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A B S T R A C T   

Coastal flood damage is primarily the result of extreme sea levels. Climate change is expected to drive an increase in these extremes. While proper estimation of 
changes in storm surges is essential to estimate changes in extreme sea levels, there remains low confidence in future trends of surge contribution to extreme sea 
levels. Alerting local populations of imminent extreme sea levels is also critical to protecting coastal populations. Both predicting and projecting extreme sea levels 
require reliable numerical prediction systems. The SurgeMIP (surge model intercomparison) community has been established to tackle such challenges. Efforts to 
intercompare storm surge prediction systems and coordinate the community’s prediction and projection efforts are introduced. An overview of past and recent 
advances in storm surge science such as physical processes to consider and the recent development of global forecasting systems are briefly introduced. Selected 
historical events and drivers behind fast increasing service and knowledge requirements for emergency response to adaptation considerations are also discussed. The 
community’s initial plans and recent progress are introduced. These include the establishment of an intercomparison project, the identification of research and 
development gaps, and the introduction of efforts to coordinate projections that span multiple climate scenarios.   

1. Introduction 

The world’s coastlines are associated with some of the most expen-
sive natural disasters of recent years. Coastal communities worldwide 
expect precise and accurate guidance to inform and support the response 
to imminent events and mitigate and adapt to the changing conditions of 
the decades and centuries to come. Along the world’s coastlines, the 
primary cause of coastal flood damage is extreme sea level (i.e., 
exceptionally low or high local sea surface height) that results from 
changes in local mean sea levels in combination with storm surges, as-
tronomical tides and, at times, waves and/or river overflow to raise 
coastal water levels above a locally critical water level (i.e., above which 
damages are expected; Fig. 1). 

Storm surges are caused by prevailing atmospheric surface pressure 
and wind conditions (lifting or pushing water towards the shore results 
in a positive surge, pressing down or pushing water away from the shore 
results in a negative surge). They are driven by weather disturbances (i. 
e., storms) and are sensitive to the atmospheric storm’s intensity, path, 
size, and moving speed (e.g., Resio and Westerink, 2008; Resio et al., 
2009; Xuan et al., 2021). 

Ocean processes and conditions such as water depth, tides, shelf 
width, ice, and stratification also modulate characteristics of storm 
surges (e.g., Bernier and Thompson, 2007; Zhang et al., 2010; McInnes 

et al., 2016; Idier et al., 2019; Arns et al., 2020; Wang and Bernier 2023). 
When the resulting water level exceeds the local tidal maxima, there is a 
risk of flooding and/or erosion. When the water drops below local tidal 
minima, there is a risk to navigation when for example vessels’ water 
draft exceed the water depth (e.g., Jensen et al., 2022). In addition to 
tide and surge, wave runup, the combination of wave setup (elevation of 
nearshore mean sea level due to wave breaking in the surfzone) and 
wave swash uprush (rapid upward-moving water after waves reach the 
shore), can exacerbate extreme coastal levels with non-trivial contri-
butions that vary over time (e.g., Melet et al., 2016; Pedreros et al., 
2018; Marsooli and Lin, 2018; Amores et al., 2020; Lavaud et al., 2020; 
Toomey et al., 2022). Kirezci et al. (2020) estimated that wave setup 
alone may contribute as much as 17% to extreme sea levels. Natural 
barriers such as the presence of mangrove can help alleviate those effects 
and protect shorelines (e.g., Zhang et al., 2012). 

Extreme sea levels are rarely the sole result of an extreme surge 
occurring at or near high tide. They can also result from a combination 
of phenomena that individually would not qualify as extreme. At or on 
the coast, the extreme sea level that arises from any combination of sea- 
level rise, low-frequency variations (sub-seasonal, seasonal and inter-
annual), storm surges, tides, wave run-up, and potential contributions 
from terrestrial river outflow and heavy precipitation must be consid-
ered in order to predict or project coastal impacts. Often, these 

Fig. 1. Example of applications of storm surge forecast to early warning and long-term assessment efforts.  
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contributions exhibit complex dependency structures that lead to a 
higher joint probability of occurrence (e.g., Ward et al., 2018; Marcos 
et al., 2019; Couasnon et al., 2020). Several studies have examined 
compound flood hazard and have shown, for example, that extreme 
rainfall and associated riverine floods can compound with water levels 
and significantly aggravate flooding hazards and impacts (e.g., Couas-
non et al., 2020; Camus et al., 2021; Huang et al., 2021; Nasr et al., 2021; 
Santos et al., 2021; Gori and Lin 2022; Wijetunge and Neluwala 2023). It 
has also been shown that compound risk associated with tropical cy-
clones should be treated separately from other types of storms (e.g., Kim 
et al., 2023; Nederhoff et al., 2023). 

