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Abstract: Clouds and other data artefacts frequently limit the retrieval of key variables from remotely
sensed Earth observations. We train a natural language processing (NLP)-inspired algorithm with
high-fidelity ocean simulations to accurately reconstruct masked or missing data in sea surface
temperature (SST) fields—one of 54 essential climate variables identified by the Global Climate
Observing System. We demonstrate that the resulting model, referred to as ENKI, repeatedly outper-
forms previously adopted inpainting techniques by up to an order of magnitude in reconstruction
error, while displaying exceptional performance even in circumstances where the majority of pixels
are masked. Furthermore, experiments on real infrared sensor data with masked percentages of at
least 40% show reconstruction errors of less than the known uncertainty of this sensor (root mean
square error (RMSE) ≲ 0.1 K). We attribute ENKI’s success to the attentive nature of NLP combined
with realistic SST model outputs—an approach that could be extended to other remotely sensed
variables. This study demonstrates that systems built upon ENKI—or other advanced systems like
it—may therefore yield the optimal solution to mitigating masked pixels in in climate-critical ocean
datasets sampling a rapidly changing Earth.

Keywords: sea surface temperature; clouds; machine learning; inpainting

1. Introduction

One of the most powerful means to assess the fundamental properties of Earth is via
remote sensing: satellite-borne observations of its atmosphere, land, and ocean surface.
Since the launch of the Television InfraRed Observation Satellite (TIROS) in 1960, the first of
the non-military “weather satellites”, remote-sensing satellites have offered daily coverage
of the globe to monitor our atmosphere [1]. It was not until the 1970s that our attention
was specifically directed at measuring ocean surface properties. Notably, three spacecraft
were launched in 1978 that carried sensor payloads for observing in the visible portion of
the electromagnetic (EM) spectrum to measure ocean color for biological applications, in
the infrared (IR) range to estimate sea surface temperature (SST) and in the microwave
band to estimate wind speed, sea surface height and SST [2–5]. These programs were
followed by a large number of internationally launched satellites carrying a broad range of
sensors providing improved spatial, temporal and radiometric resolution for terrestrial,
oceanographic, meteorological and cryospheric applications [6–8].

All satellite-borne sensors observing Earth’s surface or atmosphere sample some
portion of the EM spectrum, with the associated EM waves passing through some or all
of the atmosphere. The degree to which the signal sampled is affected by the atmosphere
is a strong function of the EM wavelength as well as the composition of the atmosphere,
with wavelengths from the visible through the thermal infrared (400 nm–15 µm) being
the most affected. This is also the portion of the spectrum used to sample a wide range of
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surface parameters, such as land use, vegetation, ocean color, SST, snow cover, etc. Retrieval
algorithms are designed to compensate for the atmosphere for many of these parameters,
but these algorithms fail if the density of particulates, such as dust, liquid or crystalline
water (e.g., clouds) is too large. The pixels for which this occurs are generally flagged
and ignored. This results in a sparse field, with the masked regions ranging from single
pixels to regions covering tens of thousands of pixels in size. On average, for example, only
∼15% of ocean pixels return an acceptable estimate of SST (e.g., [9]).

These gaps represent hurdles in the analysis, especially those requiring complete
fields. For example, process-oriented or dynamics-focused research, for which accurate
knowledge of the ocean surface is key, suffer tremendously. Moreover, as handling missing
data is a common step in most algorithms making use of these data, gap-filling or so-
called inpainting techniques introduce errors in the data stream. Finally, even algorithms
that properly handle sparse data necessarily bias their results because of the absence
of values, e.g., in seasonally, cloud-dominated regions or where other processes hinder
accurate measurements. These additional processes might include rain and human-induced
radiation in the case of microwave measurements of winds and SST.

To address such data gaps, multiple datasets are often used together with objective
analysis interpolation programs to produce what are referred to as Level-4 (L4) products:
gap-free fields (e.g., [10,11]). Researchers have also introduced a diversity of algorithms to
fill in clouds (see [12] for a review) including methods using interpolation [9], principal
component analyses [13–16], and, most recently, convolutional neural networks [17,18]. For
SST, these methods achieve average root mean square errors of ≈0.2–0.5 K and have input
requirements ranging from individual images to an extensive time series.

In this manuscript, we introduce an approach, referred to as ENKI, similar and inde-
pendently developed to that recently undertaken by Goh et al. [19], both inspired by the
vision transformer masked autoencoder (ViTMAE) model of [20] to reconstruct masked
pixels in satellite-derived fields. Guided by the intuition that (1) natural images (e.g., dogs,
landscapes) can be described by a language and therefore analyzed with natural language
processing (NLP) techniques and (2) one can frequently recover the sentiment of sentences
that are missing words and then predict these words, [20] demonstrated the remark-
able effectiveness of ViTMAE to reconstruct masked images. This included images with
75% masked data, a remarkable inference. ViTMAE achieves this by splitting an image
into patches and tokenizing them. The tokens are processed through a transformer block
(encoder) to generate latent vectors. These latent vectors, which represent the model’s
understanding of a token’s relationship to other tokens, are then passed through another
transformer block (decoder) that reconstructs the image. Central to ViTMAE’s success
was its training on a large corpus of unmasked, natural images, and, given the reduced
complexity of most remote-sensing data compared to natural images, one may expect even
better performance.

