth value was calculated for 

each day and night periods, and diel patterns of activity 
tested using Welch t-tests, or Wilcoxon rank sum tests if 
data were not normally distributed. Activity was classi-
fied as either diurnal, nocturnal, or neither, and average 
daily depth values were compared for day and night-
time periods using Welch t-tests or Wilcoxon rank sum 
tests. Differences in VeDBA and mean depth were com-
pared for the first and last 30 days of deployment for the 
six ABT that had year-long MiniPAT deployments. To 
test whether the lunar cycle influenced the overall depth 
use and activity in the first and last 30 days of deploy-
ment, moon phase was extracted using dates with the 
R package “lunar”. Then, mean depth and activity were 
compared between moon phases using Kruskal Wallis 
rank-sum tests. The effect of bathymetry on depth use, 
and the timing of when diel depth behaviour returned, 
was also examined.

Movement
Minimum straight-line distance between daily locations 
from MiniPAT data were calculated using the “oce” R 
package, and a straightness index (SI) was calculated as 
the minimum horizontal distance between release and 
pop-off locations, divided by the cumulative distance 
travelled by the ABT between these points [63]. SIs 

Table 2 Correlation and similarity ranks of ABT diel activity 
patterns relative to overall post-release, for all 12 fish for the first 
30 days post-release and 6 fish (with year-long deployments) 
for the last 30 days. * Fish ID in bold indicates potentially altered 
activity patterns during the first 7 days post-release
Fish ID Correlation 

coefficient 
range

Dissimilar 
post-release 
days (≤ 5th 
percentile)

Average rank of daily 
similarity values 
among post-release 
days 1–7 (scale 1–30)

First 30 days of deployment
16P1231 -0.35;0.39 2, 21 13
16P2365 -0.31;0.44 20, 21 17
17P1004 -0.30;0.28 13, 21 18
18P0812 -0.22;0.50 1, 7 9
18P0837 -0.16;0.29 12, 14 16
18P0932 -0.35;0.54 1, 6 9
19P0137 -0.14;0.20 20, 29 19
19P0206 -0.31;0.30 5, 15 9
20P0084 -0.33;0.55 4, 5 8
20P1136 -0.37;0.39 2, 4 5
20P1137 -0.08;0.45 3, 5 8
2,130,468 -0.18;0.76 3, 4 6
Last 30 days of deployment
17P1004 -0.09;0.53 20, 21 16
18P0837 0.38;0.71 17, 30 19
19P0206 0.48;0.82 19, 27 14
20P0084 0.54;0.80 1, 9 11
20P1136 0.38;0.81 17, 18 20
20P1137 -0.07;0.76 18, 21 16

Table 3 Correlation and similarity ranks of ABT diel depth-use 
patterns relative to overall post-release, for all 12 fish for the first 
30 days post-release and five fish (with year-long deployments) 
for the last 30 days
Fish ID Correlation 

coefficient 
range

Dissimilar 
post-release 
days (≤ 5th 
percentile)

Average rank of daily 
similarity values 
among post-release 
days 1–7 (scale 1–30)

First 30 days of deployment
16P1231 -0.27;0.29 25, 27 18
16P2365 -0.25;0.33 4, 25 8
17P1004 -0.27;0.21 2, 28 15
18P0812 -0.23;0.32 27, 30 14
18P0837 -0.17;0.44 4, 12 14
18P0932* -0.12;0.48 3, 9 8
19P0137 -0.18;0.53 20, 29 21
19P0206* -0.26;0.33 3, 5 9
20P0084 -0.26;0.11 23, 24 18
20P1136 -0.11;0.18 16, 24 18
20P1137 -0.08;0.34 15, 21 17
2,130,468 -0.31;0.43 20, 21 23
Last 30 days of deployment
18P0837 -0.17;0.60 12, 26 11
19P0206 0.27;0.84 1, 2 13
20P0084 0.29;0.72 9, 10 12
20P1136 0.35;0.54 9, 10 14
20P1137 0.18;0.26 4, 11 14
Fish ID in bold indicates potentially altered depth patterns during the first 7 
days post-release

