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Abstract
Aim: Seamounts are conspicuous geological features with an important ecological role 
and can be considered vulnerable marine ecosystems (VMEs). Since many deep-sea 
regions remain largely unexplored, investigating the occurrence of VME taxa on sea-
mounts is challenging. Our study aimed to predict the distribution of four cold-water 
coral (CWC) taxa, indicators for VMEs, in a region where occurrence data are scarce.
Location: Seamounts around the Cabo Verde archipelago (NW Africa).
Methods: We used species presence–absence data obtained from remotely operated 
vehicle (ROV) footage collected during two research expeditions. Terrain variables 
calculated using a multiscale approach from a 100-m-resolution bathymetry grid, as 
well as physical oceanographical data from the VIKING20X model, at a native reso-
lution of 1/20°, were used as environmental predictors. Two modelling techniques 
(generalized additive model and random forest) were employed and single-model pre-
dictions were combined into a final weighted-average ensemble model. Model perfor-
mance was validated using different metrics through cross-validation.
Results: Terrain orientation, at broad scale, presented one of the highest relative 
variable contributions to the distribution models of all CWC taxa, suggesting that 
hydrodynamic–topographic interactions on the seamounts could benefit CWCs by 
maximizing food supply. However, changes at finer scales in terrain morphology and 
bottom salinity were important for driving differences in the distribution of specific 
CWCs. The ensemble model predicted the presence of VME taxa on all seamounts 
and consistently achieved the highest performance metrics, outperforming individual 
models. Nonetheless, model extrapolation and uncertainty, measured as the coef-
ficient of variation, were high, particularly, in least surveyed areas across seamounts, 
highlighting the need to collect more data in future surveys.
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1  |  INTRODUC TION

Seamounts typically have enhanced primary productivity and struc-
tural complexity, making them suitable habitats for the presence 
of cold-water corals (CWC) (Davies & Guinotte,  2011; Rowden 
et al., 2010, 2017; Tracey et al., 2011; Yesson et al., 2012). However, 
their ecological and geological prominence exposes seamounts to 

anthropogenic disturbances, related to the exploration for fisheries 
(Clark et  al., 2012; Goode et  al., 2020; Kerry et  al., 2022; Morato 
et  al.,  2006; Santos et  al.,  2021) and mineral resources (Leitner 
et  al., 2021; Washburn et  al., 2023). Many seamounts host popu-
lations of fragile long-lived species that form biogenic habitats with 
high vulnerability to bottom-contact fishing gears (Baco et al., 2020; 
Bergstad et al., 2019; Davies et al., 2015; Williams et al., 2020), and 

Main Conclusions: Our study shows how data-poor areas may be assessed for the 
likelihood of VMEs and provides important information to guide future research in 
Cabo Verde, which is fundamental to advise ongoing conservation planning.
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distribution models, vulnerable marine ecosystems

Resumo
Objetivo: Montes submarinos são importantes formações geológicas com um no-
tável papel ecológico e podem ser considerados Ecossistemas Marinhos Vulneráveis 
(VMEs). Dado que muitas regiões do mar profundo permanecem inexploradas, inves-
tigar a ocorrência de espécies indicadoras de VMEs é um desafio. O nosso estudo 
teve como objetivo prever a distribuição de quatro taxa de corais de água fria (CWC), 
indicadores de VMEs, numa região onde dados de ocorrência são escassos.
Localização: Montes submarinos no Arquipélago de Cabo Verde (NO África).
Métodos: Utilizamos dados de presença-ausência de CWC obtidos a partir de ima-
gens de um Veículo de Operação Remota (ROV) durante duas expedições científicas. 
Como dados ambientais foram utilizados variáveis de terreno calculadas com uma 
abordagem multi-escala a partir de uma grelha de batimetria com 100 m de resolução, 
e dados de oceanografia física obtidos com o modelo VIKING20X, a uma resolução 
nativa de 1/20°. Duas técnicas de modelação (Generalized Additive Models (GAM) e 
Random Forest) foram usadas e resultados de modelos individuais foram combinados, 
através da média ponderada, num modelo final Ensemble. O desempenho dos mod-
elos foi validado usando diferentes métricas através de técnicas de validação cruzada.
Resultados: A orientação do terreno, a larga escala, apresentou uma das maiores con-
tribuições relativas para os modelos de distribuição de todos os CWCs, sugerindo 
que interações de hidrodinâmica com topografia beneficiam os corais, possivelmente 
pelo aumento da disponibilidade de alimento. No entanto, mudanças na morfologia 
de terreno a escalas mais finas e salinidade foram importantes para diferenças entre 
a distribuição de espécies específicas. O modelo Ensemble projetou a presença de 
indicadores de VMEs em todos os montes submarinos e, consistentemente, apresen-
tou métricas de desempenho mais altas, superando modelos individuais. No entanto, 
medidas de extrapolação e incerteza foram elevadas, especialmente em áreas menos 
estudadas, destacando claramente a necessidade de recolher mais dados.
Conclusão: O nosso estudo mostra como áreas com poucos dados podem ser avali-
adas quanto à probabilidade de VMEs e fornece informações importantes para guiar 
futuras investigações em Cabo Verde, sendo fundamental para aconselhar planos de 
conservação em curso.
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are considered vulnerable marine ecosystems (VMEs) under the sus-
tainable fishing resolutions adopted by the United Nations General 
Assembly (e.g. A/RES/61/105). Identifying and mapping indicator 
taxa that meet the established criteria (FAO, 2009) is the first step 
for the designation of a VME (Ardron et al., 2014). However, the ben-
thic communities of most deep-water seamounts in the Central and 
South Atlantic Ocean – both within economic exclusive zones (EZZ) 
and in areas beyond national jurisdiction (ABNJ) – remain largely un-
characterized (Bridges, Howell, et al., 2023). This hampers our ability 
to evaluate potential impacts of anthropogenic activities on CWCs 
on specific seamounts, which is necessary to design and implement 
effective management plans for the sustainable use of resources and 
the conservation of those regions.

Different seafloor habitat mapping techniques can be used to 
map unexplored deep-sea regions. For example, seafloor habitat 
maps for data-limited regions can be created relying solely on phys-
ical properties of the seafloor, readily obtained from open-source 
databases, where different clusters of abiotic data allow the iden-
tification of areas with ecological importance based on the envi-
ronmental conditions they present (Hogg et  al.,  2016; McQuaid 
et al., 2020, 2023; Schumacher et al., 2022; Swanborn et al., 2023; 
Van Audenhaege et al., 2021). However, incorporating species oc-
currence data, through supervised mapping techniques such as spe-
cies distribution models (SDMs), is useful for identifying ecological 
relationships between species and the environment where they 
occur (Franklin, 2010; Guisan & Zimmermann, 2000).

Species distribution models (SDMs) have been widely used 
to predict the distribution of deep-sea benthic communities (e.g. 
Beazley et al., 2018; Howell et al., 2022; Kenchington et al., 2016; 
Knudby et  al.,  2013; Rooper et  al.,  2016; Taranto et  al.,  2023; 
Tittensor et al., 2009). However, in deep-sea ecosystems, including 
CWC habitats on seamounts, species data are limited due to con-
straints in sampling accessibility and/or are biased due to the ad 
hoc nature of deep-sea surveys, for example, video surveys with re-
motely operated vehicles (ROVs). Predicting the distribution of spe-
cies using limited data with high sampling bias presents a high risk of 
model overfitting and lower accuracy (Bean et al., 2012; Hernandez 
et al., 2006; Jeliazkov et  al., 2022; van Proosdij et  al., 2016; Wisz 
et al., 2008) since these datasets are less capable of capturing the 
full range of environmental conditions where species are present.