We show below that ENKI reconstructs images of SST anomalies (SSTa) far more ac-
curately than conventional inpainting algorithms. We demonstrate that the combination
of high-fidelity model output and state-of-the-art artificial intelligence produces the un-
precedented ability to predict critical missing data for both climate-critical and commercial
applications. Furthermore, the methodology allows for the comprehensive estimation of
uncertainty and an assessment of systematics. The combined power of NLP algorithms
and realistic model outputs represent a significant advance for image reconstruction of
remote sensing applications.

2. Methods

The architecture we use for ENKI, shown in Figure 1, inputs and outputs a single-
channel image, adopts a patch size of 4 × 4 pixels, and uses 256-dimension latent vectors
for the embedding and a 512-dimension embedding for the decoder.

ENKI works as follows: (1) Images are broken down into 4 × 4 non-overlapping
patches. Patches with missing data are masked or, in the case of training, a percentage
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of patches are randomly masked. The unmasked patches are tokenized, each with a 256-
dimensional latent vector, and assigned a positional embedding. (2) The tokens are passed
through a standard Transformer encoder, where self-attention is performed to compute a set
of attention weights for each latent vector based on its similarity and association to other la-
tent vectors in the image. These latent vectors represent reduced, numerical representations
of data that ideally capture the essential characteristics or features of the data. (3) Masked
patches are reintroduced, the latent vectors are run through a Transformer decoder, and the
full image is reconstructed as 512-dimension latent vectors. (4) A linear projection layer
is used to convert the image back to its original size. The final image is created by replac-
ing the unmasked patches of the reconstructed image with the unmasked patches of the
original image.

Figure 1. Architecture of our ViTMAE named ENKI. To train the algorithm, a cloud-free image
is broken down into patches, a fraction of which are randomly selected in the image and masked.
For simplicity, this example shows a 64 × 64 pixel image with 16 × 16 pixel patches, 40% of which
are masked. (ENKI actually operates on 64 × 64 pixel images with 4 × 4 pixel masks.) The unmasked
patches are flattened and embedded by a linear projection with positional embeddings which are
then run through the encoder, returning the encoded patches which are then run through the decoder
along with the masked (unfilled) tokens. This returns another latent vector, and another linear
projection layer outputs this vector as an image with the same dimensions of the original image. The
asterisks represent the contents of each patch.

ENKI was trained with SST fields from the global, fine-scale (1/48◦, 90-level) LLC4320
(Latitude/Longitude-Cap-4320) [21] ocean simulation undertaken as part of the Estimating
the Circulation and Climate of the Ocean (ECCO) project. The MIT General Circulation
Model (MITgcm) [22,23], on which the LLC4320 is based, is a primitive equation model that
integrates the equations of motion on a 1/48◦ Latitude/Longitude/polar-Cap grid. It is
initialized from lower resolution products of the ECCO project and is progressively spun up
at higher resolutions. The highest resolution version, LLC4320, is forced at the ocean surface
by European Centre for Medium-range Weather Forecasting (ECMWF) reanalysis winds,
heat fluxes, and precipitation, and at the boundaries by barotropic tides. The approximate
one-year simulation (13 September 2011 to 14 November 2012) provides hourly snapshots
of model variables, e.g., temperature, salinity and vector currents, at a spatial resolution
of ≈1–2 km.

As opposed to using this simulation for training, we could, of course, have used
“cloud-free” portions of SST fields obtained from satellite-borne sensors. However, we
often find undetected or improperly masked clouds in these fields, which would impact
the training of ENKI. Furthermore, these fields are geographically biased [9] and would
yield a highly imbalanced training set.

The LLC4320 simulations have been widely used in studies investigating subme-
soscale phenomena [24–26], baroclinic tides [27,28], and mission support for the Surface
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Water and Ocean Topography (SWOT) satellite sensor [29]. As it has a horizontal grid
resolution comparable to but slightly coarser than the spatial resolution of most IR satellite
SST measurements, and as it is free from fine-scale atmospheric affects, it represents an
oceanographic surface approximately equivalent to but reduced in noise relative to IR
satellite SST. See [30] for further details about the implementation of atmospheric effects in
the LLC4320. Global model-observation comparisons at these fine horizontal scales can
also be found in [31–33].

Every two weeks beginning on 13 September 2011, we uniformly extracted
2,623,152 “cutouts” of ≈144 × 144 km2 from the global ocean at latitudes lower than 57◦

N, avoiding land. Each of these initial cutouts were re-sized to 64 × 64 pixelcutouts with
linear interpolation and mean subtracted. No additional pre-processing was performed.

We constructed a complementary, validation dataset of 655,788 cutouts in a similar
fashion. These were drawn from the ocean model on the last day of every 2 months starting
30 September 2011. They were also offset by 0.25◦ in longitude from the spatial locations of
the training set.

