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Abstract: Climate change poses emerging threats to wheat growth in coming future. These threats
need to be explored to ensure sustainable wheat production. To do this, the SALTMED model was
calibrated using data from experiments conducted on different levels of irrigation and nitrogen
doses. The performance of the SALTMED model was assessed based on values of the root mean
square error (RMSE), normalized root mean square error (NRMSE), coefficient of determination (R2)
and coefficient of residual mass (CRM) that ranged from 0.23–1.82, 0.09–0.17, 0.91–0.93 and −0.01–
0.02, respectively for calibration and 0.31–1.89, 0.11–0.31, 0.87–0.90 and −0.02–0.01, respectively
for validation. Projections for future climate scenarios for wheat growth indicated that by the end
of the century, sowing dates advanced by nine days under the RCP4.5 scenario and eleven days
under the RCP8.5 scenario, while harvesting dates shifted earlier by twenty-four days under RCP4.5
and twenty-eight days under RCP8.5. Consequently, the overall crop duration was shortened by
fifteen days under RCP4.5 and eighteen days under RCP8.5. Further simulations revealed that the
wheat yield was reduced by 14.2% under RCP4.5 and 21.0% under RCP8.5; the dry matter was
reduced by 14.9% under RCP4.5 and 23.3% under RCP8.5; the irrigation amount was expected to
increase by 14.9% under RCP4.5 and 18.0% under RCP8.5; and water productivity was expected to be
reduced by 25.3% under RCP4.5 and 33.0% under RCP8.5 until the end of century. The hypothetical
scenarios showed that adding an extra 20–40% more nitrogen can enhance wheat yield and dry
matter by 10.2–23.0% and 11.5–24.6%, respectively, under RCP4.5, and by 12.0–23.4% and 12.9–29.6%,
respectively, under RCP8.5. This study offers valuable insights into the effects of climate change on
future wheat production so that effective contingency plans could be made by policymakers and
adopted by stakeholders for higher wheat productivity.

Keywords: crop phenology; irrigation; nitrogen; SALTMED model; sowing and harvesting dates; wheat

1. Introduction

Pakistan’s population is projected to grow at an annual rate of 2%, potentially doubling
to 400 million in the near future. This rapid population growth poses a significant threat
to food security [1]. Ensuring the country’s food security necessitates a focus on wheat
production, which is a staple crop in Pakistan. Wheat is currently grown on 8.9 million
hectares, yielding an annual production of 26.3 million tons [2]. As the primary food
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source for millions of people, maintaining and enhancing wheat production is critical for
sustaining the country’s growing population.

Water availability is a pivotal element in wheat production. It is estimated that 70% of
the world’s fresh water supply is consumed by agriculture [3]. Yet, global water resources
are limited and suffering from inefficient water use efficiency at the farm level [4,5]. This
challenge of water scarcity is especially acute in developing nations such as Pakistan,
where there is considerable potential for agricultural output if adequate water resources are
available to meet crop water needs [6]. One strategy to address this issue is the adoption
of deficit irrigation, a method where water is supplied in amounts less than what would
be considered full irrigation requirements [7]. By applying water below the crop’s full
requirements, deficit irrigation can improve water use efficiency, an essential factor in areas
experiencing water shortages. Assessing deficit irrigation is crucial for ensuring water
adequacy and boosting wheat production in Pakistan’s semi-arid regions. Beyond water
management, chemical fertilizers are crucial for enhancing wheat yields by providing
the essential nutrients needed for the plants’ optimal growth and productivity. Nitrogen
is a key nutrient that supports various plant physiological processes and is critical for
wheat development [7]. Therefore, it is vital to tailor nitrogen management to the specific
agricultural conditions of the area under study.

Climate change represents a significant global threat, impacting all sectors, including
agriculture, that are crucial for food security. It poses risks to crop growth directly through
more frequent and severe weather events, thus exacerbating the challenges faced by farmers
worldwide [8]. Disrupted crop development can have serious consequences for countries
like Pakistan, which rely heavily on an agriculture-based economy [2]. Additionally,
Pakistan’s geography makes it particularly vulnerable to the impacts of climate change [9],
and its agriculture sector is the primary victim of the adverse effects of climate change [10].
Extreme weather events such as droughts, floods, and heatwaves can severely impact crop
yields and agricultural productivity. Despite these challenges, the agriculture sector remains
a significant contributor to Pakistan’s economy. While the impacts of climate change on
agriculture are widely acknowledged, there is a specific need for detailed, localized studies
in Pakistan, particularly in the Punjab region, to understand how climatic variations will
affect future wheat production. Future climate data are necessary for studying the impact
of climate change on agricultural production systems. These data are provided by general
circulation models (GCMs) and are widely used by scientists for environmental studies.
These models help in predicting the impact of future climatic conditions on crop production.
Crop–water–nitrogen models can simulate various aspects of crop response under these
projected climate data sets, allowing for accurate predictions of future crop development
and the adoption of better management strategies [11,12].

Crop–water simulation models like SALTMED are designed to integrate various fac-
tors, including water, soil, cultivar, nitrogen applications, environment, and crop processes,
to accurately simulate crop growth [12,13]. SALTMED can simulate up to 20 fields simul-
taneously, covering various crops under diverse input conditions, making it a preferred
tool for researchers. The ability of SALTMED to simulate crop dynamics in response to
climatic variations also makes it suitable for assessing the impacts of long-term climate
change on agricultural phenology and productivity [14]. There is limited work related to
climate change studies and applications of the SALTMED model for semi-arid areas of
Punjab. Given this context, the SALTMED model was selected for the current research to
develop various wheat scenarios under the impacts of climate change.

Using crop models like SALTMED can provide valuable insights into the crop’s re-
sponse to climate change. The ability to predict how wheat will respond under future
climatic conditions can help in developing robust agricultural practices that ensure food
security. Additionally, the application of crop simulation models helps in exploring various
management strategies to maintain wheat yields under the impact of different climate
change scenarios. In the current study, the field data from wheat sown under different
irrigation and nitrogen levels was used for calibration of SALTMED model to develop sim-
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ulations for investigating the impact of climate change on future wheat response in terms
of crop sowing and harvesting dates, changes in the crop period, and crop productivity, as
well as to provide insights and recommendations for sustainable agricultural practices that
can help ensure food security in Pakistan despite the challenges posed by rapid population
growth, water scarcity, and climate change. The sustainable agricultural practices included
adjusting nitrogen application rates.

2. Material and Methods

The field experiments were conducted in Toba Tek Singh, Pakistan, an area that falls
in central Punjab and has fertile lands with favorable climate conditions for the production
of cereal crops, including wheat. The district has a moderate to hot climate, with summer
temperatures reaching up to 40.55 ◦C [15]. It receives about 450 mm of annual rainfall,
primarily during the monsoon season in July and August [16]. The area has a canal water
supply from the Chenab River as well as abundant groundwater resources to fulfill the
net crop water requirement. The combination of favorable climate conditions, adequate
irrigation water supply, and fertile soil makes the district an important agricultural hub,
supporting not only the local farmer community but also significantly contributing to the
country’s food security. The experiments were conducted at two different sites within the
Toba Tek Singh to account for the spatial soil variability in terms of fertility.

