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A B S T R A C T   

Antimicrobial resistance (AMR) is a global public health threat, and the environment has been identified as an 
important reservoir for resistant microorganisms and genes. Storm overflows (SOs) discharge wastewater and 
stormwater, and are found throughout many wastewater networks. While there are no data currently showing 
the impact of SOs on the environment with respect to AMR in the UK, there is a small but growing body of 
evidence globally highlighting the potential role of SOs on environmental AMR. This review aims to provide an 
overview of the current state of SOs, describe global data investigating the impact of SOs on environmental AMR, 
and discuss the implications of SOs regarding AMR and human health. In addition, the complexities of studying 
the effects of SOs are discussed and a set of priority research questions and policy interventions to tackle a 
potentially emerging threat to public health are presented.   

1. Introduction 

Antimicrobial resistance (AMR) is a global public health threat that is 
predicted to cause millions of deaths per year in the coming decades 
(O’Neill, 2014). Approximately 1.27 million deaths globally were esti-
mated to be attributed to antibacterial resistance in 2019 (Murray et al., 
2022). AMR encompasses all settings, including clinical, agricultural, 
and environmental, and as such, it requires a holistic "One Health" 
perspective to mitigate it effectively (Velazquez-Meza et al., 2022). 
Many anthropogenic sources of pollution discharged into aquatic envi-
ronments may contribute to the persistence, transmission, and dissem-
ination of AMR. These include runoff from agricultural and urban land, 
releases from aquaculture practices, and treated and untreated waste-
water (such as wastewater released during SO events, or diffuse release 
from septic systems) (Okonkwo et al., 2023; Singer et al., 2016, 2021). 

The discharge of wastewater and stormwater through storm over-
flows (SOs, including combined sewer overflows (CSOs)) is common in 
the UK’s wastewater network (House of Lords Library, 2022), as well as 
globally (e.g., across Europe (EurEau, 2020; Lee et al., 2022; Mahaut and 
Andrieu, 2019; Perry et al., 2023; Quaranta et al., 2022; Stange and 
Tiehm, 2020), North America (Ahmed et al., 2018; Dhiman et al., 2016; 
Donovan et al., 2008; Eramo et al., 2017; Government of Canada, 2024; 
Harmon et al., 2014; Salmore et al., 2006; US Environmental Protection 

Agency (US EPA), 2012; Young et al., 2013), and parts of Asia (Honda 
et al., 2020; Jang et al., 2021; Pan et al., 2023). They were designed to 
release untreated wastewater directly into water bodies when the ca-
pacity of the sewage network is exceeded, for example, following 
exceptionally heavy rainfall, thereby preventing the backing-up of 
sewage into homes and businesses (Perry et al., 2023), however, SO 
spilling events have been documented to occur under minimal rainfall 
and even under dry conditions (Hammond et al., 2021). Any SO event 
may allow untreated sewage – containing elevated levels of pathogenic 
microorganisms, antimicrobial resistant bacteria (ARB), antimicrobial 
resistance genes (ARGs) and chemicals and compounds with AMR se-
lective potential – to enter the environment. 

Here, we discuss the current state of SOs and provide an overview of 
the current knowledge on the extent to which SO discharges contribute 
to the burden of AMR in the environment or have potentially adverse 
effects on human health. We use the UK as an exemplar for the technical 
and policy-based issues surrounding SOs. We present knowledge gaps in 
the form of a series of priority research questions and policy implica-
tions. Understanding the effects of SOs on AMR in aquatic environments 
is necessary to evaluate the risks posed to humans who interact with the 
environment through recreational and occupational exposures. A 
graphical overview of the principles explored in this review is shown in 
Fig. 1. 
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2. Current state of SOs 

2.1. UK context: a case study 

Over 10 % of the UK sewage network was constructed up until (and 
including) 1900, and over 50 % of the network is more than 50 years old 
(United Utilities, 2017). Increasing populations, changing land use (e.g., 
greater urbanisation and increasing impermeable surfaces), and a 
changing climate (e.g., more frequent heavy precipitation) have meant 
that wastewater networks are currently under increasing pressure. It is 
likely that the composition of wastewater may have changed because of 
the increasing diversity and concentrations of pharmaceuticals, personal 
care products, and industrial chemicals, which could adversely impact 
sewage microbiology and organisms found in the receiving environment 
after discharge. 

The water industry is regulated under the Urban Wastewater Treat-
ment Regulations 1994 (UK Government, 1994), the Water Industry Act 
1991 (UK Government, 1991), and the Environmental Permitting (En-
gland and Wales) Regulations 2016, the latter of which stipulates that 
regulators, such as the Environment Agency in England, must permit 
discharges to ensure compliance of SOs with design and water quality 
standards, and the protection of receiving water bodies (i.e., no deteri-
oration in water quality from the current state) (Office for Environ-
mental Protection (OEP), 2016). Interest in discharges from SOs has 
increased in recent years (e.g., from public, research (Royal Academy of 
Engineering, 2024), activist groups (OEP, 2021; Surfers Against Sewage, 
2024; Windrush Against Sewage Pollution, 2021) and media outlets 
(BBC News, 2023; Cornish Times, 2023; ITV News, 2023; The Conver-
sation, 2023; The Guardian, 2023; The Times, 2023)). Political and 
regulatory interest has also increased, for example, resulting in the 
Environment Agency calling for court fines for “serious and deliberate 
pollution incidents” and “prison sentences for Chief Executives and Board 
members whose companies are responsible for the most serious incidents” 
(Environment Agency, 2022b), and the UK’s Chief Medical Officer, 
Environment Agency and the Water Services Regulation Authority 
(Ofwat) releasing the opinion piece “Sewage in water: a growing public 
health problem” (Department of Health and Social Care et al., 2022). In 
August 2020, the Storm Overflows Taskforce (Department for 