A primary hyperparameter of the ViTMAE is the training percentage (t%); i.e., the
percentage of pixels masked during training (currently a fixed value). A value of t% = 30,
for example, indicates 30% of the pixels in each training cutout has been randomly masked.
While ref. [20] advocates t% = 75 to insure generalization, we generated ENKI models with
t% = [10,20,35,50,75]. In part, this is because we anticipated applying ENKI to images with
less than 50% masked data (m% < 50).

For the results presented here, we train using patches with randomly assigned location
(and zero overlap). This approach does, however, lead to an inaccurate representation of
actual clouds which exhibit spatial correlation on a wide range of scales. Future work will
explore how more representative masking affects the results.

ENKI was trained on eight NVIDIA-A10 Graphics Processing Units (GPUs) on the
Nautilus computing system. The most expensive t%= 10 model requires 200 h to complete
400 training epochs with a learning rate of lr = 10−4.

In addition to the LLC4320 validation dataset, we apply ENKI to actual remote sensing
data. These were extracted from the Level-2 (L2) product of the National Oceanic and
Atmospheric Administration (NOAA) processed granules of the Visible-Infrared Imager-
Radiometer Suite (VIIRS) sensor [34]. We included data from 2012–2021 and only included
64 × 64 pixel cutouts without any masked data. These data consist of 923,751 cutouts with
geographic preference to coastal regions and the equatorial Pacific (see [31]). We caution
that while we selected “cloud-free” 64 × 64 pixel regions, we have reason to believe that a
portion of these data are, in fact, affected by clouds (e.g., [35]).

3. Results

Figure 2 shows the reconstruction of a representative example from the validation
dataset for the ENKI model. In this case, the model was trained on cutouts characterized
by 20% of the pixels being masked (t%= 20 model) but applied to a cutout having 30% of
its pixels masked (m%= 30). Aside from patches along the outer edge of the input image,
it is difficult to visually differentiate the reconstructed pixels from the surrounding SSTa
values. The greatest difference is 0.19 K and the highest root mean square error (RMSE) in
a single 4 × 4 pixel patch is ≈0.07 K with an average RMSE of ≈0.02 K. As described below,
the performance does degrade with higher m% and/or greater image complexity, but to
levels generally less than standard sensor error.

In the following sub-sections, we present analyses of ENKI performance, first based
on synthetic fields, for individual 4 × 4 pixel masks (Section 3.2), mask objects defined
as contiguous, non-overlapping 4 × 4 pixel masked regions (Section 3.3), as a function of
cutout complexity (Section 3.4), compared with DINEOF (Section 3.5), and compared with
bi-harmonic inpainting (Section 3.6) followed by an analysis with satellite-derived SST
fields—real data (Section 3.7).
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Figure 2. An example of the ENKI model applied to simulated data with masked or missing pixels.
In this case, ENKI was trained on realistic ocean model output consisting of 20% of pixels flagged
as “poor” (masked) and applied to an image with 30% of pixels flagged as masked. The panels are:
(a) original SSTa, (b) masked SSTa in 4 × 4 pixel patches covering 20% of the image, (c) reconstructed
SSTa, and (d) residual (reconstruction minus truth). Ignoring the image boundary (see Section 3.2 ),
the maximum reconstruction error is only ≈0.19 K and the highest RMSE in a single patch is ≈0.07 K
with an average RMSE ≈0.02 K.

3.1. Bias in ENKI

As described in [36], ENKI exhibits a systematic bias for cases when m% ≪ t%;
i.e., mask fractions significantly lower than the training fraction. Figure 3 describes the mag-
nitude of this bias as a function of t% and m% as derived from the dataset. For the favored
model (t%= 20), the bias term is less than 10−4 K for all m% tested, and can be considered
negligible. Indeed, it is at least one order of magnitude smaller than the uncertainty in the
average of a 4 × 4 pixel patch in standard IR-based SST retrievals, where the pixel-to-pixel
noise is approximately 0.1 K [37]. For all of the results presented here, we have removed
the bias calculated from the validation dataset before calculating any other statistic.

Figure 3. Model bias. Median bias in the SST predicted by each model as a function of the training
percentile t% and patch masking percentile m%. For large t% and small m% the model exhibits
a significant bias with an unknown origin [36]. At lower t%, however, the bias reaches a nearly
negligible value. Note that the value for t%= 10 are all at ≈0 K and below the t% = 20 points.
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3.2. ENKI Performance on Individual 4 × 4 pixel Masks—LLC4320 Cutouts

Quantitatively, we consider first the model performance for individual 4 × 4 pixel
patches. Figure 4 presents the results of two analyses: (a) the RMSE of reconstruction as
a function of the patch spatial location in the image; and (b) the quality of reconstruction
as a function of patch complexity, defined by the standard deviation (σT) of the patch in
the original image. On the first point, it is evident from Figure 4a that ENKI struggles to
faithfully reproduce data in patches on the image boundary. This is a natural outcome
driven by the absence of data on one or more sides of the patch (i.e., partial extrapolation
vs. interpolation). Within this manuscript, we do not include boundary pixels or patches
in any quantitative evaluation, and we emphasize that any systems built on a model like
ENKI should ignore the boundary pixels in the reconstruction.