2.1. Field Experiment and Sampling

The experiments were conducted at two different plots within the Tehsil Gojra area
of Toba Tek Singh. The two plots were labeled as site-1 and site-2. The soil of these two
sites was different. Soil samples were taken at a depth of 30 cm from three locations to
form one representative composite sample for each site. The properties of the soil were
determined in terms of the electrical conductivity (EC), sodium adsorption ratio (SAR),
organic matter (O.M), nitrogen (N), phosphorus (P), potassium (K), zinc (Zn), iron (Fe),
manganese (Mn), and copper (Cu). The soil texture and the density were also determined
as physical properties of the soil. All the analyses were conducted at the laboratories of
Ayub Agriculture Research Institute (AARI), Pakistan.

The experiments were carried out in two seasons, i.e., 2020–2021 and 2021–2022.
Four treatments were included in the experiment, comprised of two irrigation levels
(I100 = 100% of ETc and I80 = 80% of ETc) and two nitrogen levels (N100: 100 kgN·ha−1

and N80: 80 kgN·ha−1). Each treatment had three replicates at each site. The treatments
were I100 × N100, I80 × N100, I100 × N80, and I80 × N80. To apply nitrogen, urea and DAP
(diammonium phosphate) were used as fertilizer compounds. For N100, 18 kg of DAP and
178 kg of urea were applied in one hectare, while for N80, 13 kg of DAP and 146 kg of
urea were used. The experiment was set up under a two-factorial randomized complete
block design (RCBD). Since the experiments were conducted on farmers’ fields, all crop
management practices, apart from the experimental treatments, were left to the farmers’
discretion and the availability of inputs.

2.2. Crop Data Collection and Analysis

For the purpose of crop data collection, three specific locations were selected within
each replicate of every treatment. The average value obtained from these three locations
was then used in the analysis. Data collection focused on key crop parameters, including
grain yield, dry matter, and plant height, which were recorded at the time of harvest. The
irrigation amount was computed by multiplying the discharge rate of the irrigation water
by the duration of irrigation. This provided a precise measure of the total volume of water
applied to the crops. Water productivity was subsequently calculated by dividing the
grain yield by the amount of applied irrigation water. To evaluate the significance of the
differences among the outcomes of various treatments, an analysis of variance (ANOVA)
was performed. This statistical method was coupled with the least significant difference
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(LSD) test, which helped to identify which specific treatments had significant effects on the
crop parameters.

2.3. Climate and Data Downscaling

Climate data spanning from 1991 to 2023 were obtained from the Pakistan Meteoro-
logical Department’s observatory, encompassing daily maximum temperature, minimum
temperature, precipitation, and solar radiation. Additionally, future climate datasets de-
rived from general circulation models (GCMs) were sourced from the CMIP5 project
website [17]. The selection of GCMs was based on their reliability for the study area’s
conditions, as reported in the published literature [18,19]. The chosen GCMs included
ACCESS (CSIRO-BOM, Australia), BCC-CSM (BCC, China), IPSL-CM5A (IPSL, France),
MPI-ESM (MPI-M, Germany), and HadGEM2 (UK Met Office, UK).

Climate change projections from these GCMs were obtained for two representative
concentration pathways (RCPs): RCP 4.5 and RCP 8.5. RCP 4.5 represents a scenario
where greenhouse gas emissions continue at the current rate until 2050, followed by the
implementation of effective control measures to reduce emissions. In contrast, RCP 8.5
depicts a scenario of uncontrolled greenhouse gas emissions, with a steady rise until the
end of the century. These RCPs were chosen to represent partially controlled and worst-case
scenarios, as adopted in other relevant studies [20]. In this study, the distribution mapping
(DM) technique, a popular statistical downscaling method, was utilized to refine the raw
data, rendering it usable. DM has been recommended by other researchers due to its
advantages over alternative methods [19,21]. The CMhyd (Climate Model Data for Hy-
drologic Modeling) software (https://swat.tamu.edu/software/cmhyd/) was employed
for data downscaling that intercompared past climate data from 1991 to 2005 to train the
downloaded raw data to refined future data up to 2100. It is noteworthy that CMhyd
requires a minimum of ten years of historical data to perform data downscaling on future
datasets effectively.

2.4. SALTMED Model Applications

The current study employed the latest version of SALTMED, version 2019 [13,22] to
determine the wheat response in future contexts under the impact of climate change. The
model is freely available at the official website of UK Centre for Ecology & Hydrology
(https://www.ceh.ac.uk/data/software-models/saltmed). The flow chart for model appli-
cations and proposed output is shown in Figure 1. The SALTMED model was calibrated
using climate data and field data from these experiments. Future climate projections were
sourced from various general circulation models (GCMs) and refined using the standard
downscaling technique to make them suitable for the model to run for future simulations
to derive the study’s conclusions.

The SALTMED model was selected in the present study due to the fact that it has
been proven effective in simulating wheat yield parameters under erratic input conditions.
However, its precision depends on careful calibration tailored to the specific conditions
of each crop [12,23]. To run the model, the crop data (yield, dry matter, and plant height)
were acquired from the observed wheat parameters under field experiments, soil data
were acquired from a soil analysis, irrigation and nitrogen data were recorded during their
applications, while many of the model parameters that were used during calibration were
taken from the model database. During calibration, the model parameters were adjusted
until the performance indicators reached acceptable levels. During the validation run, the
calibrated parameters were used (unchanged). The field data from 2020–2021 were used
for model calibration, while the next year’s data (2021–2022) were used for its validation.
Performance indicators, including the coefficient of determination (R2), root mean square
error (RMSE), normalized root mean square error (NRMSE), and coefficient of residual
mass (CRM), were used as described by other researchers [19,22].

https://swat.tamu.edu/software/cmhyd/
https://www.ceh.ac.uk/data/software-models/saltmed
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Figure 1. Flowchart depicting the application of the SALTMED model for predicting future climate
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SALTMED simulations were conducted to predict wheat yield and dry matter under
various climate change scenarios. These simulations utilized climate data sourced from
multiple GCMs, combined with two RCPS: RCP4.5 and RCP8.5. The simulation analyzed
five future wheat seasons at consistent intervals until the end of the century, compar-
ing baseline crop responses (2021–2022) with projected future crop behaviors influenced
by climate change. The chosen future wheat seasons for this analysis were 2039–2040,
2054–2055, 2069–2070, 2084–2085, and 2099–2100. By examining these seasons, this study
aimed to provide a comprehensive understanding of how climate change could poten-
tially threaten future wheat production and food security. Throughout the simulation,
the calibrated model parameters remained constant, with alterations made only to the
input climate data. After identifying the impacts of climate change on crop yields, further
hypothetical scenarios were designed to investigate the effects of increased nitrogen doses
(N120 = 120 kgN·ha−1 and N140 = 140 kgN·ha−1) on wheat yield to assess the counteref-
fects of the negative impacts of climate change on wheat production. These additional
simulations aimed to determine if higher nitrogen levels could mitigate the anticipated
reduced wheat yields due to changing climatic conditions, thereby ensuring more stable
and sustainable wheat production in the future.

