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Abstract 

Machine learning (ML) as a tool is rapidly emerging in various branches of contemporary geophysical research. To 
date, however, rarely has it been applied specifically for the study of Earth’s internal magnetic field and the geody-
namo. Prevailing methods currently used in inferring the characteristic properties and the probable time evolution 
of the geodynamo are mostly based on reduced representations of magnetohydrodynamics (MHD). This study intro-
duces a new inference method, referred to as Current Loop-based UNet Model Segmentation Inference (CLUMSI). 
Its long-term goal focuses on uncovering concentrations of electric current densities inside the core as the direct 
sources of the magnetic field itself, rather than computing the fluid motion using MHD. CLUMSI relies on simplified 
models in which equivalent current loops represent electric current systems emerging in turbulent geodynamo 
simulations. Various configurations of such loop models are utilized to produce synthetic magnetic field and secular 
variation (SV) maps computed at the core–mantle boundary (CMB). The resulting maps are then presented as training 
samples to an image-processing neural network designed specifically for solving image segmentation problems. This 
network essentially learns to infer the parameters and configuration of the loops in each model based on the cor-
responding CMB maps. In addition, with the help of the Domain Adversarial Training of Neural Networks (DANN) 
method during training, historical geomagnetic field data could also be considered alongside the synthetic samples. 
This implementation can increase the likelihood that a network trained primarily on synthetic data will appropriately 
handle real inputs. Our results focus mainly on the method’s feasibility when applied to synthetic data and the quality 
of these inferences. A single evaluation of the trained network can recover the overall distribution of loop parameters 
with reasonable accuracy. To better represent conditions in the outer core, the study also proposes a computationally 
feasible process to account for magnetic diffusion and the corresponding induced currents in the loop models. How-
ever, the quality of the reconstruction of magnetic field properties is compromised by occasional poor inferences, 
and an inability to recover realistic SV.
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Graphical Abstract

Introduction
There are currently four main research directions aiming 
at exploring how the geodynamo operates. Core surface 
flow inversions, inverse geodynamo modeling, laboratory 
experiments and direct numerical simulations (Glatz-
maier and Olson 2005; Christensen 2011). The first two 
of these are the most prevalent tools at present used for 
inferring the actual state of the geodynamo (Huder et al. 
2019). To do this, they make use of the dimensionless 
form of the induction Eq. (1) describing the MHD inter-
action between the fluid flows and magnetic fields:

In Eq. (1), u contains the flow velocities, B is the mag-
netic induction. The dimensionless magnetic Reynolds 
number Rm = UL/η is used to represent the ratio of 
forces between the flow-driven advection of the magnetic 
field and the viscous dissipation of the field in the absence 
of flow (also known as magnetic diffusion (Holme et al. 
2015)). In the magnetic Reynolds number, L is a charac-
teristic length scale, U is the typical speed of fluid flows 
and η = 1/(µ0σ) is the magnetic diffusivity, µ0 and σ are 
the magnetic permeability of free space and the electrical 
conductivity, respectively.

(1)∂tB = ∇ × (u× B)+
1

Rm
∇2B.

Core surface flow inversions aim to reconstruct hori-
zontal flow patterns and velocities at the core–mantle 
boundary (CMB) with the observation of the radial com-
ponent of the magnetic field using Eq. (1). This approach 
suffers from non-uniqueness issues arising from the ill-
posed nature of the solution and its uncertainty along 
lines of zero radial induction (Whaler 1986). Interest-
ingly, even such uncertain solutions can lead to more 
accurate forecasts of SV over three to five years than 
estimates produced by linear extrapolations of the time 
dependency of the Gauss coefficients (Whaler and Beg-
gan 2015).

Inverse geodynamo modeling makes use of the quasi-
geostrophic approximation of the already simplified 
Boussinesq equations of convection attached to Eq.  (1) 
to simulate a dynamic interaction of induced magnetic 
fields and fluid flow in a conductive core (Gillet et  al. 
2011). These types of dynamical models have the ben-
eficial property of a coupling between flow velocities at 
the boundary layer (CMB) and those in the bulk of the 
core. This allows for a Bayesian inference of the distri-
bution of the internal physical parameters of the system 
from surface magnetic field and flow data which can be 
fed back into the simulations for predictive modeling 
using a technique called variational data assimilation 
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(Talagrand 1997). The disadvantage of this technique lies 
in the instabilities of ensemble modeling and the complex 
statistical properties (covariances) of simulated param-
eters being relied on during computations (Sanchez et al. 
2018).

Laboratory experiments are perhaps the least com-
monly investigated of the above-mentioned methods 
of inquiry. Nevertheless they have provided a handful 
of results relevant with respect to the geodynamo (e.g., 
Müller et al. 2008; Miralles et al. 2013; Monchaux et al. 
2010; Su et  al. 2020). These experiments can also pro-
vide valuable basis for testing the robustness and qual-
ity of computational reconstruction methods, providing 
ground truth data about what is expected from complex 
MHD processes such as the geodynamo.

Direct numerical simulations on the other hand aim 
at developing computational models which can repro-
duce the turbulent dynamic regime expected for the core 
dynamo as authentically as possible. Though this goal is 
severely hampered in particular by the low viscosity val-
ues estimated for the outer core, which seem impossible 
to approach even exploiting state of the art computa-
tional power (Sheyko et al. 2016; Dong et al. 2021), signif-
icant leaps towards it have been made. Recent examples 
of this include the models of (Aubert et  al. 2017) and 
(Aubert 2023). Interestingly, in the rare case where in 
such studies electric current densities were also reported, 
results display concentrated current systems emerg-
ing with increasing vigorousness. This concentration 
manifests itself in coil-like current systems surrounding 
sheet-like plumes of axisymmetric flow (Miyagoshi et al. 
2008). The general picture one can obtain about the dis-
tribution of electric currents in such simulations is that a 
significant part of field generation is carried out by these 
localized current systems appearing with relatively uni-
form geometries. It is to be noted that the sheet plumes 
characterizing flow velocities in a rapidly rotating turbu-
lent regime associated with the above-mentioned current 
systems appear in other published work on simulations 
results, such as Schaeffer et al. (2017) or Aubert (2019).

The geodynamo simulations raise the intriguing pros-
pect of producing simplified models based on idealizing 
the geometries of these concentrated currents. To do so 
might be beneficial when one would like to gain informa-
tion on regions inside the geodynamo which can act as 
sources of the geomagnetic field without any direct need 
for the computational complexity necessary to conduct a 
simulation approximating real Earth-like circumstances. 
This line of thought can only be valid of course provided 
that the overall structure of the turbulent MHD regime 
and the associated current density distribution in the 
simulations indeed resembles that of the geodynamo, 
and if some practical way of inference can be established 

using such idealized phenomenological models. In the 
current study, one possible way of bypassing this second 
obstacle with the help of ML is presented in detail.

Until now, few studies investigating the internal geo-
magnetic field have exploited ML methods. For example, 
the work of (Gwirtz et al. 2022) concerns the predictabil-
ity of pole reversals using ML only on historical geomag-
netic dipole moment (GMD) data. The authors concluded 
that the task could not be well addressed by the methods 
they studied due to the small number of relevant data and 
their low frequency domain resolution. It is worth men-
tioning Loftin et al. (2019) who analyzed the applicability 
of ML in the data preparation for geomagnetic models.

In an introductory study Kuslits et  al. (2020) gave a 
more detailed review of the difficulties faced by current 
research directions not using ML, and proposed a very 
similar alternative method to the one  presented here. 
Conceptually, the forward model idealized the geody-
namo process as a set of many localized individual cur-
rent loops (or loops for short), and the inversion method 
heavily relied on ML, in particular, deep learning. How-
ever, that study demonstrated the concept in one rela-
tively simple example using only synthetic data with no 
conductive medium and no time variation introduced in 
the forward model. It was presented as being an equiva-
lent loop model with an emphasis on being conscious of 
the much more complicated current systems potentially 
existing in various spatial scales within a conductive core 
in the actual geodynamo.

It is to be noted, that reconstructing a complex cur-
rent density distribution in a large inaccessible volume 
of space like Earth’s outer core (in which the bulk of the 
dynamo action occurs) has its specific challenges.

There is a long history of other previous works search-
ing for current loop representations of the geomagnetic 
field with a similar goal in mind, such as Alldredge (1987), 
Rong et  al. (2021) and references therein and Peddie 
(1979). All these attempted to fit either one or more mag-
netic dipoles or current loops to some representation of 
the Earth’s magnetic field or a dataset that contains meas-
ured magnetic field values. Computationally speaking, 
they generally inverted for loop parameters using some 
form of least-squares inversion. Although in the case of a 
single current loop the determination of loop parameters 
through least-squares inversion yields sound results, such 
parameters rarely provide insight into the inner workings 
of the geodynamo or the current systems in the Earth’s 
outer core. It is possible to attempt to model the Earth’s 
magnetic field by carrying out least-squares inversion for 
the parameters of multiple loops. In this case, the sensi-
tivity of least-squares inversion to the initial parameters 
can be remedied in multiple ways.
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In Alldredge (1987) the author first inverted the param-
eters of two loops in axial position. Then based on the 
residual magnetic field, judiciously set the initial param-
eters for 5 additional current loops and carried out the 
inversion for the newly added loop parameters. These 
steps were iterated until sufficiently low RMS error was 
reached. In Peddie (1979). the author ran 20 sets of inver-
sions with randomized initial conditions to account for 
the sensitivity to initial parameters.

To summarize and expand on the shortcomings of 
these attempts, the following observations can be made:

1)	 They applied little to no objectively grounded con-
straints on the possible characteristic dimensions of 
the loops or their abundance in the models.

2)	 They offered no objective methodological possibility 
to handle the discrepancies between idealized repre-
sentations, and the potentially much more complex 
magnetic fields and current systems existing within 
the geodynamo.

3)	 The linearized least-squares inversions they mostly 
applied were sensitive to the initial parametrization 
of the loops, in particular, to the initial placement 
of them (Gubbins and Roberts 1987). The solutions 
offered by different authors relied on either a human 
expert to determine sound initial parameters or the 
randomization of the initial parameters. These solu-
tions made the regular and “large-scale” application 
of such inversion methods untenable (e.g., inverting 
for different IGRF representations).

4)	 They did not take into account “secondary” effects 
when attempting to reconstruct the time-variation of 
the field as well as its actual state, such as the damp-
ening of the magnetic field (magnetic diffusion) gen-
erated by changes of the loop currents in time.

As it was also learned from previous attempts using 
other types of equivalent source approaches for forward 
modeling, such as Mayhew and Estes (1983) and Ladynin 
(2014), these problems are necessary to deal with when 
one aims at developing a physically relevant reconstruc-
tion of the geodynamo using highly simplified sources.

The present work addresses these shortcomings via 
upgrading the approach proposed in the introductory 
study of Kuslits et  al. (2020). This further developed 
approach is referred from hereafter as the CLUMSI 
methodology. Shortcomings were addressed specifically 
the following ways. Issue (1), by deriving the range of the 
potential number of loops and loop parameter values. 
Issues (2) and (3) by training an updated image-process-
ing deep neural network using the DANN method, which 
then gives an initial estimation for all the loop param-
eters corresponding to a set of field and SV values over 

the course of a single evaluation. Issue (4) by establishing 
a practical approximation based on a systematic series of 
simple numerical models to consider the effect of elec-
tromagnetic induction on time-varying magnetic fields 
of loop models in a highly conductive medium such as 
Earth’s core.