Climate change is expected to impact many components of the earth 
system, including changes in the mean, variance and/or interdepen-
dence, that together combine to change compound risks (e.g., 
Zscheischler et al., 2018, 2020). Of particular relevance to flooding risk 
projections are changes in the water cycle. A number of studies have 
shown that compounded effects from river, rain, surge, and or waves, 
can significantly modify flooding risk (e.g., Rulent et al., 2021; Gori 
et al., 2022; Xu et al., 2022). Changes in the intensity of extreme pre-
cipitation leads to changes in riverine and coastal floods (Bevacqua 
et al., 2020; Heinrich et al., 2023). Long droughts, forest fires, and/or 
extreme heat, rapid snowmelt or extreme rainfall can all alter the soil’s 
capacity to catch and slowly drain water through catchment areas, also 
changing riverine flood risk. For example, prolonged heavy precipita-
tion combined with prolonged storm surge can make it difficult to drain 
low-lying coastal areas (van den Hurk et al., 2015; Bormann et al., 
2024), a situation that will continue to get worse with rising mean sea 
level (Bormann et al., 2020). 

The representation of small (e.g., wave setup or river flow) to large 
scale processes (e.g., surges and tides) is a major challenge for global 
modelling systems (e.g., resolution and cost of other numerical systems). 
In addition, the effects of waves and river flow are typically not well 
captured by tide gauges as a result of installation choices such as recording 
frequency or installation in sheltered areas (e.g., Hoeke et al., 2013). This 
lack of widespread observation record complicates model development, 
verification, and assessments of the impacts of compounded effects on 
flooding risk. 

Numerous countries are yet to have access to the numerical guidance 
essential to establish even surge plus tide only robust and reliable coastal 
flood warning systems for their population. Ongoing efforts to reach un- 
serviced and under-served communities through the Coastal Inundation 
Forecasting Initiative have had local success (e.g., Swail et al., 2019; 
Swail 2021; Canterford et al., 2023) but cannot be scaled up easily. The 
same applies to other hydrometeorological hazards such as riverine 
flood, avalanche, frost, drought, or extreme precipitation warnings. In 
recognition of these urgent needs, a United Nation Early Warning for All 
(EW4ALL) initiative is underway and striving to ensure everyone on 
Earth is covered by early warning systems by 2027. 

In the coming decades, extreme sea levels and associated coastal 
floods are likely to remain a leading cause of natural disasters due to the 
combined effects of sea-level rise leading to the critical water level being 
exceeded more frequently (Fox-Kemper et al., 2021), and increased 
coastal development associated with greater exposure (e.g., Kirezci 
et al., 2020). Efforts to rapidly step up our modelling capacities to 
address near-term emergency response to long-term adaptation needs 
are required. 

In this letter, we present the surge model intercomparison project 
(SurgeMIP), and introduce activities we have set in motion to address 
these challenges. We begin with an overview of historical events, we 
continue with a brief review of water level modelling and warning, and 
projections of coastal flooding risk science. We introduce plans for 
recently developed global water level forecast systems to provide the 
scale up necessary to bring numerical guidance along the world’s 
coastlines from which flood warning services can be developed in time 
to meet the EW4ALL ambitious target. We introduce our efforts to co-
ordinate storm surges and extreme sea level climate projections ensuring 

we work together to produce large ensembles so that the uncertainty 
space is well sampled and provides a global view of expected changes in 
extreme water levels. Along the way, we briefly mention exploratory 
work hoping to leverage artificial intelligence to scale up our capacities 
and present our ambitions around surge model intercomparison climate 
projections. 

2. Historical storm surges and their impacts 

Countless storms and their impact on coastal inundations have led to 
tragic disasters around the world’s coastal zones. Asia and the Pacific 
region are regularly exposed to powerful tropical cyclones and have 
suffered several catastrophic losses of life. One of the world’s deadliest 
humanitarian natural disasters was the 1970 Bhola cyclone which 
affected what was then East Pakistan (now Bangladesh) and India’s West 
Bengal, killing at least 300,000 people, primarily due to the associated 
storm surge that flooded much of the low-lying islands of the Ganges 
Delta (Cerveny et al., 2017; Frank and Husain, 1971, Needham et al., 
2015). The Bangladesh region alone also suffered the loss of some 200, 
000 lives in 1 582 and 1876 and a long list of storms have each caused 
tens of thousands of casualties (Hossain and Mullick, 2020). For 
example, the Cyclone in 1991 caused 138,000 fatalities (naming of 
Tropical Cyclones of the North Indian Ocean began in 2004, see 
tc-names.pdf (imd.gov.in) for details). In 1959 Typhoon Vera resulted in 
some 5 000 casualties in Japan (e.g., Jiang et al., 2016). In 2018 Jebi 
affected Japan, causing 10 billion USD in insurance damage (e.g., Mori 
et al., 2019a), whilst the 2013 super typhoon Haiyan led to 6 000 ca-
sualties in the Philippines (e.g., Mori et al., 2014, Needham et al., 2015). 
Other significant recent cyclones in the Bay of Bengal include Cyclone 
Sidr, which made landfall in Bangladesh on November 15, 2007, causing 
over 3 400 fatalities (Paul, 2009), and cyclone Nargis in Myanmar on 
May 2, 2008, causing over 138,000 fatalities (Murray). 