Environment, Food and Rural Affairs (Defra), n.d.-a), comprising rep-
resentatives from the Defra, the Environment Agency, Ofwat, the Rivers 
Trust, the water industry, and the Consumer Council for Water, was 
established in England. The taskforce aimed to “develop proposals to 
significantly reduce the frequency and impact of sewage discharges from 
storm overflows with a range of ambitions from reducing spills to phasing out 
overflows” and “develop short term actions to accelerate progress to deliver 
an increased ambition on storm overflows” (Defra, n.d.-b). Furthermore, 
the Environment Act 2021 contains measures to alleviate the effects of 
SOs, which include (but are not limited to) the duty of water and 
sewerage companies (WaSCs) to annually publish data on SO operation, 
publish near-live data on discharges (within one hour of discharge 
beginning), and monitor water quality up and downstream of SO 
discharge locations (UK Government, 2021). Additionally, recent En-
glish Government policy in the Storm Overflows Discharge Reduction 
Plan states that “storm overflows will not be permitted to discharge above an 
average of 10 rainfall events per year by 2050″ (Defra, 2022). 

There are over 14,500 SOs within England’s sewage network 
(Environment Agency, 2024c) (Fig. 2), more than 3600 in Scotland 
(Scottish Environment Protection Agency (SEPA), 2024), over 2200 in 
Wales (Dŵr Cymru Welsh Water, n.d.; Hafren Dyfrdwy, 2024), and 
almost 2500 in Northern Ireland (Northern Ireland Water, 2024). In 
England, the Environment Agency requires all WaSCs to monitor dis-
charges from SOs using event duration monitors (EDMs) and submit 
these data annually as part of their regulatory Annual Return (Defra, 
2024). The Annual Returns cover data from overflows on sewer net-
works, at the inlets of wastewater treatment works (WwTWs), storm 
tanks at WwTWs, and pumping stations (Fig. 2). SO spill data are given 
as the total duration (hours) of spills and counted spills using the 
12/24-hour count method. The 12/24-hour count method counts any 
discharge within the first 12 h of a spill as one count, and any discharges 
within subsequent 24-hour blocks each as one additional count, with 
counting not ceasing until a 24-hour block sees no discharge. For 
example, this would mean that a continuous or intermittent spill of 40 h 
duration would be equivalent to three spill counts (Environment 
Agency, 2018). 

Data from English SOs with EDMs show a total spill duration of 
3606,170 h, with a total spill count of 464,056 in 2023 (Fig. 2) 

Fig. 1. Graphical overview of concepts discussed in the review. This highlights SO discharge of AMR and chemical drivers, potential exposure routes to humans 
of environmental AMR (indicated by white arrows), and future pressures, including increased rainfall and changes in temperature from climate change, and 
urbanisation. 
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(Environment Agency, 2024c). Some of the highest spilling SOs in En-
gland had spill counts over 300, but for SOs that have had an EDM 
installed for the whole of 2023, 8 % did not spill (Environment Agency, 
2024c). The total spill count for 2023 is a 54 % increase on 2022 data, 
which the Environment Agency and water industry have partly attrib-
uted to increased rainfall in 2023 (Environment Agency, 2024b; Water 
UK, 2024). Comparing spill data temporally is complicated by the fact 
that historically, many SOs did not have EDMs. As of December 2023, 
100 % of SOs in England were fitted with EDMs (Defra et al., 2023), 
which is an improvement on 91 % (13,323/14,580) in 2022, 88 % (12, 
707/14,470) in 2021 and 83 % (12,092/14,630) in 2020 (Environment 
Agency, 2021; 2022a; 2023), and a vast improvement since 2016, when 
only 862 SOs were included in the EDM Annual Regulatory Returns 
(Environment Agency, 2024a). Therefore, comparing 2023 spill data, 
for example, to 2016 data, is problematic as the data from 2016 are 
likely only relating to ~6 % of SOs in England (i.e., the proportion of SOs 
in 2016 providing data was much lower, at 862, when it is likely that 
over 14,000 SOs existed based on numbers in recent years). This 
discrepancy in reporting data is highlighted in Fig. 2A, which indicates 
the total number of SOs with spill data (n). 

In addition, EDMs are not always operational. Data from 2023 
showed that, of the EDMs that were in operation for the whole of 2023, 
31.3 % of EDMs in England were operational 100 % of the time (Envi-
ronment Agency, 2024c). Further investigation showed that 80.5 % of 
EDMs were in operation for >90 % of the time, with only 1 % 

operational for <50 % of the time, and 0.6 % not being operational for 
2023 (Environment Agency, 2024c). Consequently, the actual duration 
and number of spills are likely to be higher than those presented in 
Annual Returns. Hammond et al. used machine learning to predict spill 
events and revealed hundreds of potentially unreported spills for over a 
decade at two exemplar WwTWs (Hammond et al., 2021). 

Notably, spill volume is not required to be reported as part of the 
Annual Returns. The absence of these data makes it difficult to reflect on 
the possible impact of a spill on the receiving water environment, given 
the uncertainty over the intermittency of flow (e.g., 12/24 count 
method) and the intensity of the spill. The absence of volume data 
precludes the possibility of conducting an accurate environmental and 
human health risk assessment. There is also a lack of unification sur-
rounding mitigation strategies and data availability relating to SOs 
across the UK and WaSCs. Current legislation only requires that EDMs be 
installed, and data from EDMs are provided to the Environment Agency 
for SOs located in England. In addition, only the English WaSCs are 
regulated on spill count following the Environment Act 2021 (UK Gov-
ernment, 2021) under the Storm Overflows Discharge Reduction Plan 
(Defra, 2022). Furthermore, taskforces established to tackle SO spills are 
country-specific (e.g., the Storm Overflows Taskforce in England (Defra, 
n.d.-a) and the Wales Better River Quality Taskforce in Wales (Natural 
Resources Wales, 2022)). To the best of our knowledge, no such task-
force exists in Scotland or Northern Ireland. WaSCs now have live or 
near-live spill data available in interactive maps to inform the public 

Fig. 2. Summary of Storm Overflow (SO) data for England. A) Summary of total spill count and total duration for all data in Annual Returns (all water and 
sewerage companies (WaSCs)) over time (data extracted from (Environment Agency, 2024a)). B) Different asset types as a percentage of the total number of assets in 
the 2023 Annual Returns, spill counts for 2023, and spill duration for 2023 (data extracted from (Environment Agency, 2024c)). 
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Table 1 
Results of a review of the global literature on AMR and SOs.  