Figure 1 presents the flowchart showing an overview of 
the CLUMSI estimation scheme, components of which 
are explained mainly in the following two sections.

Section “Defining an idealized model and constraining 
the model parameters” gives the detailed description of 
the forward model (components [1–7]). Section  “Inver-
sion framework” gives a high-level summary of the 
inversion framework concentrating on the applied deep 
learning image segmentation algorithm along with intro-
ducing the loss functions and quality parameters used 
during training and evaluation (components [8–12], 
[16]).

Section “Testing the methodology” summarizes inver-
sion results using noise-free synthetic data and dem-
onstrates a result on input data coming from a real 
geomagnetic model (components [13–15], [17]). Discuss-
ing the pros and cons of CLUMSI and the implications 
of these results on some ideas concerning further devel-
opment is featured in Sect. “Discussion”. Conclusions are 
given in Sect.  “Conclusions”. The appendices detail fur-
ther aspects of the inversion framework, especially con-
cerning the representativeness of training samples. One 
concrete example demonstrating why the type of prob-
lem defined in this study is more difficult to handle using 
a previously applied leas-squares inversion technique is 
presented in Appendix G.

Defining an idealized model and constraining 
the model parameters
To formulate the forward problem in a way which satis-
fies the desired phenomenological concept drafted in 
Sect.  “Introduction”, a simplified current system model is 
needed, in which individual sources can meet the qualita-
tive criteria described below.

The structure and features should roughly corre-
spond to those of the current systems emerging in the 
Miyagoshi et al. (2008) and Miyagoshi et al. (2011) simu-
lations. They should also have a finite spatial extent, while 
forming a closed circuit and must be well parametrized. 
After iterating on possible geometric configurations, 
filamentary circular currents (loops) were chosen as the 
simplest possible current systems which can fulfill these 
requirements.

As mentioned earlier, for the analysis presented here to 
be more relevant for the actual geodynamo process, the 
stationary current loop models used in previous studies 
needed to be updated. To do that, the solution applied 
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in Kuslits et al. (2020) to compute the field of stationary 
loops and is described in detail in Sect. “Primary field of 
stationary current loops” was corrected by an estimate of 
the additional (induced) field produced by a time-varia-
tion in the loop currents (see Sect.  “Approximating the 
total field assuming linear time variation in the source 
currents”).

Altogether each loop in this updated model can be 
described by 8 source parameters featured in Table 1.

For the solutions to be eligible to produce a training 
set representative of historical geomagnetic field data, 
additional constraints based on first-order considerations 

about the geomagnetic field were imposed when generat-
ing the model samples (see Appendix B).

Primary field of stationary current loops
The radial component of the primary magnetic field of 
an individual current loop i is obtained in the Cartesian 
coordinate system according to the following analytical 
solution deduced by Simpson et al. (2001).

Provided that the current loop has an axial position in 
its local coordinate system (see Fig. 2a) and the field is 
computed at an observation point located at a distance 

Fig. 1  Flowchart of the entire algorithmic scheme of the estimation process presented in this study

Table 1  Parameters of a single current loop

Notation [unit] Description of source parameter

�i[◦] Geographic co-latitude of the center of the loop

�i[◦] Geographic longitude of the center of the loop

ri[m] Distance from the center of the Earth to the center of the loop

Ri[m] Loop radius

Ii(t)[A] Intensity of the current carried by the loop (time dependent)

θi[◦] Declination of the loop axis

�i[◦] Azimuth of the loop axis

(dI/dt)i[A/s] Rate of change of the current intensity in time
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r =
(
dxi, dyi, dzi

)
=

(
x − x0i , y− y0i , z − z0i

)
 from the 

center of the loop:

In the above expressions, ρ2i = dx2i + dy2i  , 
r2i = dx2i + dy2i + dz2i  , CIi =

µ0Ii
4π  , α2

i = R2
i + r2i − 2Riρi , 

β2
i = R2

i + r2i + 2Riρi and k2i = 1− α2i
β2
i

 . E
(
k2i
)
 and K

(
k2i
)
 

are elliptic integrals of the first and second kind, 
respectively.

The final result for the radial magnetic field was calcu-
lated for the CMB as reference surface using a Mercator 
projection and it was obtained with the help of the fol-
lowing series of spatial rotations.

Positional rotation of the source vector field by a decli-
nation angle θi:

(2)

Bxi(r) =
CIixizi

2αi2βiρi2

[(
R2
i + r2i

)
E
(
k2i

)
− α2

i K
(
k2i

)]
,

(3)Byi(r) =
dyi
dxi

Bxi ,

(4)Bzi(r) =
CIi

2α2
i βi

[(
R2
i − r2i

)
E
(
k2i

)
+ α2

i K
(
k2i

)]
.

Positional rotation of the source field by an azimuth 
angle �i :

Using matrices (5) and (6), one can determine the spa-
tial coordinates of the magnetic induction vector field of 
each i unique source:

The same transformation must be performed for the 
spatial attitudes of induction vector fields to obtain mag-
netic fields corresponding the spatial orientation of each 
source at each point on the CMB surface:

(5)Rθi =




cos(θi) 0 sin(θi)
0 1 0

−sin(θi) 0 cos(θi)


.

(6)R�i
=



cos(�i) −sin(�i) 0
sin(�i) cos(�i) 0

0 0 1


.

(7)[xi, yi, zi] =
�
R�i

Rθi

�−1



x′i
y′i
z′i


.

(8)
�
Bxi ,Byi ,Bzi

�
=

�
R�i

Rθi

�−1



B′
xi

B′
yi

B′
zi


.

Fig. 2  Schematics of transforming a given current loop from a source-centered (local, a)) Cartesian coordinate system to an Earth-centered (global, 
b)) Cartesian coordinate system in the models. θ and λ are the angles of attack in transformations (7, 8) and define the attitude of a given loop.  
(Source of the figure used for the magnetic field lines: (Ling et al. 2016))
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The radial component of the resulting magnetic field in 
spherical coordinate system was then obtained from the 
Cartesian components at each (CMB) surface point:

The solution for the primary radial field in the forward 
problem uses the summation of radial field component 
data at the CMB for all the N  sources introduced in a 
particular model instance. As a result, Mercator maps 
(such as the one in Fig. 3) of the primary magnetic field 
of the entire model on the CMB were obtained for each 
model. Due to limitations in computational capacity, an 
angular resolution of 2° in longitude and latitude was set 
when producing the resulting maps:

Approximating the total field assuming linear time 
variation in the source currents
Due to the high estimated values for core conductivity 
(Ohta et al. 2016; Dongxiao et al. 2019), the effect of mag-
netic diffusion cannot be neglected when approximating 
the total magnetic fields of the source models.

The conductive material of the core and the strongly 
time-dependent MHD processes necessitated the intro-
duction of a model encompassing time-varying sources. 
Such a model also considers the magnetic field of cur-
rents induced in a highly conductive medium and is thus 
much more relevant for the geodynamo than applying 
solely the solution discussed in Sect.  “Primary field of 
stationary current loops” which assumes only steady-
state loops.

However, to construct this model in a consistent way 
while still being able to produce sets of solutions quickly 

(9)
Bi
rprim

(r,φ,�) = Bxisin(φ)cos(�)+ Byisin(φ)sin(�)+ Bzicos(φ).

(10)
Brprim(r = rCMB,φ,�) =

∑N

i=1
Bi
rprim

(r = rCMB,φ,�).

enough to be able to apply ML in the inverse problem 
mounted a significant challenge.

To generate sufficient training data, a systematic series 
of simulations of the induced fields around individual 
loops applying different source parameters and current 
variations was built up. Electromagnetic induction was 
modeled by a spherical domain representing Earth’s core 
in the simulations. As the exact value of electrical con-
ductivity in the core is relatively poorly constrained, the 
authors chose a conservative value of σ = 5 ∗ 105[S/m] 
(this value was selected based mainly on the experimental 
work of Ohta et al. (2016). In each simulation the Bprim 
primary field and the Btot total field of the source were 
computed separately. The induction effect was given by 
the difference between these fields ( Btot − Bprim ). These 
simulations used a finite element numerical framework 
(see Fig. 4) utilizing the COMSOL Multiphysics 5.3a soft-
ware package (Multiphysics 1998).

To be able to later produce enough training data for the 
ML-based parameter inference, the following simplifying 
assumptions need to be made:

1)	 The location of the current loops is fixed, and two 
loops cannot fall directly under each other in the 
radial direction. The former of these two conditions 
meant that one did not have to account for induction 
coming from the motion of the sources in the con-
ducting medium. The latter constraint was intended 
to prevent sources that are geographically very close 
to each other which leads to problems of equivalence 
(see Sect. “Results using noise-free synthetic data”).

2)	 The position of the sources is set, so that the axes are 
radial (that is for all i , �i = θi;�i = �i).

3)	 Only the current intensity carried by the sources var-
ies, and it varies linearly in time.

Fig. 3  Primary radial magnetic field of a single, radially aligned source ( φ = 95◦ ,� = 165◦ , r = 3e6, R = 8.4e5, I = 8.4e8, θ = 95◦ , � = 165◦ ) 
computed for a grid with a resolution of 2° (90 by 180 gridpoints) on the reference surface of the models representing the CMB
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4)	 The inner and outer core of the Earth were modeled 
as one uniformly conducting sphere. A full descrip-
tion of this approach is given by Metman et al. (2019).

Conditions (1)–(2) allowed us to perform a series of 
simulations in an axisymmetric 2D domain. This proce-
dure is also known as 2.5D simulation, since it is possi-
ble to perform 3D modeling by exploiting the symmetry 
property of a 2D geometric layout (Jacobs et al. 2007).

Condition (4) simplified the setup and computational 
complexity of the simulations.

The application of condition (3) also had a beneficial 
consequence in terms of computational complexity. This 
meant that the solution of a complex frequency domain 
induction problem calculating the field of a source emit-
ting harmonic signals (Weaver 1994) could be avoided. 
As a result, induced fields independent of time and the 
magnitude of the primary source could be obtained. As 
the transients decayed, the magnitude of induced fields 
depended linearly on the rate of change in the source 
currents. The current intensity in the models can be 
described by the form shown below:

In the above equation, the primary current Iprim comes 
from a current loop and changes linearly in time at a 
given rate C(r) . This constraint on the current results 
in a linearly changing magnetic field in time around 
the source, decreasing with distance r from the source 
depending on the electrical conductivity of the surround-
ing medium. As the current loop is embedded within a 
conductive medium, representing the Earth’s core, the 

(11)I = Iprim + I ind = C(r)t + I ind(r, t).

time-variation of the magnetic field induces a complex 
current density field around it. Induced currents I ind(r, t) 
have a direction at each point in any given time which 
decreases the change in the magnetic flux responsible 
for their creation. This results in a screening effect by the 
conductive core depending on the shape and size of the 
conductive domain between the source and each point 
of observation. Following the decay of transients, static-
induced fields proportional only to C(r) are formed.

This equilibrium state thus sets in after some delay in 
simulation time with an increasing spherical distance 
from the source on the CMB. In our series of simula-
tions, following a delay time of td = 106[yr] , these static-
induced fields have built up in all our models on the 
CMB.

Using these results meant that a polynomial inter-
polation of the above-described induction effect (Eqs. 
(19–23)) using data points computed in the systematic 
numerical simulations was satisfactory with respect to 
generating synthetic training samples within computa-
tional (and time) limitations.