Along the Northwest Atlantic, hurricane and extratropical storm 
damage reports go as far back as 1775 when a hurricane resulted in the 
loss of some 4 000 lives (Rappaport and Ruffman, 1999). A century later, 
the 1869 Saxby Gale storm also brought death and destruction to the 
Canadian Maritime Provinces (Abraham et al., 1999). Hurricane Ian 
made landfall on the southwest coast of Florida, USA, 28 September, 
2022 causing 144 deaths, 100 billion USD in losses (65 billion of that 
insured) and drove several insurance companies into bankruptcy or 
motivated them to pull back from the Florida market. Over the past two 
decades, the Northwest Atlantic has also been exposed to several other 
tropical and extratropical cyclones (e.g., Hurricanes Matthew, Dorian, 
Fiona, and Sandy). 

The Gulf of Mexico has a long history of storm surge events that have 
resulted in disasters. For example, the Chenière Caminada hurricane in 
1893 struck Louisiana, causing a storm surge of up to 4.9 m, extensive 
damage to the coast, and over 2 000 fatalities (Blake et al., 2011). A few 
years later, the 1900 Galveston Hurricane, the deadliest natural disaster 
in U.S. history, struck Galveston, Texas, as a Category 4 hurricane. The 
storm generated a storm surge of up to 4.6 m and caused over 8 000 
fatalities (Simpson et al., 2003). In recent decades, the adverse impacts 
of hurricanes in the Gulf of Mexico have been on the rise due to inten-
sifying storms as well as extensive development in low-lying coastal 
areas, as exemplified by Hurricane Katrina in 2005 and Hurricane 
Harvey in 2017. Hurricane Katrina resulted in nearly 1 400 deaths and 
$125 billion in damage in 2005 dollars, mainly in the New Orleans re-
gion (Knabb et al., 2023). 

Polar outbreaks generating anticyclonic cold fronts, known as Cen-
tral American Cold Surges, also influence the Gulf of Mexico by creating 
extreme waves (Appendini et al., 2014) and flooding along the coast of 
Mexico (Rey et al., 2018). Despite creating less intense winds than 
tropical cyclones, their occurrence is more frequent, leading to more 
widespread impacts along the Mexican coastline (Appendini et al., 
2018). In some cases, the storm surge created by these events can 
dampen river outflow, which, together with the associated rainfall, can 

N.B. Bernier et al.                                                                                                                                                                                                                              



Weather and Climate Extremes 45 (2024) 100689

4

exacerbate flooding several kilometers from the coast, as during the 
floods in Tabasco in 2007 (Perevochtchikova and de la Torres, 2010). 
Along the NW Atlantic coastline, Nor’easters can also result in large 
winter surges (e.g., Pringle et al., 2021a). 

Europe has also had its share of destructive storms. In 1825 a surge 
affected parts of the Danish, German, and the Netherlands North Sea 
coastline causing more than 800 casualties (Poulsen 2021). In November 
1872 in the western Baltic Sea an extreme storm surge with heights 
exceeding 3 m hit the almost tideless Danish and German coastline and 
became the worst natural disaster in modern Danish history (Aakjær and 
Buch, 2022). The 1953 and 1962 North Sea storm surge caused North-
west Europe’s most severe coastal floods in local living memory, killing 
more than 2000 people on the coasts of England, the Netherlands, and 
Belgium in 1953 (Wadey et al., 2015) and more than 300 in Hamburg in 
1962 (de Guttry and Ratter 2022). In 2010 storm Xynthia devastated 
part of the French coastline, causing several deaths and mangling local 
infrastructure (Genovese and Przyluski, 2013). A decade later, storm 
Gloria affected the Western Mediterranean causing strong erosion, 
economic loss, and 13 fatalities (Amores et al., 2020). 

Around Oceania, reports of damage also span the past few centuries. 
For example, in March 1899, Tropical Cyclone Mahina is suggested to 
have caused the largest reported storm surge along Australia’s coasts, 
along the Coral Sea coast of north Queensland, with over 300 lives lost 
(Nott and Hayne., 2000), while significant tropical cyclone-induced 
storm surges have also occurred on the Australian northwest coast 
(Nott and Hubbert, 2005). In Victoria in Australia’s southeast, an intense 
November 1934 convective storm in Bass Strait drove the worst recor-
ded storm surge in Port Phillip Bay, causing over 30 casualties from 
flooding and the sinking of a ship in hazardous seas and an estimated 
£1M damage (McInnes and Hubbert, 2003). South Pacific countries are 
also affected by tropical cyclones. Recent storms to affect the region 
include Winston in 2016 (Fiji), Gita in 2018 (Tonga and Fiji) and Harold 
in 2020 (Solomon Islands, Vanuatu, Fiji, and Tonga). Resulting damages 
of such storms can at times appear small but must be considered against 
the size of local populations and economies. 