Citation Study 
location 

Microorganism(s) 
studied 

Resistance type and methodology Findings 

Dewi et al. 
(2020) 

Australia Mixed community Phenotypic resistance to carbapenem determined. 
Genotypic carbapenem resistance was determined by 
sequencing plasmids. 

Stormwater outfall goes directly into ocean and likely 
had major influence on abundance of carbapenem 
resistant bacteria as these resistant bacteria often 
belonged to the same species (including species often 
found in sewage). 

Williams 
et al. 
(2022) 

Australia Mixed community Genotypic resistance tested by qPCR targeting sul1, dfrA1, 
intl1, qnrS, vanB and tetA. 

Resistance gene abundance of sul1, dfrA1 and qnrS 
increased up to two orders of magnitude after 20.4 mm 
of rainfall and tetA increased by one order of magnitude 
after 40.8 mm of rainfall. Some of these genes (sul1, tetA 
and qnrS) were detected 300 m offshore after 40.8 mm of 
rainfall, with levels remaining high five days after 
rainfall event. Highest levels of ARGs in front of 
stormwater drains. Faecal indicator bacteria levels and 
sewage markers increased 10 times following rainfall. 

Carney et al. 
(2019) 

Australia Mixed community Genotypic resistance was tested using qPCR to target intI1, 
vanB, tetA, sul1, dfrA1 and qnrS. In addition, multiplex PCR 
and reverse line blot hybridisation targeting an additional 
26 antibiotic resistance genes. 

Absolute abundance of intI1, tetA, sul1, dfrA1 and qnrS 
were elevated one to two orders of magnitude after 
storm and modelled SO input and remained above 
baseline for subsequent week. 

Pan et al. 
(2023) 

China Mixed community Genotypic analysis of resistance gene undertaken by 
metagenomic sequencing. 

ARGs in SO outfall were higher than in rainfall runoff. 
Multidrug resistance genes had the highest relative 
abundance. SO outfall had high pollutant and bacterial 
density. 

Stange and 
Tiehm 
(2020) 

Germany E. coli and enterococci Genotypic resistance tested by PCR for macrolide (ermB), 
trimethoprim (dfrA1, dfrA12), beta-lactam (blaSHV), 
aminoglycoside (aadA), tetracycline (tetA, tetB, tetC, tetK), 
and sulfonamide (sul1, sul2) resistance. 

Increase in fecal indicator bacteria associated with 
increase in ARGs and human-specific microbial source 
tracking markers 9 km away from SO after a heavy rain 
event. 

Honda et al. 
(2020) 

Japan E. coli Phenotypic resistance tested for ciprofloxacin, norfloxacin, 
tetracycline, amoxicillin, kanamycin and 
sulfamethoxazole/ trimethoprim. 

Resistance was 3.7-log higher in SO discharges in 
comparison to treated effluent. 

Jang et al. 
(2021) 

South Korea Mixed community Resistance to tetracyclines, sulfonamides, quinolones, beta- 
lactams. Genes: sul1, aac(6′)-Ib-cr, tetX, blaTEM 

Rainfall increased ARGs by 1.9 × 103-fold. Elevated 
ARGs were maintained for up to 32 h after rainfall. 
Increase in sewage related bacterial operational 
taxonomic units and ARGs suggestive of SO driving this 
increase. 

Lee et al. 
(2022) 

Switzerland Mixed community Selective plating for clarithromycin and tetracycline 
resistant colonies. 
Genotypic resistance using qPCR to test for intI1 and sul1 
and metagenomic sequencing. 

SOs were the main cause of increased ARGs found in 
rivers during a storming event. 

Eramo et al. 
(2017) 

USA Mixed community Genotypic resistance using qPCR to test for sulfonamide 
(sul1, sul2) and tetracycline (tetG and tetO) resistance genes. 

Sul1 prevalence was found to be significantly higher in 
downstream surface water during wet weather when the 
SO was discharging, in comparison to during dry 
weather. However, this phenomenon was not observed 
for all resistance genes tested. 

Ahmed et al. 
(2018) 

USA Faecal indicator 
bacteria 

Genotypic resistance tested by microfluidic qPCR testing 47 
target genes including ARGs, heavy metal resistance genes 
and genes associated with integrons were measured. 

Prevalence of 27/35 ARGs greater in wet weather than 
in dry. Elevated faecal indicator bacteria in stormwater. 
Concludes that storm drain outfalls contribute microbial 
pollution to waters in area. 

Harmon et al. 
(2014) 

USA Faecal coliform 
bacteria 

Phenotypic resistance analysis to test for streptomycin, 
tetracycline, kanamycin, apramycin, trimethoprim and 
rifampicin resistance. 

Most faecal coliforms could be traced to sewage or 
equine sources. 
Faecal coliform counts in samples after rainfall events 
were approximately one order of magnitude higher than 
during dry weather. Isolates were tested for phenotypic 
resistance. 

Dhiman et al. 
(2016) 

USA E. coli Phenotypic resistance tested for ampicillin, 
chloramphenicol, chlortetracycline, kanamycin, nalidixic 
acid, oxytetracycline, streptomycin and tetracycline. 