Figure 4. Results for individual 4 × 4 pixel patches. Both panels present reconstruction results for the
validation dataset using a masking percentile of m% = 30 and the t% = 20 ENKI model. (a) Median
RMSE as a function of the patch spatial location where i, j refers to the position of the lower-left corner
of the patch. Patches on the image boundary exhibit systematically higher RMSE and we advocate
ignoring these in any image reconstruction application. (b) Median of log10 RMSE for patches as a
function of log10 of the standard deviation of SST (σT) in the patch. For patches with non-negligible
structure (σT > 10−2 K), the reconstruction RMSE is ≈10× lower than random (as described by the
dashed one-to-one line). The red curve is a two-parameter fit to the data.

Figure 4b, meanwhile, demonstrates that ENKI reconstructs the data with an RMSE
that is over one order of magnitude smaller than that anticipated from random chance.
Instead, the results track the relation RMSE ≈ (σT + 0.014)/9.1. We speculate that the
“floor” in RMSE at σT < 10−2 K arises because of the loss of information in tokenizing
the image patches. The nearly linear relation at larger σT , however, indicates that the
model performance is fractionally invariant with data complexity. We examine these results
further in Appendix A.

3.3. ENKI Performance on Mask Objects—LLC4320 Cutouts

The above addresses the performance of ENKI in the context of individual 4 × 4 pixel
squares but two or more of these squares may adjoin one another resulting in larger patches,
which we refer to as mask objects. Here, we examine ENKI performance as a function of
the 23+ million mask objects (for simplicity we will refer to these as masks) extracted from
the ≈655, 000 cutouts of the validation dataset for t%= 20, m% = 30. A mask was defined
as the union of all 4 × 4 pixel regions, which were touching along a portion of one edge.
Two regions with touching corners were not considered to be part of the same mask.
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For each mask, its area and minor axis length (the length in pixels of the ellipse with
the same normalized second central moment as the region) were determined along with
the RMSE of the residual—the difference between SST values of the original field under
the mask and the reconstructed field. t%= 20 was selected for consistency with the other
analyses presented and m% = 30 to provide for a broad range of mask areas, the larger
m%, the more intersections of 4 × 4 pixel masks resulting in larger masks. The median and
the log-normalized mean RMSE of the residuals are shown in Figure 5 as a function of
(a) mask area and (b) minor axis length. The log-normalized mean is determined by taking
the mean of the log of all values falling within a bin and then exponentiating the result.
The fact that the log-normalized mean curves (red) and the median curves (black) are very
close to the same is an indication that the distribution of the log of the RMSE is close to
symmetric about the mean. The vertical gray bars—axis defined on the right hand side
of each figure—is a probability histogram of the mask parameter. Because the imposed
4 × 4 pixel mask elements are not permitted to overlap, the area histogram results in
16 pixel steps.

Figure 5. ENKI’s reconstruction performance as a function of mask characteristics. (a) The difference
in the RMSE between the true and reconstructed SST values as a function of the area of the masked
region. Note that the horizontal axis is logarithmic. Masked regions exist in increments of 16 pixels—
each mask consists of an integer number of joined 4 × 4 pixel regions. For each masked area bin,
the 50th (median) and the mean calculated from the logarithm of the values is shown. Vertical gray
bars—vertical scale to the right—define the histogram of the distribution of the cutouts by area bin.
(b) Model performance as a function of the minor axis length of each cutout. This horizontal axis is
also logarithmic.

The RMSE of residuals increases linearly with the log10 of the area masked. It is not
surprising that the RMSE increases with the area masked; the machine learning (ML) model
needs to extrapolate over longer distances. What is surprising is that the rate of increase
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of the RMSE is so slow, with RMSE increasing from about 0.011 K for a 16 pixel mask to
0.019 K for a 100 pixel mask. The model is performing better than we had anticipated in
this regard.

RMSE also increases with the log10 of the minor axis length although more rapidly at
first and then more slowly than the dependence on area; i.e., unlike for area, the increase
with minor axis length is not linear. The reason we probed the minor axis length is that this
length is a measure of how far reconstructed pixels were from available pixels.

Again, in both cases, area and minor axis length, the rate of growth of the RMSE
is slow.

3.4. ENKI Performance Based on the Complexity of LLC4320 Cutouts

Turning to performance at the full cutout level, Figure 6a shows results as a function of
cutout complexity. Here, we examine image complexity versus patch complexity discussed
in the context of Figures 4 (Section 3.2) and 5 (Section 3.3). To define cutout complexity, we
adopt a deep-learning metric developed by [9] to identify outliers in SSTa imagery. Their
algorithm, named ULMO, calculates a log-likelihood value LLUlmo designed to assess the
probability of a given image occurring within a very large dataset of SST images. Refs. [9,35]
demonstrate that data with the lowest LLUlmo exhibit greater complexity, both in terms of
peak-to-peak temperature anomalies and also in terms of the frequency and strength of
fronts, etc.

Figure 6. ENKI’s reconstruction performance on the validation dataset. (a) Model performance as a
function of quantiles of image complexity, LLUlmo, with higher values indicating lower complexity.
The reconstruction error is sensitive to the degree of structure in the field, although for masking
percentile m% < 20 even the most complex images have RMSE ≲ 0.06 K. (b) Model performance
as a function of masking percentile for the full set of trained ENKI models. Contrary to expecta-
tion, we find the t%= 20 model outperforms all others at all m%. The poorer performance of the
t% > 20 models at low m% indicates those models have not learned the small-scale features present
in SST data.