* Fish that also had altered patterns of activity
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were calculated for the first and last 30 days of deploy-
ment, as well as weekly for the first and last four weeks 
of the deployment, and compared using Welch t-tests. 
ABT daily locations were classified into two latent cat-
egorical states: (1) directed movement and (2) localised 
movement, using Hidden Markov Models (HMM) in the 
R package “MoveHMM” R [64]. Step lengths were mod-
elled using a Gamma distribution, and turning angles 
were modelled using a Von Mises distribution. Directed 
swimming was associated with larger travel distances and 
directional persistence, where turning angles were close 
to 0, while localised movement was assumed to be asso-
ciated with short travelling distances and high turning 
angles. Models were checked using the pseudo-residuals 
[64]. To test whether patterns of depth use were influ-
enced by movement states, mean daytime and night-
time depths were compared for periods of directed and 
localised swimming for both the first 30 days and the 
last 30 days of deployment separately. Generalised linear 
mixed models (GLMM) were fitted to the data with mean 
depth as the response variable. Daytime or nighttime, 
and behavioural state (directed and localised movement) 
were included as fixed effects, while variation between 
fish was accounted for by specifying tag ID as a random 
effect. GLMMs were fitted with log-transformed data 
using the “lme4” package in R. Models were checked by 
visually inspecting standardised residuals using the “Per-
formance” package.

Results
Behaviour immediately following release
Fight time increased significantly for heavier ABT (linear 
regression, y = 0.11x + 3.52; R2 = 0.25, p = 0.04, Fig.  1A). 
Following release, most ABT made an initial dive to 
34 ± 15.9  m (mean ± SD, range 16–75  m, mean seafloor 
depth at site of release 69 ± 13.5 m, range: 43–107 m) for 
between 8 and 175  min (mean 51.7 ± 46.5  min). While 
estimated weight had no influence on dive duration 
(linear regression: y = 0.09x + 45.04; R2 = 0.005, p = 0.78, 
Fig.  1D), fight time significantly increased dive dura-
tion (linear regression: y = 4.05–8.35; R2 = 0.42, p < 0.01; 
Fig.  1B), with each minute of fighting resulting in 
4.05 ± 1.27 min longer dives. Handling time at the vessel 
did not have a significant effect on dive duration (linear 
regression: y=-9.73x + 72.28; R2=-0.03, p = 0.55, Fig.  1E) 
nor the maximum depth of the dive (linear regres-
sion: y=-1.10x + 33.48; R2 = 0.003, p = 0.86, Fig.  1F). The 
maximum depth reached by ABT in the initial dive also 
increased significantly with fight time (linear regression, 
R2 = 0.27, p = 0.04, depth = 1.11 fight time + 16.32; Fig. 1C).

ABT displayed an initial flight response follow-
ing release. The greatest distance covered by the 
ABT occurred on the first day post-release (mean: 
87.4  km ± 44.04  km in a day), followed by strongly 

directed swimming identified by Hidden Markov Model 
(HMM, slope directed movement to localised move-
ment: -1.83 (CI: -2.83; -1.62), slope localised movement 
to directed movement: -3.06 (CI: -3.29; -2.05)) lasting 
on average of 8.3 ± 3.9 days, with a straightness index 
of 0.83 ± 0.08. ABT travelled on average 73 ± 14.7  km.
day− 1 during periods of directed movement compared 
to 22.8 ± 22.8 km.day− 1 during periods of localised move-
ment. Eight fish made directed movements for up to 14 
days (straightness index: 0.66 ± 0.28), where they travelled 
on average 552  km (± 26  km range: 187–813  km) away 
from their tagging location regardless of tagging year or 
month (late August to mid-November) (Figs. 2, 3 and 4). 
Their movements then became significantly more tortu-
ous, with a lower mean straightness index (SIweek3= 0.48, 
Welch t-test, t = 4.95, p < 0.001, and SIweek4=0.40, t = 5.49, 
p < 0.001 respectively; Figs. 2 and 4).

Behaviour in the 24 h following release
ABT tagged with G7 tags were 2.4 ± 0.53 times more 
active in the first hour post-release (VeDBA: 0.18 ± 0.06 g, 
range: 0.11–0.30  g) than the subsequent 24  h (VeDBA: 
0.07 ± 0.01  g; Fig.  5A). Tailbeat amplitude was also 
3.2 ± 0.83 times greater (0.17 ± 0.04  g, vs. 0.06 ± 0.02  g) 
and dominant stroke frequency 1.4 ± 0.15 times greater 
(1.61 ± 0.16  Hz, vs. 1.18 ± 0.06  Hz, Fig.  5B). While vari-
able, within 5–9 h post-release the metrics had declined 
to a relatively stable value, mean hourly VeDBA for all fish 
combined plateaued after 6 h (± 1.7, range 4–8 h), TBA 
within 5 h (± 1.5, range 3–7) DSF within 7.4 h (± 2.8 range 
4–12 h) and TBP within 8.4 h (± 4.2, range 4–13 h). Simi-
lar patterns of activity were recorded for ABT tagged with 
MiniPATs, with mean hourly VeDBA peaking in the first 
hour post-release for most ABT (0.23 ± 0.09  g; Fig.  6A, 
Supplementary Fig.  2B), though four fish had slightly 
elevated mean hourly VeDBA during the third hour post-
release compared to the first hour (0.05 ± 0.04  g). ABT 
activity declined and stabilised within 6 ± 1.9  h (range 
3–9 h) (Fig. 6A). While MiniPAT and G7 tagged ABT had 
similar curved fork length (Welch t-test t = 0.50, p = 0.62), 
mean hourly VeDBA was 1.3 times greater for MiniPAT 
compared to G7 tagged fish (Supplementary Fig. 2).