Isolates from SO sources showed significantly greater 
resistance and higher multiple antibiotic resistance than 
from non-point sources. For isolates from the SO, 96.9 % 
exhibited resistance compared to 43.8 % non-point 
source isolates. 

Salmore et al. 
(2006) 

USA E. coli Resistance to ampicillin, chlorotetracycline, kanamycin, 
oxytetracycline, penicillin, streptomycin, sulfathiazole, 
tetracycline 

Elevated E. coli after storms, by one to three orders of 
magnitude. E. coli levels after storms are the result of a 
mixture of non-human and human sources 

Donovan 
et al. 
(2008) 

USA Enterococcus, 
Streptococcus, 
Pseudomonas aeruginosa 

Phenotypic resistance testing for genatmicin, ciprofloxacin, 
tetracycline, nitrofurantoin, vancomycin, quinupristin- 
dalfopristin and erythromycin. 

Pathogens isolated from river sediments. Analysed risk 
in three scenarios and found pathogen contaminated 
sediments near SO discharge could pose a health risk to 
individuals exposed to sediments in the mudflat areas. 
Resistance was tested against individual isolates but was 
not used in exposure risk scenario. 

Young et al. 
(2013) 

USA Heterotrophic bacteria Phenotypic testing for ampicillin and tetracycline 
resistance. 

Maximum level of resistance recorded after rain event at 
a sampling site directly adjacent to a SO.  
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about spilling events. However, different WaSCs provide different data. 
For example, Thames Water, the first company to do so, shares the 
current state of all their SOs and whether they are spilling (Thames 
Water, 2024), as do other WaSCs (Anglian Water, 2024; Dŵr Cymru 
Welsh Water, 2024; Northumbrian Water, 2024; Severn Trent, 2024; 
United Utilities, 2024; Wessex Water, 2024; Yorkshire Water, 2024), 
whereas South West Water and Southern Water have maps highlighting 
only whether their bathing water sites are currently impacted by a 
sewage spill (South West Water, 2024; Southern Water, 2024). 

2.2. Global context 

Storm overflows are commonplace in many wastewater treatment 
systems globally (particularly as CSOs in cities with combined storm-
water and sewer systems) (Quaranta et al., 2022). For example, esti-
mates suggest that globally in 2020, only 57 % (by volume) of the 
wastewater generated by households enters sewers, and around 10 % of 
this is not “collected by WwTWs, most likely due to direct discharges and 
(in principle) combined sewer overflows” (United Nations, 2021). Sus-
tainable Development Goal (SDG) regions with the highest proportion of 
wastewater generated by households entering sewer systems included 
Australia and New Zealand (89 %) and Northern America and Europe 
(86 %), with the lowest being Central Asia and Southern Asia (20 %) and 
Sub-Saharan Africa (17 %) (United Nations, 2021), therefore, it is likely 
that information relating to the state of SOs globally is largely from the 
former SDG regions (also reflected in the global SO data described below 
and global literature (Table 1)). For example, in Europe, estimates 
suggest that there are more than 650,000 CSOs (EurEau, 2020), whereas 
in the USA, CSOs are part of the wastewater infrastructure of approxi-
mately 700 communities (largely in the Northeast) (US EPA, 2024b). 
Large urban cities can have thousands of SOs, for example, Sydney has 
over 3000 “emergency relief structures” (designed overflow points) 
(Besley et al., 2023). Like those in the UK, overflow systems from around 
the world are also under pressure from the effects of climate change and 
heavy rainfall, population growth and ageing sewer networks (Besley 
et al., 2023; Roseboro et al., 2021; Wang et al., 2024), and as such, many 
policymakers have moved towards managing SO pollution, for example 
the United States Environmental Protection Agency’s Combined Sewer 
Overflow Control Policy under the Clean Water Act (US EPA, 2024a), or 
proposed revisions to the European Commission’s Urban Waste Water 
Treatment Directive (UWWTD) (Council Directive 91/271/EEC) 
(Council of the European Union, 2024; European Commission, 2022). 
However, some countries have no specific SO regulation, such as 
Ecuador, which only has restrictions on limiting the concentrations of 
pollutants in waterbodies, which may indirectly influence SO discharges 
(Montalvo-Cedillo et al., 2020). 

The availability of data on both SO spills (spill count, duration, 
volume, real-time reporting, etc.) and discharge locations is required to 
fully understand the effect of SOs on AMR in the environment and 
human health risks. Globally, data on SO spills are varied and incon-
sistent, with some regions offering location-based data. For example, the 
US EPA CSO outfalls map gives data on locations, receiving waterbodies 
and compliance of CSOs, based on their National Combined Sewer 
Overflow Inventory (updated weekly in the Integrated Compliance In-
formation System-National Pollutant Discharge Elimination System (US 
EPA, 2024b)). Other regions may offer spill count data, for example, 
some states in the USA (e.g., New York (New York State, 2020), New 
Jersey (New Jersey Department of Environmental Protection, 2022)), 
however, these can be inconsistently reported and/or based on modelled 
estimates. Other regions provide data on spill volumes, an important 
metric (currently inaccessible in the UK), when considering the scale of 
the effect from each discharge event. For example, Canada’s Open 
Government Portal gives monthly volume data from CSOs from 2013 to 
2022 (Government of Canada, 2024). Public access to real-time spill 
reporting data was required in the UK under the Environment Act 2021 
(UK Government, 2021), highlighting the important role that legislation 

plays in data access. Globally, real-time reporting of spill data is sparse, 
with the UK being one of few countries providing real-time public data 
accessibility. Real-time spill data do exist in certain areas, for example, 
some cities in the USA, such as Everett in Washington, have interactive 
near-real-time CSO spilling maps (City of Everett, 2024). 