3. Local morphology and related impacts 

Every year, low-lying and erodible coastlines around the world are 
affected by floods, saltwater intrusion and erosion. Coastal morphology 
such as barrier islands and tidal inlets and coastal infrastructures such as 
dikes and levees can be modified or damaged by a storm and leave the 
affected area with significantly modified vulnerabilities to flooding (e. 
g., Fritz et al., 2007; Cañizares and Irish, 2008). Away from low-lying 
coastlines, storm surges can also remain a threat. In some regions, 
erodible land and cliffs are known to recede up to several meters during 
large storms, endangering infrastructures perched well away from the 
direct onslaught of the ocean (e.g., McCulloch et al., 2002). Vertical land 
motion experienced as long-term subsidence (e.g., owing to subsurface 
resource extraction) may also contribute to increasing storm surge risks 
with time. 

From a navigation perspective, avoiding the grounding of vessels 
helps maintain the safety of mariners and passengers and reduces the 
risk of environmental disasters (e.g., leaking oil following damage to a 
vessel’s hull). Economic impacts are also associated with the ability to 
reach a port in time to avoid a storm or insufficient water draft. 

In the polar regions, receding ice and increasing fetch for waves 
(e.g., Wang et al., 2015; Hošeková et al., 2021;Wang et al., 2021 ) allow 
surges to affect coastlines over an increasingly longer period of the year 
in areas where permafrost is also receding leaving behind friable soil 
and vulnerable communities (e.g., Whalen et al., 2022). Moreover, 
melting permafrost also causes land subsidence (O’Neill et al., 2023), 
which leads to higher relative coastal water levels. 

As sea level rises, critically low water levels could be expected to 
become less of a problem. However, relative sea-level change also de-
pends on local morphology and post-glacial isostatic rebound conditions 

(e.g., Wang et al., 2021). Together, these may not readily lead to 
improved conditions everywhere. As a result, it remains important to 
maintain the ability to predict both maxima and minima. 

4. Storm surge prediction 

For nearly two centuries, the scientific community has worked at 
understanding and forecasting sea levels and their extremes (e.g., Lub-
bock, 1836; Doodson, 1923 & 1924; Welander, 1961; Jarvinen and 
Lawrence, 1985; Flather et al., 1991; Hubbert and Mclnnes, 1999; Ber-
nier and Thompson, 2006; Fernández-Montblanc et al., 2019). In the 
21st century, models and regional water level prediction systems 
appeared in operational centers (e.g., Flather, 2000; Verlaan et al., 2005; 
Daniel et al., 2009; Lane et al., 2009; Werner et al., 2009; Ji et al., 2010; 
Funakoshi et al., 2012; Sembiring et al., 2015; Georgas et al., 2016; 
Zampato et al., 2016). Throughout this period, compute capacity 
continued to grow, supporting higher resolution global atmospheric 
systems. Ensemble atmospheric systems soon reached sufficient resolu-
tion (50–60 km grid spacing) to be used to drive storm surge systems 
with sufficient skill to be used for extreme sea level and related flood risk 
forecasting purposes (Bernier and Thompson 2015). Over the past 
decade, ensemble systems that allow the prediction of risk and an 
extension (in lead time) of the usefulness of prediction systems were 
therefore achievable and began to appear in some operational centers 
(e.g., Flowerdew et al., 2010 & 2013; Bernier and Thompson, 2015; Liu 
and Taylor, 2016). Ensembles of atmospheric forcing fields have 
continued to improve and increase in resolution. Nevertheless forecast 
surges that result from tropical cyclones, a major cause of extreme 
surges due to their low pressures and high winds, remains a challenge 
due to cyclone’s small-scale features and complex ocean-atmospheric 
coupling effects (e.g., Irish et al., 2008; Hodges et al., 2017; Dulac 
et al., 2022; Slocum et al., 2022). A few teams have thus developed 
ensemble forecast systems that are driven by parametric tropical cyclone 
wind fields. Those systems have the advantage of sampling a wide array 
of possibilities and allow for worst-case scenario warning (e.g., (Taylor 
and Glahn, 2008); Greenslade et al., 2018; Kohno et al., 2018). 

Storm surges were long considered to be a primarily regional pro-
cess. However, it is now known that coastal trapped waves can travel 
long distances. The origin of a surge can thus be thousands of kilo-
meters away, even in deep water (e.g., equatorial waves). Remotely 
forced (external) surges, observable as progressive waves in tide gauge 
data that cover long distances are known from shelf seas like the North 
Sea (Böhme et al., 2023), the Irish Sea (Brown and Wolf 2009), or the 
South China Sea (Liu et al., 2018). This along with increased 
computing capacity, supported a drive toward global scale modelling 
and led to the extension from regional to global water level forecast 
systems (e.g., Pringle et al., 2021b; Verlaan et al., 2015; Wang et al., 
2021 & 2022) with three global systems now routinely operated by 
National Centers (Verlaan et al., 2015; Wang and Bernier, 2023; 
NOAA, 2023). 