30-day behavioural response– activity levels
The initial burst activity recorded by G7 and Mini-
PAT tagged fish immediately post-release was followed 
by a period of very low activity (lower than 95% of all 
VeDBA data) compared to that observed over the annual 
cycle. Low activity occurred from 8 h post-release (max 
onset 21  h), with the lowest mean hourly VeDBA value 
recorded across the entire 12-month deployment period 
(for MiniPAT fish; Fig.  6B). In the first 24  h of deploy-
ment, mean hourly VeDBA values fell within the lowest 
5th percentile of all mean hourly VeDBA recorded across 
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ABT’s full deployments, for an average of 13 ± 10 h, with 
reduced and dissimilar patterns activity lasting from 2 to 
26 days (mean: 11 ± 7.9 days, Figs. 7 and 8). Seven out of 
12 ABT (18P0812, 18P0837, 19P0137, 19P0206, 20P0084, 
20P1136, 20P1137) exhibited irregular activity for more 
than a week post-tagging, with no evidence of diel pat-
terns of behaviour (Figs.  2 and 8; Table  2), while three 
(16P2365, 17P1004, 18P0932) exhibited consistent diel 
activity within four days (Table 2, Supplementary Figs. 4 
& 5). Across all MiniPAT tagged ABT, low daily similar-
ity value ranks were recorded in the initial days follow-
ing release, with the first two days post-release being 
the most dissimilar days in four of the 12 fish (Table 2). 
Following this period of reduced activity, fish increased 

activity at different rates (Figs.  2, 7, Supplementary 
Fig. 5).

There was no relationship between fight time or fish 
length or weight on when diurnal activity resumed (fight 
time linear regression: R2 = 0.03, p = 0.61; fish length 
R2 = 0.21 p = 0.13; weight: R2 = 0.22 p = 0.13). Water tem-
perature at capture also didn’t explain the period of time 
to exhibit diel vertical migration (hereafter DVM) (lin-
ear regression: R2 = 0.51, p = 0.49), and though the tim-
ing of DVM patterns coincided with the new moon for 
six of the 12 ABT, this may be an artefact of when tag-
ging occurred, as seven out of 12 fish were tagged dur-
ing the waning moon, and an additional four fish during 
the new moon. Mean activity remained similar regardless 

Fig. 1 Effects of capture and tagging on duration and depth of Atlantic bluefin tuna first dive. Scatterplots showing the relationship between (first row) 
fight time and (A) estimated fish weight, (B) the duration of the tuna’s first-dive post-release, and (C) the maximum depth of the first dive (defined as the 
first dive below 10 m lasting at least 20 s). (Second row) the relationship between the duration of first dive following release (y-axis) and (D) total handling 
time (fight time and time spent on deck), (E) duration of the first dive and handling time (time spent on deck), and (F) maximum depth of he first dive (m) 
and handling time. Each circle represents a single fish colour-coded by its weight (kg, where redder colours indicate heavier fish). Grey polygons indicate 
95% confidence intervals of linear relationship (black line)
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of moon phase in the first 30 days post-release (Kruskal-
Wallis rank sum test, X2 = 0.66, df = 3, p = 0.88).

