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A B S T R A C T

Closed-loop stability of control systems can be undermined by actuator faults. Redundant actuator sets and
Fault-Tolerant Control (FTC) strategies can be exploited to enhance system resiliency to loss of actuator
efficiency, complete failures or jamming. Passive FTC methods entail designing a fixed-gain control law that
can preserve the stability of the closed-loop system when faults occur, by compromising on the performance
of the faultless system. The use of Passive FTC methods is of particular interest in the case of underwater
autonomous platforms, where the use of extensive sensoring to monitor the status of the actuator is limited
by strict space and energy constraints. In this work, a machine learning-based method is formulated to
systematically synthesise control laws for systems affected by actuator faults, encompassing partial and total
loss of actuator efficiency and control surfaces jamming. Differently from other methods in this category,
the closed-loop stability is formally certified. The learning architecture encompasses two Artificial Neural
Networks, one representing the control law, and the other resembling a Control Lyapunov Function (CLF).
Periodically, a Satisfiability Modulo Theory solver is employed to verify that the synthesised CLF formally
satisfies the theoretical Lyapunov conditions associated to both the nominal and faulty dynamics. The method
is applied to three marine test cases: first, an Autonomous Underwater Vehicle performing planar motion
and subjected to full loss of actuator efficiency is investigated. Next, a study is conducted on a hybrid
Underwater Glider with a pair of independent twin stern planes jamming at a fixed position. Finally, partial
loss of effectiveness is considered. In all three scenarios, the system is able to synthesise stabilising control
laws with performance degradation prescribed by the user. Unlike other machine-learning based techniques,
this method offers formal stability certificates and relies on limited computational resources rendering it
possible to be run on unassuming office laptops. An open-source software tool is developed and released
at: https://github.com/grande-dev/pFT-ANLC.
1. Introduction

Faults are defined as an undesired abrupt change in the dynamics
of a signal of a sensor or of an actuator (Willsky, 1976). Fault-Tolerant
Control (FTC) aims at preserving the plant operation and closed-loop
stability when faults occur (Patan, 2019). During Autonomous Under-
water Vehicles (AUVs) and Underwater Gliders (UGs) deployments, a
large variety of unplanned and undesired conditions can occur and
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jeopardise the mission success. In the case of AUVs, typically employing
thrusters as the main source of actuation, malfunctions are often identi-
fied as thruster obstruction, thruster flooding and rotor failure (Caccia
et al., 2001). External solid objects such as ice, seaweed or other
marine detrita entering between the blades, the propeller and the
enclosing, can also either damage the propeller blades or significantly
increase the torque required to spin the motor shaft. Further, water
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ingress inside sealed electronic compartments can modify the internal
electrical connections, leading to shorts or current dispersion. In the
case of UGs, the long nature of their deployment, lasting up to several
months, renders these platforms particularly subjected to unpredictable
conditions, potentially leading to faults. UGs are oftentimes deployed
in challenging environments, such as when conducting missions under
the ice caps (Webster et al., 2015). Several factors can affect the
successful vehicle reentry when deployed in such demanding operating
domains. Brito et al. (2014) provides a survey of 58 gliders operating
for a period of 4 years, with glider faults reported as mechanical, logis-
tical and environmental causes (Queste et al., 2012). Diverse causes of
faults are identified, ranging from logistic-driven faults, conventionally
driven by human errors as incorrect ballasting and trimming condi-
tions, to mechanical ones, as incorrect design, leaks and malfunctioning
components. While most of the listed faults can be mitigated with
sufficient planning and preliminary mission tests, environment-linked
failures are usually more severe and intrinsically difficult to forecast
due to their abrupt and chaotic nature. Environmental disruptions com-
prise getting tangled in drifting fishing nets, colliding with other vessels
during the communication phase on surface (Queste et al., 2012) or get-
ting attacked by large ocean predators, as white sharks (Stanway et al.,
2015). Additionally, UGs deployed in shallow tropical waters nearby
the equator are particularly prone to biofouling events (Anderlini et al.,
2020). The growth of marine organisms such as barnacles over the
control surfaces can lead to a loss of drag to lift ratio performance or
to jamming, in the worst case scenarios. All the aforementioned events
can affect the correct functionality of onboard actuators for both AUVs
and UGs and require devising FTC schemes to prevent the catastrophic
loss of the vehicle.

FTC methods are conventionally split in Active and Passive tech-
niques. Active FTC (AFTC) methods exploit Fault Detection and Iso-
lation diagnosis systems (Boem et al., 2019) and cover a plethora of
diverse control architectures. AFTC architectures encompass various
strategies, such as switching between a set of pre-computed control
laws, online retuning of control gain, or even a complete redesign of
the controller structure, among other approaches. Active methods can
generally ensure satisfactory control performance following a fault, but
are usually computationally expensive, depend on precise model infor-
mation and suffer from a period of delay associated to the estimation
of the fault location and severity. In opposition, Passive FTC (PFTC)
architectures entail designing a unique set of static gain that guarantees
stability in both nominal and faulty scenarios (Zhang & Jiang, 2008).
With respect to AFTC, PFTC techniques results in more conservative
control performance in the nominal (faultless) scenario, whilst being
easier to design and needing lower computational requirements. Choos-
ing between AFTC and PFTC methods depends on the application of
interest and, in turn, on the tradeoff between stability requirements and
control performance (Verhaegen et al., 2010).