In recent years, powerful artificial intelligence (AI) methods have 
rapidly advanced the use of machine learning in environmental science 
(e.g., Hsieh, 2022) with several promising advances aimed at producing 
weather forecasts at a fraction of the cost of traditional operational 
systems. The success of AI methods lies in the availability of sufficient 
high-quality data to train deep learning algorithms (e.g., Bauer et al., 
2023). At present, the fastest developments are around weather systems 
trained using several decades of ERA5 reanalysis data (e.g., Bi et al., 
2022; Bi et al., 2023;Lam et al., 2023 ; Pathak et al., 2022). There remain 
numerous questions to be addressed such as the ability of such algo-
rithms to perform for cases well outside the range of data they were 
trained with or just how much data is needed to train these AI systems. 
Similarly, the amount of additional training needed to refine large scale 
simulations to smaller scale (e.g., higher resolutions which we still 
cannot afford globally) remains unknown. In terms of both predictions 
and projections, there are also questions as to the usefulness of AI to 
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sample the uncertainty space and generate large ensembles at a fraction 
of the cost of running them with traditional systems. There is now also 
development underway for applications to storm surge predictability 
(e.g., Bruneau et al., 2020; Tadesse et al., 2020; Lee et al., 2021; Tig-
geloven et al., 2021; Mulia et al., 2023; Wang et al., 2023). Depending 
on the outcome, such efforts could significantly change the way coastal 
flooding prediction and projection research and operations are envi-
sioned moving forward. 

5. Long-term assessment of extreme sea levels 

Long-term assessment of extreme sea levels is important for 
designing coastal protection and assessing infrastructure viability. The 
time scale of long-term assessment of storm surge O(10yrs)-O(100yrs), 
is purpose dependent, and includes, for example, the tolerance to risk 
(i.e., to a likely exposure or to a catastrophic but highly unlikely event). 

Estimates of the frequency of coastal flooding are typically based on 
the analysis of annual maxima or peaks over threshold (e.g., Gumbel, 
1958; Leadbetter et al., 1983; Coles, 2001). Maxima can be taken from 
historical records or from climate simulations. Classical extreme value 
analyses performed to estimate expected return sea levels typically as-
sume a generalized extreme value (GEV) distribution or generalized 
Pareto distribution (GPD), with some taking into account 
non-stationarities (e.g., sea-level rise, internal climate variability). 
Several studies have noted that fitting Type I distributions can be 
problematic when the different contributing physical processes to 
extreme sea levels have vastly different frequencies of occurrence, as is 
the case in many tropical cyclone-affected locations that also experience 
more frequent and less-severe extreme sea levels from tides and mod-
erate storms as well as severe extreme sea levels from rarely occurring 
tropical cyclones (e.g., Irish et al., 2011; Haigh et al., 2014; O’Grady 
et al., 2022). Recent work by O’Grady et al. (2022) proposes the use of a 
mixed-climate statistical approach, formulated from two Gumbel EVDs, 
as a more appropriate method for representing the extremes and high-
lights its potential application when combining modelled storm surges 
from populations of synthetic cyclones with deterministically modelled 
extreme sea levels from other physical processes. In other recent work, 
Calafat and Marcos (2020) exploit the spatial dependencies of nearby 
extreme observations to improve estimates of event probabilities with 
reduced uncertainties, through a Bayesian hierarchical model to deter-
mine GEV parameters and Howard and Williams (2021) demonstrate 
that downscaling long simulations of the present-day climate to local 
storm surge can help constrain GEV parameters derived from shorter 
observational record. 

In terms of extreme sea levels of the future, it is well established that 
global warming is causing global mean sea levels to rise through a 
combination of ice melting and thermal expansion. Climate change also 
drives changes in atmospheric patterns and characteristics such as 
tropical and extra-tropical cyclones, the primary driver of storm surges 
and waves. Therefore, the plausible impacts of various climate change 
scenarios must be considered when establishing coastal protection, 
adaptation, or mitigation measures. 

The often-assumed stationarity of the contributing factors (e.g., 
storminess and mean sea level) has been known to break down when 
analyzing long records (e.g., Marcos et al., 2015) due to the 
above-mentioned global warming effects. Coordinated projection of the 
likely range of expected extremes is needed to support informed re-
sponses (e.g., coastal management, changes to building codes, etc.). This 
is particularly the case for regions affected by tropical cyclones where 
assessment of future risk and design of adaptation measures must 
consider tropical cyclones and sea-level rise jointly (e.g., Woodruff et al., 
2013). 

Regionally sea-level change has been the main driver of changes in 
extreme sea levels across the global tide gauge network over the 20th 
Century, and the IPCC suggests this will continue to be the dominant 
driver of a substantial increase in the frequency of extreme sea levels 

over the next Century (Fox-Kemper et al., 2021). Global mean sea level 
will continue to rise beyond 2 100 (Fox-Kemper et al., 2021), with 
substantial regional variations (e.g., Palmer et al., 2020) arising from, 
for example, changes in ocean circulation and local density, and the 
effect of land ice melt on Earth’s gravity, rotation, and solid earth 
deformation. Ongoing glacial isostatic adjustment and underground 
water exploitation will also continue to affect regional relative sea-level 
change. 

In addition, future climate change-driven projections in tropical cy-
clones, extra-tropical storms, extreme winds (Seneviratne et al., 2021), 
and wind-wave climate (Fox-Kemper et al., 2021; Morim et al., 2019; 
Casas-Prat et al., 2024) suggest the frequency and intensity of storm 
surges will also be subject to climate change driven variations. IPCC AR6 
thus concluded that the inclusion of local processes, such as storm 
surges, is essential for estimation of changes in extreme sea level events 
despite the existing uncertainties underlying such changes (Fox-Kemper 
et al., 2021). 