30-day behavioural response– depth use
In contrast to reduced activity patterns, only four Mini-
PAT tagged ABT showed dissimilar patterns of depth use 
following release (Table 3; Fig. 3). The return of diel depth 
use in these individuals coincided with a change in their 
location (and thus the underlying mean bathymetry from 
104 ± 15 m to 2,669 ± 948 m), and occurred during differ-
ent lunar phases. For eight fish, depth use remained simi-
lar regardless of lunar phase (Kruskal-Wallis rank sum 
test, X2 = 3.93, df = 3, p = 0.27) and was generally better 

described by the underlying bathymetry, constraining 
dives (Fig. 3). For example, ABT that experienced a nar-
row depth range and little variation in mean bathymetry 
throughout the first month of deployment maintained 
similar patterns of depth use throughout the first 30 days 
(Fig.  3, fish IDs: 18P0837, 19P0137, 20P1136, 20P1136, 
21P0468). Overall, across the first 30 days, ABT swam 
shallower at night than during the day (GLMM: t2= -2.49, 
p = 0.01; day: 24.5 ± 34.6  m, night: 20.6 ± 17.6  m). How-
ever, depth use remained similar regardless of whether 
ABT were undergoing directed or localised movements 
as determined by the HMM (GLMM: t2=-1.63, p = 0.10; 
directed movement: 22.9 ± 29.5  m, localised movement: 

Fig. 2 ABT activity patterns for the first and last 30 days of deployment. Mean hourly activity (VeDBA) pattern (first and third columns) of six fish (one 
fish per row) for the first 30 days (A-F) and last 30 days (M-R) of deployment. Shaded backgrounds correspond to the lunar phase (see legend, bottom). 
Red vertical lines show the day on which regular DVM was exhibited (figures lacking red line did not exhibit disrupted depth patterns in the first week 
post-release). Daily similarity values (second and fourth columns) of each day post-release, relative to the whole deployment period for the first 30 days 
(G-L) and last 30 days (S-X), coloured by correlation values, where days more similar to the overall activity pattern are shown in lime green, and more 
dissimilar days in blue
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21.5 ± 20.2 m), and there was no interaction between time 
of day and movement state (GLMM: t2=-1.67, p = 0.10).

Measuring fast starts (potential foraging events) and 
behavioural influences of tagging
ABT varied in the amount of time they allocated per day 
to fast starts. Inactive days, defined as those when fish 
spent < 1% of their time performing fast starts, occurred 
on average for 6.2 ± 1.3 days of the first week post-release 
(88% of the week, range 4–7 days; Fig.  4B). By week 4, 
inactive days occurred on 4.3 ± 2.5 days of each week 
(61% of the week). Overall, in the first 30 days, fish spent 
0.76 ± 1.54% of each day performing fast starts. This 

varied between fish (e.g. fish 20P0084 allocated 14.9%, 
while fish 20P1137 allocated 0.3%; Fig. 4A). In contrast, 
in the last 30 days of deployment ABT were much more 
active, allocating < 1% of each day to fast starts for only 
2.7 ± 2.1 days of weeks 1 and 4 respectively (Fig.  4E-F, 
Supplementary Figs. 6 & 7).

Behaviour 11 months later
For tags deployed for 12 months (n = 6), the last 30 days 
of the deployment showed diurnal patterns of behaviour 
(Fig. 8B), with greater VeDBA during the day compared 
to the night (Wilcoxon rank sum test, W = 3.5 × 10^6, 
P < 0.001, VeDBAday: 0.30  g ± 0.14 vs. VeDBAnight: 

Fig. 3 Depth use for the first 30 days of deployment for all ABT. Post-release depth profiles (first and third columns) of the twelve MiniPAT tagged fish (A-F) 
and (M-R), with underlying bathymetry shown as a grey polygon. Shaded backgrounds correspond to the lunar phase (legend, bottom). Red vertical lines 
(for four fish) show the day on which depth use patterns become more similar to the overall tracking period. Plots lacking red lines (eight fish) did not 
exhibit dissimilar depth patterns in the first week post-release based on daily similarity values and resampling technique described in the Methods. Daily 
similarity values (second and fourth columns) of each day post-release, relative to the whole deployment period (see Methods) for the first 30 days (G-L 
and S-X), coloured by correlation values, where days more similar to the overall activity pattern are shown in lime green, and more dissimilar days in blue
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Fig. 4 Time allocation to fast start events for the first and last 30 days of deployment. Maps of ABT daily locations for the (A) first (n = 12 ABT), and (D) last 
30 days of the deployment (n = 6 ABT that collected data for 1 year). (D) One ABT is recorded migrating from the Bay of Biscay to the Channel, and another 
recorded migrating from the Channel to the west coast of Ireland where its tag popped off. Daily locations are coloured by the proportion of each day 
spent conducting fast start events (the percent of time that VeDBA was above the 99th percentile of values across the full tracking deployment per ABT). 
Ring plots represent the average number of days per week that ABT allocated to fast start events, for the first 7 days (B & E) and last 7 days (C & F) of the 
first and last 30-day periods respectively
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0.18 g ± 0.10, Fig. 6C). They were also more active over-
all during the last 30 days of deployment (VeDBA-
dayF:0.19  g ± 0.13 vs. VeDBAdayL:0.30  g ± 0.14), and their 
mean hourly VeDBA remained consistently higher than 
the value that was recorded immediately post-release (red 
horizontal line Fig. 6B and D). Although variable, higher 
daily similarity values were recorded for all six fish during 
the last 30 days of deployment (Table  2; Fig.  5S-X). For 
example, fish 18P0937 and 19P0206 had daily similar-
ity values that were 7 and 17 times greater, respectively, 
than for first 30 days (18P0937: 0.57 ± 0.09 vs. 0.08 ± 0.13; 
19P0206: 0.68 ± 0.08 vs. 0.04 ± 0.16). Depth use was 
also far more consistent between days and among indi-
viduals during the last 30 days (Table  3, Supplementary 
Fig.  8), and across lunar phases (Kruskal-Wallis rank 
sum test, X2 = 1.02 df = 3, p = 0.80). In contrast to the 
first 30 days of deployment, mean bathymetry remained 