Globally, moving towards a model where data on SO location and 
spills (counts, duration, volume, and real-time reporting) are publicly 
accessible and provided in a consistent format, will greatly improve our 
knowledge on the environmental and human health effects of SOs, and 
will inform research, policy decisions and water users. 

3. Effects of SOs on AMR 

Much research on the effects of different pollution sources on envi-
ronmental AMR has focused on the effects of treated wastewater efflu-
ents. Wastewater contains microorganisms from a variety of sources, 
such as those from the human gut that reflect the health and habits of 
their host, which can include elevated ARGs in hosts that consume an-
timicrobials (Chau et al., 2022; Singer et al., 2023), or those originating 
from sewer network microbiomes (i.e., microbial communities associ-
ated with sewage infrastructure (Guo et al., 2019)). Wastewater also 
contains chemicals that can select (antimicrobials) and co-select (e.g., 
non-antimicrobial pharmaceuticals, personal care products, metals, and 
biocides) for AMR (Murray et al., 2024; Stanton et al., 2022b). 

The literature on AMR in UK wastewater has grown in recent years, 
for example, to examine the effects of population and influent source on 
ARG and antibiotic load in wastewater (Elder et al., 2021), or to 
investigate the effects of different wastewater treatment types on AMR 
throughout treatment, by analysing all stages of treatment from influent 
to effluent and final sludges (Read et al., 2023). Research investigating 
the effects of wastewater effluent releases on AMR in UK rivers has found 
significant increases in AMR abundance in downstream sediments 
(Amos et al., 2018) and waters (Rowe et al., 2017). Although research 
has often indicated that following wastewater treatment, there is a 
general decrease in the abundance (absolute copies per sample volume) 
of many ARGs (and sometimes their prevalence (normalised copies)), 
this is sometimes not the case (e.g., sul1 and intI1 in Read et al. (2023)). 
Similarly, a reduction in antimicrobial load has been observed following 
treatment, yet the residues remaining in the effluent can reach con-
centrations high enough to theoretically result in selection for resistance 
(Hayes et al., 2022; Read et al., 2023; Singer et al., 2019). Under-
standably, high loads of AMR and antimicrobials have been recorded in 
raw, untreated wastewater (i.e., influent) (Archer et al., 2017; Elder 
et al., 2021; Read et al., 2023), which may be a significant component of 
SO discharges. 

Considerable uncertainty exists regarding the dilution of microor-
ganisms and chemicals during SO discharge. SO discharges will have 
varying degrees of dilution, which are dictated by variables such as the 
pipe diameter, speed of flow, the extent to which the dry weather flow of 
sewage has already filled the sewage network, and the extent of rainfall 
and system design (Giakoumis and Voulvoulis, 2023). In addition, the 
microbial and chemical composition of SO discharge will likely vary in 
relation to the source of the water and the wastewater catchment, and 
thus different SOs may have varied impacts (Giakoumis and Voulvoulis, 
2023). Data on AMR in SO discharges and the effects of discharges on 
AMR in receiving environments are limited compared to data on 
wastewater influent, treated effluent, and the effects of effluent on the 
downstream environment. There is a distinct lack of data on AMR 
in/from UK SOs and a clear knowledge and data gap given the public, 
political, and academic interest. Similarly, data are also limited in other 
countries (see above and Table 1). Furthermore, current monitoring 
efforts of environmental AMR by regulators exist either as pilot schemes 
(e.g., the Environment Agency and their pilot monitoring of AMR in a 
select few river catchments in England as part of their PATH-SAFE 
programme (Schmidt, 2022)) or as an addition to existing monitoring 
programmes (e.g., Scottish Environment Protection Agency (SEPA) have 
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added AMR to their existing bathing water monitoring and have inves-
tigated the presence of cefotaxime-resistant Escherichia coli and 
vancomycin-resistant Enterococci (SEPA, 2023)). Table 1 presents the 
results of a review of the global literature on AMR and SOs. In summary, 
much of this research was undertaken in the USA (7 of 15 publications) 
(Ahmed et al., 2018; Dhiman et al., 2016; Donovan et al., 2008; Eramo 
et al., 2017; Harmon et al., 2014; Salmore et al., 2006; Young et al., 
2013), with the remaining studies occurring in Australia, China, Ger-
many, Japan, South Korea and Switzerland (Carney et al., 2019; Dewi 
et al., 2020; Honda et al., 2020; Jang et al., 2021; Lee et al., 2022; Pan 
et al., 2023; Stange and Tiehm, 2020; Williams et al., 2022). The ma-
jority of studies investigated resistance in either mixed microbial com-
munities (Carney et al., 2019; Dewi et al., 2020; Eramo et al., 2017; Jang 
et al., 2021; Lee et al., 2022; Pan et al., 2023; Williams et al., 2022) or 
multiple different species (Ahmed et al., 2018; Donovan et al., 2008; 
Harmon et al., 2014; Stange and Tiehm, 2020; Young et al., 2013), with 
the remainder investigating the focal species, E. coli (Dhiman et al., 
2016; Honda et al., 2020; Salmore et al., 2006). In general, studies found 
increased resistance after a storming event or rainfall, and increased 
resistance from SOs in comparison to treated effluent or non-point 
sources. A number of studies also investigated the impacts of SOs on 
specific groups of bacteria such as faecal indicator bacteria or patho-
gens, with one study investigating risk to human health from pathogens 
found in sediment near to a SO outlet (Donovan et al., 2008). 