Different modelling approaches are available to model the dis-
tribution of species (Franklin, 2010; Guisan et al., 2017). However, 
it can be challenging for modellers to choose the best approach to 
use, given inherent bias associated with different methods, espe-
cially when limited datasets are available. Ensemble models combine 
multiple predictions obtained from other modelling methods (e.g. 
generalized additive models (GAM), random forest (RF) and boosted 
regression trees (BRT), among others) to create a single-model output 
(Araújo & New, 2007). The incorporation of multi-model predictions 
can improve predictive power and accuracy (Araújo & New, 2007) 
and mitigate single-model limitations (Meller et al., 2014; Ramirez-
Reyes et al., 2021). Ensembles have been successfully used to pre-
dict the distribution of CWCs, with multiple studies reporting higher 

model performance and accuracy in comparison to individual model 
predictions (Georgian et  al.,  2019; Pearman et  al.,  2020; Ramiro-
Sánchez et  al.,  2019; Robert et  al.,  2016; Rowden et  al.,  2017). 
Ensemble approaches can also perform well for model transfer, 
allowing to create new predictions across new environments in 
space and time (Crimmins et  al., 2013; Hao et  al., 2019; Jones & 
Cheung,  2015), making it suitable to model species distribution 
in data-poor regions (Breiner et  al.,  2015; Liu et  al.,  2019; Qazi 
et  al., 2022). Model transfer from areas where more data records 
are available to areas with few data points could be a good starting 
point to tackle characteristic data limitations of deep-sea habitats 
(Bridges, Barnes, et al., 2023), as long as regions to be modelled are 
sufficiently similar and levels of uncertainty are reported (Buisson 
et al., 2010; Pearson et al., 2006).

The deep-sea region around the Cabo Verde archipelago, in 
the Central Atlantic Ocean, remains largely unexplored. With re-
spect to deep-sea biodiversity, only a few studies are available (Chi 
et  al.,  2020; Hoving et  al.,  2020; Menezes et  al.,  2015; Stenvers 
et al., 2021). Nonetheless, the bathymetry of the islands, showing 
the presence of several seamounts, indicates that Cabo Verde is an 
area where VME indicator taxa may be present. Indeed, video re-
cords from two deep-sea research expeditions confirmed the pres-
ence of CWCs on the seamounts around the archipelago (Hansteen 
et al., 2014; Orejas et al., 2022).

In this study, we used an ensemble modelling approach, based 
on two modelling methods (GAM and RF), to predict the distribution 
of four CWC taxa, all indicators of VME, on five volcanic seamounts 
of Cabo Verde, where few records of species presence–absence 
are available. Our study aims to provide information on the envi-
ronmental variables driving the distribution of the selected CWCs, 
with predictive habitat maps being useful to guide future research 
expeditions to the seamounts of the archipelago, as a basis for man-
agement and conservation planning.

2  |  METHODS

2.1  |  Study area

The Cabo Verde archipelago (14°–18° N; 21°–26° W) is a group of 10 
islands and 5 islets of volcanic origin, located in the Eastern Central 
Atlantic Ocean, off the coast of West Africa (Figure 1). In 2010, the 
M80/3 Meteor Research Expedition (Hansteen et al., 2014) explored 
the geomorphology and volcanic origin of the seamounts of Cabo 
Verde (Kwasnitschka et al., 2024). Although the main scope of the 
expedition focused on geological studies, images collected during 
ROV dives gave some insights into the deep-sea benthic biodiversity 
present on the seamounts. One decade later, in 2021, the multidis-
ciplinary research expedition iMirabilis2 (Orejas et al., 2022), part of 
the Horizon 2020 project iAtlantic, on board the R/V Sarmiento de 
Gamboa (UTM-CSIC), was the first expedition dedicated to exploring 
the deep-sea benthic communities of SW Cabo Verde. The recorded 
video transects, conducted using an ROV, revealed pristine CWC 
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communities at Cadamosto Seamount (SW of Brava Island), includ-
ing over 60 CWC morphospecies (Vinha et al., 2022).

In this study, the distribution of four VME indicator taxa was 
modelled for five seamounts of Cabo Verde (see Figure 1). SDMs 
were limited to a depth range between 750 and 2100 m on those 
seamounts, corresponding to the depth interval in which species 
data are currently available. When few species presence records 
are available, limiting predictions to the known surveyed range 
of species and environmental predictors results in more reli-
able and stable predictions (Grenouillet et al., 2011; Hernandez 
et  al.,  2006; Qazi et  al.,  2022). The five seamounts were cho-
sen because they occur within the targeted depth of the mod-
els. A detailed description of the five seamounts is presented in 
Supplementary Text S1.

2.2  |  Species data

The target taxa of this study (Figure 2) were the octocorals Acanella 
arbuscula (Johnson, 1862), Metallogorgia spp. and Paramuricea spp. 

and the scleractinian coral Enallopsammia rostrata (Pourtalès, 1878), 
representing the most widely distributed and abundant VME indica-
tor taxa observed in the available data for Cabo Verde.

Species presence–absence records were gathered from ROV 
footage collected during the M80/3 Meteor (2010) (Hansteen 
et al., 2014) and the iMirabilis2 (2021) (Orejas et al., 2022) research 
expeditions. Data from the two expeditions were available for four 
of the five targeted seamounts in this study (Vinha et al., 2023), with 
no available data on the distribution of these CWCs for Boavista 
Seamount since this seamount was not included in any of the ROV 
surveys of the two cruises.

Video data from the iMirabilis2 expedition were analysed, 
quantitively, using the open-source software BIIGLE (biigle.de) 
(Langenkämper et al., 2017). Observations from five continuous 1- 
to 2-km-long video transects between 2000 and 1400 m depth at 
Cadamosto Seamount were converted into presence–absence data 
points. Similar data were not available for the seamounts explored 
during M80/3 Meteor. However, all the available images and short 
video clips from that expedition were analysed to identify presence 
and absence points for each of the four target CWCs.

F I G U R E  1 Study area map. (a) Location of the Cabo Verde archipelago in NW Africa (black square). (b) Map of Cabo Verde with the 
location of the five seamounts (Cadamosto, Nola, Senghor/Nova Holanda, Cabo Verde and Boavista) highlighted by the squares outlined 
with dashed lines, and of the designated ecologically or biologically significant marine areas (EBSAs) for the archipelago. The dark grey 
contour lines on the seamount's maps (1, 2, 3, 4 and 5) represent the surveyed depth range considered for modelling. Surveyed areas where 
species presence–absence data were collected are highlighted with black lines and white symbols. Black lines correspond to continuous 
video transects conducted in 2021 during the iMirabilis2 expedition and white symbols correspond to the locations of the video frames from 
GEOMAR's M80/3 meteor expedition, in 2010.

 14724642, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13896 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [16/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5 of 25VINHA et al.

When there is a limited number of species occurrences and/or 
when species' absence locations are not available, it is common to 
use pseudo-absences (Lobo & Tognelli, 2011), that is, simulated ab-
sence points representing locations where a species is presumed 
not to occur. However, in our study, despite the low number of ab-
sences on each seamount, the decision to use true absence data, 
instead of pseudo-absence data, was made after running several 
model trials and observing low performance and accuracy in the 
models using pseudo-absence response data. Indeed, models built 
with true absences often result in improved predictive power and 
accuracy (Wisz & Guisan, 2009). Finally, all the available presence–
absence data (Table 1) from the two expeditions were transformed 
into one-point per grid cell of the 100-m-resolution bathymetry 
grid, with the prevalence of the presence records over the absence 
records, in grid cells where both categories overlapped. Sampling 

effort, while variable across grid cells, was not accounted for in 
the models.

2.3  |  Environmental data

Terrain variables were derived from a 100-m-resolution bathymetry 
grid, created from a compilation of all available bathymetry data 
collected by multibeam echosounder (MBES) in the Cabo Verde re-
gion. We used an analytical multiscale approach to calculate terrain 
variables by considering, when possible, different neighbourhood 
sizes (i.e. number of grid-cells (n)) for calculations. Using different 
neighbourhood (or window) sizes to calculate terrain variables al-
lows to better capture different levels of terrain detail and hetero-
geneity (Lecours et al., 2015; Wilson et al., 2007). For example, the 

F I G U R E  2 Selected VME indicator taxa for species distribution models of the seamounts of Cabo Verde. (a) Metallogorgia spp.; (b) 
Enallopsammia rostrata; (c) Paramuricea spp. (top arrow) and Acanella arbuscula (bottom arrow). Photo credits: iMirabilis2 (IEO, CSIC)/EMPEC/
iAtlantic project.