shallow throughout the last 30 days of the tracking 
(mean: 114 ± 80 m; Supplementary Fig. 6) and ABT typi-
cally swam significantly shallower at night than during 
the day.

In terms of spatial behaviour, there were no signifi-
cant differences in the distance covered by the ABT dur-
ing the first and last 30 days of deployment (meanfirst30: 
1,033  km ± 243  km, range 655-1,477  km; vs. meanlast30 
845 ± 396 km, range: 460–1452 km, Welch t-test, t = 1.07, 
p = 0.32). Similarly, no significant difference was observed 
in the overall straightness index (SIfirst30 0.39 ± 0.20; vs. 
SIlast30 0.24 ± 0.12, Welch t-test, t = 1.90, p = 0.08). How-
ever, ABT displayed an initial flight response in the first 
14 days following release (see results section “Behaviour 
immediately following tagging”).

Fig. 5 Swimming behaviour of Atlantic bluefin tuna in the 24 h following tagging. Shown are hourly average (A) VeDBA, (B) tailbeat amplitude, (C) domi-
nant stroke frequency, and (D) tailbeat cycle (n = 8 G7 tagged fish). Black dots represent hourly means with bars as standard deviation. The immediate 
response to tagging is highlighted by the red horizontal segment after which behaviours begin to plateau, denoted by the red vertical line. The stabilisa-
tion period is highlighted by the blue segment
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Discussion
Atlantic bluefin tuna appear to exhibit a phased response 
to capture, tag and release, with a strong, highly active 
initial swimming response over 5 to 9  h, as reported in 
other short-term, post-release studies of large fish [15, 
44, 45, 57, 65, 66]. This initial response is followed, how-
ever, by a period of significantly reduced activity, lacking 
diel behaviour patterns, lasting from 2 to 26 days (mean 
11 ± 7.9 days) before consistent behaviour and activity 
were re-established. This has not been shown before and 
has importance both for the treatment of biologging data, 
and the welfare of large fish during capture and tagging.

Behaviour immediately following tagging
In the present study, ABT activity, tailbeat amplitude 
and frequency were 2.4, 3.2 and 1.4 times greater respec-
tively in the first hour post-release than the subsequent 
24-hours (Fig. 2). This is comparable to previous findings 

in ABT, where tailbeat frequencies were higher and sus-
tained in the first hour post-release, before plateauing 
within 5–10 h [44, 45]. In the current study, mean hourly 
VeDBA values were on average 1.3 times greater for 
MiniPAT compared to G7-tagged ABT, which we sug-
gest is likely due to the tag anchoring system. G7 tags 
were anchored front and aft to reduce tag wobble, result-
ing in lower standard deviations for mean hourly VeDBA 
compared to the MiniPAT tags, which were anchored 
front and centre. This difference in anchoring may have 
resulted in the MiniPAT moving more on the fish, and 
contributing to the greater variability and differences in 
hourly mean VeDBA (Fig. 6A).