4. Relevance of SOs to human health 

Humans are exposed to AMR in the natural environment through 
various exposure scenarios (e.g., bathing or other recreational activities 
in designated and non-designated bathing water bodies, working in 
agriculture or aquaculture/fisheries, and working in WwTWs (see 
Fig. 1)) (Stanton et al., 2022a). In addition, there is the potential for 
humans to be directly or indirectly exposed to AMR in 
wastewater-impacted environments. Stanton et al. (2022a) collated all 
evidence globally showing the transmission of AMR from the environ-
ment to humans, and found evidence of AMR transmission to humans 
from coastal bathing activities (Leonard et al., 2018), from the use of 
reclaimed irrigation water (i.e., treated wastewater) (Goldstein et al., 
2017), and following a near-drowning incident in a river (Laurens et al., 
2018). In contrast, more recent data published in 2023 found that water 
users were less likely to be colonised by extended-spectrum beta-lacta-
mase (ESBL)-producing Enterobacterales than non-water users (Farrell 
et al., 2023). In addition, a study investigating the impact of proximity to 
WwTWs in three countries found that in one of the three countries of 
study, those who worked at WwTWs and those who lived less than 300 
m away from WwTWs were more likely to be colonised with 
ESBL-producing E. coli than the general population (Rodriguez-Molina 
et al., 2021). These results highlight the human health risks from 
exposure to treated and untreated wastewater, either from residing 
nearby or working in a WwTW. However, this was not observed in the 
other two countries from the same publication (Rodriguez-Molina et al., 
2021), nor was it observed in a subsequent publication from the same 
study which compared ARGs in stool samples from the same cohort 
(Berglund et al., 2023). The variability between studies reinforces the 
need for more research to better understand the effects of the duration of 
environmental AMR exposure, exposure activities, and exposure type (e. 
g., treated or untreated sewage) on the risks to human health from 
environmental AMR. 

While there are no data relating to AMR transmission to humans 
from exposure to SOs, other human health outcomes have been linked to 
SOs, particularly gastrointestinal infections. For example, Schiff et al. 
(2016) recorded an increase in self-reporting of gastrointestinal symp-
toms from surfers following ocean exposure after wet weather events, 
whereas Miller et al. (2022) and Brokamp et al. (2017) reported in-
creases in visits to the emergency department for gastrointestinal 
symptoms following SO events. In addition, studies have modelled the 

risk of contracting infections from SO-contaminated environments. For 
example, Donovan et al. (2008) investigated three risk scenarios to 
human health from exposure to SO-contaminated river sediments in the 
USA. Although this study tested individual isolates for resistant bacteria, 
these were not linked to risk scenarios. 

The lack of global data surrounding SO and AMR health risk is a clear 
knowledge and data gap that urgently needs to be filled to allow for 
improved risk assessments and informed policy interventions and miti-
gation measures. 

5. Complexities in understanding and tackling the effects of SOs 

Policy and WaSC measures to alleviate the effects of SOs on the 
receiving environment are likely to require solutions with co-benefits 
(Perry et al., 2023) that are supported by a robust evidence base. Key 
evidence gaps need to address 1) understanding the relative contribu-
tion of varying pollution sources to the environmental burden of AMR, 
2) comparing the effects of SO discharge on AMR with those of treated 
wastewater effluent, 3) elucidating whether there is a risk to human and 
animal health from AMR released from SO discharges, and 4) under-
standing the effects of future challenges, such as climate change, on the 
frequency of SO discharge and human health effects. Here, we discuss 
the complexities of undertaking research on these key topics. 

5.1. Understanding relative contributions from differing pollution sources 

The source apportionment of diffuse and point pollution sources of 
AMR is difficult. Catchment-based approaches can be used to investigate 
the effects of both single and multiple polluting inputs on receiving 
water bodies and assign the weight and directionality of pollution 
sources. Differentiating the impact in rivers from more distinct pollution 
sources, such as any type of human wastewater in comparison to agri-
cultural sources, may be possible using distinct microbial genetic 
markers, which can be identified using microbial source tracking 
(Damashek et al., 2022). This can occur by targeting animal and 
human-specific genetic markers, such as crAssphage (Stachler et al., 
2017) or Bacteroidales HF183 marker (Seurinck et al., 2005) for human 
faecal pollution, Helicobacter spp. Associated GFD for avian faecal 
pollution (Ahmed et al., 2016), and host-specific markers of the Bac-
teroidales species (e.g., HoF597 (horse), CF128 (ruminant) and PF163 
(pig)) (Balleste et al., 2020). However, disentangling the effects of 
different sources of human wastewater – such as point sources (e.g., 
untreated/treated release from WwTWs) or diffuse sources (e.g., re-
leases from septic systems) – may prove difficult using this method (see 
Section 5.2). 

An approach often used to understand the relative contribution of 
different pollution sources to a waterbody is using Reasons for Not 
Achieving Good Status (RNAGS). Under the Water Framework Directive 
(WFD) (2000/60/EC) (The European Parliament and The Council of the 
European Union, 2000), surface water bodies are classified from “bad” 
to “high” status, using a series of ecological and chemical metrics. When 
waterbodies fail to reach the second highest status of “good”, they are 
assigned RNAGS. The Environment Agency data for English Water 
Framework Directive 2019 Cycle 3 indicate that of all RNAGS assigned 
to water bodies, 26 % were caused by the water industry, the second 
largest proportion following agriculture and rural land management 
practices (40 %) (Environment Agency, n.d.). RNAGS are derived from 
the average condition of a water body, which may result in minimising 
or missing the acute effects of localised SO spilling incidents. Further-
more, although using Water Framework Directive status is useful for 
assessing the ecological and chemical status of a water body, it does not 
include metrics to assess the potential risks related to AMR, pathogens, 
or use molecular approaches, such as microbial source tracking, as 
described above. RNAGs were intended to focus the regulator on the 
greatest sources of pollution within a catchment, but in practice, they 
can be found to be used by different sectors to deflect blame, which is 
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likely to hinder collaboration and progress between polluting actors. 
A lack of understanding surrounding the relative source of pollution 

inputs within river catchments hampers mitigation efforts. Aquatic en-
vironments contain a complex mixture of microorganisms and antimi-
crobial resistance driving chemicals representing different sources. A 
significant challenge is disentangling these under current and future 
climate and population scenarios. 