Figure 6a reveals that the reconstruction performance depends on LLUlmo, with the
most complex cutouts (LLUlmo < −200) showing RMSE ≈ 0.05 − 0.1 K. For less complex
data (e.g., LLUlmo > 200), the average RMSE < 0.04 K which is effectively negligible
for most applications. Even the largest RMSEs are smaller than the sensor errors found
by [37] for the pixel-to-pixel noise in SST fields retrieved from the Advanced Very-High-
Resolution Radiometer (AVHRR; ϵAVHRR ≲ 0.2 K), and comparable or better than those for
the Visible-Infrared Imager-Radiometer Suite (VIIRS; ϵVIIRS ≲ 0.1 K [37]).

As described in Section 2, we trained ENKI with a range of training mask percentiles
expecting best performance with t%= 75 as adopted by [20]. Figure 6b shows that for
effectively all masking percentiles m%, the t%= 20 ENKI model provides best performance.
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We hypothesize that lower t% models are optimal for data with lower complexity compared
to natural images; i.e., one can sufficiently generalize with t% ≪ 75%. Furthermore, it is
evident that models with t% > 20 have not learned the small-scale structure apparent in
SST imagery.

3.5. ENKI Performance Compared with DINEOF—LLC4320 Cutouts

We begin our benchmark tests of ENKI by comparing the ENKI results to those
from DINEOF (Data Interpolating Empirical Orthogonal Functions) [14], termed the gold-
standard by Ćatipović et al. [12] based on the large fraction of manuscripts they reviewed
in which it is used. Because DINEOF is based on an Empirical Orthogonal Function (EOF)
analysis of the fields, we elected to use as our test dataset, a 180-day sequence of LLC4320
cutouts centered on (lat, lon) = (21◦N, 118◦E) in the South China Sea. Each cutout in the time
series was masked using random 4× 4 pixel patches obscuring a given fraction of the image
m%. This was repeated for m% = [10%, 20% . . . 50%] and the t% = 20 model was used for the
ENKI reconstructions. The results are shown in Figure 7. Because the ENKI reconstruction is
based on surrounding pixels, a four-pixel-wide band at the edge of the cutout was excluded
from the calculation of the RMSE for both reconstructions. A monotonic decrease in RMSE
was found for the DINEOF reconstructions with increasing width of the excluded band.
As an example of this, the RMSE of the DINEOF reconstruction excluding a 23-pixel band
on the outer edge of the cutout is shown in Figure 7. The same is not true for the ENKI and
the biharmonic reconstructions (the latter discussed in the next section). Reconstruction
errors are not shown for varying bands of ENKI or the biharmonic method in the figure;
with the exception of bands smaller than four pixels, the curves are indistinguishable from
those of the four-pixel wide band.

Figure 7. Average reconstruction error for a 180-day sequence of cutouts centered on lat, lon = 21◦N,
118◦E in the South China Sea for the DINEOF algorithm (blue diamonds), the biharmonic algorithm
(red circles) and ENKI (black squares) based on the cutout excluding a 4-pixel-wide band on the outer
edge of the cutouts; i.e., from pixels 5 to 59 of the 64 pixels in the two directions. Green stars delineate
the reconstruction error for DINEOF based on the cutouts excluding a band 21 pixels wide on the
other edge of the each cutout; pixels 23 to 41 in the two directions.

Similar to published results with DINEOF, we recover an average RMSE of ≈0.25 K,
weakly dependent on m%. In contrast, the ENKI reconstructions have an RMSE ≈ 0.05;
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i.e., ≈5 × lower on average than the DINEOF algorithm. We also emphasize that first
results using a convolutional neural network (DINCAE [17]) yield RMSE values similar
to DINEOF. Therefore, the ViTMAE approach of ENKI offers a qualitative advance over
traditional deep-learning vision models.

As an alternative comparison, we have also calculated the Structural Similarity In-
dex Measure (SSIM) on the reconstructed images, limiting the calculation to the recon-
structed pixels. We find that the ENKI yields values very close to 1 whereas DINEOF has
SSIM ≈ 0.75. We conclude that ENKI significantly outperforms DINEOF in this metric.

3.6. ENKI Performance Compared with Other Inpainting Algorithms—LLC4320 Cutouts

In addition to DINEOF, Ćatipović et al. [12] review a wide variety of other approaches,
adopted by the community, to reconstruct remote sensing data. While a complete com-
parison to these is beyond the scope of this manuscript, we present additional tests
here. Figure 8 shows the results, applied to the full validation dataset consisting of
≈655, 000 cutouts, of several of these interpolation schemes—more easily implemented
than either DINEOF or ENKI—as a function of cutout complexity gauged by the LLUlmo
metric. Of these, the most effective is the biharmonic inpainting algorithm adopted in our
previous work [9]. The figure shows, however, that ENKI outperforms even this method by
a factor of 2 to 3× in average RMSE aside from the featureless cutouts (LLUlmo > 300).