The numerical simulations used a low-frequency 
approximation of Maxwell’s equations in time domain. 
Separate simulations computing the primary and the 
total magnetic fields were run in parallel, assuming an 
insulating and a conductive core, respectively. They were 
implemented using a spherical axisymmetric geometry 
introducing current loops with systematically varied 
parameters described in Table 1. This meant the numeri-
cal solution of equations:

(12)B = ∇ × A,

Fig. 4  Computational setup of a single simulation member in the series showing the finite element mesh (a) and the resulting induced field 
around the loop in the rotationally symmetric spherical domain (b)
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For clarity, in Eqs. (12) and (14), A denotes the mag-
netic vector potential and E the electric field. To set the 
dimensions of the simulation domain to be characteristic 
for those of Earth, the following radii were defined:

rCMB denoting the radius of the CMB and rE that of the 
Earth.

Current loops are defined as line-currents perpen-
dicular to the plane in which we calculate induced field 
values in this axisymmetric setting. Since the magnitude 
of static  induced fields depended linearly on the rate of 
change in the source currents, interpolation can be car-
ried out using only two values of (dI/dt)i independently 
from the current intensities (which were chosen to be 
zero at the beginning of the simulation time for the sake 
of simplicity).

Thus, three of the eight parameters listed in Table  1 
were enough to obtain a basis set of full spatial solutions 
using individual current loops parametrized as described 
in Table 2. These were chosen from the range of potential 
loop parameters defined in Appendix B.

The boundary condition prescribed the vanishing of 
tangential magnetic fields, which is not ideal as outside 
the core poloidal magnetic fields can be expected (Met-
man et  al. 2019). Although for this type of problem, 
applying

at the surface of the Earth rather than at the CMB (where 
n is the normal vector with respect to Earth’s surface) 
was acceptable, as solutions in this case agreed to a high 
degree of accuracy regardless of the specific type of 
boundary condition used.

The magnetic effect of currents induced in a conductive 
core was determined only with respect to the radial mag-
netic component of induction vector fields at the CMB. 
As the components of the magnetic induction vector 
were defined in a cylindrical coordinate system, spherical 
radial components were computed as follows:

(13)∇ × B = µJ ,

(14)E = −
∂A

∂t
,

(15)J = σE.

(16)rCMB = 3.48 ∗ 106[m], rE = 6.38 ∗ 106[m],

(17)n×H = 0

The relationship between these radial components and 
the corresponding loop parameters was then approxi-
mated fitting exponential polynomial basis functions 
using the weighted Ridge regression computation in the 
scikit-learn library (Pedregosa et al. 2011):

where

In Eq.  (20) l1j + l2j + l3j = n and l1j , l2j , l3j ≥ 0 and the 
βj coefficients were determined from

where I is the identity matrix, χ is the regularization 
parameter (see (Hoerl and Kennard 1970)), which was set 
to χ = 10−7 . Matrix A contains the exponential of the 
loop- and angular distance parameters for the total num-
ber of m =

∣∣∣R× r ×
(
dI
dt

)
× φ′

∣∣∣ = 65000 simulated data 
points used for the approximation:

and W weights have the elements,

(18)

B
i
rind

(r,φ′, t) =B
i
ρtot

(r,φ′, t)sin
(
φ′)

+ B
i
ztot

(r,φ′, t)cos(φ)

− B
i
ρprim

(r,φ′, t)sin
(
φ′)

− B
i
zprim

(r,φ′, t)cos(φ′)|r

= rCMB; t = td .

(19)
Bi
rind

(r = rCMB,φ
′) ≈ Cpoly

(
Ri, ri,φ

′) ∗ (dI/dt)i,

(20)Cpoly

(
Ri, ri,φ

′) =
∑(

n+3
n

)
−1

j=1
βje

Rl1j r
l2jφ′ l3j

.

(21)β =
(
ATWA+ χI

)−1
ATW (Bind − B̂ind),

(22)Am,j = eR
l1j
m r

l2j
m φ′ l3j

m ,

Table 2  Parameters of simulation members (loops), forming a 
total set containing 130 base results for the interpolation using 

all parameter combinations ri , Ri ,
(

dI

dt

)
i

∈ [|r| × |R| × |dI/dt|]

Sets of varied loop parameters

|r|[m] = {3.4e5, 3.2e5, 3e5, 2.8e5, 2.6e5}
|R|[m] = {2e5, 2.5e5, 3e5, 3.5e5, 4e5, 4.5e5, 5e5, 5.5e5, 6e5, 6.5e5, 7e5, 7.5e5, 8e5}

|dI/dt|
[
A

s

]
= {1e − 3, 1e0}



Page 10 of 41Kuslits et al. Earth, Planets and Space           (2024) 76:77 

Using n = 11 and the weights as defined in (23), these 
exponential functions resulted in the best approxima-
tion of the original Bi

rind
 with a normalized root mean 

square error (NRMS, see Sect. “Loss functions and qual-
ity metrics”) of NRMS = 1.4 ∗ 10−5 for the interpolated 
values (see the fitted polynomials in Fig. 5). The rationale 
behind applying approximation (19–23) is simply com-
putational feasibility. Running individual simulations 
directly to compute the composite induced field of a sin-
gle loop model containing a hundred loops, such as the 
ones shown in Fig.  6e and f would take approximately 
15 min to compute. Using the polynomial formula (19–
20) reduces the time needed for such a computation to 
less than 30 s.

Based on Eqs. (9–10) and (19–20), the final result can 
be obtained using both the primary and the induced 
magnetic fields for each current loop in an individual 
model sample. The spatial distribution of the magnetic 
fields can be computed relatively fast following the trans-
formation of the axisymmetric solutions from the local 
coordinate systems of the loops to the models’ global 
spherical coordinate system:

(23)
Wm,j =

1√∣∣∣Bj
m,rind

∣∣∣
.

In Eq. (24) r0i points to the center of the i th loop from 
that of the Earth, and r points to a location on the CMB 
(r = rCMB,φ,�) . These solutions yielded modified ver-
sions of the Mercator maps coming from solution  Eq. 
(10) corrected for the screening effect of the induction.

The above-detailed concept was efficient in generating 
a large amount of training data which were representative 
in terms of the overall distribution and magnitude of the 
radial geomagnetic field at the CMB. However, it also had 
an important drawback when it comes to reproducing 
Earth-like SV values. As an assumption of linear time 
variation in the source currents results in a constant Bi

rind
 , 

any time variation in these synthetic magnetic fields is 
observed in their primary radial components Bi

rprim
 . 

Source positions were fixed in the models so one can 
estimate what is the highest possible rate of change in the 
current carried by the largest loop, based on maximum 
observable values of the actual SV (see in Appendix B). 
Such a high rate-of-change would in turn produce an 

(24)

Brtot (r = rCMB,φ,�) =
∑N

i=1

(
B
i
rprim

(r = rCMB,φ,�)

+B
i
rind

(
r = rCMB,φi

′ = acos(r·r0i/(r · r0i))
))

=
∑N

i=1
B
i
rprim

(r = rCMB,φ,�)

+ B
i
rind

(r = rCMB,φ,�).

Fig. 5  Comparison of polynomials fitted for the induction effect on the CMB radial fields around three different example current loops 
and the actual results from test simulations.  Source parameters are noted in the middle of each corresponding graph
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induced field so strong it would be an order of magnitude 
larger than the largest values of the actual radial CMB 
field recorded in available historical geomagnetic data 
(see Sect. “Refining the ML-based inversion” and Appen-
dix C). This essentially means that the source model 
described here was unable to simultaneously reproduce 
Earth-like field magnitudes and SV. We chose to optimize 
the models for the former objective, so that training sam-
ples could be accepted as it is described in Appendix C.

Figure 6 demonstrates the general range of full model 
solutions used in the synthetic component of the train-
ing set and shows how induction screens the primary 
magnetic fields in the models. One can observe that 
even though the loop axes in these models are all radially 
aligned, more complex fields begin to form when increas-
ing the number of loops in the models with the effect of 
individual loops becoming progressively more difficult to 

separate for the human eye. Moreover, even  a relatively 
subtle screening around the sources could also have a 
rather complex effect on the field maps, when comparing 
the original maps on the left to the corrected ones on the 
right-hand side of the figure.

Inversion framework
To come up with potentially physically meaningful results 
in case of real geomagnetic data, besides the regulariza-
tion of the forward model presented in Sect.  “Defining an 
idealized model and constraining the model parameters” 
and Appendix B, modifications on the previous inversion 
framework were needed. This affected the machine learn-
ing implementation, i.e., the algorithm used for training 
and the generation of the training dataset. The frame-
work used by CLUMSI is similar to the one used in the 

Fig. 6  Primary (a), (c), (e) and total (b), d), (f) radial magnetic fields obtained using the approximate solution correcting for inductive screening 
at the CMB (in [T] units). Maps are shown for models containing, respectively, 1, 25 and 100 radially aligned current loops placed arbitrarily 
inside the domain representing an insulating (left column) and a conductive (right column) core
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introductory study in the sense that a neural network is 
trained to infer the distributions of source parameters 
(such as their geographic positions) represented as rec-
tangular maps, from magnetic field maps used as input 
data. The most significant novel work undertaken is using 
information from measured geomagnetic data which was 
incorporated in the training process in such a way that 
allows the network to handle real data more correctly (via 
the DANN method).

Section  “Refining the ML-based inversion” gives an 
overview of the applied inversion framework focusing 
on the deep learning methodology as the backbone of 
CLUMSI. Section  “Loss functions and quality metrics” 
summarizes the quality measures applied for analyz-
ing the method’s performance. A more detailed review 
of training and test data are presented in Appendix C. 
Appendix E describes the Genetic Algorithm (GA) as the 
last stage of CLUMSI obtaining a final estimation of the 
loop parameters and the corresponding magnetic fields 
based on the neural net inference.

Refining the ML‑based inversion
To robustly obtain a fully parametrized reconstructed 
source model, a two-step inversion framework was 
implemented, supplemented by significant modifications 
when compared to the original algorithm in the introduc-
tory study.

That work suggested training an image segmenta-
tion neural network with a UNet architecture, only for 
detecting the geographic distribution of the sources using 

the maps of the training set. This was followed by a GA 
solution which obtained exact value estimates for all the 
parameters of every loop from the suggested locations.

The current work replaces the original UNet imple-
mentation with a UNet + + architecture (Zhou et  al. 
2018) utilizing more hidden layers and output channels 
to give inferred images of all the source parameters in the 
models using their respective distribution maps as tar-
get values defined by Eqs. (60–63) in Appendix C. A new 
training method, referred to in Sect.  “Introduction” as 
DANN (Ganin et al. 2016), was also implemented, which 
allowed for an efficient incorporation of maps coming 
from real geomagnetic data into the training set. Geo-
magnetic field model data used during training included 
radial field and SV maps from the historic data set of the 
GUFM-1 model spanning a time range from 1600 to 1975 
(Jackson et al. 2000, see the data in Appendix C).

The refined training process and neural net architec-
ture are drafted in a similar fashion to the flowchart of 
Ganin et al. (2016) in Fig. 7.

During the DANN training, the image segmentation 
task is augmented by a decision problem about whether 
the data are coming from the synthetic or the real com-
ponent of the  training set. This is achieved using a sep-
arate neural network called a domain classifier. The 
classifier is trained on the internal representations cal-
culated in a hidden layer of the UNet++ network. That 
part of the training process is structured in such a way 
that the poorer the classifier performs, the better train-
ing results are achieved in terms of relying on features in 

Fig. 7  Schematic diagram of the DANN training process of the refined neural network architecture working with complex source model data 
and real geomagnetic model data. Here, Conv stands for convolutional and FCR for fully connected layers. L1 denotes the loss function (25) and CE 
denotes the values of the cross-entropy (26) loss function. α∇(CE) denotes the weighted gradients of the cross-entropy function
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the synthetic model which are similar to those of original 
geomagnetic data.