5.2. Comparing the different effects of SO discharge and treated 
wastewater effluent on AMR 

Disentangling the effects of SOs from other similar polluting inputs 
(such as treated wastewater), was recently highlighted as a critical 
knowledge gap in a recent United Nations Environment Programme 
report (UNEP, 2023). However, doing so may prove difficult as 
discharge locations can be co-located and the microbial profiles of each 
may be similar. Further, pollution levels from SOs are inconsistent 
during a spilling event, therefore providing more complexity to the 
issue. The “first flush” phenomenon describes the initial phase of a SO 
event where high loads of various pollutants may be released (Gupta and 
Saul, 1996), including those from pipe biofilms and sediments that 
might have accumulated over time in the sewer network (Li et al., 2019). 
The first flush phenomenon has been investigated for numerous chem-
ical pollutants, such as nitrogen, phosphorus and various heavy metals 
such as lead and zinc (Barco et al., 2008; Peng et al., 2016). A 2015 study 
found that E. coli loads in SO releases were 24.5 times higher in the rising 
limb compared to the falling limb for a given flow rate, and that 
generally, loadings of E. coli, total suspended solids and wastewater 
micropollutants increased rapidly with flow rate (Anne-Sophie et al., 
2015). Therefore, it is conceivable that the first flush of sewer pipe 
biofilms and sediments may result in an elevated release of ARB and 
ARGs, adding another layer of complexity to understanding the role that 
SO releases play in driving AMR downstream, particularly in the absence 
of flow and volume spill data. 

Co-location of SO and treated discharge outlets and their similar 
microbial profiles can constrain differentiating these sources using 
methods such as microbial source tracking of human waste-related 
genes (see above). However, some publications have identified 
different microorganisms or micropollutants indicative of SO pollution. 
From dry and wet weather sampling of the Kanda River in Tokyo, Ekhlas 
et al. (2021) found that Bacteroides spp. and Arcobacter spp. significantly 
increased in abundance during a CSO event, and suggested Bacteroides 
spp. may be used to indicate human faecal pollution, whereas Arcobacter 
spp. may be associated with sewer pipes. Phillips et al. (2012) quantified 
the relative contribution of a WwTW in the USA to the micropollutant 
load in the receiving lake, and found that the concentrations of some 
hormones and many micropollutants in CSO releases were up to 10 
times higher than those from treated effluent. Further, chemical markers 
have been suggested as useful indicators of the presence of raw sewage, 
including caffeine (Buerge et al., 2006; Munro et al., 2019), caffeine/-
sucralose ratios (Cantwell et al., 2018), cocaine, bezafibrate, sulfapyr-
idine, benzoylecgonine, diazepam and furosemide (Munro et al., 2019). 

There remains a need to elucidate the relative effects of SO and 
treated effluent discharge on AMR in the environment. This necessitates 
identifying key methodologies to apportion these sources, which will 
provide the data needed to inform mitigative action. 

5.3. Relative risk of SOs to human health 

Elucidating the effects of SOs on human health concerning AMR 
comes with many complexities, including difficulties in establishing 
causal linkages between resistance found in the environment and a 
resistant infection, understanding source apportionment with regard to 
colonisation, and various challenges surrounding study design. 

Establishing a causal link between exposure to a pathogenic micro-
organism in the environment and negative clinical outcomes is difficult 

to demonstrate, and typically relies on studying user groups that have 
naturally higher exposure to polluted water (e.g., surfers (Leonard et al., 
2015)). This is further complicated when considering resistance, given 
the mobility of ARGs. When humans are exposed to pathogens, their 
symptoms often appear relatively quickly after exposure meaning that 
causal linkages based on their recent history (e.g., travel to a foreign 
country (Chen and Blair, 2015), eating a certain type of food (Tuffs, 
2011) or exposure to faecally contaminated waters (Chen and Blair, 
2015; Wade et al., 2022)) can be more readily established. Under-
standing this for AMR is more complex, as humans may be exposed to 
and become colonised by AMR commensal, opportunistic, or environ-
mental organisms, which may never result in a clinical outcome. How-
ever, because bacteria can pass their genes to distantly related species 
via horizontal gene transfer (Barlow, 2009), transfer of resistance from 
commensal organisms to pathogens may occur, resulting in clinical 
failure (Stanton et al., 2022a). The mobility of resistance can make it 
nearly impossible to establish a causal link with environmental expo-
sure. Furthermore, given that resistance could have come from a large 
range of different microbial hosts, and therefore sources, it can be 
difficult to link human acquisition of resistance to a particular pollution 
source. As with studies investigating gastrointestinal illnesses, one so-
lution to these research limitations could be to study the longitudinal 
effects of AMR in the gut microbiomes of potentially exposed groups, 
such as wild swimmers, downstream of SOs. However, because SOs and 
effluent pipes can be co-located, it may be difficult to disentangle their 
respective impacts. 

The current evidence base for attributing increased carriage of ARGs 
in humans following exposure to SO releases is lacking, largely as a 
result of 1) the difficulty in conducting such a study at the appropriate 
scale to gain confidence in the causal association, and 2) the co- 
association of SOs with other sources of pollution, including treated 
wastewater, and urban and agricultural runoff. There remains a need to 
understand the thresholds of pathogens and ARGs in aquatic environ-
ments, above which there is a measurable increased risk to human 
acquisition and carriage following different exposure routes. In the 
interim, efforts must be made to minimise pathogen and ARG contam-
ination of the aquatic environment, not only through SOs but also 
through treated sewage and diffuse sources where applicable. 