TA B L E  1 Total number of presence and absences records, for each VME indicator taxa, on each seamount.

Seamounts Cadamosto Nola Senghor/Nova Holanda Cabo Verde Boavista

VME indicator taxa Depth range (m) of presence records/seamount

Acanella arbuscula 1890–1990 750–1330 1820 870–930

Enallopsammia rostrata 1480–1900 1330–1770 1680–1720

Metallogorgia spp. 1470–2100 1330–1770 1680–1720 980

Paramuricea spp. 1450–1900 1730

VME indicator taxa Total number of presences Number of presence records/seamount

Acanella arbuscula 27 2 20 1 4 0

Enallopsammia rostrata 46 31 13 2 0 0

Metallogorgia spp. 46 35 8 2 1 0

Paramuricea spp. 29 28 0 1 0 0

VME indicator taxa Total number of absences Number of absence records/seamount

Acanella arbuscula 141 96 20 9 16 0

Enallopsammia rostrata 122 67 27 8 20 0

Metallogorgia spp. 122 63 32 8 19 0

Paramuricea spp. 139 70 40 9 20 0

Note: For each taxon, a total of 82 records were collected in 2010 during the M80/3 ROV Meteor expedition across four of the five modelled 
seamounts, whereas a total of 86 records were collected in 2021 during the iMirabilis2 expedition, on Cadamosto seamount.
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distribution of CWCs can be influenced by variations in fine-scale 
terrain features, such as small mounds (Dolan et al., 2008), or broad-
scale terrain features, such as seamount flanks (Guinan et al., 2009; 
Lecours et  al.,  2015; Wilson et  al.,  2007). Considering different 
analytical scales in terrain derivatives provides, therefore, a more 
comprehensive characterization of the environmental predictions 
driving species distribution, ultimately leading to improved model 
accuracy (Lecours et al., 2016; Wilson et al., 2007). Hence, in this 
study, slope, aspect (converted to eastness and northness) and three 
types of terrain curvature (plan, profile and mean) were calculated 
following a Fibonacci sequence of four increasing n values (n = 3, 
9, 17, 33) (Dolan et  al., 2008). For this, the functions ‘SlpAsp’ and 
‘Qfit’ of the ‘Multiscale DTM’ library (Ilich et al., 2023) were used in 
R Studio Version 4.1.1 (R Studio Team, 2022). Topographic position 
index (TPI) and vector ruggedness measure (VRM) were calculated at 
two scales, both fine and broad scales (n = 3, 33), using the ‘tpi’ and 
‘vrm’ functions, respectively, of the ‘spatialEco’ R Package (Evans 
& Ram, 2021). Roughness and terrain ruggedness index (TRI) were 
calculated using the ‘terrain’ function from the ‘raster’ R package 
(Hijmans et al., 2015), using the default n = 3. Final terrain variables 
and scales considered in the models were chosen after investigating 
collinearity between variables (see next section on initial variable 
selection).

The monthly averages of bottom temperature, bottom salinity 
and bottom zonal (U) and meridional (V) velocity components for the 
period of 2009 to 2019 were obtained from a hindcast simulation 
in the high-resolution VIKING20X ocean general circulation model 
(VIKING20X-JRA-OMIP described in Biastoch et  al., 2021), with a 
native horizontal resolution of 1/20° (~5.3 km). Bottom U and V were 
converted into mean bottom current speed.

Each oceanographic parameter was converted into a single grid 
that represents the mean value for the time period considered. The 

final grid was then resampled to match the resolution of the final 
spatial scale of the other predictors (100 m), using a bilinear interpo-
lation method, by applying the ‘resample’ function in the R package 
‘raster’.

All the final data layers (Table  2) were masked to consider 
the spatial extent of the five seamounts; and a depth mask, cor-
responding to the depth interval of the species data available 
(750–2100 m), was also used to represent the spatial extent used 
for modelling. All predictor layers were reprojected to a UTM26N 
coordinate system.

2.4  |  Initial variable selection

An initial variable selection was done to fulfil model assump-
tions of independence between variables by assessing collinear-
ity and variance inflation factor (VIF) of environmental variables. 
Variables with a Pearson's correlation coefficient >0.5 and VIF > 5 
(Zuur, 2012) were removed from the initial set of variables consid-
ered for modelling. A preliminary RF model with all the initial set of 
environmental variables was used to determine which of the vari-
ables to remove between a pair of correlated variables, by assess-
ing the mean decrease in Gini coefficient as a measure of variable 
importance. From the initial set of 34 environmental variables, 14 
had collinearity issues (Figure S1) and were removed: mean curva-
ture at all scales (n = 3, 9, 17, 33), broad- and fine-scale TPI, broad-
scale VRM (n = 33), TRI, eastness at intermediate scales (n = 9, 17), 
northness at intermediate (n = 9) and broad scale (n = 33), slope at 
fine (n = 3) and intermediate scales (n = 17), plan curvature at inter-
mediate scale (n = 17) and mean bottom current speed. Moreover, 
depth and mean bottom temperature had a VIF > 5 and were also 
removed.

TA B L E  2 Environmental variables considered for species distribution modelling, with the resolution or neighbourhood size in grid cells (n), 
used, when applicable, and the respective unit.

Variable type Variable Spatial resolution n Unit

Water column depth Depth 100 m m

Terrain Slope Slope 3, 9, 17, 33 degrees

Terrain orientation Eastness 3, 9, 17, 33

Terrain orientation Northness 3, 9, 17, 33

Terrain morphology Profile curvature 3, 9, 17, 33

Terrain morphology Plan curvature 3, 9, 17, 33

Terrain morphology Mean Curvature 3, 9, 17, 33

Terrain morphology Topographic position index (TPI) 3, 15

Terrain roughness Roughness 3

Terrain ruggedness Terrain ruggedness index (TRI) 3

Terrain rugosity Vector ruggedness measure (VRM) 3, 33

Oceanography Mean bottom temperature Native resolution of 1/20° and 
rescaled to 100 m

°C

Oceanography Mean bottom salinity psu

Oceanography Mean bottom current speed m/s
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    |  7 of 25VINHA et al.

2.5  |  Modelling methods

Two modelling methods (RF and GAM), commonly used in SDMs, 
were used to predict the probability of presence of four VME indi-
cator taxa on the seamounts of Cabo Verde, including unexplored 
areas.

2.5.1  |  Random forest (RF)

Random forest (RF) is a machine learning algorithm, where deci-
sion trees are used to make predictions on randomly selected sub-
sets of the data, resulting in a final model that is a prediction of all 
trees combined (Breiman,  2001). In this study, an RF regression 
was implemented in R using the ‘randomForest’ package (Liaw & 
Wiener, 2002). To fine-tune the implementation of the model, the 
function ‘TuneRF’ of the same package was used to find out the opti-
mal parameters, resulting in the implementation of an RF model with 
500 trees and four variables at each split.

2.5.2  |  Generalized additive model (GAM)

Generalized additive models (GAM) are an extension of generalized 
linear models (GLM), where a smoothing function is used to con-
struct one best model of the relationship between the response 
and the predictor variables, in a flexible, non-linear way, being thus 
able to capture complex non-linear relationships between vari-
ables (Zuur, 2012). In this study, we used the ‘mgcv’ package in R 
(Wood, 2015) to fit a GAM using presence–absence data with a bino-
mial distribution and using the restricted marginal-likelihood (REML) 
method for smoothing parameter estimation. The parameters used 
to tune each GAM for each taxon are presented in Table  S1, and 
the smoothers plot, for the models of each taxon, is presented in 
Figure S2.