The process of capture for large fish is significant, as 
fish are often fought to the point that they can no longer 
overcome the resistance of the fishing gear. Burst activ-
ity during the fight is most likely powered by anaero-
bic metabolism, accumulating metabolic end-products 

Fig. 6 Activity of bluefin tuna post-release across different timescale. (A) mean hourly VeDBA (g) for the first 24 h post-release for all 20 ABT (lines show 
GAM models, each fish shown in a different colour, where lines in red to orange represent G7 tagged fish, while blue lines show MiniPAT tagged ABT). 
Shading corresponds to the 95% confidence interval for the fitted curves. (B) Mean hourly VeDBA for the first 30 days following release for all fish com-
bined (grey shading shows s.d.). Time of release is represented by 0 on the x-axis, and dashed vertical lines denote the first 24-hours of the deployment. 
The solid red horizontal line denotes the minimum hourly mean VeDBA value for the whole tracking period, which is reached 8 h post-release, with all 
subsequent activity higher than this. (C) Boxplots showing diel activity patterns (shown as average daily VeDBA for day and night periods) between the 
first and last 30-day periods. (D) Mean hourly VeDBA for the last 30 days of deployment for the six fish with year-long deployments. The red horizontal line 
denotes the minimum hourly mean VeDBA value as in (B), note mean VeDBA is never lower than this line
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such as lactate and cortisol, and decreasing blood pH 
[11, 67–70]. During this period, fish can incur hooking 
injuries [41, 71, 72], and capture may also elicit other 
physiological stress responses [69, 73]. The effects of 
the tagging process, from air exposure during board-
ing the fish, to biological sampling and tag incision, 
will also have an impact on the ABT [69, 74, 75]. Given 
these impacts, fight times and short handling durations 
(mean 2.6 ± 0.5 min) were minimised in the current study. 
ABT were irrigated whilst on deck, and ventilation was 
assisted through reoxygenation tows following assess-
ment for fitness for tagging and release. It is important 
to point out that while there can be sub-lethal impacts 
of tagging on ABT, this study recorded zero mortalities, 
consistent with post-release mortalities reported for ABT 
[58] and Pacific bluefin tuna (Thunnus orientalis, hereaf-
ter PBT) [3, 37, 41–43, 46, 70, 76].

Based on physiological studies of fish, the post-release 
recovery phase encompasses restoration of homeostasis, 
including replenishment of oxygen and glycogen stores, 
and removal of excess blood lactate [67, 77] which may 
take long periods of time [69]. For example, fish cor-
tisol levels are generally thought to peak within 1–2  h 

following intense activity, and the recovery of muscle 
lactate and glycogen can take up to 12 h, depending on 
the species [67, 78, 79]. This might be aided by swimming 
faster for some portion of the recovery period, as shown 
in blue marlin (Makaira nigricans) and sailfish (Istiopho-
rus platypterus) [55, 57], ten ram-ventilating shark spe-
cies and ABT [16], and by the initial prolonged dive and 
rapid dominant stroke frequencies (Fig.  2C) made by 
tuna in the present study. These dives may be associated 
with increasing oxygen intake but perhaps might also aid 
in thermoregulation. Blue marlin, for example, may gain 
up to 2.1° C following a 15-minute fight on rod and reel 
[55]. Thus, ABT in the present study may have also been 
diving to cool down following capture. Muscle tempera-
tures as high as 29.4 °C have been reported in small PBT 
following capture, which dropped by 5 °C within 40 min 
of release [80]. While speed was not measured in the 
present study, a relationship between tailbeat frequency 
and speed has previously been directly recorded in ABT 
carrying biologging tags that included speedometers, 
accelerometers and depth sensors [45]. The direct ener-
getic cost of swimming at faster speeds following release 

Fig. 7 Density distribution of activity by ABT for the first 30 days of deployment. Ridgeline plots of the density distribution of hourly mean VeDBA for the 
first 30 days following release for all 12 MiniPAT tagged fish. ABT all began with small VeDBA distribution in the first day following release, which increased 
over time, except for 18P0837, which expended the highest activity in the first two days post-release
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has been estimated to make up to 47% (± 9%) of ABTs 
daily energy expenditure [16].

Behaviour post 24-hours
It is generally accepted that the first 5–10 h post-release 
are influenced by a stress response to capture, handling 
and/or tagging [16, 45, 81, 82], but biologging data fol-
lowing this are generally considered to represent “nor-
mal” behaviour. Instead, we show that ABT exhibit a 
subdued activity state with loss of diel behaviour, lasting 
between 2 and 26 days (on average 11 days) (Figs. 3B and 
5), with the duration and the magnitude of this response 
varying between individuals (Fig.  6). This includes the 
proportion of time allocated to fast starts (Fig.  4A-C), 
which may represent a variety of behaviours in ABT, 
including feeding. This reduction in overall activity may 
be because the ABT spent more time than normal mak-
ing directed migration movements in the first two weeks 
post-release, and therefore did not exhibit the usual 
activity associated with foraging. Further work using 