Recent unprecedented severe weather events are in line with an 
expected increase in the intensity of tropical cyclones and typical events 
(Seneviratne et al., 2021). This implies larger resulting surges can occur 
at an expanded portion of the tidal cycle (e.g., at low tide) and still result 
in an exceedance of critical flood levels. 

As a result of sea-level rise alone, the intensity of storms necessary to 
reach a critical flood level decreases. Thus, the frequency of exceedance 
of a given critical flood level will continue to increase. Assuming other 
contributors to extreme sea level remain constant (i.e., the storm surge 
climate remains unchanged), extreme sea levels that occurred once per 
century in the recent past will occur annually or more frequently at 
about 19–31% of tide gauges by 2050, and at about 60 (SSP1-2.6) to 
82% (SSP5-8.5) of tide gauges by 2 100 (Fox-Kemper et al., 2021). These 
estimates remain broad and cannot address local concerns. Over the 
coming years, we seek to reduce the uncertainty space and provide in-
formation that is more location specific. 

At present, two pathways are used to produce long-term assessments 
of extreme sea levels. The first pathway, the static approach, is to derive 
an assessment based on the analysis of historical data (obtained from 
tide gauge records, hindcasts, or a combination of both) then projecting 
risk into the future considering assumptions such as applying a mean sea 
level rise offset. The second pathway, the dynamic approach, is 
becoming increasingly feasible. It consists of producing the assessment 
using data generated from long-term projections of sea levels. The types 
of numerical systems described in the storm surge prediction section 
(driven with climate projections instead of weather forecasts) are key 
tools to greatly help advance the dynamic approach. Assuming storm 
resolving climate projections are available to drive surge responses 
under various scenarios, it becomes feasible to derive extremal analyses 
from these projected records. This capacity is emerging as climate pro-
jections are only beginning to sufficiently resolve storms to produce 
realistic surge statistics. Currently, the availability of storm surge pro-
jections remains limited (e.g., Gaslikova et al., 2013; Vousdoukas et al., 
2018; Muis et al., 2020, 2023; Shimura et al., 2022) and most existing 
studies on future projections of extreme water levels extrapolate his-
torical conditions and/or focus on the impact of sea-level rise (assuming 
stationarity of surges) in line with the static approach. Both pathways 
are further detailed below. It is followed by a section on challenges we 
intend to consider over the coming years.  

a) Assessment based on Historical Data 

Extremal analyses rely on long time series (typically at least 30 
years). Decadal to century long records of sea levels are sparse and 
mostly found in Europe, North America, Japan, and Australia. Satellite 
observation records now include 30 years of data and provide useful 
information and better coverage but their temporal resolution and 
extent limits the study of rare and hazardous extremes. 

A common means of filling observation gaps is the reliance on 
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numerical systems such as those described above together with the 
availability of reanalysis to produce hindcasts of water levels. Over the 
past few decades, several studies have thus performed long hindcast 
based assessments of sea levels and related flood hazard and/or exam-
ined flood risk at the regional or global scales (e.g., Bernier and 
Thompson, 2006; Hinkel et al., 2014; Haigh et al., 2016; Muis et al., 
2016; Colberg et al., 2019; Kirezci et al., 2023; Tiggeloven et al., 2020) 
and typically point to gradually increasing risk of exceeding locally 
critical water levels over the coming decades to centuries as a result of 
expected climate related change (e.g., changes in storminess, sea-level 
rise). 

Wahl et al. (2017) also relied on historical data but used a different 
approach. They assessed uncertainties in contemporary extreme sea 
levels, across 20 representative extreme value assessment methods and 
concluded that present-day extreme sea level uncertainties exceed those 
of global sea-level rise projections. A recent study by Hinkel et al. (2021) 
assessed contributions to uncertainty and bias in current and future 
coastal flood risk and pointed to large uncertainties in numerous 
contributing factors, including those associated with adaptation mea-
sures and socio-economic responses. We note that long term trends can 
also be affected by temporal inhomogeneities due to non-climatic factors 
such as changes in the observational network or increasing quantity and 
quality of ingested observations in forcing atmospheric reanalyses. 
Emerging data-driven models (e.g., Tausía et al., 2023) offer comple-
mentary approaches for storm surge hindcast development. 