Figure 8. Comparison of the average RMSE for a series of interpolation schemes (circles) against
the results from ENKI. These are for reconstructions of the LLC4320 validation dataset using
the t%= 20 model on data m%=30 masked patches. Aside from the nearly featureless cutouts
(LLUlmo > 750), ENKI well out-performs all of these schema and typically by factors of 3 to 5×.

We also applied biharmonic inpainting to the 180-day sequence in the South China
Sea discussed in the previous section, red circles in Figure 7. For this subset of the data,
ENKI performs slightly better than biharmonic inpainting for m%≤ 30 while biharmonic
inpainting appears to perform slightly better for larger values of m% (As with ENKI the
average RMSE was determined excluding a four-pixel-wide band around the edge of
the cutout).

We explore the dependence on LLUlmo in more detail in Figure 9, a scatter plot of
RMSE for biharmonic inpainting versus RMSE for ENKI, for all 650+ thousand LLC4320
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cutouts examined. Colors in the figure denote LLUlmo, a measure of image complexity,
with lower values corresponding to more complexity. In >99.9% of the cases, ENKI

outperforms biharmonic inpainting, and often by more than an order-of-magnitude.
This relationship holds independent of the image complexity for LLUlmo < 750. At
LLUlmo > 750, which corresponds to cutouts with very little structure, the biharmonic
algorithm yields lower RMSE than ENKI. We hypothesize that there are small correlations in
the model output that ENKI has not learned and are better fit by the interpolation scheme. In
real data, however, the differences between the two approaches would be overwhelmed by
sensor noise.

Figure 9. Comparison of reconstruction error for ENKI (RMSEEnki) with the biharmonic inpainting
algorithm (RMSEinpaint) on the validation dataset. Colors denote the LLUlmo metric [9] , which is
a measure of image complexity; lower values indicate higher image complexity. The results here
correspond to the t%= 20 model applied to data with m% = 30 masking.

3.7. ENKI Performance—VIIRS SST Fields

As a proof of concept for reconstructing real data, we applied ENKI to the VIIRS
dataset described in Section 2. For this exercise, we inserted randomly distributed clouds
into cloud-free data, each with a size of 4 × 4 pixels. Figure 10 shows that the average
RMSE values for ENKI are less than sensor error (RMSEVIIRS < ϵVIIRS) for cutouts with
all complexity. The VIIRS reconstructions, however, do show higher average RMSE than
those on the LLC4320 validation dataset. A portion of the difference is because the latter
does not include sensor noise, which ENKI has (sensibly) not been trained to recreate. We
attribute additional error to the fact that the unmasked data also suffers from sensor noise
(see Appendix A). And, we also anticipate a portion of the difference is because the VIIRS
data have a higher spatial resolution than the LLC4320 model. Future experiments with
higher-resolution models will test this hypothesis.



Remote Sens. 2024, 16, 2439 12 of 18

Figure 10. ENKI performance on real sensor data. The black squares show the average RMSE for
reconstructions of VIIRS images in bins of image complexity (higher LLUlmo indicates less complexity).
Even reconstructions of the most complex images (LLUlmo < 0) show the average RMSE is lower
than the estimated sensor noise (≈0.1 K [37]). For comparison, we show the average RMSE values for
ENKI reconstructions of the LLC4320 validation data (red). All of the results adopt the ENKI model
trained with t%= 20 and applied to cutouts with m% = 30.

4. Conclusions

Satellite measurements are crucial for understanding the Earth’s climate system, re-
quiring global and daily observations of the atmosphere, ocean, and land to comprehend
their interactions. Currently, only space-based sensors can provide such comprehensive
coverage, with our short-term predictive capabilities of these interactions relying heavily
on current and historical satellite data. The Global Climate Observing System (GCOS),
supported by international organizations, aims to ensure essential climate data, including
54 Essential Climate Variables (ECVs), are available, with satellites capable of measuring
26 of these ECVs. However, atmospheric conditions often limit satellite visibility to about
15% of the Earth’s surface at any time, posing significant challenges to climate science
and prediction.

This study introduced ENKI, a novel method to address data gaps in SST measure-
ments using a NLP algorithm trained on ocean model outputs for image reconstruction.
We have demonstrated that the ENKI algorithm has reconstruction errors less than approx-
imately 0.1 K for images with up to 50% missing data. That is, the RMSE is comparable
or less than typical sensor noise. Furthermore, ENKI outperforms other widely adopted
approaches by up to an order of magnitude in RMSE, especially for fields with significant
SST structure. Systems built upon ENKI (or perhaps future algorithms like it) may therefore
represent an optimal approach to mitigating masked pixels in remote sensing data.