Finally, the GA solution was computed using the 
parameter distribution maps resulting from the 
UNet++ phase as inputs. The GA solution comprised 
a real coded, multi-population GA for deriving an opti-
mally fitting parametrized current loop model from the 
neural net output maps. Figure 8 describes the procedure 
in which the GA searched only in a subspace of potential 
parameter values outlined around peaks in the parameter 
maps produced by the UNet++ evaluation. To pinpoint 
an estimated source location, these peaks were selected 
as local maxima on the map in the same fashion as 
described in (Kuslits et al. 2020). The GA search was then 
performed within a 2-gridpoint radius around them (in 
accordance with the constraint defined in Sect. “Approxi-
mating the total field assuming linear time variation in 
the source currents”). The quantities on the right-hand 
side of the figure, representing the parameter distribution 
maps, are introduced in detail in Appendix C. A more 
detailed description of the GA itself is given in Appendix 
E.

This seemingly complex solution described above not 
only improved the results when using synthetic data, 
compared to the first experimentation showed in the 

introductory study, but also produced more relevant and 
well-defined solutions in case of real geomagnetic field 
data.

Figure 9 demonstrates the difference made by the DANN 
training and the modified UNet++ configuration on the 
resulting geographic distribution maps of source posi-
tions. It shows that when the previous and the new DANN 
trained networks are evaluated on the same input maps, 
the outputs significantly differ in definitiveness. This means 
not just a sharper outline of reconstructed probable source 
areas but a more precise solution quantifiable in case of 
synthetic input data as shown in Fig.  10 in Sect.  “Results 
using noise-free synthetic data”.

Loss functions and quality metrics
When training UNet +  + for the image segmentation, 
the L1 loss function was applied to all the channels pro-
viding the expected outputs to every source parameter 
distribution:

where ndata denotes the number of data points in a given 
sample, Pkj (φ,�) and ̂Pk j(φ,�) are given values of each 

(25)L1 =
ndata∑

j=1

∣∣∣Pkj (φ,�)− ̂Pk j(φ,�)

∣∣∣,

Fig. 8  Schematic diagram illustrating the final search process of the GA by ’scanning’ the distribution functions estimated by the neural network. 
The black filled circles represent the selected initial source positions and the green squares the search space defined around them. The bottom two 
maps are the estimation results of the complex source model for Br and SV resulting from a given ’scan’
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data point j on maps of target and estimated source 
parameters, respectively, defined in Appendix C.

For training the domain classifier to determine the origin 
of each model sample l , we used the cross-entropy loss as 
defined below:

where nsamples denotes the number of samples within a 
given part of the set of maps used for training, Vl is the 

(26)CE = −
∑nsamples

l=1
Vl log(pl),

class indicator and pl is the estimated probability for each 
sample l .

As it was established in Sect.  “Approximating the 
total field assuming linear time variation in the source 
currents” we chose to optimize for fitting to the field 
values rather than to SV values. This meant quantifying 
the misfit between the actual radial magnetic field and 
SV maps and those computed using the full parameter 
estimation derived from the GA search as follows:

(27)
NRMS =

√
(ndata)

−1∑ndata
j=1

(
Brj − B̂rj

)2

max(Br)−min(Br)
+ 0.1

√
(ndata)

−1∑ndata
j=1

(
SVj − ŜVj

)2

max(SV)−min(SV)

Fig. 9  Conventional (a) and DANN trained (b) neural network evaluation on real geomagnetic data (normalized inferred dI/dt source parameter 
distribution projected onto the CMB, calculated from GUFM-1 model data for year 1600)
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Similarly, the mean absolute error (MAE) was also 
given to show the misfits’ absolute value:

Relative parameter error (RPE) was used to describe 
the quality of the full parameter reconstruction result-
ing from the GA search by comparing the true loop 
parameters with those of the physically closest esti-
mated loops:

where Parkgti is the ground truth value of a single param-
eter k of a loop i in a vector Par containing each current 
loop parameters (see Table  1), P̂ar

k

l  is its value estimate 
provided by the GA via an estimated loop l , and L is the 
number of loops in a given model.

To describe specifically the errors made by UNet++ dur-
ing the segmentation phase, two-dimensional cross-cor-
relation coefficients (CCC) were calculated between the 
network-generated and the expected output distribution 
maps for each parameter:

In Eq.  (30), φj and �j correspond to the latitudinal 
and longitudinal coordinate points of input and out-
put maps Pk(φ,�) and P̂k(φ,�) of each current loop 
parameter k.

Testing the methodology
Results using noise‑free synthetic data
A relative freedom in the spatial arrangement of the 
sources which is the result of the unconstrained nature 
of the problem presented a significant difficulty to the 
estimation. A growth in reconstruction error with the 

(28)MAE = ndata
−1

ndata∑

j=1

∣∣∣Brj − B̂rj

∣∣∣.

(29)
RPE =


�

i,k

���� �Par
k

l

����rl−rgti

��=min
�
−Parkgti

�������Parkgti
���




8L
,

(30)CCC
(
P̂k ,Pk

)
=

∑
φj

∑
�j
(P̂kφj�j

− P̂k)(Pkφj�j
− Pk)

√
(
∑

φj

∑
�j
(P̂kφj�j

− P̂k)
2)(

∑
i

∑
j(Pkφj�j

− Pk)
2)

.

increasing number of current loops in the models was 
unavoidable. However, the refined neural net architec-
ture and training method presented in Sect. “Refin-
ing the ML-based inversion” proved to be much more 
efficient at handling this challenge when compared to 
classical methods (see Appendix G) and the method 
presented in the introductory study. This quantitatively 
means that reconstruction errors started to grow signif-
icantly above a much higher number of sources in the 
models than in case of the original algorithm or using a 
more traditional least-squares inversion.

This trend can be observed in the graphs of Fig. 10 and 
for the NRMS and RPE metrics defined in Sect.  “Loss 
functions and quality metrics”. It is to be noted that these 
values were only derived for individual samples as it 
required a full computation including the GA estimation 
to be performed, which took considerable computational 
time.

As the new algorithm produced maps of reconstructed 
distributions for all the source parameters, cross-cor-
relations (CCC calculated using (30)) between the true 
maps and neural net outputs were computed for subsets 
of multiple test samples containing the same number of 
current loops in the test set (see Table  8). These result-
ing cross-correlations and their average values were also 
plotted against an increasing number of loops in Fig. 11.

Perhaps the most apparent feature of the inference seen 

in Fig. 11 is still the decrease of reconstruction accuracy 
against an increasing number of current loops in the 
model. Another noticeable tendency when looking at this 
graph is that the recovery of the rates of change in the 
loop currents presents a significantly more difficult task 
for the network than that of other source parameter dis-
tributions. The reason for that probably lies in the linear 
approximation of this parameter and its relatively com-
plex relation to the finally formed magnetic fields.

In all the above graphs (Figs. 10 and 11) one can see the 
general trend, that errors start to grow significantly when 
over ~ 80 sources are admitted to the models, provided 
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that the refined machine learning framework is applied. 
This indicates a higher efficiency than that of the first 
framework, which already produced results with signifi-
cant reconstruction error when applied for models con-
taining only 15–20 sources.

The decrease in inference accuracy established itself as 
the more densely the sources were packed in the model 
domain, the harder it became even for the image-process-
ing neural network to separate them based on their com-
bined magnetic fields. This phenomenon is illustrated via 

a comparison in Fig.  12, where the equivalence problem 
mentioned above is present in the outlined areas.

Broadly speaking, the test results suggest that recon-
structions reproduce the general characteristics of 
regions with multiple sources in close proximity more 
reliably than the data coming from individual sources. 
Figure  12 suggests that overall characteristic features of 
the distribution are still recovered relatively well, even 
when the model contains a number of loops higher than 
80. This is important to note because the model inferred 

Fig. 11  CCC values between the reconstructed and true parameter maps plotted against an increasing number of sources in the corresponding 
models. These results were obtained using only the refined algorithm. Markers were assigned to the averages as shown on the label, the bars 
denote the min–max range of CCC values over a given subset. CCC values of the specific model featured also in Table 3 (being nearly the same 
as their corresponding subset averages) are referred to by the blue asterisk

Fig. 10  RPE errors (a) and NRMS misfits (b) of individual final reconstructions carried out using the original and the refined (CLUMSI) algorithm 
against an increasing number of loops in the test data set
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in case of real geomagnetic field data (Sect.  “Results on 
real geomagnetic model data”) contained 116 current 
loops.

Graphs in Fig. 10a and b also show that while the new 
algorithm significantly outperforms the previous one in 
terms of inference error (RPE), it is still unable to do so 
when reconstructing the input magnetic field and SV 
maps (NRMS). To understand the reason behind this 
discrepancy, one needs to look at individual inversion 
results.

Figures  13 and 14 demonstrate an inference and field 
reconstruction of a synthetic model containing 30 cur-
rent loops. It shows the distribution maps of the model 
parameters inferred with the help of the UNet++ algo-
rithm along with maps of the radial field and SV values 
recovered via the final GA solution (see Sect.  “Refining 
the ML-based inversion”). True maps are featured next to 
each corresponding reconstructed map for comparison.

When observing the reconstructed field maps in 
Fig.  14, one can notice that reconstruction quality is 
compromised by occasional outliers found mistakenly 
by the image-processing network. This kind of error is 
already somewhat observable on the ranges of CCC val-
ues in Fig. 11 as these mistakes can occasionally reduce 
the CCC of individual reconstructions thereby increasing 
the uncertainty of evaluations. Such erroneous estima-
tions are highlighted in Fig. 13 showing the reconstructed 
loop parameter maps. It is a known general problem of 
applying deep learning algorithms for image segmenta-
tion, that though they can provide a fairly accurate over-
all inference, on some occasions they can produce very 
strong yet very wrong output signals (Popescu et  al. 
2021).

As the authors chose NRMS misfits of the SV values 
to account for only 10% in the total reconstruction loss 
(27) during the GA estimation process, unsurprisingly, 
the quality of the reconstruction of the radial magnetic 
induction is significantly better than that of the radial SV 
(see the maps and scales in Fig. 14c, d)).

As for the stability of the inference with respect to 
potential noise in the input data, a first-order analysis is 
shown in Appendix F.

Results on real geomagnetic model data
In order to demonstrate the functionality of CLUMSI on 
actual geomagnetic field model data, in one reconstruc-
tion process, maps of the actual CMB radial magnetic 
induction field and SV at the 2019 epoch of the COVOBS 
geomagnetic field model (Gillet et al. 2019) were used as 
inputs. COVOBS data proved to be viable for a demon-
stration as they contain more relevant recent information 

on the field, and they were relatively easy to use for con-
structing an input map (see Appendix D).

Figures  15 and 16 present the real and reconstructed 
geomagnetic field and SV maps. Based on the method 
described in Sect.   “Results using noise-free synthetic 
data”, 116 current loops could be identified using the neu-
ral net output image. These are displayed as black dots on 
the map of the radial field. In addition, map c in Fig. 16 
illustrates the relative importance of magnetic diffusion 
estimated by the reconstruction as the percentage ratio of 
the induced contribution and the total radial field in the 
GUFM-1 model (31):

The overall quality of this reconstruction is similar to 
that of the synthetic results presented in Sect.  “Results 
using noise-free synthetic data” in the sense that the 
radial induction vector field can be recovered with much 
higher accuracy than the radial SV and that occasional 
outliers in the segmented parameter maps significantly 
reduce the conformity between true and estimated fields. 
In general, however, it is ascertainable that the recovered 
current loop model does reproduce most of the main 
morphological features of the CMB radial field (and the 
SV as well for that matter, albeit much less accurately) 
provided by the geomagnetic model.