2.6  |  Final variable selection

Variable selection is important to avoid models that are more sus-
ceptible to overfitting (Zuur, 2012) and harder to interpret, espe-
cially in regions where data records are limited (Qazi et al., 2022).

Therefore, final variable selection for RF was done using the 
Boruta algorithm (Kursa & Rudnicki, 2010), implemented in R using 
the ‘Boruta’ R Package (Kursa & Rudnicki, 2015). The Boruta algo-
rithm evaluates variable importance by iteratively comparing the 
importance of a target variable against shuffled values of the same 
variable. Because it considers multi-variable relationships, its im-
plementation is suitable both for classification and regression tasks 
(Borokini et al., 2023; Downie et al., 2021).

To fit GAMs, variable selection was done using forward step-
wise variable selection. For this procedure, we started with an 
empty model, and variables were added based on their statistical 

significance (p-value < 0.05) until no more variables could be 
added without decreasing model performance. Model fit was then 
compared using the Akaike information criteria (AIC) score, and 
the final set of variables, resulting in the lowest AIC and most 
parsimonious model, were used to fit the model. The final set of 
variables selected for each model of each taxon is presented in 
Table S2.

2.7  |  Model performance

Model performance was evaluated using a 5-fold cross-validation 
procedure. The method involves partitioning the data into five 
subsets (folds), where the model is trained on four of the folds and 
tested on the remaining fold. The process is repeated five times, and, 
at each time, a different fold is held for testing the model. Using 
fewer k folds (e.g. 5 folds instead of 10 folds) works better for small 
datasets by ensuring that each fold contains enough data for train-
ing and validation and by reducing variance in the estimated perfor-
mance metrics, given that each fold will contain larger portions of 
data. In addition, given that a class-imbalanced dataset can result in 
biased model evaluation metrics, an equal proportion of presences 
and absences was kept at the split of each fold to account for class 
imbalance.

A threshold value above which the predicted probability is con-
sidered presence was calculated using the function ‘optimal.thresh-
olds’ in the ‘PresenceAbsence’ R Package (Freeman & Moisen, 2008). 
We used a threshold that maximizes the sum of sensitivity (i.e. the 
proportion of accurately predicted presences) and specificity (i.e. the 
proportion of accurately predicted absences) to generate the confu-
sion matrix and extract model evaluation metrics. A description of 
the evaluation metrics used to measure the prediction capacity of 
the model on the test data, at each fold repetition, is presented in 
Table S3. The final evaluation metric for each model was calculated 
as the mean value and standard deviation generated at each fold 
repetition.

Finally, the degree of spatial autocorrelation (SAC) was assessed 
in the final model residuals, at each fold, using the Moran's index, a 
statistical metric that measures the similarity between adjacent ob-
servations in a spatial distribution by comparing each observation 
to the average value of its neighbouring observations. SAC was not 
significant in the resulting models (Table S4) and, therefore, no ad-
ditional method to account for SAC in the modelling framework was 
applied.

2.8  |  Model predictions

The models fitted for the seamounts where species presence–ab-
sence data were available were transferred to make predictions on 
areas within seamounts where no data were available and on sea-
mounts where no surveys were conducted (i.e. Boavista Seamount). 
Predictions of the probability of presence of each species for the 
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8 of 25  |     VINHA et al.

whole study area extent were generated at each fold repetition, for 
each modelling technique. The final prediction of each model repre-
sents the mean probability of presence considering all repetitions, 
with the standard deviation representing the prediction confidence 
(Figures S3–S5).

2.9  |  Ensemble models

A weighted average ensemble model was calculated based on predic-
tions generated at each 5-fold repetition of both model techniques (RF 
and GAM), following the method described in Nephin et al. (2020). This 
resulted in 10 different model predictions, weighed by the AUC score, 
considered in the final weighted average calculation. Ensemble model 
predictions were validated with the same withheld testing dataset 
generated across the 5-fold cross-validation procedure, as described 
in Section 2.7. Likewise, ensemble model uncertainty was measured 
with the coefficient of variation, calculated as the standard deviation 
divided by the mean, between model predictions at each fold repeti-
tion. For data visualization purposes, the values of the coefficient of 
variation were transformed into five categories of percentage (%) of 
uncertainty (0–20, 20–40, 40–60, 60–80 and 80–100).

Although wrapper R packages are available for ensemble modelling 
(e.g. ‘biomod2’ (Thuiller et al., 2016)), in our study, manually calculating 
the weighted averages and coefficient of variation was useful to avoid 
a ‘black box’ in the application of the ensemble approach.

2.10  |  Model outputs and interpretation

2.10.1  |  Binary maps

The mean probability of predicted presences obtained for each model 
was converted into binary maps, for all modelling techniques consid-
ered (i.e. GAM, RF and Ensemble). The optimal threshold obtained 
to evaluate model performance (see Section  2.7) was used as the 
criteria to classify a grid cell as presence or absence, that is, if prob-
ability > threshold, then presence (Table  S5). Different thresholds 
were used to create the binary outputs, meaning that the predicted 
areas of presence of each CWC depend on the probability threshold 
used. For instance, a probability value classified as "presence" for one 
taxon might be classified as "absence" for another taxon with a higher 
threshold value. For the ensemble binary maps, presence probability 
thresholds were set at 30% for A. arbuscula, 44% for E. rostrata, 34% 
for Metallogorgia ssp. and 32% for Paramuricea spp. (see Table S5).

2.10.2  |  Extrapolation analysis

Identifying areas where models are extrapolating is important to in-
terpret model results and to communicate transparent model outputs. 
The recognition of regions of model extrapolation, obtained from 
making predictions in areas where environmental data are outside 

the environmental ranges of observed data, allows to gain insights on 
model limitations by identifying areas where targeted efforts should 
occur (i.e. focus of new surveys should be in extrapolated areas) or for 
conservation measures (i.e. if models are to be used for conservation, 
caution should be taken regarding model predictions in extrapolated 
areas). In this study, the extent and magnitude of extrapolation in 
model predictions were identified using the function ‘compute.extrap-
olation’ from the ‘dsmextra’ package (Bouchet et al., 2020). The func-
tion is based on the extrapolation detection (ExDet) tool (Mesgaran 
et al., 2014) and measures two types of extrapolations: univariate ex-
trapolation (when ExDet values < 0, representing conditions outside 
the range of individual predictors in the reference sample) and com-
binatorial extrapolation (when ExDet > 1, representing new combina-
tions of values within the univariate range of reference predictors).

2.10.3  |  Response curves

The relationship between each environmental variable and the 
predicted values was analysed by plotting the functional response 
curves for each taxon (Figure S6). This was done by extracting the 
environmental data values at each obtained predicted probability 
value and by plotting the curves with a smoothing function with a 
95% confidence interval, following the method described in Lopes 
et  al.  (2019). The functional response curves were plotted for the 
two modelling techniques and the ensemble model.

2.10.4  |  Variable importance

The relative importance of each environmental variable was calculated 
to identify the most important variables for the distribution of each 
taxon and to compare results between models. For this, we applied the 
same method used by the ‘biomod2’ R package (Thuiller et al., 2016), 
where (1) a standard prediction with all data were made, then (2) the 
targeted variable was randomized and (3) a new prediction was made 
with the randomized dataset. Next, the (4) correlation score between 
the new prediction and the standard prediction was calculated and the 
score was considered to give an estimation of the variable importance 
to the model. A good correlation score between two predictions shows 
that the randomized variable has little importance (in other words, 
predictions are only slightly different), whereas low correlation score 
shows that the variable is important to the model (Thuiller et al., 2016).

3  |  RESULTS

3.1  |  Model performance

In general, the ensemble model consistently presented the best 
model performance for all taxa, while in terms of single-model per-
formance, GAMs presented slightly higher performance than RF 
models, for all performance metrics (Figure 3).
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    |  9 of 25VINHA et al.