3. Results
3.1. Soil Fertility of the Experiment Sites

The experiments were conducted at two different plots with different fertility lev-
els. The analysis of the soil showed that site-2 had more fertile soil compared with that
of site-1. The soil of both sites was sandy clay loam. The soil of site-1 was saline, with
EC = 8.4 dS·m−1 and SAR = 17 meq·L−1, compared with those parameters of the soil from
site-2 (EC = 4.2 dS·m−1 and SAR = 10 meq·L−1). Due to excessive salts, the soil of site-1
was slightly compressed, with a value of 1.63 g·cm−3 for its bulk density, whereas the bulk
density of the soil from site-2 was lower (1.54 g·cm−3). The soil from site-2 had better
nutrient concentrations regarding organic matter (O.M) = 1.4%, nitrogen (N) = 12 mg·kg−1,
phosphorus (P) = 7.0 mg·kg−1, potassium (K) = 85 mg·kg−1, zinc (Zn) = 0.2 mg·kg−1,
iron (Fe) = 2 mg·kg−1, manganese (Mn) = 2.1 mg·kg−1, and copper (Cu) = 0.15 mg·kg−1,
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whereas these nutrients were O.M = 4.2 %, N = 35 mg·kg−1, P = 22 mg·kg−1, K = 145 mg·kg−1,
Zn = 1.2 mg·kg−1, Fe= 4.2 mg·kg−1, Mn = 3.2 mg·kg−1, and Cu = 0.27 mg·kg−1 in the soil
of site-2. The detailed results are given in Table 1.

Table 1. Results of soil analysis for both sites.

Parameters Site-1 Site-2 Acceptable Ranges of
Selected Parameters [24]

Physical properties

Soil texture Sandy clay loam soil (50.14%
sand, 23.35% silt, 26.51 clay)

Sandy clay loam soil (47.21%
sand, 26.49% silt, 26.3 clay) ----

Bulk density (g·cm−3) 1.63 1.54

Chemical properties

pH 8.7 8.1 7–7.5

EC (dS·m−1) 8.4 4.2 <2 for good soil,
4–8 for moderate soil

SAR: sodium adsorption ratio
(meq·L−1) 17 10 8–18

O.M: organic matter (%) 1.4 4.2 3–5

N: nitrogen (mg·kg−1) 12 35 20–40

P: Olsen phosphate
(mg·kg−1) 7.0 22 15–30

K: extractable potassium
(mg·kg−1) 85 145 100–200

Zn: zinc (mg·kg−1) 0.2 1.2 1–3

Fe: iron (mg·kg−1) 2 4.2 4.5–6.5

Mn: manganese (mg·kg−1) 2.1 3.2 2–5

Cu: copper (mg·kg−1) 0.15 0.27 0.2–1.0

3.2. Wheat Response under Different Treatments

The treatments, which included different levels of water quantity and nitrogen doses,
significantly impacted crop growth and yield parameters. Among these treatments, I100
N100 resulted in the highest wheat yield (4.83 T·ha−1), dry matter (12.45 T·ha−1), and
plant height (95.11 cm). I80 × N80 produced significantly lower wheat yields (4.38 T·ha−1)
and dry matter (11.54 T·ha−1), but the same plant height (93.02 cm) and higher water
productivity (1.29 kg·m−3) were obtained compared to I100 × N100. A similar trend was
observed when comparing the crop parameters under I100 × N80 and I80 × N80. I100 × N80
produced a significantly higher yield (3.87 T·ha−1), dry matter (9.88 Mg·ha−1), and plant
height (91.99 cm), whereas the water productivity was lower (0.93 kg·m−3) than that under
I80 × N80, i.e., yield = 3.40 T·ha−1, dry matter = 8.84 T·ha−1, plant height = 88.31 cm, and
water productivity = 1.01 kg·m−3. The amount of applied irrigation was 426 mm and
340 mm under I100 and I80, respectively, in the 2020–2021 season, while it was 406 mm and
325 mm under I100 and I80, respectively, in the 2021–2022 season.

The wheat performed better in the 2020–2021 season regarding the yield, dry matter,
plant height, and water productivity, which were 4.38 T·ha−1, 11.49 T·ha−1, 94.04 cm, and
1.14 kg·m−3, respectively, compared with those in the 2021–2022 season, i.e., 3.86 T·ha−1,
9.87 T·ha−1, 90.17 cm, and 1.05 kg·m−3, respectively. Site-1 produced the weaker crop,
as the yield parameters and the productivity of the wheat were significantly lower at
site-1 (yield = 3.57 T·ha−1, dry matter = 10.12 T·ha−1, plant height = 91.21 cm, and wa-
ter productivity = 0.95 kg·m−3) compared with those at site-2 (yield = 4.67 T·ha−1, dry
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matter = 11.24 T·ha−1, plant height = 93.01 cm, and water productivity = 1.25 kg·m−3).
Detailed results regarding the crop parameters are given in Table 2.

Table 2. Comparison of the yield parameters and water productivity of the wheat.

Yield (T·ha−1) Dry Matter (T·ha−1) Plant Height (cm) Water Productivity (kg·m−3)

Treatment Wise Comparison

I100 × N100 4.83 a ± 0.20 12.45 a ± 0.33 95.11 a ± 1.37 1.16 b ± 0.05

I80 × N100 4.38 b ± 0.18 11.54 b + 0.23 93.02 ab ± 0.84 1.29 a ± 0.06

I100 × N80 3.87 c ± 0.17 9.88 c ± 0.28 91.99 b ± 0.89 0.93 d ± 0.04

I80 × N80 3.40 d ± 0.19 8.84 d ± 0.31 88.31 c ± 0.87 1.01 c ± 0.05

LSD 0.445 0.904 2.879 0.064

Year Wise Comparison

2020–2021 4.38 a ± 0.16 11.49 a ± 0.32 94.04 a ± 0.87 1.14 a ± 0.04

2021–2022 3.86 b ± 0.17 9.87 b ± 0.32 90.17 b ± 0.62 1.05 b ± 0.05

LSD 0.471 0.936 2.192 0.081

Site Wise Comparison

Site-1 3.57 b ± 0.13 10.12 b ± 0.36 91.21 a ± 0.77 0.95 b ± 0.03

Site-2 4.67 a ± 0.14 11.24 a ± 0.33 93.01 a ± 0.89 1.25 a ± 0.04

LSD 0.368 1.001 2.425 0.092

Treatment means with different letters are significantly different at p = 0.05 based on the LSD (least significant
difference) test.

3.3. Projected Future Climate Data for Model Run

The downloaded data from the selected GCMs were downscaled using historical
observed data spanning from 1991 to 2005. To facilitate a visual comparison of different
climatic parameters, an advanced analytical technique known as the Taylor diagram was
developed, as depicted in Figure 2. This comprehensive analysis employed well-established
statistical indicators, such as standard deviations and correlation coefficients, to assess
the reliability and accuracy of datasets from each GCM model, which included ACCESS,
BCC-CSM, IPSL-CM5A, MPI-ESM, and HadGEM2.