Figure 17 shows parameter maps of the model recon-
structed using the input maps in Figs.  15 and 16. It is 
worthwhile to mention that interestingly, many of the 
reconstructed current loops seem to be distributed in 
chain-like arrangements, often aligned nearly meridion-
ally (such occurrences are highlighted by dashed lines on 
the map of Fig.  17a)). It is however out of the scope of 
the present study to assess whether this can be linked to 
some property of the actual geodynamo or is an artifact 
of some sort. It is also noticeable that somewhat unex-
pectedly, the time variation of loop currents tends to 
show a more pronounced hemispherical dichotomy than 
the loop currents themselves (though we expect a much 
more uncertain recovery for these parameters, as it was 
established in Sect.  “Results using noise-free synthetic 
data”).

Table  3 summarizes characteristic quality- and mis-
fit parameters of the reconstructed field and the actual 
input fields. This too shows that the recovery of radial SV 
values and their distribution yielded a much poorer result 
than that of the actual radial field, manifesting most nota-
bly in a large difference between the corresponding CCC 
values.

(31)Wdiff =
B̂rtot − B̂rprim

Brtot

.
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Discussion
To conclude this paper, it is important to underscore that 
the CLUMSI methodology presented in this study is still 
by no means perfect and comes with its own drawbacks.

On one hand, the most apparent limitation of the still 
highly idealized loop model aiming to represent the 

current density distribution in the core is that it is unable 
to account for realistic SV magnitudes.

On the other hand, the most significant problem of 
the inversion framework comes from outliers in the neu-
ral net inference (Sect.  “Results using noise-free syn-
thetic data”) which in turn reduces the overall accuracy 
of reconstructions. Further complicating this issue is 

Table 3  Misfit values of the reconstructed field compared to characteristic values of the corresponding geomagnetic field and  SV 
magnitudes and the misfit values of a synthetic example for reference

CMB radial field CMB radial SV

Quality parameters (misfit) MAE CCC​ MAE CCC​

0.17 [mT] 0.73 10.02 [mT/yr] 0.22

Characteristic values of the actual field Absolute
AVG

Absolute MAX Absolute
AVG

Absolute MAX

0.264 [mT] 0.81 [mT] 10.19 [mT/yr] 70.5[mT/yr]

NRMS (misfit) 0.1 0.179

NRMS (misfit) synthetic example with 110 loops 
(marked by * in Fig. 11)

0.075 0.17

Fig. 12  Maps of true loop positions (a) and the positions estimated using the refined algorithm (b) for a model with 90 loops. One region 
is highlighted with a red circle where it is clearly visible that the neural network had difficulty in separating the magnetic signal of the loops
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Fig. 13  True (left column) and reconstructed (right column) maps of the corresponding model parameters (60), (63) presented in Appendix C. 
Gross misidentifications are marked by the outlined areas

Fig. 14  Contour maps of the true and reconstructed magnetic fields and SV values in case of the same synthetic model as shown on Fig. 13
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that regularizations, such as physical constraints about 
inferred local field magnitudes or loop parameters, are 
not yet possible to directly integrate into the neural net 
training.

It is also important to note that the rectangular maps 
CLUMSI currently needs to rely on because of the type 
of neural network (UNet + +) involved, cannot generate 
a truly uniform random distribution of loop currents on 
spherical surfaces. This can also introduce projection dis-
tortions when fitting a loop model to the observed field 
values.

These drawbacks can nevertheless be offset by the fact 
that CLUMSI can recover complex loop models more 
effectively (with a single evaluation and with higher accu-
racy) than previous techniques. Also, by the prospect 
that the approach has a very wide scope for further modi-
fications and improvements with plenty of opportunities 
to enhance its physical authenticity and accuracy. Such 
ideas for further development are described below.

The reason for the loop models’ inability to produce 
realistic SV is the lack of spatial movement of the fea-
tures in the modeled fields. This issue can be resolved 
in the future by getting rid of the part of condition (1) 
(Sect. “Approximating the total field assuming linear time 

variation in the source currents”), which imposes spa-
tially fixed loops in the forward model. Possible SV values 
such forward models could produce would then be orders 
of magnitude higher at each surface location, than those 
which are currently achievable. Implementing this would 
however necessitate considering the effect of electro-
magnetic induction on the field of a moving current sys-
tem. One possible way to computationally reproduce the 
effect could be the use of simplified 3D forward model 
samples applying a moving mesh finite element frame-
work configuration. This additional complexity could be a 
reasonable extension of our existing loop model because 
it is known that a significant part of the locally registered 
SV comes from westward drifting features in the geo-
magnetic non-dipole field, which can move as fast as 0.5° 
in geographic longitude per year.

One avenue for alleviating the problem of outliers in 
the neural net inference could be to indirectly constrain 
and regularize the training and evaluation process via a 
custom loss function (see e.g., (Basir and Senocak 2022)). 
For that, the relation of the CLUMSI methodology to 
physics informed neural networks (PINN) and to inverse 
PINNs especially (Raissi et  al. 2019; Jarolim et  al. 2023) 
need to be explored. A larger training data set including 

Fig. 15  True (a) and reconstructed (b) radial magnetic field values estimated using the 2019 epoch of the COVOBS geomagnetic field model 
at the CMB. The grey dots on map a indicate the source positions estimated using the network
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more synthetic and measured samples as well could also 
help in obtaining more accurate inferences. Concerning 
measured geomagnetic data, it is particularly important 
to note that the GUFM-1 model utilized in the training 
data set of this study makes use of historical observatory 
and maritime measurement data taken only at Earth’s 

surface (Jackson et  al. 2000). These could be comple-
mented by more recent geomagnetic model data, such 
as the COVOBS (Gillet et al. 2019) data, which are based 
on satellite measurements as well as surface observations, 
and could provide independent training data at multi-
ple reference surfaces. This would potentially further 

Fig. 16  True (a) and reconstructed (b) radial SV values estimated using the 2019 epoch of the COVOBS geomagnetic field model at the CMB. The 
relative importance of magnetic diffusion (c) in the reconstruction was illustrated using (31)
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improve the representativeness of the reconstructed 
source model with respect to the actual physical state of 
the geodynamo (Alken et al. 2021).

Current loop models inferred in this study tend to 
be local compared to the scale of the core. It remains 
an open issue if we can relate them to larger-scale cur-
rent systems in the geodynamo and how this could be 
achieved. Further comparisons to MHD-based meth-
odologies need to be conducted. For example, it could 
prove to be useful to compare snapshots of inferred 
loop parameter distributions, such as the ones pre-
sented in Figs. 15a and 17 taken using different epochs 
of an input geomagnetic model and compare them 
with maps of reconstructed core flows considered to 
dominate the intermittent time period.

It is also noteworthy that some derived parameter 
distributions in direct numerical simulations, like the 
“dynamo generation term” introduced by Miyagoshi 
et  al. (2011) may display sufficient spatial stability and 
concentration while showing enough variability as well 
to be suitable for a similar kind of inference on real 
geomagnetic data.

Perhaps the future viability of CLUMSI (and similar 
attempts) as a supplementary tool for validating efforts 

trying to picture the internal dynamics of the geody-
namo depends on whether utilizing a composite of a 
high number of relatively simplistic sources can cor-
rectly represent such  complex physical processes in 
general.

Conclusions
This study demonstrates the potential effectiveness of 
using deep learning for recovering highly complex cur-
rent density distributions such as the one expected to 
be responsible for generating the magnetic field in the 
geodynamo. Synthetic tests confirmed that an image-
processing neural network can recover complex distribu-
tions of source currents from input magnetic field data 
with reasonable accuracy. Main morphological features 
of the actual geomagnetic radial field could also be repro-
duced, albeit this was still based on a highly idealized 
equivalent current loop model and suffers from some 
significant drawbacks. Most notably, the inability to pro-
duce reconstructions that are representative of both the 
geomagnetic field and its SV, and occasional outliers in 
the inference which significantly affect the reconstruc-
tion quality.

Fig. 17  Reconstructed maps of current loop parameters (60–63) segmented using actual geomagnetic field model data (COVOBS, epoch 2019)
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Appendix A: Validation of the numerical model 
and detailed description of the computational 
framework
As a simple guiding value for setting the computational 
mesh size, the Courant criterion used in finite difference 
simulations (Dutykh 2016) was applied. This gives the fol-
lowing relation between time steps Δt and spatial discre-
tization Δx for the classical magnetic diffusion problem:

Equation  (32) for a minimum time step 
�t = 3.15 ∗ 107[s] (1  year) yields a minimum finite ele-
ment size of �x = 3200[m].

Equations (12–15) were solved for the vector potential 
A with an initial value:

Equation  (33) applied for the entire domain as 
for estimating the induction screening discussed in 
Sect. “Approximating the total field assuming linear time 
variation in the source currents”, the current intensity 
could be linearly increased in time from It0 = 0[A] at a 
rate given in Table 2.

The full solution used the MUMPS solver (MUltifron-
tal Massively Parallel Solver 2022) on the linearized finite 
element discretization of Eqs. (12–15) using initial condi-
tion (33).

To validate whether the numerical models give a cor-
rect approximation of the induced magnetic fields, 
qualitative comparisons can be made for models which 
assume a conductive core. A process similar in nature 
to that described in Sect.  “Approximating the total field 
assuming linear time variation in the source currents” 
results from the theoretical problem discussed in Weaver 
(1994), in which the cessation of the source current vari-
ation results in the restitution of the static primary field 
after the transients have ceased.

When assuming an insulating core, the fields obtained 
in the simulations can be checked by comparing them 
against the analytical solution presented in Sect.  “Pri-
mary field of stationary current loops” on reference sur-
faces picked at different radial distances from the CMB. 
Comparisons of the solutions can be made for the mag-
netic field of a single source. In Fig.  18 resulting radial 
fields are plotted in the reference frame of one such cur-
rent loop.

Figure 18 confirms that the two solutions, calculated on 
meridional circles with an increasing radius, agree to a 
high degree of accuracy in the order of magnitude range 
of the source parameters used for the training set.

(32)�t ≤ σµ�x2/2.

(33)A = 0.

Appendix B: Defining the range of model 
parameter values in the training set
The computation of synthetic training samples was per-
formed using randomly generated values of the source 
parameters (see Table 1). To determine the range of pos-
sible magnitudes for these values, simple considerations 
concerning the physical dimensions of the core and the 
geomagnetic field were taken into account.

The CMB and the ICB arise as natural constraints on 
the spatial location of the reconstructed current loops. 
However, due to the high electrical conductivity of the 
core, the lower depth limit can be placed much higher. 
Let us imagine placing time-varying but spatially con-
fined magnetic fields in a conductive core. In this case, 
a δz skin (or attenuation) depth can be given because of 
the electromagnetic screening of the conducting material 
above them (Gubbins 1996):

Equation  (34) expresses this screening in spheri-
cal harmonic functions, where τ ljP  is the diffusion time 
associated with poloidal magnetic fields of degree 
l  and order j . It is reasonable to assume that from 
time-varying local sources, most of the screened 
part of their magnetic fields (required for the separa-
tion of their signal) is essentially in the non-dipole SH 
spectrum. Approximating the core conductivity by 
σ = 5 ∗ 105[S/m] (see Sect.  “Approximating the total 
field assuming linear time variation in the source cur-
rents”) and τ 21P ≈ 8000[yr] these fields can only emerge 
from within an upper layer of δzmax ≈ 800[km] . The 
upper limit for possible source depth in the models was 
therefore taken accordingly.