According to AUC scores, all models performed well (AUC > 0.76), 
but the ensemble models for all taxa showed the best overall model 
performance (AUC > 0.93). Random forest models yielded higher 
AUC scores for E. rostrata and Metallogorgia spp. Conversely, GAM 
models performed better than RF models for A. arbuscula and 
Paramuricea spp., with the GAM models of A. arbuscula exhibiting 
the highest AUC values of all RF and GAM models.

Similarly, Kappa values showed better performance with the en-
semble models (Kappa > 0.85) in comparison to the individual GAM 
and RF models, indicating a good agreement between model predic-
tions and the observed data. According to Kappa, GAM presented 
a higher performance than RF for all taxa, expect for Metallogorgia 
spp., where similar kappa values were obtained for both models but 
with a higher standard deviation for RF. A similar model performance 
pattern was also observed considering the point-biserial correlation 
values, with the ensemble models outperforming the two individual 
models (point-biserial correlation > 0.72) for all four CWCs.

In terms of sensitivity (i.e. model capacity to correctly identify 
presences) and specificity (i.e. model capacity to correctly identify 

absences), all ensemble models demonstrated, consistently, the high-
est performance across all taxa (sensitivity and specificity > 0.88). 
For all taxa, GAMs presented higher sensitivity and specificity than 
RF models. Furthermore, this was also reflected in the high true 
skill statistic (TSS) values of the ensemble models (TSS > 0.77 for all 
taxa), suggesting a good discrimination power between presences 
and absences.

3.2  |  Most contributing variables

The relative contribution of variables (Figure 4) for the distribution 
of each modelled CWC consistently showed a higher importance 
of broad-scale terrain features (across 33 grid cells or 3300 m) than 
finer-scale (across three grid cells or 300 m), although variable im-
portance differed between the two modelling methods.

Both RF and GAM agreed on the importance of mean bottom 
salinity as one of the most important variables for the distribution 
of A. arbuscula. In addition, terrain curvature (profile and plan) and 

F I G U R E  3 Model performance metrics (AUC, kappa, point-biserial correlation, sensitivity, specificity and true skill statistic (TSS)) for each 
of the modelled VME indicator taxa (Acanella arbuscula, Enallopsammia rostrata, Metallogorgia spp. and Paramuricea spp.) according to each 
modelling method (ensemble, GAM and random forest).
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10 of 25  |     VINHA et al.

orientation (eastness), both measured at broad scale (n = 33), were 
also considered important variables according to both models.

For the scleractinian coral E. rostrata, variables related to terrain 
curvature (profile curvature) and orientation (northness), calculated 
at intermediate scales (n = 9 and 17), were among the most contrib-
uting variables for RF models, whereas mean bottom salinity was 
the highest contributing variable for the GAM models, followed by 
broad-scale plan curvature (n = 33).

Terrain orientation at intermediate scale (i.e. northness (n = 17)) 
was consistently the most contributing variable for both RF and GAM 
models of Metallogorgia spp., while variables of fine-scale terrain ori-
entation (n = 3) were also among the most contributing ones for both 
individual distribution models of this CWC. In addition, broad-scale 
slope (n = 33) presented the second highest relative variable for the 
GAM models of Metallogorgia spp.

For the octocorals from the genus Paramuricea spp., terrain 
morphology (i.e. profile curvature (n = 33)) and orientation (i.e. 
northness (n = 17)) at intermediate to broader scales were the 
most important variables for the distribution of this CWC, accord-
ing to both models.

3.3  |  Response curves

The most suitable conditions for A. arbuscula were observed within a 
mean bottom salinity range between 34.85 and 35.90 psu (Figure 5). 
The probability of presence decreased at 34.95 psu, coinciding with 
the value where the probability of presence of other taxa started 
to increase. Moreover, higher probability of presence of A. arbuscula 
was associated with negative values of terrain plan curvature, that is, 
areas of downslope concavity.

The highest probability of presence of E. rostrata was associated 
with values of mean bottom salinity over 35.00 psu, on moderate 
sloping terrain (maximum at 10°) linked with broad-scale terrain 
features with positive profile curvature (i.e. with upwardly concave 
shape).

The highest probability of presence of Metallogorgia spp. coin-
cided with steeper slope values (broad-scale slope higher than 15°), 
facing a northward direction.

The most suitable habitat for Paramuricea spp. was associated 
with positive values of profile and plan curvature, at intermediate 
and broad scales.

F I G U R E  4 Relative contribution of each environmental variable, with n representing the neighbourhood size (in grid cells) used for multi-
scale terrain variables calculation, for all the modelled VME indicator taxa. For each model (GAM and RF), dots represent the mean obtained 
value across the five folds in the cross-validation procedure and the horizontal bars represent the respective standard deviation.
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    |  11 of 25VINHA et al.

3.4  |  Observed and predicted distribution of CWCs

The available observational data on the distribution of the four 
CWCs showed that Metallogorgia spp. and A. arbuscula were the only 
taxa where presence records were observed on all four surveyed 
seamounts (Figure  6). However, the observed presence–absence 
data covered a limited spatial extent and depth range (from 750 to 
2100 m depth) on each seamount and, therefore, it is likely that the 
range of environmental conditions occupied by each CWC was not 
represented in the response dataset.

All modelled taxa presented areas with relatively high pre-
dicted probability of presence (Figure  7), however, the octocoral 
Metallogorgia spp. was the taxon with the largest suitable area across 
the five seamounts, with a predicted area of presence covering a 
total of 487.05 km2 (Figure 8, Table 3). Conversely, Paramuricea spp. 
had the smallest predicted areas of occurrence, with only 24.83 km2 
of suitable habitat identified across the five seamounts.

The bamboo coral A. arbuscula was observed on the four sea-
mounts where species data were available, with the deepest ob-
served record at 2000 m (on Cadamosto) and the shallowest at 

F I G U R E  5 Functional response curves of each environmental variable used to fit the models, for each VME indicator taxa, based on the 
probability of predicted presence of the ensemble models.
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12 of 25  |     VINHA et al.

750 m depth (both on Nola and Cabo Verde seamounts). Most 
presence records of A. arbuscula were found on Nola Seamount in 
the area between the two seamount's summits (Figure 6). Similarly, 

model predictions of A. arbuscula showed that Nola was the sea-
mount with the largest predicted area of presence (61.95 km2) and 
the areas with the highest probability of occurrence were between 

F I G U R E  6 Observed presence–absence records, for the modelled VME indicator taxa, during ROV surveys on each seamount. No 
surveys were conducted on Boavista Seamount.
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    |  13 of 25VINHA et al.

the two summits of the seamount (Figure 7), following the patterns 
of the observed data. On the other seamounts, the probability of 
presence of A. arbuscula was usually associated with the eastern 
sides of the seamounts. Cadamosto Seamount presented the low-
est modelled probability of occurrence for A. arbuscula, with few 
predicted areas of presence. This is consistent with video obser-
vations where only two specimens of A. arbuscula were observed.

Observational data showed the presence of the scleractinian 
coral E. rostrata on Cadamosto, Nola and Senghor seamounts. 
Species distribution observations of E. rostrata ranged from 1700 
to 1500 m on Cadamosto and Senghor and from 1600 to 1000 m 
depth on Nola. However, according to the modelled distribution, 
Boavista Seamount was the seamount with the largest predicted 
area of presence of E. rostrata (predicted area of presence of 

F I G U R E  7 Mean probability maps of presence, according to the Ensemble model predictions, for each VME indicator taxa, at each 
seamount.
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14 of 25  |     VINHA et al.

28.05 km2), followed by Nola and Senghor seamounts. On Boavista, 
the ensemble model predicted the presence of E. rostrata along the 
most pronounced ridges on the seamount flanks, throughout the 
whole bathymetric range modelled in this study. A similar mod-
elled distribution pattern was observed on Cabo Verde Seamount. 
On Nola, the areas with the highest probability of presence of 
E. rostrata were located on the SE side from 1700 to 1300 m depth. 