The performance of the various GCMs demonstrated significant variability in their
ability to predict different climatic parameters. The predicted climate data were correlated
with the past data (1991–2005). For precipitation, the correlation coefficients were 0.48
for ACCESS, 0.30 for BCC-CSM, 0.33 for IPSL-CM5A, 0.50 for MPI-ESM, and 0.58 for
HadGEM2, indicating varying degrees of alignment with the observed data. For solar
radiation, the correlation coefficients were 0.81 for ACCESS, 0.63 for BCC-CSM, 0.67 for
IPSL-CM5A, 0.66 for MPI-ESM, and 0.59 for HadGEM2, reflecting differences in the predic-
tive accuracy. When evaluating the maximum temperature, the correlation coefficients were
found to be 0.87 for ACCESS, 0.86 for BCC-CSM, 0.89 for IPSL-CM5A, 0.87 for MPI-ESM,
and 0.88 for HadGEM2, showing relatively high agreement with the historical data. For
the minimum temperature, the correlation coefficients were 0.93 for ACCESS, 0.92 for
BCC-CSM, 0.91 for IPSL-CM5A, 0.94 for MPI-ESM, and 0.89 for HadGEM2, also indicating
a high level of accuracy in the predictions. Given the observed variability in performance
across different climatic parameters, a composite dataset was developed regarding future
climate. This composite dataset contained the values of different parameters corresponding
to the GCMs, where the value of the correlation coefficient was the highest. Specifically,
precipitation data were selected from HadGEM2, which had the highest correlation coeffi-
cient of 0.58. Solar radiation data were taken from ACCESS, with a correlation coefficient
of 0.81. Maximum temperature data were chosen from IPSL-CM5A, which had the highest
correlation coefficient of 0.89. Lastly, minimum temperature data were sourced from MPI-
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ESM, which exhibited the highest correlation coefficient of 0.94. This composite dataset
aimed to leverage the strengths of each model to provide the most reliable and accurate
representation of future climatic parameters.
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Figure 2. Comparative analysis of GCM data with observed data (1991–2005). (a) Maximum tempera-
ture, (b) minimum temperature, (c) solar radiation, and (d) precipitation.

The future dataset encompassed five wheat seasons, i.e., 2039–2040, 2054–2055,
2069–2070, 2084–2085, and 2099–2100. The climate parameters were taken from the start of
November to the end of May, because this period covered the wheat season in the study area.
This dataset pertained to a specific climate parameter obtained from a designated GCM, as
previously described, under two RCPs, namely, RCP4.5 and RCP8.5. It was noted that the
changes in precipitation were projected to be 105%, 14%, 98%, 70%, and 85% under the RCP
4.5 scenario, while the changes were projected to be 81%, −22%, −20%, 11%, and −33%
under the RCP 8.5 scenario for the periods of 2039–2040, 2054–2055, 2069–2070, 2084–2085,
and 2099–2100, respectively, when compared to the baseline climate of 2021–2022. The
increase in solar radiation intensity would amount to 3%, 1%, 5%, 4%, and 12% under RCP
4.5 and 4%, 7%, 12%, 8%, and 14% under RCP 8.5 for the periods of 2039–2040, 2054–2055,
2069–2070, 2084–2085, and 2099–2100, respectively, in comparison to the baseline climate of
2021–2022. Similarly, the increase in maximum temperature was expected to be 2%, 3%, 4%,
8%, and 11% under RCP 4.5, whereas it was expected to increase by 5%, 7%, 9%, 10%, and
12% under RCP 8.5 during 2039–2040, 2054–2055, 2069–2070, 2084–2085, and 2099–2100,
respectively. The increase in minimum temperature was expected to be 3%, 7%, 8%, 9%,
and 10% under RCP 4.5, whereas it would be 3%, 12%, 16%, 25%, and 36% under RCP
8.5 during 2039–2040, 2054–2055, 2069–2070, 2084–2085, and 2099–2100, respectively. An
illustration of the projected climate parameters is given in Figure 3.
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3.4. SALTMED Model Run

The model run was conducted to simulate the following crop parameters: yield, dry
matter, and plant height. The SALTMED model utilized climate data obtained from the
study area. These data included detailed records of rainfall and other climatic variables
over two wheat seasons. For the year 2020–2021, the total rainfall measured was 121 mm,
while in 2021–2022, it was slightly lower, at 107 mm. In addition to rainfall, the climate data
included the average daily values for solar radiation, maximum temperature, and minimum
temperature. In the years 2020–2021, the average solar radiation was 15.7 MJ·m−2·d−1,
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the average maximum temperature was 20.2 ◦C, and the average minimum temperature
was 8.9 ◦C. In the years 2021–2022, these averages were slightly higher: solar radiation
was 16.2 MJ·m−2·d−1, the maximum temperature was 21.2 ◦C, and the minimum tem-
perature was 10.5 ◦C. These detailed climatic conditions, which are crucial for accurately
modeling crop growth, are illustrated in Figure 4. The variations in these parameters
between the two seasons provide insights into how different weather conditions can affect
agricultural productivity.
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By incorporating this climate data into the SALTMED model, model development
(calibration and validation) was performed. At the start, model calibration was performed
using data from the 2020–2021 season. During calibration, the fine-tuning of soil and crop-
related model input parameters was performed to adjust the model predictions to match
the observed values. Only input parameters that were taken from model database were
fine-tuned, while the measured input parameters were kept unchanged. The calibrated
values of soil-related model parameters, including saturated hydraulic conductivity, were
133 mm·d−1; field capacity, 22%; wilting point, 12.9%; saturated water content, 43.1%;
maximum evaporation depth, 88 mm; Lambda pore size distribution index, 0.370; bubbling
pressure, 11.25 cm. The crop-related parameter of harvest index was taken as 0.446. The
calibrated values of the crop coefficient were 0.6, 1.13, and 0.44; the transpiration coefficients
were 0.5, 0.85, and 0.45; the fraction cover was 0.52, 0.94, and 0.98; the leaf area index was
0.9, 4.2, and 4.1; the plant height was 0.4, 0.97, and 0.95; and the osmotic potential (π50)
was 8, 10, and 12 for the initial, mid, and end crop growth stages, respectively.

Following the calibration process, the model underwent validation using field data
from the 2021–2022 season, employing the same calibrated parameters. The performance
of the model run was evaluated using performance indicators such as RMSE, NRMSE, R2,
and CRM. The RMSE values were 0.16, 0.53, 2.33, and 0.62 during calibration and 0.12, 0.60,
1.57, and 1.14 during validation for grain yield, dry matter, plant height, and soil moisture,
respectively. The NRMSE values ranged from 0.15 to 0.30 for calibration and 0.14 to 0.55
for validation.