To give an initial estimate of the bounds on the possible 
values of the other source parameters, further considera-
tions were made based on previous simulation results, 
statistical constraints on the geomagnetic field and the 
evolution of the geomagnetic dipole moment (GMD).

Gillet et al. (2010) provided a benchmark for the range 
of magnetic induction intensities within the Earth’s core. 
Their results show that, at least the radial component 
of the induction vector inside the Earth’s core can vary 
roughly between

and

These values were used as limitations on the possible 
range of values for the interior field.

(34)δz =

(
τ
lj
P

µ0σ

)1/2

.

(35)Bmin ≈ 1[mT]

(36)Bmax ≈ 6[mT].
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Using this, six simplified independent relations 
(rules) between the extreme values of current loop 
parameters and the quantities GMD, Bmin and Bmax 
were constructed, represented by Eqs. (37–38), (39–40) 
and (41–42), respectively. The latter three quantities 
were considered to be known. In defining the relation-
ships, sources were treated as current loops carrying 
constant currents and having fixed positions:

Equations  (37) and (38) are related to combinations of 
source parameters that result in the largest and small-
est absolute values of magnetic induction at the center of 
the loops (Fig.  19). The known minimum and maximum 

(37)Bmin = µImin(2Rmax)
−1,

(38)Bmax = µImax(2Rmin)
−1.

Fig. 18  Validating the numerical simulation against the analytical solution assuming an insulating core. The numbers above subplots a, b and c 
describe the source parameters and the radial position of the reference surfaces Href with respect to the CMB ( Re in graph a) is Earth’s radius)
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magnitudes of the internal field cannot be exceeded in 
these cases, thus, values (35) and (36) can be assigned to 
their left-hand sides.

Two extreme configurations can also be considered. 
One in which the loops with the strongest current and the 
largest spatial extent give rise to the GMD together, and 
another in which the smallest loops carrying the weakest 
current do the same (Fig. 20). Then, Eqs. (39), (40) are sim-
ply given by aligning the axes of these current systems in 
these hypothetical models with the direction of the GMD. 

Here, as the number of sources, Nmax is assigned to the 
model containing the smallest loops and Nmin to the model 
containing the largest ones:

Using two adjacent current systems in the two 
extreme models shown in Fig.  20, sharing a common 
axis, one can estimate how close these pairs can be to 
each other (see Fig. 21).

For this, field constraints (35–36) and the relation 
defining the axial magnetic field component along the 
axis of a current loop (Jackson 1998) can be exploited. 
On one hand, the distance of the two largest current 
loops furthest apart from each other (Fig. 21a) must be 
at most such that the minimum of the axial component 
of the magnetic induction (halfway along the axis) can-
not fall below constraint (35):

Similarly, the axial component of the magnetic induc-
tion along the common axis of a pair of the smallest 
current loops is at its maximum at the center of the 
loops. It can reach at most the value (36) in the model 
where the smallest current loops are closest to each 
other (Fig. 21b):

(39)GMD = ImaxR
2
maxπNmin,

(40)GMD = IminR
2
minπNmax.

(41)Bmin = 2
µ0R

2
minImax

2
(
(dmax/2)

2 + R2
min

)3/2 .

Fig. 19  Determination of the rule for Bmin (a) and Bmax (b) using 
circular currents taking extreme values of source parameters. Rmin 
and Rmax denote the maximum and minimum circular current radii 
sought, and Imin and Imax denote the maximum and minimum 
currents carried by the loops

Fig. 20  Two extreme model configurations, in which the GMD is hypothetically produced by individual sources of the same size and elementary 
momentum which is in alignment with the GMD. δzmax

 is the penetration depth corresponding to Eq. (34) (the figure is not to scale)
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A further simplification is that the current loops in 
these models are uniformly distributed in the outer 
core. Their relative (equidistant) spacing is approxi-
mated by dividing the δzmax thickness of the outer core 
volume into  the same number of  equal-sized cubes as 
the current loops in the models.

Equations (45) and (46) are then obtained by substitut-
ing Eqs. (43–44) into Eqs. (41–42).

In contrast to these hypothetical models, in forward 
solutions used for the reconstruction of the actual geo-
magnetic field, the direction of the axes of the current 
systems is radial based on other considerations (see 
Sect. “Approximating the total field assuming linear time 
variation in the source currents”). However, as it turns 
out (see Appendix C) these relations were suitable for the 

(42)Bmax =
µ0R

2
minImin

2
(
dmin

2 + R2
min

)3/2 +
µ0Imin

2Rmin
.

(43)

dmin = 3

√
(4/3)π

(
r
3
CMB −

(
rCMB − δzmax

)3)
/Nmax

(
≈ 4.56 ∗ 105[m]

)
,

(44)

dmax = 3

√
(4/3)π

(
r
3
CMB −

(
rCMB − δzmax

)3)
/Nmin)

(
≈ 1.57 ∗ 106[m]

)
.

inclusion of parameter boundaries within which repre-
sentative models of the CMB radial field could be gener-
ated, both qualitatively and quantitatively.

Since the resulting system of Eqs. (41–46) is non-linear, 
an iterative solution was chosen to solve them. This used 
an implementation of the Newton–Raphson method in 
MATLAB (Yang et  al. 2005). The bounds defining Eqs. 
(41–46) were directly introduced by assigning the tar-
get values everywhere to the left and the variables to the 
right, which in case of (41–42):

The final optimal solution (after ~ 1000 iteration steps) 
does not perfectly approximate any of the target values 
(see Table  5), however, even when applying the highest 

(45)

Bmin =µR2
maxImax

[
R
2
max + N

−2/3
min

(
2π

(
r
3
CMB −

(
rCMB − δzmax

)3))1/3
]−3/2

,

(46)

Bmax =µImin(2Rmin)
−1 + µR2

minImin

[
R
2
min + N

−2/3
max

(
4π

(
r
3
CMB −

(
rCMB − δzmax

)3))1/3
]−3/2

.

Fig. 21  The maximum dmax (a) and minimum dmin (b) distances allowed between the circular currents, belonging to the conceptual models 
shown in Fig. 20

Table 4  The minimum and maximum values of the model 
parameters, estimated using formulas (37–40) and (45–46)

These provided the intervals between which the source parameters in the 
training samples were generated, as described in Appendix C

I[A] R[km] N

Minimum 2.3 ∗ 108 325 25

Maximum 109 1000 1026
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and smallest GMDs derived from GUFM-1 the training 
data (Jackson et al. 2000; Korte and ConsTable 2005), the 
solution does not change significantly (see Table 6).

Considering the rate of change in the source cur-
rent over time, the following theoretical upper bound 

is obtained using the resulting Rmin from Table 4. If the 
change in the radial component of the induction vector 
directly above a source is investigated, and the effect of 
conductivity is neglected, a maximum (secular) change 
in the source current over time can be assigned to the 
maximum SV observed in the training data. If an axi-
ally aligned current loop in the model containing only 
the sources of the smallest spatial extent is considered 
(Fig.  20b), the local axial component of its associated 
magnetic induction vector coincides with the global 
radial component, from which it can be written (Jackson 
1998):

From the bounding Eq.  (47) one can obtain that if (
∂Br
∂t

)
max

 corresponds to the maximum radial SV compo-
nent (measured on a 5-year basis) calculated from the 
GUFM-1 data set, then the current of any given current 
loop in the models can vary in time at most by

(47)
(
∂I

∂t

)

max

=
2
(
d2max + R2

min

)3/2

µ0R
2
min

(
∂Br

∂t

)

max

.

An important consequence of neglecting field diffusion 
here is described in Appendix C. Using the approximate 
solution introduced in Sect.  “Approximating the total 
field assuming linear time variation in the source cur-
rents”, the total field of such a large change in the current 
above the largest sources could be as high as:

where Fu ≈ 0.0032[T ] is a value estimate based on the 
training data above which a field magnitude occurring in 
the generated samples can be considered an outlier (see 
Appendix C).

This means that source currents which have only a 
much smaller range in time variation can be applied 
when one aims at generating training samples representa-
tive in terms of actual geomagnetic field values. The sim-
ple procedure implemented to ensure this is described in 
Appendix C as well.

Table 5 contains the target values used for the compu-
tation of the range of possible current loop parameter 
values and their approximation using the derived extreme 
parameters. Table 6 represents the stability of the derived 
extreme parameters with respect to the changing GMD 
target values in the historical record.

Appendix C: Assembling and generating training 
and test data
In constructing the training dataset, synthetic magnetic 
field maps for the source models were generated within 
the bounds of source parameters discussed in Appendix 

(48)(dI/dt)max = 1.13[A/s].

(49)|Bmax
rtot

| =
∣∣∣Bmax

rprim
+ Bmax

rind

∣∣∣ =
∣∣∣∣∣

µ0R
2
maxImax

2
(
δzmax + R2

max

)3/2 + (dI/dt)max ∗ C
(
Rmax, δzmax , 0

)
∣∣∣∣∣ ≈ 0.074[T ] >> Fu,

Table 5  Validation against the  characteristic target measures of the geomagnetic field when applying the derived  limits 
of potential loop parameters in Eqs. (39)–(42) and Eqs. (45)–(46)

Target values GMD = 8.1 ∗ 1022[Am2] Bmin= 10−3[T ] Bmax = 6 ∗ 10−3[T]

Values resulting from substituting the obtained maximum 
and minimum parameters into the referred conditions

(39)→ĜMD = 7.85 ∗ 1022
[
Am2

]
(41)→B̂min = 1.5 ∗ 10−4

[T] (42)→B̂max = 2 ∗ 10−3
[T]

(40)→ĜMD = 7.84 ∗ 1022
[
Am2

]
(45)→B̂min = 6.14 ∗ 10−4

[T ](46)→B̂max = 6.2 ∗ 10−3
[T ]

Table 6  Comparing the resulting lower and upper limits of potential loop parameters derived when using the weakest and strongest 
historical GMD magnitudes (Jackson et al. 2000) in the corresponding target values

a  denotes corresponding target values

Minimum and maximum historical 
magnitude of the GMD

Imin[A] Imax[A] Rmin[km] Rmax[km] Nmin Nmax

7.8 ∗ 1022
[
Am2

]

(1975)a
2.3 ∗ 108 109 324 1000 24 1025

8.55 ∗ 1022
[
Am2

]

(1830)a
2.4 ∗ 108 109 335 1000 27 1027
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B using the forward solution presented in Sect.  “Approx-
imating the total field assuming linear time variation in 
the source currents”.

Real geomagnetic data incorporated into the training 
samples were derived from the GUFM-1 historical geo-
magnetic field model (Jackson et  al. 2000). The samples 
were Mercator maps of the CMB radial field with the 
same resolution as described in Sect.  “Primary field of 
stationary current loops” taken from the model epochs 
using an increment value of 5 years.

A fundamental requirement for the synthetically gen-
erated part of any sample dataset used for ML is that it 
should contain values that are at least representative of 
the real data in terms of their order of magnitude (Huyen 
2022). This was fulfilled by applying the sample selection 
criteria explained below.