Although with a lower probability of presence, there were some 
suitable areas for the species on the NE side, within the same 
depth range. On Senghor, areas with high probability of presence 
for E. rostrata were located on the northward-facing side, between 
2000 and 1200 m depth. On this seamount, the presence of E. ros-
trata was also predicted on smaller mounds at 2000 m depth. At 
Cadamosto Seamount, the predicted distribution of E. rostrata 

F I G U R E  8 Categorical maps of the predicted presence and absence, according to the ensemble model predictions of each VME indicator 
taxa, at each seamount. Shaded grey areas indicate extrapolated areas.
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    |  15 of 25VINHA et al.

covered a wider spatial distribution, although the areas with the 
highest probability of presence were above 1700 m depth.

The available observational data for Metallogorgia spp. showed a 
widespread spatial distribution on Cadamosto Seamount, whereas 
this was not the case for the distribution of this CWC on the other sea-
mounts. For example, on Nola, Metallogorgia spp. was present on the 
east side but absent on the west side on the seamount. The observed 
depth range of Metallogorgia spp. was from 2100 m (on Cadamosto 
Seamount) to 1000 m (on Cabo Verde Seamount). In terms of model 
predictions, Metallogorgia spp. presented significant predicted areas 
of presence on all five seamounts, with the highest probabilities on 
northward seamount slopes. Nola and Senghor were the seamounts 
with the highest probability of presence for Metallogorgia spp., fol-
lowed by Boavista. On the first two seamounts, the most suitable 
areas of presence were located on the N and NE sides, while on 
Boavista, the modelled distribution of Metallogorgia spp. spanned 
across the whole seamount. The predicted areas of presence for this 
CWC were also large on Cabo Verde Seamount where the predicted 
distribution of Metallogorgia spp. also favoured the northward-facing 
slopes. Similarly, the most suitable areas for Metallogorgia spp. on 
Cadamosto were located on the north side of the seamount, with the 
highest probability of presence around 1700 m depth.

Finally, the octocoral Paramuricea spp. was observed on Cadamosto 
and Senghor seamounts, along a narrow bathymetric distribution from 
1800 to 1500 m of water depth. On Cadamosto, most presence re-
cords of this CWC were observed near the summit, at 1400 m of depth 
(see Figure 6). This was the CWC with the smallest predicted areas of 
presence on the five seamounts. According to the ensemble model, 
Cadamosto was the seamount with the highest probability of pres-
ence. The areas predicted to be most suitable for Paramuricea spp. cor-
responded to small seafloor topographical elevations near the summit 
of Cadamosto at 1500 m depth. Although there was no observation 
presence data of Paramuricea on Nola and Cabo Verde, the models 
predicted the presence of this CWC on all seamounts.

3.5  |  Uncertainty

The model predictions with the highest uncertainty (Figure 9) were 
the ones for Paramuricea spp., where over 50% of the total modelled 
area (i.e. total area of the five seamounts) showed an uncertainty 
above 60%. On the other hand, Metallogorgia spp. was the taxon 

with the overall highest prediction confidence (in other words, with 
the lowest uncertainty).

In general, for the four taxa on the five seamounts, the predicted 
areas of absence had higher uncertainty, compared with the pre-
dicted areas of presence. Cabo Verde and Boavista were the sea-
mounts with the highest prediction uncertainty for all taxa or, in 
other words, with the highest model disagreement between single-
model predictions; whereas Cadamosto was the seamount with the 
highest confidence of predictions. The first two seamounts were 
the least surveyed seamounts, while Cadamosto was the seamount 
where the highest number of species observations were available. 
Similarly, the extrapolation analyses highlighted these differences in 
sampling effort, with Boavista and Cabo Verde presenting the high-
est proportions of extrapolated area (over 60% of the modelled area 
was extrapolated) (Table  4), while the proportion of extrapolated 
area decreased on the seamounts with more observations.

For all seamounts, extrapolated areas occurred where no spe-
cies’ presence–absence data were available, overlapping with areas 
of higher uncertainty (see Figures  8 and 9). Slope at broad scale 
and mean bottom salinity were the most influential variables to 
the extrapolation (Table S6), with the first variable contributing to 
over 20% of the extrapolated area. The environmental conditions 
of the extrapolation represent areas on the seamounts with flatter-
to-intermediate slopes (average slope of 12 ± 3°) and with profile 
curvature values close to 0, indicating that relatively flat terrain fea-
tures were the most undersampled environmental conditions on the 
seamounts. This may reflect the tendency to target rugged features 
when planning ROV surveys.

For A. arbuscula, Cabo Verde and Boavista were the seamounts 
with the highest uncertainty, in which 35% of the modelled area pre-
sented an uncertainty category higher than 60%. The areas with the 
highest uncertainty predictions corresponded to the western side 
of these seamounts where the ensemble models predicted absence 
areas for the species (see Figure 7). A similar pattern was observed 
for Senghor Seamount. However, over 70% of the total modelled 
area of Cadamosto and Nola presented an uncertainty of less than 
60%, with the areas of highest confidence (uncertainty <20%) in 
predicted presence areas for A. arbuscula.

Models for E. rostrata and Metallogorgia spp. showed predictions 
with the highest confidence on Cadamosto Seamount, where most 
of the modelled area corresponded to an uncertainty of less than 
60% for both species. Nola was the seamount with the highest 

TA B L E  3 Estimated predicted suitable area (in km2), according to the ensemble model, for each VME indicator taxa at each seamount.

VME indicator taxa

Predicted suitable area (km2)

Total suitable area 
(km2)Cadamosto Nola

Senghor/ Nova 
Holanda Cabo Verde Boavista

Acanella arbuscula 0.40 61.35 20.73 14.74 23.85 121.08

Enallopsammia rostrata 2.99 25.26 24.09 13.07 28.05 93.46

Metallogorgia spp. 6.25 199.82 111.37 69.10 100.50 487.05

Paramuricea spp. 2.75 5.24 7.90 3.99 4.94 24.83
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16 of 25  |     VINHA et al.

uncertainty for the distribution models of E. rostrata, with the area 
with the highest model disagreement located between the two sum-
mits of Nola, where the ensemble model predicted an absence area. 
Approximately 30% of the modelled area of Senghor, Cabo Verde 
and Boavista presented an uncertainty category greater than 40% 
for E. rostrata.

The low uncertainty in the predicted distribution of Metallogorgia 
spp. was consistent across the five seamounts, and there were no 
areas on any of the seamounts with an uncertainty category above 
80%. Nola and Cabo Verde were the seamounts with the highest 
predicted uncertainty with 20% of the modelled area in these sea-
mounts within an uncertainty category of 40%–60%. The area with 

F I G U R E  9 Categorical uncertainty maps, based on the coefficient of variation, for the predictions of the ensemble models of each VME 
indicator taxa, at each seamount.
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highest uncertainty for the predicted distribution of Metallogorgia 
spp. on Nola corresponded to a predicted absence area in the deep-
est part of the SE side of the seamount.

For Paramuricea spp., Cadamosto was the seamount with the 
lowest uncertainty predictions, however, on the other four sea-
mounts, over 60% of the modelled area presented an uncertainty 
greater than 60%. Similar to what was observed for the other taxa 
on the other seamounts, the areas with the highest uncertainty rep-
resent areas of predicted absence for this CWC.

4  |  DISCUSSION

This study used species distribution models (SDMs) to predict 
the distribution of VME indicator taxa in a poorly explored deep-
sea region of the Central Atlantic Ocean. The use of an ensemble 
model proved to be a good approach to address the data limita-
tions of our study, being capable of predicting new CWC presence 
areas on the seamounts of Cabo Verde and exhibiting higher model 
performance metrics in comparison to single-model GAM and RF 
predictions. However, the data limitations of our study have also 
contributed to high model uncertainty and large areas of extrapo-
lation, especially in undersampled areas and on seamounts where 
fewer species observations were available. Nonetheless, these 
results are essential to guide future surveys in the study area by 
highlighting areas where sampling effort should focus. Below, we 
identify and discuss the main environmental patterns correlated 
with the distribution of the modelled taxa as well as associated 
model caveats and limitations.