Comparisons between the model-predicted values and the observed data revealed
the best performance in terms of R2, yielding values ranging from 0.90 to 0.93 during
calibration and 0.87 to 0.90 during validation. The CRM ranged from −0.03 to 0.01 during
calibration and from −0.05 to 0.01 during validation. The calibrated values for the soil and
crop-related model parameters are given in Table 3.
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Table 3. Calibrated values for soil and crop-related model parameters.

Soil Parameters Crop Parameters

Parameters Calibrated/Measured Value Parameters Calibrated/Measured Value

Saturated water
content/porosity 0.442 m3·m−3 Harvest index 0.432

Maximum evaporation depth 96 mm Leaf area index
0.86 (initial stage)
0.47 (mid stage)
0.45 (end stage)

Wilting point 0.121 m3·m−3 Fraction cover (Fc)
0.56 (initial stage)
0.92 (mid stage)
0.97 (end stage)

Field capacity 0.212 m3·m−3 Transpiration crop
coefficient (Kcb)

0.58 (initial stage)
0.91 (mid stage)
0.47 (end stage)

Bubbling pressure 9.29 cm Plant height
0.35 m (initial stage)
1.05 m (mid stage)
1.00 m (end stage)

Saturated hydraulic
conductivity 128 mm·d−1 π50

10 (initial stage)
11 (mid stage)
13 (end stage)

Lambda pore size
distribution index 0.310 Crop coefficient (Kc)

0.7 (initial stage)
1.21 (mid stage)
0.48 (end stage)

Following the calibration process, the model was validated using field data from
the 2021–2022 season, employing the same calibrated parameters. The purpose of this
validation was to ensure that the model accurately predicted crop performance under
different conditions. The model’s performance was evaluated using several performance
indicators, including RMSE, NRMSE, R2, and CRM. The RMSE values indicate the average
magnitude of the errors between the predicted and observed values, with lower values
representing better model performance. The RMSE values during the calibration phase
were 0.23 for yield, 0.51 for dry matter, and 1.82 for plant height. During the validation
phase, the RMSE values were 0.31 for yield, 0.52 for dry matter, and 1.82 for plant height.
The NRMSE is a normalized version of the RMSE, which allows for easier comparisons
across different datasets by expressing the RMSE as a fraction of the observed data range.
This normalization makes it easier to assess the relative accuracy of the model predictions.
The NRMSE values during the calibration phase were 0.09 for yield, 0.11 for dry matter,
and 1.17 for plant height. During the validation phase, the RMSE values were 0.12 for yield,
0.11 for dry matter, and 0.31 for plant height.

The R2 value measures the proportion of variance in the observed data that is pre-
dictable from the model. The R2 values during the calibration phase were 0.91 for yield,
0.93 for dry matter, and 0.92 for plant height. During the validation phase, the RMSE values
were 0.89 for yield, 0.90 for dry matter, and 0.87 for plant height. The CRM is used to
evaluate the tendency of the model to overestimate or underestimate the observed values. A
CRM value close to zero indicates that the model predictions are unbiased. Negative CRM
values suggest a slight overestimation, while positive values indicate underestimation. The
CRM values ranged from −0.03 to 0.01 during calibration and from −0.05 to 0.01 during
validation. The CRM values ranged from −0.01 to 0.02 during calibration and from −0.02
to 0.01 during validation. The detailed performance indicators are given in Table 4, and the
comparison between the observed and simulated data points are illustrated in Figure 5.
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Table 4. Evaluation of model calibration and validation for crop parameters.

Model Run Sites Treatment
Yield (T·ha−1) Dry Matter (T·ha−1) Plant Height (cm)

Observed Simulated Observed Simulated Observed Simulated

C
al

ib
ra

ti
on

Si
te

-1

I100 × N100 4.61 4.79 12.95 12.61 98.08 101.70

I100 × N100 5.65 5.41 13.70 13.44 97.62 99.14

I80 × N100 4.14 4.51 12.03 11.21 93.35 94.32

I80 × N100 5.14 5.23 12.76 11.82 96.19 98.12

Si
te

-2

I100 × N80 3.63 3.68 10.21 10.71 91.38 92.31

I100 × N80 4.61 4.21 11.00 11.08 96.00 95.21

I80 × N80 3.17 3.27 9.01 9.08 87.48 88.64

I80 × N80 4.13 4.23 10.26 10.08 92.24 94.12

RMSE 0.23 -- 0.51 -- 1.82 --

NRMSE 0.09 -- 0.11 -- 0.17 --

R2 0.91 -- 0.93 -- 0.92 --

CRM -0.01 -- 0.02 -- -0.01 --

V
al

id
at

io
n

Si
te

-1

I100 × N100 3.89 4.11 10.80 11.32 92.1 94.2

I100 × N100 5.18 4.84 12.36 11.48 92.7 93.5

I80 × N100 3.46 3.62 9.98 10.25 90.5 93.9

I80 × N100 4.80 4.12 11.39 10.61 92.1 93.2

Si
te

-2

I100 × N80 3.04 3.21 8.51 8.91 90.28 92.12

I100 × N80 4.18 3.98 9.81 9.42 90.30 91.23

I80 × N80 2.62 2.73 7.46 7.78 86.51 88.62

I80 × N80 3.70 3.88 8.63 8.42 87.02 88.21

RMSE 0.31 -- 0.52 -- 1.89 --

NRMSE 0.12 -- 0.11 -- 0.31 --

R2 0.89 -- 0.90 -- 0.87 --

CRM 0.01 -- 0.01 -- −0.02 --
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3.5. Scenario Simulation
3.5.1. Impact on Crop Growth Period

The impending threats of climate change to global wheat production are clear, with
forecasts indicating changes in crop growth periods, enhanced irrigation demand, and
reduced crop productivities until the end of century due to rising temperatures and chang-
ing precipitation patterns, as identified in the previous section of this manuscript. To
evaluate the effects of climate change on wheat production, the SALTMED model was
used to simulate wheat responses, utilizing the same calibrated model parameters and
projected future climate data. These simulations covered future wheat seasons from the
near to far-future, specifically the periods of 2039–2040, 2054–2055, 2069–2070, 2084–2085,
and 2099–2100, to assess crop responses in comparison to the 2021–2022 wheat season.

The SALTMED model was run with the option of using the accumulated degree
days (heat units) to identify each phenological stage as well as to identify the length of
the growing season, sowing, and harvest dates, as shown in the model dialogue below
(Figure 6). The basic temperature for wheat growth was selected from the literature [25],
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whereas the growing degree days were calculated from the wheat season of 2021–2022
(base data). Later, these were used for future simulations.
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(heat units) for wheat grown in central Punjab, Pakistan.

The impact of climate change was determined by analyzing various factors, includ-
ing sowing and harvesting dates, irrigation requirements, wheat yield, and dry matter
production. The simulations revealed that climate change will likely cause earlier sowing
and harvesting dates, shortening the overall crop period compared to the baseline data
(2021–2022). These changes were driven by rising temperatures and shifting precipitation
patterns, as identified in the previous section of this manuscript.