Climate change impact on extreme sea level and related risks (e.g., 
flooding, erosion, salt intrusion) over the coming decades to century 
has been examined using numerical data and/or statistical techniques 
to supplement or replace long observation records and/or develop 
future projections that explicitly account for emission scenarios (e.g., 
Bernier et al., 2007; Lowe et al., 2010; Muis et al., 2015; Muis et al., 
2020, 2022; Vousdoukas et al., 2018; Tadesse et al., 2020; Pringle 
et al., 2021a; Shimura et al., 2022; Lin et al., 2019; Almar et al., 
2021). Various approaches are used. These have allowed growingly 
sophisticated studies of extreme sea levels and their changes through 
time to be performed for both areas with and without long observa-
tion records (e.g., Bernier et al., 2007). The story-line approach 
quantitatively considers the impact of global warming based on 
events that have occurred in the past (e.g., Takayabu et al., 2015). 
The probabilistic typhoon model approach is based on a probabilistic 
assessment of a large number of synthetic typhoons generated based 
on past typhoon statistics and can include worst-case scenario as-
sessments (e.g., Marsooli et al., 2019; Ruiz-Salcines et al., 2021; 
Pringle et al., 2021a; Shimura et al., 2022). 

Together, these results based on historical records and hindcasts 
point to climate change resulting in significant changes in extreme sea 
levels and associated risks but sources of uncertainty remain consider-
able as a result of relying on historical data and broad assumptions of 
future conditions.  

b) Assessments based on long-term projections 

A second pathway is to project future changes in storm surges using 
future projections from global or regional climate models (e.g., Mori 
et al., 2019b; Palmer et al., 2020). This is gradually becoming possible as 
the spatial resolution of GCMs increases, their ability to produce tropical 
cyclones improves (Roberts et al., 2020), and the number of ensembles 
in projections continues to dramatically increase (e.g., Mizuta et al., 
2017). Therefore, available projections based on these methods are 
improving. Furthermore, alternative climatological approaches have 
been developed based on the maximum potential tropical cyclone 
framework (Lin and Emanuel, 2016; Mori et al., 2021). The climato-
logical approach is highly compatible with GCMs but presents low ac-
curacy for storm surges which arise from resolutions generally too 
coarse to resolve storms. 

As previously mentioned, the availability of future storm surge 

projections that explicitly account for climate change emission scenarios 
remains limited (e.g., Gaslikova et al., 2013; Vousdoukas et al., 2018; 
Muis et al., 2020, 2023; Shimura et al., 2022). Moreover, large ensem-
bles (Maher et al., 2021) of extreme water level projections have not 
been developed to date. These are needed to further investigate the role 
of different key uncertainty factors, namely climate and sea level 
modelling approaches, emission scenarios, and natural climate vari-
ability, that have been found to have an important role in the assessment 
of historical and future wave conditions (Casas-Prat et al., 2023; Morim 
et al., 2019; Grabemann et al., 2015; Grabemann and Weisse, 2008). The 
above-mentioned ongoing research in AI-based surge modelling has also 
been recently extended to develop future projections at local and 
regional scales (e.g., Ayyad et al., 2023). Depending on the success of 
these methods, similar applications at the global scale could be devel-
oped. AI could thus potentially be used to tackle the high computational 
demand associated with the production of large ensembles and support a 
wide sampling of the uncertainty of surge projections at a fraction of the 
cost of running hundreds of numerical simulations with traditional 
systems. 

6. SurgeMIP activities: plans and progress 

As the maturity and reliance on numerical systems, extremal ana-
lyses, information targeted to early warning systems, and adaptation 
and mitigation needs are fast growing, a new initiative is bringing 
together domain experts (SurgeMIP Community) and coordinating our 
surge modelling community efforts. Objectives of the collaboration 
include (i) establish regular workshops, (ii) intercompare the various 
prediction systems currently able to operate, initially at the global scale, 
(iii) describe the current state of the science, (iv) identify gaps and 
establish emerging research priorities, and (v) coordinate climate pro-
jections and develop studies based on emission scenarios and global 
warming levels (e.g., 1.5oC or 2.0oC warning). We note in regard to point 
iv that we expect the field to move rapidly (e.g., emergence of GCM 
fields to produce projections, fast developing global storm surge sys-
tems, AI). To ensure we remain agile and able to respond to emerging 
challenges and possibilities our research priorities will be reviewed on a 
regular basis. Our efforts are planned in conjunction with other research 
communities that focus on sea-level rise or wave climate changes (e.g., 
Coordinated Ocean Wave Climate Project (COWCLIP; Hemer et al., 
2012). The bi-annual International Workshop on Waves, Storm Surges 
and Coastal Hazards (waveworkshop.org) has been identified to hold 
our regular face-to-face workshops. The workshop is well established 
and has a long history of bringing together experts from the research and 
operational communities. Our first face-to-face meeting was held 
immediately following the last workshop in October 2023. Our next 
face-to-face meeting is scheduled for the Fall of 2025 in Spain. In be-
tween face-to-face meetings, we hold online meetings as required to 
advance our objectives. 