5.4. Future challenges 

The impact of SOs on AMR and their risk to environmental and 
human health is likely to change in the coming years as a result of many 
factors. These may include a changing climate (e.g., increased temper-
atures and frequency of heavy precipitation), increases in population, 
and changes in land use. 

According to the Met Office, in the UK, climate change is predicted to 
cause warmer and wetter winters, hotter and drier summers as well as 
more frequent and intense weather events, including intense rainfall in 
summer months (Met Office, n.d.). Increased rainfall, in both winter and 
summer, from intense weather events may cause an increase in dis-
charges of untreated sewage into downstream water environments, as 
sewerage networks may reach capacity more frequently. In addition, the 
impact of warmer conditions resulting from climate change may result 
in an increased prevalence of AMR infections. For example, in the USA, 
MacFadden et al. (2018) found higher rates of three resistant clinical 
pathogens in states with warmer minimum temperatures when investi-
gating the association between AMR and local temperature across 
different states. This, therefore, may result in more ARB and ARGs 
entering the sewerage network and potentially being discharged into 
downstream water environments during SO events. Derx et al. (2023) 
modelled the risk of infection from enterococci, Giardia, and Crypto-
sporidium from the recreational use of a river downstream of SOs under 
different climate change models. The study determined an increased risk 
of contracting these infections from SOs in future climate scenarios, 
suggesting that sustainable water management is required to prevent 
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transmission events. 
Increasing populations will require an increase in housing, which 

may not be met with an increased sewage network capacity. In addition, 
greater urbanisation may lead to an increase in impermeable land if 
Sustainable Drainage Systems are not implemented (Perry et al., 2023). 
Therefore, engagement with stakeholders involved in approving new 
housing is necessary to ensure potential sewerage capacity issues are 
avoided and that sustainable drainage solutions are sought. 

6. Priority research questions 

Several knowledge gaps hamper risk assessment, policy making, and 
informed mitigation efforts of the risks posed by the release of AMR and 
AMR-driving chemicals from SOs into the environment, and the poten-
tial downstream risks to human health. These knowledge gaps are pre-
sented below as priority questions for research. 

6.1. Surveillance of AMR in/from SOs 

At the time of writing, there has been no research on AMR from UK 
SOs. A better understanding of the composition, concentrations, total 
loads, and types of pollution (including AMR and AMR-driving chem-
icals) released from SOs – and the effects of first flush and biotic factors 
(e.g., dilution effects) on these – is necessary to elucidate the ecological 
and health impacts. 

6.2. Pollution source apportionment 

The sources of pathogens and ARGs include point sources (e.g., 
wastewater and industrial discharge) and diffuse sources (e.g., urban 
and agricultural runoff). However, when these sources are mixed into a 
river at the catchment scale, it becomes very challenging to apportion 
the signal. It is critical to understand the relative risk that different 
pollution sources pose to increasing AMR levels in downstream envi-
ronments. Understanding the contribution of the burden of AMR from 
SOs and other pollution sources will allow for the implementation of 
data-driven mitigation strategies by prioritising pollution sources. 

6.3. Potential risk to human health 

Understanding the risk posed by environmental AMR to human 
health is an area of growing research interest. Although data exists, it is 
currently extremely limited. Certain leisure activities in the UK (e.g., 
wild swimming (Bates and Moles, 2022)) are increasing in popularity, 
potentially exposing individuals to AMR in the environment. The degree 
to which a particular person is at risk and how that risk varies with age, 
health, exposure dose, quantity of pathogen and/or AMR present, and 
environmental conditions, is largely unknown and potentially highly 
variable. Improving this understanding is essential for risk assessment 
and mitigation efforts, including for engineering and social solutions. 

7. Priority policy interventions 

From this review, we identified a list of priority focus areas for policy 
interventions that will allow further understanding of the role SOs play 
in disseminating AMR and the potential risk posed to human health. 

7.1. Improvement in SO reporting 

The provision of EDM and real-time spilling data has been a positive 
step towards beginning to understand the scale of the effects of SO 
discharges on the environment and human health in the UK. However, 
the statutory reporting of SO spills via the Annual Returns process re-
quires improvements to allow researchers, policymakers, the public, and 
WaSCs to draw accurate conclusions from the data. These improvements 
include ensuring that EDMs work 100 % of the time and, most 

importantly, including spill volume as a required metric in the Annual 
Returns. 

7.2. Regulatory surveillance of AMR in wastewater and the environment 

Currently, there is no legislation requiring the surveillance of AMR in 
natural environments or wastewater settings in the UK. Current moni-
toring efforts of environmental AMR by regulators exist either as pilot 
schemes (e.g., the PATH-SAFE programme (Schmidt, 2022)) or addi-
tions to existing schemes (e.g., SEPA’s bathing water monitoring (SEPA, 
2023)). Whilst scaling up an AMR monitoring scheme from scratch is an 
expensive task that will take time, amending existing schemes, such as 
incorporating it into bathing water monitoring or using frameworks and 
networks for wastewater monitoring, could help facilitate the estab-
lishment of such a scheme. 

8. Conclusions 

As evidenced throughout this review, based on the global literature, 
it is likely that SO discharges contribute to elevated levels of ARB and 
ARGs in downstream aquatic environments. This could pose an 
increased risk of AMR acquisition in humans who interact with such 
environments through recreational or occupational exposures. Howev-
er, with the lack of data on human exposure to SO-polluted environ-
ments regarding AMR, it is unclear to what extent this is happening in 
the UK and globally. Research into the effects of SOs on AMR in the 
environment and potential associated public health risks, along with 
policy action to improve SO reporting data (e.g., inclusion of volume 
spilt) and undertake surveillance, would enable a greater understanding 
of potential risks and where mitigation may be best implemented. 
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