The sowing dates of wheat were 21st November (three days earlier), 19th November
(five days earlier), 18th November (six days earlier), 16th November (eight days earlier),
and 15th November (nine days earlier) under RCP4.5 during the 2039–2040, 2054–2055,
2069–2070, 2084–2085, and 2099–2100 wheat seasons, respectively, compared with that of
24th November in the 2021–2022 season. For RCP8.5, the sowing dates were 20th November
(four days earlier), 18th November (six days earlier), 16th November (eight days earlier),
14th November (ten days earlier), and 13th November (eleven days earlier) under RCP8.5
during the 2039–2040, 2054–2055, 2069–2070, 2084–2085, and 2099–2100 wheat seasons,
respectively, compared with that of 24th November in the 2021–2022 season. Similarly,
the harvesting dates of wheat were 27th April (six days earlier), 23rd April (ten days
earlier), 19th April (fourteen days earlier), 14th April (nineteen days earlier), and 09th
April (twenty-four days earlier) under RCP4.5 during the 2039–2040, 2054–2055, 2069–2070,
2084–2085, and 2099–2100 wheat seasons, respectively, compared with that of 03rd May
in the 2021–2022 season. Whereas for RCP8.5, the harvesting dates were 24th April (nine
days earlier), 19th April (fourteen days earlier), 13th April (twenty days earlier), 09th April
(twenty-four days earlier), and 05th April (twenty-eight days earlier) under RCP8.5 during
the 2039–2040, 2054–2055, 2069–2070, 2084–2085, and 2099–2100 wheat seasons, respectively,
compared with that of 03rd May in the 2021–2022 season. The details are illustrated in
Figure 7.
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Figure 7. Illustration of changes in wheat crop growth periods under various climate scenarios.

The reduction in the wheat crop growth period under the ‘future’ simulations showed
that the crop growth period was 158 days (two days shorter), 155 days (three days shorter),
152 days (eight days shorter), 149 days (eleven days shorter), and 145 days (fifteen days
shorter) under RCP4.5, while it was 156 days (four days shorter), 152 days (eight days
shorter), 147 days (thirteen days shorter), 145 days (fifteen days shorter), and 142 days (eigh-
teen days shorter) under RCP8.5 during the 2039–2040, 2054–2055, 2069–2070, 2084–2085,
and 2099–2100 wheat seasons, respectively, when compared with that in the 2021–2022
season (160 days). The duration of the crop period under different scenarios can be seen in
Figure 7.

3.5.2. Impact on Crop Yield and Productivity

It was observed that the wheat yield in the 2039–2040, 2054–2055, 2069–2070, 2084–2085,
and 2099–2100 seasons was reduced by 2.4%, 5.1%, 7.1%, 10.9%, and 14.2%, respectively,
under RCP4.5 and by 3.6%, 10.0%, 12.8%, 18.0%, and 21.0%, respectively, under RCP8.5.
Similarly, the dry matter was reduced by 4.6%, 7.5%, 8.6%, 12.2%, and 14.9% under RCP4.5
and by 6.1%, 8.9%, 14.0%, 20.4%, and 23.3% under RCP8.5 in the 2039–2040, 2054–2055,
2069–2070, 2084–2085, and 2099–2100 seasons, respectively.

On the contrary, the irrigation requirement of wheat was increased by 3.0%, 5.0%,
8.1%, 11.2%, and 14.9% under RCP4.5 and by 5.5%, 7.0%, 11.1%, 14.2%, and 18.0% under
RCP8.5 in the 2039–2040, 2054–2055, 2069–2070, 2084–2085, and 2099–2100 seasons, respec-
tively. The trends indicate that the future simulations showed a reduction in yield and an
increase in irrigation requirements, resulting in a negative impact of climate change on the
water productivity of wheat. Hence, the water productivity in the 2039–2040, 2054–2055,
2069–2070, 2084–2085, and 2099–2100 seasons was reduced by 5.3%, 9.6%, 14.1%, 19.9%,
and 25.3%, respectively, under RCP4.5 and by 11.2%, 15.9%, 21.5%, 28.2%, and 33.0%,
respectively, under RCP8.5.
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Overall, the wheat yield was reduced by 14.2% (RCP4.5) to 21.0% (RCP8.5), the dry
matter was reduced by 14.9% (RCP4.5) to 23.3% (RCP8.5), the irrigation requirements were
increased by 14.9% (RCP4.5) to 18.0% (RCP8.5), and the water productivity was reduced
by 25.3% (RCP4.5) to 33.0% (RCP8.5) until the end of the century. The results are given in
Table 5, and the seasonal growth, wheat yield, dry matter, and irrigation requirements are
shown in Figure 8.

Table 5. The simulated wheat yield, dry matter, irrigation requirements and water productivity under
different scenarios of future climate change.

Wheat Season Wheat Yield (T·ha−1) Dry Matter (T·ha−1)

Ba
se

lin
e

da
ta 2021–2022 5.18 12.36

RCP4.5 % Decrease RCP8.5 % Decrease RCP4.5 % Decrease RCP8.5 % Decrease

Fu
tu

re
si

m
ul

at
io

ns

2039–2040 5.05 2.4 4.85 6.3 11.80 4.6 11.61 6.1
2054–2055 4.92 5.1 4.66 10.0 11.43 7.5 11.26 8.9
2069–2070 4.81 7.1 4.52 12.8 11.30 8.6 10.63 14.0
2084–2085 4.62 10.9 4.25 18.0 10.85 12.2 9.84 20.4
2099–2100 4.44 14.2 4.09 21.0 10.52 14.9 9.49 23.3

Wheat season Irrigation requirement (mm) Water productivity (kg·m−3)

Ba
se

lin
e

da
ta 2021–2022 365 1.42

RCP4.5 % Increase RCP8.5 % Increase RCP4.5 % Decrease RCP8.5 % Decrease

Fu
tu

re
si

m
ul

at
io

ns

2039–2040 376 3.0 385 5.5 1.34 5.3 1.26 11.2
2054–2055 383 5.0 391 7.0 1.28 9.6 1.19 15.9
2069–2070 395 8.1 405 11.1 1.22 14.1 1.11 21.5
2084–2085 406 11.2 417 14.2 1.14 19.9 1.02 28.2
2099–2100 419 14.9 431 18.0 1.06 25.3 0.95 33.0

3.5.3. Simulations of Hypothetical Scenarios

To thoroughly evaluate the potential of additional nitrogen applications for enhanc-
ing wheat yield and counteracting the adverse effects of climate change on future wheat
production, a series of simulations were conducted using the SALTMED model. These
simulations incorporated various hypothetical scenarios that involved increasing nitro-
gen doses to levels higher than the standard, specifically N120 (120 kgN·ha−1) and N140
(140 kgN·ha−1). These nitrogen doses were tested under the I100 condition, which corre-
sponds to 100% of the crop water requirement, CWR. This choice was made because the
I100 condition had previously demonstrated superior wheat crop performance compared to
lower irrigation levels.