internal archival tags to monitor foraging and accelera-
tion simultaneously, as has been done in captive ABT 
(see [60]) would help clarify this. Internal tagging can 
directly measure the heat increment of digestion [61, 83, 
84] and has previously been used to suggest that ABT 
and PBT can resume foraging within a few days to a week 
post-tagging [36, 60, 85, 86]. For example, southern blue-
fin tuna (Thunnus maccoyii) resumed feeding on average 
19 days after release (range 5–38 days; [87]). The subdued 
activity state may also be a response to tagging itself, with 
behavioural changes associated with exposure to stress-
ors such as handling and air exposure impacting the pref-
erence or ability to feed [88]. ABT may have taken time to 
become accustomed to the tag attachment and diverted 
metabolic pathways to wound healing [89]. Short-
term impairments in swimming performances, such as 
decreased critical swim speeds (the maximum speed a 
fish can maintain, representing the upper limit of aero-
bic swimming performance), slower tailbeat frequencies 
and reduced aerobic scope, have been observed in several 

Fig. 8 Diel patterns of depth and activity for the first and last 30 days post-release. Plots showing diel patterns in (A) depth use, and (B) activity pattern, for 
six ABT tracked for a year, for the first (left column) and last (right column) 30 days of the deployment. ABT 17P1004 was excluded from the depth analysis 
for the last 30 days of the deployment as the depth sensor became faulty before the end of the tracking duration. Colours represent significant differences 
in behaviour during night and day (see legend, right), and white colouration where there was no significant difference
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species with external tags compared to their non-tagged 
counterparts [90, 91]. These effects were attributed to 
increased drag or the tagging procedures [92–94]. Other 
studies have found no significant differences in swim-
ming performance between tagged and untagged fish 
[95–97], however, measurements were conducted 24 h to 
7 days post-tagging, by which point the initial response 
to tagging may have subsided.

Behaviour 11 months later
In contrast to the rapid and direct movement following 
tagging (Fig.  4A), a year later, four ABT were resident 
within the English Channel, one was migrating back 
from the Bay of Biscay to the Channel, and one migrated 
away from the Channel to the west coast of Ireland, but 
at a much slower rate than movements recorded in the 
first week post-tagging (58  km.day− 1 vs. 73  km.day− 1) 
(Fig. 4D). The greatest distance travelled always occurred 
within the first 24 h of the deployment, and these initial 
movements may have been to escape the capture and 
tagging location (a flight response [88]), and perhaps a 
period of increased ventilation to facilitate the removal of 
metabolic end-products. Black marlin (Istiompax indica) 
tagged in the Coral Sea were found to exhibit similar 
rapid movement up to 556  km away from their release 
sites [98]. Sharks (eight different species) also appeared 
to swim offshore to deeper water following capture, 
although displacement distances varied between species 
[99]. However, in other ABT and PBT studies, shorter 
displacement distances were recorded after release [42, 
70, 100, 101] with fish remaining in the vicinity of the 
release locations [102], particularly in smaller individuals 
[103]. In the present study, directed movements appear 
to be either too early in the year to be characterised as 
part of the general migratory cycle or too large to be 
characterised as day-to-day dispersal between feeding 
areas while resident in the English Channel based on data 
from individuals tracked from the English Channel for 
over a year (481–708 days) [58]. However, further work 
is required to define the extent and nature of any post-
tagging escape response.

Almost a year after capture, ABT in the present study 
returned to the same waters and exhibited relatively con-
sistent diel vertical migration in shallow (< 200 m) waters 
(Fig.  4D, Supplementary Fig.  8). In contrast, in the first 
30 days post-release, five of the 12 ABT remained in 
shelf waters but did not show any diel diving behaviour 
(Fig.  5, Supplementary Fig.  4). Similarly, ABT tracked 
from the western Atlantic also showed no diel vertical 
migration following release [36, 104, 105] perhaps, as in 
the present study, because they were released over shal-
low shelf regions (~ 20 m depth to the bottom [36, 100, 
104]). Depth use remained similar across the lunar cycle 
(Fig. 3), which was perhaps surprising as the lunar cycle’s 

influence on depth use has been observed in PBT [106, 
107], Southern bluefin tuna [87] as well as ABT [100, 
101]. Instead, differences in the period of behavioural 
disruption may be attributed to factors such as maturity, 
time since feeding, and intrinsic physiological differences 
between individuals [15, 108].