A commonly used criterion for constructing a training 
data set is the selection of outliers, which can be defined 
using the quartiles of the distribution of the real data (in 
our case being a set A containing all radial magnetic field 
values coming from the GUFM-1 training data). This 
method is suitable also for data having non-normal dis-
tributions (Ilyas and Chu 2019; Czirok et al. 2022):

where Q1 and Q3 denote the first and third quartiles of 
the real data set ( A).

Incorporation of a given sample into synthetic train-
ing data was rejected based on empirical conditions 
applied for field magnitudes which are detailed below.

The generation of an i individual current loop in the 
model was aborted if it did not satisfy the following three 
conditions within 100 repeated generation attempts.

1) The total field estimated directly above the source 
(estimated using Eq.  (49)) fell within the range defined 
below:

2) The induced field of the source did not reduce the 
primary field to less than the primary field divided by e 
(i.e., the induction did not completely extinguish the pri-
mary field—a criterion related to Eq.  (34) that gives the 
penetration depths for spherical diffusion times):

3) The generated source must fall further away from 
its nearest neighbor than an angular distance of 2°. This 

(50)
Fl = Q1(A)− 1.5(Q3(A)− Q1(A)) = −0.0031[T ],

(51)
Fu = Q3(A)+ 1.5(Q3(A)− Q1(A)) = 0.0032[T ],

(52)
Fl

log(N )
< Bi

rtot
<

Fu

log(N )
.

(53)
Bi
rtot

Bi
rprim

> 1/e.

ensured that, within the given resolution of the maps, the 
sources did not lie exactly underneath each other.

Conditions (1) to (3) can be checked already during the 
random generation of the individual source parameters, 
before the actual forward problem is solved, saving con-
siderable computation time.

After solving the forward computation, the total mag-
netic field of each model sample was also checked using 
the condition below:

4) To ensure that the total field generated by the sample 
falls within the range defined by constraints Fl , Fu it was 
accepted if and only if,

As it was postulated in Sects. “Approximating the total 
field assuming linear time variation in the source cur-
rents” and Appendix B, conditions (1)–(2) and (4) were 
chosen to be such that a training set representative in 
terms field magnitudes could be generated.

To alleviate the problem discussed in Appendix B 
concerning the rates of change in the current possible 
in the model samples, a systematic test was performed. 
It was conducted using a ’damping factor’ γ applied on 
±(dI/dt)max , and summing up how many models can 
be accepted by varying source currents randomly within 
these values. Conditions (1) to (4) were applied as accept-
ance criteria. Figure 22 shows that for models with differ-
ent numbers of sources below γ = 1100 , the number of 
acceptable generated samples (models) starts to decrease 
in a similar fashion.

Finally, a training set containing 1030 Mercator maps 
generated using source models containing an incremen-
tally increasing number of current loops (Table 7) and 75 
maps coming from actual geomagnetic field values of the 
GUFM-1 model was assembled,  and  shuffled randomly 
when being loaded during the DANN training. Field 
maps in the GUFM-1 model were obtained directly at 
each geographical coordinate point given by the applied 
resolution (see Sect. “Primary field of stationary current 
loops”) and each epoch using the example program avail-
able in the gufm1-webservice (Rehfeld 2019). This was 
supplemented by maps of radial SV values readily avail-
able in case of GUFM-1 data on a 5-year basis and com-
puted similarly using only the solutions for the primary 
fields in case of synthetic data (as a consequence of the 
approximation applied for the induced fields):

where

(54)Fl <
∑

i
Bi
rtot

< Fu.

(55)
SV = (Brprim(I , t0)− Brprim(I + dI/dt ∗�t, t0 +�t))/�t,
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Using this procedure synthetic magnetic fields could 
be generated which could produce radial magnetic 
components falling within the order-of-magnitude mar-
gins of the actual CMB radial field values derived from 
the GUFM-1 dataset. For comparison, histograms rep-
resenting field distributions of the geomagnetic model 
and synthetic (loop) model values are shown on Figs. 23 
and 24. In both cases, significant number of data points 
occur between ±1[mT ] , however, the synthetic training 
data values have a near-normal distribution, whereas 
real training data have a depletion in a range of positive 
values due to the South Atlantic Anomaly (see e.g., (De 
Santis and Quamili 2010)).

Unsurprisingly, as the attenuation was applied for 
dI/dt in the current loop models, the bulk of synthetic 
data points are in an SV range 2 orders of magnitude 

(56)�t = 5 ∗ 3.15 ∗ 107[s]. smaller than those coming from the GUFM-1 model 
(see Figs. 25 and 26).

To generate maps of target variables for the neural 
net training, normalized preprocessed maps of source 
parameter values were computed for each model as 
follows:

In Eq. (57), Lk is a sparse matrix defined as

(
φki ,�ki

)
 being the geographic coordinates of a given 

source i and pk is a value of a given source parameter k 
for each corresponding current loop in the model. The 
preprocessing to optimize training performance is then 
carried out in the following fashion:

(57)Pk(φ,�) = Lk(φ,�)pk .

(58)Lk(φ,�) =
{
1 : (φ,�) ≡

(
φki ,�ki

)

0 : (φ,�) �=
(
φki ,�ki

) ,

(59)Pkj
�
φkl ,�kl

�
=max


Pkj−1

�
φkl ,�kl

�
,Pkj−1

�
φkl ,�kl

�
e
−

�
φk l−φki

�2
+
�
�kl

−�ki

�2

2�




|kl − ki| ≤ 5, kl = 1, 2, . . . , 25.

Fig. 22  Number of acceptable samples from 100 generated models, as a function of attenuation factor, for models with 25 and 125 sources

Table 7  Distribution of model samples in the synthetic training data set, containing 1030 Mercator ( φ,� ) maps of field and model 
parameter values

Number of loops in the model 25 35 45 55 65 75 85 95 105 115 125 135 145

Accepted model samples 100 100 100 100 100 100 100 99 94 79 46 11 1
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In the above equation, 
e−

(
φk l−φki

)2
+
(
�kl

−�ki

)2

2�

 is a two-

dimensional Gaussian kernel function, where � was set to 2 
and j iterates through each grid point in a 5-by-5 wide 
window.

Parameter maps were then normalized using the maxi-
mum possible values of the source parameters defined in 
Appendix B:

(60)Pn
r (φ,�) = (Pr(φ,�)− rmin)/δzmax ,

Examples of the final maps containing real and syn-
thetic data incorporated in the training set are shown in 
Figs. 27 and 28.

(61)
Pn
dI/dt(φ,�) = (PdI/dt(φ,�)+ (dI/dt)max)/

(
2 ∗ (dI/dt)max

)
,

(62)Pn
R(φ,�) = PR(φ,�)/Rmax,

(63)Pn
I (φ,�) = (PI (φ,�)+ Imax)/(2 ∗ Imax).

Fig. 23  Distribution of magnetic field values (radial component) on the CMB surface for the real geomagnetic models used for training (selected 
from the GUFM-1 model in 5 year epochs from 1600 to 1975)

Fig. 24  Distribution of magnetic field (radial component) values on the CMB surface in all the models of the complete synthetic training set
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Test data were also generated in the same fashion as the 
training data, but a smaller number of models was admit-
ted, and test samples contained a differing number of 
loops than those of the training data set (see Table 8)

Appendix D: Deriving magnetic field and SV maps 
from the COVOBS geomagnetic field model
CMB radial field and secular variation data used for 
the demonstration in Sect.   “Results on real geomag-
netic model data” were extracted from the COVOBS 

geomagnetic field model with the help of the pygeodyn 
python package (Huder et  al. 2019). Maps were con-
structed using an SH expansion of the model coefficients 
up to degree 14 in pyshtools (Wieczorek and Meschede 
2018).

Appendix E: Description of the genetic algorithm 
used for final reconstruction
The overall workflow of the GA remained the same as 
described in (Kuslits et al. 2020). However, the parameter 
vector:

Fig. 25  Estimated distribution of SV values in the GUFM-1 data set used for the training (calculated on a 5-year basis)

Fig. 26  Estimated distribution of SV values in the full synthetic data set (5-year basis). Note that in this figure, the x axis represents a range almost 
two orders-of-magnitude smaller range than in Fig. 25
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Fig. 27  Mercator maps of Pnr (φ,�) (a)), Pn
I (φ,�) (b) and radial magnetic field (c) in the synthetic component of the training set
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could be further constrained via sampling possible values 
for the elements of vector (64) from the UNet ++ solu-
tion maps within 2-pixel intervals of (φi,�i) (see 
Fig.  8), and applying a logarithmic transformation 
Pari = [log(φi), log(�i)].

Initially, Nind ∗ Npop solutions are generated with ran-
domly chosen parameter values, where Npop is the num-
ber of populations and Nind is the number of individuals 
in the population.

At the beginning of the selection phase, the program 
calculates for each specimen the deviation of the solu-
tion from the target value according to Eq. (27). Then, the 
target values are ranked and linearly transformed (fitness 
value) to select individuals, the better the fit, the higher 
the probability (Baker 1985):

In Eq. (65), Pos represents the position of a given speci-
men (physical model) when ranking of all the models 
according to (27) produced in a given step within the 
population. The parameter SP also called selection pres-
sure was assigned a value of SP = 2 . This being a real 
coded algorithm, parameters of the individual solutions 

(64)Pari =




(φi)

(�i)

(ri)
(Ri)

(Ii)
(θi)

(�i)




(65)
fitness(Pos) = 2− SP + 2(SP − 1)(Pos− 1)/(Nind − 1).

( Partr ) varied in a given population during crossover or 
recombination obeying Eq. (66) (Picek et al. 2013):

where Nindl , Nindpt1 , Nindpt2 , are random numbers between 
1 and Nind within any given population, gen denotes the 
generation (number of iteration steps), and ξ is also gen-
erated as a (pseudo-) random number in the interval [0, 
1]. Crossover probability between the selected individu-
als was set to p(pprek = 1) = 0.6 . In the mutation step, 
the parameters of an individual could be randomly modi-
fied with a probability similar to the mutation rate for 
real coded algorithms in the work of Mühlenbein and 
Schlierkamp-Voosen (1993):

In Eq.  (67), the mutation occurred with probability 
p(ppmut = 1) = 0.02 , β1 is a random number between 
−  1 and 1, β2j is a sequence of random numbers with 
length a and elements p(β2j

= 1) = 1/a , β3 = 1.4 (own 
setting) and a = 20 determines the smallest possible 
magnitude of the mutation effect. Parmax(Nind) and 
Parmin(Nind) denote the extreme values of each param-
eter, respectively, as defined in Appendix B. It is 

(66)

(Par(Nindl , gen+ 1)|pprek = 1)

= χPar(Nindpt1 , gen)

+ (1− ξ)Par(Nindpt2 , gen),

(67)

(
Par

(
Nindmut

, gen+ 1
)
|ppmut = 1

)

= Par
(
Nindmut

, gen+ 1
)

+ β1(Parmax(Nind)

−Parmin(Nind))
∑a

j=1
β2jβ

−j
3 .

Fig. 28  Mercator map of the CMB radial magnetic field in the real component of the training set (GUFM-1, epoch 1950)
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important to note, however, that the effects of the 
steps listed above have always been limited to these 
extrema:

The set of individuals that underwent the mutation 
process formed the initial populations for the next 
iteration step. Individuals were also swapped between 
each other at a rate of 4% of the population size after 
a specified number of consecutive steps. This algo-
rithmic logic, in which the evolution process of pop-
ulations is run separately in parallel up to a specified 
iteration step interval is called a multi-population 
genetic algorithm (Grefenstette 1981). Exchanging 
some individuals among the populations at a given 
proportion is referred to as migration.