The simulations were meticulously designed to span multiple future wheat growing
seasons to capture a range of potential climate conditions and their impacts. The spe-
cific time frames selected for these simulations included the wheat growing seasons of
2039–2040, 2054–2055, 2069–2070, 2084–2085, and 2099–2100. The results revealed that N120
produced a 5.62 T·ha−1 yield (11.4% higher) and 13.26 T·ha−1 of dry matter (12.4% higher)
in the 2039–2040 season; a 5.42 T·ha−1 yield (10.2% higher) and 12.75 T·ha−1 of dry matter
(11.5% higher) in the 2054–2055 season; a 5.3 T·ha−1 yield (10.2% higher) and 12.81 T·ha−1

of dry matter (13.4% higher) in the 2069–2070 season; a 5.21 T·ha−1 yield (12.8% higher) and
12.10 T·ha−1 of dry matter (11.5% higher) in the 2084–2085 season; and a 4.97 T·ha−1 yield
(12.1% higher) and 11.76 T·ha−1 of dry matter (11.8% higher) in the 2099–2100 season under
RCP4.5. Similarly, N140 produced a 6.20 T·ha−1 yield (19.2% higher) and 14.41 T·ha−1 of
dry matter (22.1% higher) in the 2039–2040 season; a 5.86 T·ha−1 yield (19.1% higher) and
13.82 T·ha−1 of dry matter (20.9% higher) in the 2054–2055 season; a 5.78 T·ha−1 yield
(20.2% higher) and 13.84 T·ha−1 of dry matter (22.5% higher) in the 2069–2070 season;
a 5.67 T·ha−1 yield (22.7% higher) and 13.35 T·ha−1 of dry matter (23.1% higher) in the
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2084–2085 season; and a 5.46 T·ha−1 yield (23.0% higher) and 13.11 T·ha−1 of dry matter
(24.6% higher) in the 2099–2100 season under RCP4.5.
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Under the RCP8.5 scenario, N120 produced a 5.43 T·ha−1 yield (12.0% higher) and
13.11 T·ha−1 of dry matter (12.9% higher) in the 2039–2040 season; a 5.27 T·ha−1 yield
(13.1% higher) and 12.7 T·ha−1 of dry matter (13.0% higher) in the 2054–2055 season; a
5.07 T·ha−1 yield (12.2% higher) and 12.23 T·ha−1 of dry matter (15.1% higher) in the
2069–2070 season; a 4.82 T·ha−1 yield (13.4% higher) and 11.12 T·ha−1 of dry matter (13.0%
higher) in the 2084–2085 season; and a 4.63 T·ha−1 yield (13.2% higher) and 10.77 T·ha−1 of
dry matter (13.5% higher) in the 2099–2100 season. Similarly, N140 produced a 5.87 T·ha−1

yield (21.0% higher) and 14.31 T·ha−1 of dry matter (23.3% higher) in the 2039–2040 season;
a 5.74 T·ha−1 yield (23.2% higher) and 13.95 T·ha−1 of dry matter (23.9% higher) in the
2054–2055 season; a 5.43 T·ha−1 yield (20.1% higher) and 13.07 T·ha−1 of dry matter (23.0%
higher) in the 2069–2070 season; a 5.24 T·ha−1 yield (23.4% higher) and 12.75 T·ha−1 of dry
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matter (29.6% higher) in the 2084–2085 season; and a 5.01 T·ha−1 yield (22.7% higher) and
12.12 T·ha−1 of dry matter (27.7% higher) in the 2099–2100 season compared to RCP8.5.

Overall, N120 increased the wheat yield by 10.2–12.8% and dry matter by 11.5–13.4%
under RCP4.5, whereas the wheat yield and dry matter were increased by 12.0–13.2%
and 12.9–15.1%, respectively, under RCP8.5. Similarly, N140 increased the wheat yield by
19.1–23.0% and dry matter by 20.9–24.6% under RCP4.5, whereas these were improved by
20.1–23.4% and 23.0–29.6, respectively, under RCP8.5. The details regarding the improve-
ments under different hypothetical scenarios are given in Table 6, while an illustration of
the crop yield and dry matter is shown in Figure 9.

Table 6. Percent increase in wheat yield and dry matter under hypothetical scenarios.

Wheat Season % Increase in Yield under RCP4.5 % Increase in Yield under RCP4.5

N120 N140 N120 N140

2039–2040 11.4 19.2 12.0 21.0

2054–2055 10.2 19.1 13.1 23.2

2069–2070 10.2 20.2 12.2 20.1

2084–2085 12.8 22.7 13.4 23.4

2099–2100 12.1 23.0 13.2 22.7

Average 11.4 20.8 12.8 22.1

% increase in dry matter under
RCP4.5

% increase in dry matter under
RCP8.5

N120 N140 N120 N140

2039–2040 12.4 22.1 12.9 23.3

2054–2055 11.5 20.9 13.0 23.9

2069–2070 13.4 22.5 15.1 23.0

2084–2085 11.5 23.1 13.0 29.6

2099–2100 11.8 24.6 13.5 27.7

Average 12.1 22.6 13.5 25.5
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4. Discussion

The treatments with I100 (100% of CWR) and N100 (100 kgN·ha−1) performed better
than the corresponding treatments with I80 (80% of CWR) and N80 (80 kgN·ha−1). This
was due to optimal water application under I100 compared with I80. Full irrigation ensures
that wheat plants receive adequate water throughout their growth stages, which is crucial
for processes like photosynthesis, nutrient uptake, and overall plant metabolism [26].
Consistent moisture helps prevent stress that can hinder growth and grain filling [27].
Adequate and regular water supply ensures that the plants do not experience periods of
drought stress, which can negatively affect physiological processes and reduce the overall
productivity of the crop. Maintaining consistent moisture levels supports continuous
growth, promotes optimal photosynthesis, enhances nutrient uptake, and ensures proper
grain development. This steady water supply helps the plants to achieve their full growth
potential and maximizes yield. On the other hand, deficit irrigation reduces the water
supply at critical growth periods due to water stress, reduced photosynthetic efficiency,
and lower biomass accumulation, ultimately resulting in decreased yields [28].

The wheat performed better at site-2 compared with site-1. This was due to the
fact that the soil at site-2 was relatively more fertile and contained an optimal balance
of essential nutrients, including nitrogen (N), phosphorus (P), potassium (K), zinc (Zn),
iron (Fe), manganese (Mn), and copper (Cu). Additionally, the soil at site-2 had a higher
organic matter content, which further promoted healthy plant growth. The presence of
these nutrients in adequate quantities is crucial for various physiological and biochemical
processes in plants, such as enzyme activation, chlorophyll formation, and energy transfer.
Moreover, the increased organic matter improves soil structure, water retention, and
microbial activity, all of which contribute to a more supportive environment for root
development and nutrient uptake. Consequently, plants grown in the more fertile soil
of site-2 exhibited better growth and higher productivity compared to those grown in
less-fertile conditions [29]. The presence of organic matter in fertile soils improves soil
structure, water retention, and nutrient-holding capacity, all of which are beneficial for crop
yield. Marschner and Rengel [30] studied the effects of soil fertility on wheat production
and reported that the availability of macronutrients like N, P, and K in soil significantly
impacts plant growth and crop yield by supporting essential plant metabolic processes.
Smith et al. [31] explained that beneficial micronutrients like Zn, Fe, and Mn enhance wheat
yield. The soil of site-1 was saline, with higher EC and SAR; therefore, higher EC causes
osmotic stress, limiting the plant’s water uptake and causing nutrient imbalances and
deficiencies [32]. A high SAR reflects excess sodium, which displaces essential calcium and
magnesium on soil particles, deteriorating soil structure and reducing permeability [33].