At present, three global water level systems are known to be in 
operation (Wang and Bernier, 2023; Verlaan et al., 2015; NOAA, 2023). 
These systems can now provide data worldwide and are envisioned as a 
key contribution to the UN Early Warnings for All (Early Warnings for 
All | World Meteorological Organization (wmo.int)). Their operational 
production now allows services to be built to provide water level 
warnings in regions traditionally without numerical guidance. In 
recognition of the need for robust and reliable numerical guidance to be 
available along the world’s coastline, the World Meteorological Orga-
nisation is in the process of establishing regional specialized meteoro-
logical centers for global numerical storm surge predictions. The three 
operational systems listed in this article meet established criteria (e.g., 
minimal coverage, data availability and metrics). Although each has 
been extensively validated and shown to meet national standards in the 
countries that operate them, validations were performed over different 
periods and sets of observation records. These systems have never been 
intercompared. Following online and a face-to-face meeting, we 
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established requirements to participate in the intercomparison. We 
identified a common hindcast period (2013–2018), common forcing 
fields (ERA5), common set of validation data drawn from GESLA3 
including data handling (e.g., detiding), common output fields, and 
metrics to be considered. We are now performing the intercomparison of 
these operational and other research systems so that current and future 
progress can be monitored and communicated, and their skills and 
limitations are known before they are used to produce high resolution 
global projections of future coastal water levels. In time, regional sys-
tems will also be included in the intercomparison. Results of our inter-
comparison will help identify remaining gaps in our systems and help us 
tackle issues such as dealing with diverse gridding and resolution 
choices, different selection of processes (e.g., allowing for tides, waves, 
baroclinic processes, wetting and drying), and vertical datums (e.g., 
geoids, sea-level rise, isostatic post-glacial adjustment), before we 
further complexify the problem by expanding our intercomparison 
project to include regional systems, some of which are far more complex 
(e.g., include wave run-up, river flow), and before combining our global 
projections. These will be further discussed once the initial intercom-
parison is completed. 

In the surge community, we often work across weather and climate 
time scales using the same systems. The intercomparison of past and 
present forecasts will thus inform the interpretation of our climate 
projections. Over the coming decades and century, changes in extreme 
sea level drivers (e.g., mean sea-level rise, receding ice, receding 
permafrost, change in storminess, changes in rainfall and associated 
riverine effects) will continue to evolve. Several studies have assessed 
the expected impacts (e.g., Bevacqua et al., 2020; Hanson and Nicholls, 
2020) but until recently, available driving fields such as surface pressure 
and winds have been too coarse (both spatially and temporally) to 
produce a robust numerical projections-based assessment under various 
climate scenarios for many regions. Fortunately, projected atmospheric 
fields necessary to drive the projection of storm surges are increasingly 
reaching the minimal resolutions required to resolve storms and allow 
studies of extremes. Following face-to-face and online discussions, the 
SurgeMIP community has established its data requirements for driving 
fields it draws from GCM projections with extreme sea level projections 
in mind (Table 1). We note the data requirements listed in Table 1 are for 
global systems currently being operated. Projections with systems able 
to, for example, capture river flow would result in additional re-
quirements such as higher granularity of forcing fields, the addition of 
precipitation and land information. 

With only a handful of teams currently able to perform global pro-
jections, tackling challenges listed above such as achieving common 
datums and coordination will be key to producing large ensembles so 
that the uncertainty space is well sampled to provide a global view of 
expected changes in extreme water levels. 

The SurgeMIP community now has tools to carry out studies of sea 
level extremes under various scenarios – both through data-driven ap-
proaches which exploit statistical relationships between predictor 

(atmospheric field) and predictand (extreme water level), and dynam-
ical approaches, now possible owing to the fast-increasing computing 
capacity and the recently developed abilities to forecast/project surges 
at the global scale. 

7. Summary 

In this letter, we highlighted the vulnerability of the world’s coast-
line and coastal communities as we circled the world, briefly pointing to 
a few historical storms and their local impacts. We briefly reviewed the 
history of storm surge modelling, introduced the concept of extreme sea 
levels and related risks, and discussed climate change and its expected 
impacts. We pointed to the need for early warning systems and discussed 
recent progress towards the establishment of regional specialized 
meteorological centers for global numerical storm surge predictions. We 
briefly reviewed expected climate change contributions to future 
extreme sea levels and the associated need to further our knowledge in 
support of the development and implementation of adaptation and 
mitigation measures. We introduced a new international initiative to 
intercompare surge forecast systems to inform on current capacities, 
current research gaps, and to inform on systems to be used to compute 
projections. SurgeMIP will also serve to coordinate projections devel-
oped by its various members to support wider and more complete 
sampling of projected scenarios. To date, we established data needs for 
the production of projections that support the study of extreme events 
(Table 1) and will be addressing some technical challenges such as 
dealing with various modelling choices and reference frames as we 
progress through the intercomparison we have initiated. We highlighted 
planned and in progress activities with outcomes we seek to achieve 
over the coming years. These include.  

a) Document contemporary storm surge modelling/prediction efforts 
(initially at global scale), 

b) Compare performance of contemporary storm surge modelling sys-
tems under standardized forcing conditions (as possible), data 
handling, and evaluation metrics, 

c) Compare existing historical storm surge hindcasts, recognizing in-
homogeneity of forcing parameters,  

d) Build a community-based ensemble of storm surge systems, for both 
operational prediction, and climate projection scale applications,  

e) Produce and assemble projection of a community-based ensemble of 
storm surge heights at global scale for IPCC AR7. 

Through this letter we, the SurgeMIP community, invite research 
groups not yet involved but interested in joining our efforts to contact us 
via the corresponding author. 
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