4.1  |  Environmental conditions for the presence of 
VME indicator taxa on the seamounts of Cabo Verde

Broad-scale terrain features on the seamounts of Cabo Verde were 
considered important for the distribution models of the four CWCs, 
with terrain orientation (northness and eastness) being consist-
ently among the most contributing variables for the distribution of 
all taxa. Measures of terrain orientation can be used as surrogates 
to hydrodynamic flow (Guinan et  al.,  2009; Lecours et  al.,  2016; 
Wilson et al., 2007), suggesting the exposure of CWCs to local and 
regional current directions (Guinan et  al.,  2009). In fact, on sea-
mounts, interactions between topography and hydrodynamics are a 

key mechanism for food supply of benthic suspension feeders, since 
steeper seamount slopes promote current amplification (Guinan 
et al., 2009; Mohn et al., 2014; Wilson et al., 2007), internal waves 
and vertical mixing, leading to higher organic matter fluxes to the 
seafloor (Davies et al., 2009; Dolan et al., 2008; Mohn et al., 2014; 
Mosquera Giménez et  al.,  2019; Pearman et  al.,  2020; Rengstorf 
et al., 2014). This dynamic phenomenon has been described around 
Cabo Verde, where the interaction of the island's complex ba-
thymetry with mesoscale eddies (Cardoso et al., 2020) propagates 
large-amplitude internal waves that increase phytoplankton and 
zooplankton production above the seamounts' summits (Mohn 
et  al., 2021), eventually resulting in higher food supply to benthic 
communities.

Terrain variables measured at a broad scale presented the high-
est relative contribution to the distribution models of the octocoral 
Metallogorgia spp., whereas for the other taxa, the contribution of 
oceanographical and terrain parameters at finer scales was also evi-
dent. The predictive maps of Metallogorgia spp. showed a wider dis-
tribution compared to the predicted distribution of the other CWCs 
(see Figure 8, Figure S7), which might result from the higher contri-
bution of such broader-scale processes influencing its distribution. 
In fact, Metallogorgia spp. are commonly observed on seamounts, 
across a wide bathymetric and spatial distribution (Auscavitch 
et al., 2020; Lapointe et al., 2020). On the other hand, the influence 
of variables at finer-to-intermediate scales could explain why there 
were more limited suitable areas for the other CWCs. For example, 
the predicted suitable areas of E. rostrata were located between 1700 
and 1200 m depth on steeper slopes along the pronounced ridges of 
seamount flanks. However, in these large features, at finer scales, 
terrain orientation and curvature seem to be driving the distribution 
of E. rostrata. Similar results showcasing the importance of slope, as-
pect and curvature were observed for E. rostrata and other sclerac-
tinian corals on the seamounts of New Zealand (Rowden et al., 2017; 
Tracey et al., 2011), since steeper and elevated seafloor features (i.e. 
positive curvature), facing the direction of prominent regional cur-
rents, ensure more efficient transport and capture of food particles 
(Dolan et al., 2008; Lecours et al., 2016; Wilson et al., 2007).

Our results suggest that curvature and aspect of large ter-
rain features also influenced the distribution of Paramuricea spp. 
on the seamounts of Cabo Verde. Studies in the Gulf of Mexico, 
where the distribution of a similar morphospecies of Paramuricea 
spp. as the one in this study was modelled, showed that this taxon 
was associated with a very restricted suitable habitat driven by a 

TA B L E  4 Percentage (%) of the total modelled area that is extrapolated for each VME indicator taxa at each seamount.

VME indicator taxa

% of extrapolated area of the total modelled area

Cadamosto Nola Senghor/Nova Holanda Cabo Verde Boavista

Acanella arbuscula 18 32 31 68 62

Enallopsammia rostrata 18 34 31 68 62

Metallogorgia spp. 18 46 34 67 66

Paramuricea spp. 20 50 36 70 67
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narrow temperature tolerance (Georgian et al., 2020), bathymetric 
highs (Georgian et  al., 2020) and local current structure (Doughty 
et  al., 2014) and orientation (Liu et  al., 2021). In this study, most 
seamounts presented a small suitable extent for the presence of 
Paramuricea spp., while Cadamosto presented the largest suitable 
areas. This could be because, according to the available observations 
for our study region, the suitable environmental characteristics for 
this taxon involve large surfaces with a convexly shaped curvature, 
typical of seamounts' summits (Yesson et al., 2011). Cadamosto was 
the only seamount where the modelling spatial extent covered the 
summit due to the restricted modelled depth considered to reduce 
the risk of extrapolating results. This could explain the limited pre-
dicted area of this CWC on the other seamounts, given that the sum-
mit of the other seamounts considered in our study was not included 
in the modelling extent because they were outside the modelling 
depth range considered here.

Mean bottom salinity was revealed to be important for the 
distribution of the bamboo coral A. arbuscula and the scleractin-
ian coral E. rostrata, suggesting that some specific water-column 
properties could be driving the suitable habitat of these CWCs. 
Other modelling studies have shown the importance of salinity for 
the distribution of both A. arbuscula (Buhl-Mortensen et al., 2015; 
Yesson et al., 2012) and E. rostrata (Anderson, Guinotte, Rowden, 
Clark, et  al.,  2016; Anderson, Guinotte, Rowden, Tracey, 
et al., 2016). Indeed, water physical–chemical boundaries (Davies & 
Guinotte, 2011; Dullo et al., 2008; Georgian et al., 2020) and, con-
sequently, different water masses (Auscavitch et al., 2020; Buhl-
Mortensen et al., 2015; Lapointe et al., 2020; Mosquera Giménez 
et  al.,  2019; Puerta et  al.,  2020, 2022; Quattrini et  al.,  2017; 
Taranto et  al., 2023) are known to influence the distribution of 
CWCs. Interestingly, our results showed a disagreement between 
the values of mean bottom salinity for the maximum probability of 
presence of the two species, with the salinity peak for A. arbuscula 
around 34.85 psu and over 35.00 psu for E. rostrata (see Figure 5). 
In fact, the distribution of water masses in the region shows the 
influence of the Antarctic Intermediate Waters (AAIW) around 
900 m depth, where a salinity minimum is observed, and a slight 
salinity increase at 1200 m, indicating the presence of the North 
Atlantic Deep Waters (NADW) (Mosquera-Giménez et al., 2022). 
The predicted depth range of these species matches the distri-
bution of these water masses, with the association of A. arbuscula 
with the AAIW and E. rostrata with the NADW. This suggests that 
a narrow salinity envelope could limit the distribution of CWCs to 
specific areas on the seamounts that also meet the suitable terrain 
characteristics for each taxon. Furthermore, besides the salinity 
threshold, and contrary to E. rostrata discussed above, the suit-
able areas for A. arbuscula were also associated with flat areas on 
the seamounts. A similar result was obtained for the SDMs of an-
other bamboo coral Isidella elongata on seamounts of the Mallorca 
Channel (Mediterranean Sea), where the models presented higher 
suitability on the seamount's flat terraces (Standaert et al., 2023), 
significantly exposing this species to bottom trawling impacts 
(González-Irusta et al., 2022).

4.2  |  Modelling data-limited regions: Caveats and 
lessons learned

Models fitted for data-poor regions are often built with a priori in-
trinsic caveats not only due to reduced number of species records 
but also due to the use of environmental datasets with coarse reso-
lutions. This is no exception for our study area, where limitations of 
data availability prevented the inclusion of important known envi-
ronmental variables for the distribution of CWCs.