Nitrogen, a vital element within the agricultural domain, especially in wheat cultiva-
tion, plays a crucial role in determining the final yield of wheat production. According to
Shi et al. [34], nitrogen is the most significant factor influencing wheat yield. The proper
management of nitrogen levels is paramount for achieving optimal growth and maximum
yield in wheat farming. Optimal nitrogen application leads to improved plant structure,
notably through enhanced tiller formation. Tillering in wheat refers to the formation of
lateral branches from the main stem, which can support additional spikes and grains. The
process of tillering is crucial for maximizing grain yield, as it increases the number of
potential grain-bearing structures per plant. Higher nitrogen application rates have been
observed to stimulate tillering significantly. Moreover, nitrogen improves grain quality and
size; factors that are crucial for market value and consumer preference. By facilitating the
accumulation of carbohydrates in the plant’s biomass, nitrogen indirectly influences the
weight and nutritional content of the wheat grain, as discussed by Yu et al. [35]. This accu-
mulation not only supports robust plant growth but also enhances the water productivity of
wheat; an essential factor considering the increasing concerns about water productivity in
agriculture. Enhanced photosynthesis due to an adequate nitrogen supply leads to greater
carbohydrate accumulation in wheat plants. This process is crucial for energy storage for
later use in grain filling and development. Robust photosynthetic activity ensures a steady
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supply of carbohydrates, which are vital for the development of a plump, nutrient-rich
grain, thus maximizing the economic return per hectare of cultivated land [36]. The ef-
fectiveness of nitrogen in improving wheat yield is not universally straightforward, as
it largely depends on the specific cultivar and prevailing field conditions. Wu et al. [37]
suggested that different wheat cultivars respond differently to nitrogen supplementation,
indicating the necessity for tailored fertilizer practices that align with the specific genetic
makeup and growth requirements of the cultivar in question. Researchers like Abebe and
Sharma et al. [38,39] have been advocating for the importance of nitrogen and exploring
its potential through extensive studies. Chaudhary [32] noted that as fertigation levels
increased, crop yields initially increased, but they began to decrease once those levels
surpassed a certain threshold.

The SALTMED model showed excellent performance during calibration and vali-
dation, reflected in higher values across all the performance indicators. The RMSE and
NRMSE values were minimal and within the already established ranges in previous stud-
ies [40–42]. Also, the CRM values indicated negligible tendencies towards overestimation
or underestimation, with decreased biasness (lower R2) in future predictions [12,32,43,44].

Climate change has become an increasingly critical factor in agricultural productivity,
particularly affecting wheat yields across various geographic regions. Recent studies and
simulations have highlighted a concerning trend: a gradual decline in wheat yields from
the present into the future.

In semi-arid irrigated regions, higher temperatures play a role in shaping agricultural
outcomes. Hanson et al. [45] and Hernandez-Ochoa et al. [46] have documented the
multiple stresses that increased temperatures impose on wheat crops. These stresses
include a disruption of normal growth patterns, a reduction in the length of growing
periods, and disturbances in plant phenology, all of which contribute to diminished grain
and biomass yields. Opposite to these findings, Wang et al. [47] presented a more subtle
view of the interactions between climate change and wheat productivity. Their research
suggested that wheat yields could actually improve under conditions of slightly increased
CO2 concentrations, which bolster plant photosynthesis and enhance yield potentials.
However, this optimistic scenario is not universally supported. Ishaque et al. [48] presented
evidence that suggests a reduction in wheat yields under projected future climates within
the same study area. These findings corroborate the broader consensus that, while some
benefits from increased CO2 might be observed, the overall impact of climate change tends
to negate these gains and poses a significant threat to agricultural stability and food security.

As the scientific community continues to study and understand the multifaceted
effects of climate change on agriculture, it becomes increasingly important to sustainably
employ advanced technologies and techniques to enhance wheat productivity in the future.

5. Conclusions

In this study, the SALTMED model was employed to assess future wheat growth.
To train the model, field data were used from experiments conducted over two years
(2020–2021 and 2021–2022), conducted with two levels of irrigation (I100 = 100 of ETc and
I80 = 80% of ETc) and nitrogen doses (N100 = 100 kgN·ha−1 and N80 = 80 kgN·ha−1) for
the wheat. The SALTMED model was calibrated for the wheat yield, dry matter, and plant
height, and the performance of the calibration and validation processes was determined in
terms of the root mean square error (RMSE), normalized root mean square error (NRMSE),
coefficient of determination (R2), and coefficient of residual mass (CRM). The values of
RMSE, NRMSE, R2, and CRM ranged from 0.23 to 1.82, 0.09 to 0.17, 0.91 to 0.93, and −0.01
to 0.02, respectively, for calibration, while for validation, they ranged from 0.31 to 1.89, 0.11
to 0.31, 0.87 to 0.90, and −0.02 to 0.01, respectively.

The projections for future climate scenarios indicated significant shifts in wheat phe-
nology by the end of the century. The sowing dates advanced by nine days under RCP4.5
and eleven days under RCP8.5, while the harvesting dates shifted earlier by twenty-four
days under RCP4.5 and twenty-eight days under RCP8.5. Consequently, the overall crop
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period was shortened by fifteen days under RCP4.5 and eighteen days under RCP8.5.
Further simulations revealed substantial reductions in the wheat yield and dry matter, with
yields decreasing by 14.2% under RCP4.5 and 21.0% under RCP8.5 and dry matter reducing
by 14.9% under RCP4.5 and 23.3% under RCP8.5. Additionally, the irrigation requirement
increased by 14.9% under RCP4.5 and 18.0% under RCP8.5, leading to a significant decline
in water productivity, which decreased by 25.3% under RCP4.5 and 33.0% under RCP8.5
by the end of the century. Hypothetical scenarios suggested that increasing nitrogen appli-
cations by 20–40% could mitigate some of the negative impacts of climate change. These
adjustments could enhance wheat yield by 11.4–20.8% and dry matter by 12.1–26.6% under
RCP4.5 and by 12.8–22.1% and 13.5–25.5% under RCP8.5. These findings offer valuable
insights into the effects of climate change on future wheat production, providing a basis
for policymakers and stakeholders to develop effective contingency plans. Additionally,
sustainable solutions can be adopted that can promote higher productivity in the region,
helping to counteract the adverse impacts of climate change on wheat farming. The practi-
cal applications of this study include precision agriculture techniques informed by model
predictions, aiding farmers in optimizing irrigation and nitrogen management amidst
changing climatic conditions. Future research could focus on refining model parameters, in-
tegrating socio-economic impacts, and developing climate-resilient wheat varieties, thereby
enhancing agricultural sustainability and resilience in the face of climate change challenges.
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