An immediate application of ENKI is the improvement of more than 40 years of SST
measurements made by polar-orbiting and geosynchronous spacecraft [36]. In addition to
reduction in geographic and seasonal biases [9,31], improvement of these datasets would
likely translate to enhanced time series analysis and teleconnections between Essential
Climate Variables (ECVs) across the globe. One objective of the present work, for exam-
ple, is the improvement of L2 (i.e., swath) SST from the MODerate-resolution Imaging
Spectroradiometer (MODIS), a high-resolution (1 km pixels, twice daily) data record that
extends from 2000 to the present. Additionally, we anticipate integrating portions of the
ENKI encoder within comprehensive deep-learning models (e.g., [38]) in order to predict
dynamical processes and extrema at the ocean’s surface.
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The optimal performance of ENKI may be achieved by iterative application of models
with a range of t% and/or trained on specific geographical locations. At the minimum,
improvements in the present approach will require models that accommodate a wider
range of spatial scales and resolution than has been considered here (e.g., [39]). This is
necessary, for example, to accommodate geostationary SST estimates, which have spatial
resolutions closer to 5–10 km. We anticipate such improvements are straightforward
to implement and are the focus of future work. Finally, we emphasize that the work
presented here may be generalized to any remote sensing datasets in which a global corpus
of realistic numerical output is available. In the oceanic context, this dataset might be
ocean wind vectors, sea surface salinity, ocean color and—with improved biogeochemical
modeling—even phytoplankton.

As noted in the introduction, Goh et al. [19] introduce a similar algorithm, which
they refer to as MAE for SST Reconstruction under Occlusion (MAESSTRO). Although the
algorithms are similar, the approach to validation of the results is quite different, effectively
complimenting one another. We encourage those interested in implementing this approach
to consider both pieces of work.
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Abbreviations and Acronyms
The following abbreviations and acronyms are used in this manuscript:

AVHRR Advanced Very-High-Resolution Radiometer

DINEOF Data Interpolating Empirical Orthogonal Functions

ECCO Estimating the Circulation and Climate of the Ocean

ECMWF European Centre for Medium-range Weather Forecasting

ECV Essential Climate Variable

EM electromagnetic

EOF Empirical Orthogonal Function

GCOS Global Climate Observing System

GPU Graphics Processing Unit

IR infrared

L2 Level-2
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L4 Level-4

LLC Latitude/Longitude/polar-Cap

LLC4320 Latitude/Longitude-Cap-4320

MAESSTRO MAE for SST Reconstruction under Occlusion

MITgcm MIT General Circulation Model

ML machine learning

MODIS MODerate-resolution Imaging Spectroradiometer

NLP natural language processing

NOAA National Oceanic and Atmospheric Administration

RMSE root mean square error

SSIM Structural Similarity Index Measure

SST sea surface temperature

SSTa SST anomalies

SWOT Surface Water and Ocean Topography

TIROS Television InfraRed Observation Satellite

VIIRS Visible-Infrared Imager-Radiometer Suite

ViTMAE vision transformer masked autoencoder

Appendix A. Impacts of Sensor and Retrieval Noise on the Performance of ENKI

To better understand the RMSE vs. σT trends of Figure 4b and the impacts of noise on
ENKI reconstructions of masked areas in SST fields, we decompose both RMSE and σT into
contributing components.

For satellite-derived SST fields, patch complexity (herein denoted by σT) is a function
of both (1) noise in the patch resulting from the instrument or noise introduced as part
of the retrieval process σnoise_o_in and (2) geophysical structure within the field σgeo_o_in;
i.e., the signal of interest in the reconstruction. In these subscripts, the nomenclature “_o_in”
signifies that these terms relate to the original field and that the σ values correspond to the
SST field inside the patch. The reasons for this distinction will become clear below.

Using these definitions, we can express the signal variance of the patch as

σ2
T = σ2

noise_o_in + σ2
geo_o_in + 2σ2

noise_o_in,geo_o_in (A1)

where σgeo_o_in is a function of the structure of the field, which we designate as ξo_in,
and σ2

noise_o_in,geo_o_in is the covariance between the sensor/retrieval noise and geophysical
signal. If we assume negligible correlation between the two sources of variability, then
we approximate

σ2
T ≈ σ2

noise_o_in + σ2
geo_o_in, (A2)

Moreover, the root mean squared error (RMSE) of the prediction, which constitutes our
measure of the quality of the reconstructed image, is given by

RMSE2(σnoise_o_in, ξo_in, σnoise_p_in, ξp_in) =

σ2
noise_o_in + σ2

noise_p_in + f (ξo_in, ξp_in)
(A3)

where the subscript _p references the predicted field, _out refers to the characteristic, either
noise or the geophysical signal, outside of the masked areas, and f (ξo_in, ξp_in) is the
contribution to RMSE2 resulting from the difference between the geophysical structure of
the original field and that of the predicted field in the masked areas. Because ENKI was
trained on effectively noise-free model outputs (numerical noise will be negligible), we
ignore σnoise_p_in hereafter. We also emphasize that the predicted geophysical variability
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ξp_in is a function of the noise and geophysical structure in the original field (i.e., outside
the masked pixels):

ξp_in = ξp_in( σnoise_o_out, ξo_out). (A4)

While this complex dependence can make interpretation of RMSE vs. σT curves challenging,
we offer the following discussion to aid the reader.