Substrate type is an important variable to consider for CWC dis-
tributions. However, full-coverage substrate type maps are rarely 
available for deep-sea regions at appropriate resolutions, which 
often contributes to low SDMs accuracy (Anderson, Guinotte, 
Rowden, Clark, et al., 2016; Anderson, Guinotte, Rowden, Tracey, 
et al., 2016; Bennecke & Metaxas, 2017; Burgos et al., 2020). In 
this study, substrate type was not included in the final SDMs be-
cause detailed substrate type maps or backscatter data were not 
available for the whole spatial extent of the seamounts. However, 
it is likely that substrate type has an important influence on the 
distribution of the modelled CWCs, as previously seen in other 
investigations (De Clippele et al., 2019; Orejas et al., 2009; Purser 
et al., 2013; Victorero et al., 2018). When data on substrate type 
are not available, slope can be used as a proxy since flat terrain in-
dicates areas of higher sediment deposition (Lecours et al., 2016; 
Wilson et al., 2007) and, therefore, the presence of soft bottoms. 
This is supported by our results showing that flat areas on the 
seamounts represent areas with high probability of presence for 
A. arbuscula, and is corroborated by image observations where a 
higher abundance of this species was associated with muddy and 
sandy bottoms (Hansteen et al., 2014; Orejas et al., 2022), being 
consistent with observations of A. arbuscula in other CWC habitats 
in the N Atlantic (Baker et al., 2012; Buhl-Mortensen et al., 2015; 
Edinger et  al.,  2011; Lapointe et  al.,  2020; Morris et  al.,  2013; 
Orejas et al., 2017).

In recent years, the inclusion of high-resolution physical hydro-
dynamic models (with few hundreds of metres of spatial horizontal 
resolution) in CWC distribution models has improved model accu-
racy (Mohn et al., 2023; Rengstorf et al., 2014), given that local hy-
drodynamic processes, such as internal waves (Mosquera Giménez 
et al., 2019; Pearman et al., 2020; Rengstorf et al., 2013, 2014) and 
kinetic energy dissipation (Mohn et  al.,  2023), are important de-
scriptors for the presence of CWCs. In addition, data on chemical 
water properties, such as oxygen concentration, POC flux, arago-
nite and calcite, are also important for the distribution of CWCs 
(Davies & Guinotte, 2011; Tittensor et al., 2009). In the light of cli-
mate change, incorporating biogeochemistry data in SDMs is cru-
cial to project future changes in the distribution of CWCs (Morato 
et  al., 2020) and to identify region-specific species tipping points 
(Puerta et  al.,  2020). Yet, assessing the influence of these vari-
ables through SDMs is often hindered by the low resolution of the 
available physical oceanographic data (Burgos et al., 2020; Yesson 
et al., 2012). This was the case for our study since full-coverage data 
of these parameters were not available at a high spatial resolution.
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Despite the lack of substrate type data and a high-resolution 
hydrodynamic model, using a multi-scale approach to calculate 
terrain variables in our study was a good compromise to obtain 
first insights and interpretations on how terrain characteristics, 
as proxies for ocean circulation and terrain geomorphology, might 
influence the distribution of CWCs, at finer and broader scales. 
Therefore, for other studies where such detailed datasets are not 
available, we recommend considering terrain variables calculated 
with differing numbers of grid cells in the focal neighbourhood, to 
better capture the range of environmental conditions where spe-
cies occur.

In our study, there were some observed disagreements between 
the two modelling methods (RF and GAM), both in terms of the rela-
tive contribution and response to environmental parameters, as well 
as in terms of the areas predicted by each model. However, despite 
challenges of modelling the distribution of species with few occur-
rences, the ensemble model consistently outperformed the other 
models, showing that this was the most suitable approach to in-
crease model accuracy. Ensemble models often perform better than 
individual models (Liu et  al., 2019), since, in the case of weighted 
average ensembles, the final predictions are created taking into 
account the highest-performing individual models. Nonetheless, it 
is noteworthy that ensemble performance is influenced by several 
factors, including the methods used to create the ensemble and to 
validate model predictions (Hao et al., 2019), and fine-tuned individ-
ual models can achieve better performances than ensembles (Hao 
et al., 2020). However, this was not the case in our study since the 
ensemble presented higher model performance metrics than the in-
dividual models considered.

In addition, using an ensemble model helped to identify areas of 
high/low uncertainty and model disagreement/agreement, which is 
essential when models are built on limited datasets. We observed 
that the level of uncertainty at each seamount was proportional 
to the amount of species data available, where the seamount with 
more species records (Cadamosto) presented higher confidence in 
predictions and, conversely, the seamount with fewer or no species 
records (Boavista) presented higher uncertainty. This result reflects 
the range of environmental conditions sampled, and not just the 
absolute number of observations. It is thus important to consider 
that the good model performance obtained in the ensemble does 
not necessarily indicate high model accuracy, since models fit with 
limited data might result in overfitted and inflated performance 
metrics (Borokini et al., 2023). Despite the high evaluation metrics 
obtained for all models, a large proportion of the modelled areas in 
our study are subject to high model uncertainty and large areas of 
extrapolation, especially in places where no survey data were avail-
able. This clearly highlights the need to conduct more surveys on the 
seamounts of Cabo Verde, following a balanced sampling strategy 
across a wide range of environmental conditions on all seamounts, 
in order to obtain a robust dataset to validate and improve model 
predictions. For example, future sampling efforts should take into 
account broader depth ranges and also cover flatter areas of the 

seamounts, since these were the areas shown to be the most con-
tributing to areas of model extrapolation.

The ensemble models presented higher uncertainty in pre-
dicted areas of CWC absence (see Figures 8 and 9). Furthermore, 
the conversion of probability values into a binary classification of 
presence–absences depends on the threshold used. In our study, 
we chose a threshold based on maximizing the sum of sensitivity 
(proportion of presences predicted correctly) and specificity (pro-
portion of absences predicted correctly), since maximizing the sum 
of these measures provides a balance between true presences and 
true absences. The choice of an appropriate threshold is important 
as it significantly affects model outputs and performance metrics 
(Lawson et al., 2014; Liu et al., 2005, 2011, 2019), being especially 
important for smaller datasets where the cost of misclassification is 
higher (Liu et al., 2011). For example, a higher threshold might yield 
higher-performance metrics, potentially with higher sensitivity due 
to more predicted areas considered suitable, but with lower spec-
ificity since more observed absence areas would be predicted as 
presences (Lawson et  al., 2014; Liu et  al., 2005). This means that 
the choice of the threshold should be made based on the specific 
objectives of each study. Correctly predicting absences at known 
areas of species absences (i.e. models with higher specificity) might 
be beneficial for marine spatial planning purposes, since it allows 
identification of areas where human activities could be permitted 
(Wilson et al., 2005). In the case of data-poor models, a model with 
a good capability of predicting absence areas is also useful to help 
identify areas for future sampling efforts. Conversely, a model with 
higher sensitivity is useful for survey planning since it identifies 
target areas where species are likely to occur (Meller et al., 2014). 
Additionally, if the precautionary principle is to be applied, predicted 
areas of species presence are also beneficial for management pur-
poses (Armstrong et al., 2014), giving an indication of where human 
activities should be limited.

Our study provides a first stepping stone towards identify-
ing suitable areas for VME indicator taxa and where future ex-
ploratory research should occur on the unexplored seamounts of 
Cabo Verde. Using an ensemble model proved to be a good initial 
approach to address data scarcity in our study. However, given 
the high uncertainty and large areas of extrapolation of model 
predictions, it is difficult to rightfully judge model performance 
and accuracy until additional data are collected. Nonetheless, 
model predictions showed that all seamounts present suitable 
areas where VMEs are likely to occur, supporting the expected 
ecological relevance of the seamounts in the region. Indeed, avail-
able image data showed pristine and diverse CWC gardens on 
Cadamosto Seamount (Orejas et al., 2022; Vinha et al., 2022) and 
exceptional sponge and crinoid fields and scleractinian coral reefs 
on Nola Seamount (Hansteen et  al., 2014). In addition, three of 
the seamounts considered in our study – Boavista, Cabo Verde 
and Nola – are currently included in designated ecologically and 
biologically significant areas (EBSAs) (UNEP/CBD/COP/DEC/
XII/22,  2014), where significant fishing activity occurs (Martins 
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et al., 2022; Roast et al., 2023). Priority should, therefore, be given 
to collecting new data in global under-sampled deep-sea regions, 
involving local researchers and communities.
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