Thus, each capture event has its own conditions that 
begin with how the fish are captured, how long they 
are handled for, and how they are tagged, which may all 
impact recovery differently. The duration of the post-
release response may be proportional to the magnitude 
of the stressors [67] and linked to fish size, with larger 
fish exhibiting more prolonged responses to capture and 
tagging [70]. This may be due to larger fish taking gen-
erally longer to land, increasing the relative cost of the 
fight [67]. However, this did not appear to be the case in 
the present study, nor in blue marlin, sailfish, and greater 
amberjack (Seriola dumerili) [19, 57]. The intensity of the 
fight may be a more important factor than fight duration, 
although making an objective measure of ‘fight intensity’ 
is extremely challenging. Future work may include fishing 
gear fitted with accelerometers to measure the intensity 
of capture events [13, 109]. ABT in the current study may 
have recovered more quickly from the physical exercise 
associated with capture than the time required to adjust 
to tagging. Electronically tagged ABT have high survival 
rates [8, 41, 46] are known to resume feeding within days 
following tagging [60, 86, 110] and perform important 
life history events such as spawning whilst tagged [39, 47, 
48].

Challenges in defining recovery
A key challenge in biologging is understanding when the 
host animal is likely to exhibit behaviour that is repre-
sentative of the broader, untagged population. Removing 
the ‘tagging artefact’ from data is essential, yet metrics 
used to define the duration of the post-release period 
are highly variable [15, 111–113], ranging from physi-
ological markers [69, 70], metabolic activity [114] and 
behaviour [19, 56, 57], which may all be influenced by the 
duration and resolution of measurement [30, 79]. While 
approaches such as recapturing tagged individuals [115, 
116] can help to isolate the effect of capture and tagging, 
this method may not be feasible for highly mobile spe-
cies where recapture rates are low. In the present study, 
we found that return to baseline behaviour was variable 
between individuals, with post-release behaviour being 
altered for several days, and in some cases weeks, rather 
than hours. In several bluefin tuna studies, the first 1–6 
days have been discarded to allow for the fact that feed-
ing or behaviour may be altered immediately after cap-
ture and tagging [61, 84, 106], though several studies 
with implanted archival tags revealed rapid return to 
feeding within days of tagging [60, 83, 86] highlighting 
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the differences in response to capture and tagging even 
within species. In the present study, these patterns were 
influenced not only by time since release, but also by fac-
tors such as fight time, fish size and possible tag burden. 
Here we suggest that short-term deployments (i.e. less 
than a week) may fail to capture unaffected behaviour in 
some cases [19]. Our results highlight the value of com-
bining long-term deployments in tandem with high-res-
olution tags to identify and quantify short-term effects 
that may otherwise be missed.

Impacts of capture and tagging
The results here suggest that ABT may have a more com-
plex response to capture, tagging and release than previ-
ously considered [17, 117]. Minimising interaction [69, 
70, 102] is probably sensible, as ABT increased the dura-
tion of their initial recovery dive by 4 min with each addi-
tional minute fighting the line, though fight time did not 
predict when the fish would resume diurnal behaviour. 
This may be due to issues beyond the present study, such 
as inflammation, discomfort and what fish may experi-
ence as pain from the intra-muscular tag darts or bio-
logical sampling (fin clip and muscle biopsy). Local tissue 
damage associated with insertion of internal darts have 
been reported in different tag attachment methods [74, 
75], and wound healing can be delayed when fish are sub-
jected to other stressors [118]. Nociception has been seen 
to affect behaviour in fish including delay in reception of 
feeding and loss of equilibrium [119]. Local analgesics 
can block nociception in fish [120, 121], thus future work 
could investigate the effect of tagging itself and whether 
the use of local analgesics may reduce the impacts of tag-
ging in ABT.

Conclusion
In summary, the impacts of capture, handling and tag-
ging on ABT have probably been generally underesti-
mated owing to limits on the length of many studies, yet 
we show that the effects of capture may extend from at 
least days to several weeks before ABT resume “normal” 
behaviour. The drivers of this remain unclear and com-
plex, with likely interactions between fight times and 
intensity, handling, as well as response to tagging and 
wound healing. Additional factors including fishing gear, 
angler experience, tag attachment time, whether fish 
were boarded, abiotic conditions (such as temperature, 
dissolved oxygen and bathymetry) and condition of fish 
prior to capture may also have an influence. Further long-
term studies may reveal if this is also the case in different 
species, with important implications from ethics to data 
analysis, and eventually effective stock management.
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