Figure A1. Investigation of the reconstruction error in individual 4 × 4 pixel patches as a func-
tion of σT the measured standard deviation within the patch. For all of the datasets examined,
we adopt the t%= 10 ENKI model with m% = 10 masking. The blue circles are for the noiseless
(σnoise_o_in = σnoise_o_out = 0 K) LLC4320 validation dataset similar to Figure 4b. The green stars is the
same dataset with but with imputed white noise (σnoise_o_in = σnoise_o_out = 0.4 K). This curve follows
the one-to-one line for σT < σnoise_o_in as expected and then recovers toward the noiseless case as
where the geophysical signal dominates σT . The yellow triangles, meanwhile, show results where
noise was imputed in the unmasked patches but ignored when measuring RMSE (σnoise_o_in = 0 K,
σnoise_o_out = 0.4 K). The difference between this case and the noiseless dataset describes the impact of
noise in the unmasked data for reconstruction. Last, the magenta squares show results for the VIIRS
dataset. See the text for additional discussion on those results.

The blue markers in Figure A1 correspond to the noise-free case (i.e., σnoise_o_in =
σnoise_o_out = 0):

RMSE2 = f (ξo_in, ξp_in( 0, ξo_out)). (A5)

In the present context, this corresponds to the case where the original field is model SST.
We attribute the flat portion of the curve up to σT ≈ 10−2 K to two effects. The first is the
limited precision of the ViTMAE tokenization of the patches; here we have adopted a 256-
dimension latent vector. The other effect is a correlation between the size of geophysical
structures and the magnitude of σT . Specifically, for σT ≲ 0.02 K the spatial scale of
oceanographic features is in the order of or smaller than the 4 × 4 pixel patch size (i.e.,
8 × 8 km2), such that there is little to no information available to reconstruct the structure
in the masked area. As σT increases above these values, the spatial scale of the features
increases, with more information in the surrounding field available to reconstruct the field
within the patch.

But the above analysis and interpretation are free from noise typically encountered
in satellite-derived measurements. As previously mentioned, this can occur either due
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sensor noise or errors due to limitations of the retrieval algorithms used to estimate SST
from the measured radiance. To investigate the impact of sensor and retrieval noise
on ENKI’s reconstructions, we add 0.04 K white Gaussian noise to the LLC4320 cutouts
(σnoise_o_in = σnoise_o_out = 0.04 K in the above nomenclature) giving

RMSE2 = (0.04 K)2 + f (ξo_in, ξp_in( 0.04 K, ξo_out)) . (A6)

We then repeat the analysis. Not surprisingly, the new results (green stars in Figure A1)
follow the 1:1 line up to σT of approximately 0.04 K, after which the RMS difference
between the masked portions of the reconstructed SST fields and the underlying SST
fields, to which 0.04 K Gaussian noise was also added, becomes progressively smaller than
σT . For σT ≲ 0.04 K, the added noise tends to obscure the geophysical structure of the field.
As σT increases, however, the structure in the field eventually overwhelms the added noise
and the improvement in reconstruction approaches that achieved with no noise added—i.e.,
the blue circles in Figure A1.

Also shown in Figure A1 is a similar set of points for VIIRS cutouts, the magenta
squares. This curve follows neither the LLC4320 curve without noise (blue circles) nor the
LLC4320 curve with noise (green stars). We believe that this results from the non-Gaussian
nature of the noise in the VIIRS cutouts. To explore this, we repeat the above analysis
except for σnoise_o_in = 0 and σnoise_o_out = 0.04 K; i.e.,

RMSE2 = σ2
noise_p_in( 0.04 K, ξo_out)+

f (ξo_in, ξp_in( 0.04 K, ξo_out)),
(A7)

which results in the yellow triangles in Figure A1. The added noise in this case only
contributes to RMSE via ENKI’s reconstructed fields; the difference between the blue
circles (Equation (A5)) and yellow triangles (Equation (A7)) is a measure of the impact
of the noise added to the region outside of masked areas on ENKI’s reconstructed fields
in masked areas. This curve is more similar to the VIIRS curve than the curves for either
of the other two cases, no-noise (Equation (A5)) or Gaussian noise (Equation (A6)), for
10−3 ≲ σT ≲ 2 × 10−1 K, the range including in excess of 80% of cutouts. This suggests that
the noise in the VIIRS fields is not Gaussian. The two primary contributors to non-Gaussian
VIIRS noise are (1) instrument noise (VIIRS is a multi-detector instrument and this can
introduce noise in the along-track direction at harmonics corresponding to the number of
detectors) and (2) clouds that were not properly masked by the retrieval algorithm. Clouds
that have not been properly masked tend to result in cold anomalies, often substantially
colder than the surrounding cloud-free region, which are structurally incompatible with
geophysical processes. Furthermore, such anomalies tend to be relatively small in area—5
to 20 pixels—and in number (We were surprised by the significant fraction of cutouts in the
VIIRS, “cloud-free” product we are using that are affected in this fashion). Although both
of these sources of non-Gaussian noise may contribute to the shape of the VIIRS RMSE vs.
σT curve we believe that the primary problem is related to improperly masked clouds or
other small scale atmospheric phenomena, which imprint themselves on the SST field as
part of the retrieval.

In the above, we have shown how noise in the area surrounding masked pixels affects
ENKI’s ability to reconstruct the masked portion of the field. While not a major focus of this
work, we have also suggested that non-Gaussian noise in VIIRS SST fields due to clouds,
which have not been properly masked, is likely the primary cause of the degradation in
ENKI’s ability to reconstruct masked portions of these data.
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