Achieving a globally optimal solution in case of 
synthetic data typically required several hundred 
to a thousand iteration steps. The reconstruction 
of real geomagnetic field and SV data presented in 
Sect.  “Results on real geomagnetic model data” took 
560 steps.

Appendix F: Results using noisy synthetic data
To perform a first-order stability analysis, noise was indi-
rectly introduced to the synthetic magnetic fields via 
the perturbation of loop parameters normalized using 
the same corresponding quantities as in Eqs. (60)–(63). 
Perturbed normalized parameters ParnN  came from a 
normal distribution with an average Parn and standard 
deviation �:

and after transforming back to dimensional values:

(68)IF : Par
(
Nind, gen

)
> Parmax(Nind)THEN : Par

(
Nind, gen

)
= Parmax(Nind)

(69)IF : Par
(
Nind, gen

)
< Parmin(Nind)THEN : Par

(
Nind, gen

)
= Parmin(Nind).

(70)δ ∼
∣∣Parn − ParnN

∣∣,ParnN ∼ N
(
Parn,�

)
,

(71)P̃arn = Parn + δ, P̃arn′ = Parn − δ,

�t being the 5-year basis mentioned in Appendix C.
This allowed for producing averaged noisy magnetic 

field and SV maps for a reference model with a given 
number of loops. The response of the full reconstruction 
of the physical model to the noise introduced to input 
data has so far only been investigated for a model con-
taining 15 loops, as the necessary series of calculations 
could be performed in a relatively short time.

Figure 29 summarizes the results obtained in terms of 
both the relative error of the parameter estimation and 
the misfit (see Sect. “Loss functions and quality metrics”). 
It can be observed that the increase in noise level does 
not degrade the fit of the reconstructed magnetic fields, 
but significantly degrades the accuracy of the reconstruc-
tion of the loop parameters.

For models with a larger number of circular currents, 
a stability analysis of the image-processing phase and the 
reconstructed maps of source parameter distributions 
was performed.

For a model with 25 loops, Fig.  30 shows how much 
of the source distribution the image-processing network 
was able to reconstruct using noise-free and noisy syn-
thetic inputs. Row c) of this tiled figure demonstrates 
how, with an increasing noise level, the image-processing 

(72)
B̃rtot =

B̃rtot

(
P̃ar

)
+ B̃rtot

(
P̃ar

′
)

2
,

(73)S̃V r =

(
B̃rtot (t0 +�t)− B̃rtot

(t0)
)

�t
,

Table 8  Distribution of model samples in the synthetic test data set

Number of 
loops in the 
model

30 50 70 90 110 130 150

Accepted model 
samples

50 50 50 50 50 15 7
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network starts to infer more sources in the vicinity of 
loops that are actually there.

Figure  31 summarizes the cross-correlation values 
between the reconstructed and the true distribution 
maps. On one hand, the figure shows that even with the 
above-mentioned increase in error, the reconstruction of 
the geographical distribution remains in general the least 
sensitive to noise constructed using Eqs. (70–73).

On the other hand, with the inclusion of a larger num-
ber of sources to be reconstructed, the stability deterio-
rates significantly (although it should be noted that since 
the noise (70–73) is added separately to each loop param-
eter, it may be cumulative for a larger number of sources).

Appendix G: Difficulties with using a “classical” 
approach
One can legitimately think about the question of whether 
apart from the possibility of using the DANN method-
ology, the use of machine learning for the estimation 
task presented in this paper is justified at all. To demon-
strate its advantages when compared to previous efforts 
(reviewed in Sect.   “Introduction”) resorting to linear 
and non-linear inversion directly for recovering current 
loops, the authors reimplemented the rather ingenious 
attempt of Alldredge (1987).

His method was particularly interesting for the authors 
as though it did not take into account SV and magnetic 
diffusion, it too applied little a priori constraints besides 
assuming radially aligned current loops. It arguably 
uses more straightforward computations as it operates 
mostly in the spherical harmonic spectral domain and 

offers good convergence as far as RMS misfit values are 
concerned.

The forward computation results in the spherical har-
monic coefficients (SHC) representing a set of L loops 
using Eq. (74) described in detail in Alldredge (1987):

where rl is the distance between Earth’s center and a given 
circular current loop l , αl , is half of the viewing angle of 
a loop from Earth’s center, φl and �l are the loop’s geo-
graphic longitude and co-latitude, and

The estimation of the loop parameters according to the 
definition used by Alldredge, ParAl = [Kl ,αl , rl ,φl ,�l] 
was performed via a least-squares fitting of the SHC:

The standard linear inversion was applied for Kl , and 
a variant of the Marquardt–Levenberg algorithm for the 
rest of the loop parameters which are in a non-linear 
relationship with coefficients gmn  , hmn .

It turns out however, that when one tries to practically 
implement and test this technique, a handful of issues 

(74)

ĝmn =
L∑

l=1

Kl
2n

sin(αl)

( rl
a

)n−1 P1
n(cos(αl))√
2n(n+ 1)

Pm
n (cos(φl))cos(m�l),

(75)

ĥmn =
L∑

l=1

Kl
2n

sin(αl)

( rl
a

)n−1 P1
n(cos(αl))√
2n(n+ 1)

Pm
n (cos(φl))sin(m�l),

(76)Kl =
109µ0r

2
l sin(αl)Il

a3
.

(77)

P̂arAl = argmin

((
̂gmn (ParAl)− gmn

)2
+

(
̂hmn (ParAl)− hmn

)2)
.

Fig. 29  Quality parameters NRMS (27) and RPE (29) plotted against an increasing noise level in the input data
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Fig. 30  Response of the inference to noise introduced in the input magnetic induction (a) and SV (b) data. Row c) shows source positions inferred 
by the network as the noise level � increases from left to right



Page 37 of 41Kuslits et al. Earth, Planets and Space           (2024) 76:77 	

arise. Most notably, Alldredge mentions, that (at the 
time) he had no real option for inferring the potential 
number of current loops and determining an initial set 

of loop parameters, other than resorting to intuition, and 
heuristic considerations.

He tried to address the issue of correct initial place-
ment by assigning initial geographic loop positions via 

Fig. 31  Cross-correlations between true and inferred source parameter maps plotted against an increasing noise level in a model containing 25 (a) 
and 100 (b) loops

Fig. 32  Initial loop positions assigned using peaks of radial magnetic field values in the model containing the five loops used in the stability 
analysis (a) and the corresponding correct (actual) positions of the loops (b). Initial loop positions assigned similarly for a model containing 50 loops 
(c) and the correct loop positions (d)
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identifying ‘peaks’ and ‘valleys’ on maps of the radial geo-
magnetic field. One can think of a minimum gradient-
based procedure, such as the one used in Sect. “Refining 
the ML-based inversion” to pinpoint source locations on 
the maps inferred by the network, applied directly on the 
radial field data to provide an intuitive guess on initial 
loop parameters. However, as we could already observe 
in Fig.  6 (Sect.  “Approximating the total field assuming 
linear time variation in the source currents”), the more 
loops are admitted to a given model, the more complex 
the corresponding CMB radial fields become. Figures 32 
and 33 show that accordingly, it becomes progressively 
more difficult to assess an initial geographic distribution 
of the loops correctly.

Figure 33 shows a quantitative comparison of this pro-
cedure against our neural net inference on the same data 
used in part to test our method in Sect. 4.1 (see Figs. 10 
and 11). For each sample, the number of correctly iden-
tified or “discovered” loops was determined using the 
criterion:

(78)Ldiscl =





1 :
��� �φl − φl

���+
�����l −�l

��� < 4◦

0 :
��� �φl − φl

���+
�����l −�l

��� ≥ 4◦

(a distance of 2 gridpoints on the maps) in accordance 
with condition (1) in Sect. “Approximating the total field 
assuming linear time variation in the source currents”.

To understand the results of this comparison, we need 
to consider two things. Firstly, loop models with very few 
sources have not been shown at all to the network dur-
ing training. Secondly, assigning loop positions simply via 
radial field maxima may work reasonably well when the 
radial fields are generated by a few isolated loops. Thus, 
in these cases (marked by the blue area on the graphs), 
the network is much less accurate, while after more 
and more loops are admitted to the models, we see that 
the Alldredge’s intuition for initial placement becomes 

Table 9  Relative change  in RPE over the course of i = 5 
iterations as the ratio of initial RPE

(a), (b)  refer to the corresponding deviations in geographic placements featured 
also in Fig. 35 for the same estimations

Number of loops 
in the model

Relative deviations of the 
geographic placement ( φk ,�k ) of 
the loops

RPE ratio 
(�RPE/RPE0)

5(a) 5e−2 − 1.15e−1

5(b) 1e−1 2.08e−2

10(a) 5e−2 − 3.32e−1

10(b) 1e−1 − 1.2e−1

20(a) 5e−2 2.55e−1

20(b) 1e−1 1.97e−2

Fig. 33  Average rate of correctly identified current loops as a function of the number of loops in the test examples



Page 39 of 41Kuslits et al. Earth, Planets and Space           (2024) 76:77 	

very inaccurate compared to the neural network-based 
solution.

Moreover, a stability analysis demonstrating the sensi-
tivity of Alldredge’s estimation procedure with respect to 
these initially assigned loop parameters φl ,�l was carried 
out. During this test, a maximum SH degree of 15 was 
used in the forward computations. Different deviations 
from the correct parameters in relation with their abso-
lute values were inspected. A total number of i = 5 itera-
tions, carrying out the linear and non-linear estimation 
steps sequentially as described by Alldredge, was per-
formed for each case. The RPE error measure was applied 
in the same fashion as defined in Eq.  (29) in Sect. “Loss 
functions and quality metrics”. Its respective changes dur-
ing the total number of iterations ( �RPE = RPE0 − RPEi ) 
are shown in Table 9 for each case.

Table  9 shows that the method tends to stick in local 
minima when the initial geographic placement of the 
loops is incorrect. Even comparatively minor misplace-
ments of a relatively small set of five loops resulted in a 
divergence (positive RPE ratios) of the estimated loop 
parameters from correct ones even though the corre-
sponding RMS misfit values decreased considerably (see 
Fig. 34).

Erroneous estimations arise in particular, because a rel-
atively small initial deviation in the initial parameters can 
result in very high RPE values mostly due to poor estima-
tions for Kl (see Fig. 35).

This again may not be a major issue for recovering a 
small set of well isolated loops, where a good initial guess 
for the placement of the loops is possible. However, in a 
problem setting as the one established in our study, where 
a potentially very large set of current loops with a wide 
range of loop parameters can account for the complex 
pattern of the observed core field, it renders the applica-
tion of such estimation procedures infeasible. Compar-
ing these results with the RPE and CCC values obtained 
using our method shown in Figs. 10a and 11, and consid-
ering the practical arguments set out in Sect. “Introduc-
tion” make the above conclusion even more clear.

Abbreviations
CLUMSI	� Current loop-based model segmentation inference
CMB	� Core–mantle boundary
GA	� Genetic algorithm
GMD	� Geomagnetic dipole moment

Fig. 34  Graph showing the decrease of RMS error when using Alldredge’s method for model 5(b). The parameters can easily diverge 
from the correct ones even if the RMS misfit decreases

Fig. 35  RPE measures obtained after 5 full iterations assuming different relative errors for the initial placement of current loops using Alldredge’s 
method as a function of the number of loops used in the test examples shown in Table 9
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ML	� Machine learning
MHD	� Magneto hydrodynamics
SH	� Spherical harmonics
SHC	� Spherical harmonic coefficients
SV	� Secular variation
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