Underwater platforms, such as AUVs and UGs, represent a cate-
gory of exceptionally expensive vehicles operating in highly uncertain
conditions, where reliability and safety are often preferred to higher
performance. In the specific case of UGs, where energy saving de-
termines the possibility to collect additional or more detailed data,
employing dedicated sensors to continuously monitor the status of the
actuators does not represent an attractive option. Onboard sensors
used to estimate position, velocity and attitude are oftentimes entirely
turned off and the whole control systems module is only intermittently
switched on to perform periodic corrective actions (Graver, 2005).
More broadly, in every field where the widespread sensoring and
algorithms use cannot be assumed due to cost, power or complexity
constraints, PFTC represents the option with the most significant po-
tential impact. Thence, the PFTC class of controllers is the focus of this
study.

Robust Control (RC) techniques are oftentimes employed to design
2

PFTCs, by minimising, for instance, the H2 or H∞-norms between
exogenous inputs and desired performances (Blanke et al., 2006). Non-
linear techniques can also be employed via leveraging the Lyapunov
theory to extend the nominal control law with additional terms com-
pensating for partial loss of actuator efficiency (Benosman & Lum,
2009). Among several options, in the underwater domain, RCs rep-
resent the most widespread fault-tolerant class of technique (Katebi
& Grimble, 1999). A limiting factor of employing RCs is represented
by the necessity to define sensible operating points for linearisation,
e.g. in Kaminer et al. (1991), as the underwater domain is characterised
by highly nonlinear and coupled dynamics.

In recent times, machine-learning methods employing Artificial
Neural Network (ANN) were employed in (faultless) AUV control
applications (Anderlini et al., 2019; Carlucho et al., 2018; Thanh &
Anh, 2022). ANN-based methods can also be adapted to design PFTC
systems (Dooraki & Lee, 2020). In the general formulation, however,
the rigorous stability of machine-learning-based controllers over a
continuous domain is not certified, as the controllers are synthesised
based on a finite training set. Hence, recently, a new trend focuses
on neural controllers equipped with a formal proof of stability, based
on Satisfiability Modulo Theories (SMT)-solving. SMTs are automated
reasoning tools devised to deal with the problem of deciding whether
a mathematical formula is satisfiable over a bounded domain of real
numbers. SMTs can be used to verify if a function abides prescribed
properties, e.g. if it is positive definite. The intersection between formal
verification techniques and machine-learning is thus an interesting
field where Lyapunov-based techniques find applications, e.g. Abate
et al. (2021, 2020), Ahmed et al. (2020), Edwards et al. (2023).
One such architecture relying on SMT-solving is the Augmented Neural
Lyapunov Control (ANLC): two ANNs are employed, one representing a
control law, and a second one embodying a Control Lyapunov Function
(CLF) (Chang et al., 2019; Grande, Peruffo, Anderlini, & Salavasidis,
2023). This method exploits a loop between two main modules, a
Learner and a Falsifier, with a third supporting module, referred to
as Translator, employed as interface between the former two. The
Learner is tasked with training the two ANNs starting from a finite
small set of initial samples (sparse), that grows in size based on
a CounterExample-Guided Inductive Synthesis (CEGIS) (Solar-Lezama
et al., 2006). The Falsifier instead, formally verifies that the ANN
represents a CLF for the considered dynamics by taking as input the
symbolic expression of the CLF provided by the Translator, and verifies
the CLF over a domain of real numbers (dense). One typical choice of
the SMT solver is represented by dReal, due to its capability to handle
nonlinear expressions (Gao et al., 2013). The ANLC was shown capable
to synthesise controllers for nonlinear and unstable dynamics within
minimal computational requirements, showing attractive potential to
mix the learning ability of ANNs with formal certificate of closed-
loop stability. The interested reader may find a recent survey on
neural-based Lyapunov techniques in Dawson et al. (2023).

Contributions. This work is built upon the recent (Grande, Fenucci,
et al., 2023), as it exploits the CEGIS loop to synthesise Lyapunov
functions. Hereby, an extension of the method is devised, allowing
the design of a controller for a larger variety of faults: from purely
binary faults in Grande, Fenucci, et al. (2023), the updated procedure
is now able to provide a controller for the entire range of loss of ef-
fectiveness, alongside considering jamming events. The method entails
the automatic synthesis of linear or nonlinear control functions with
static gain that can be computed offline and deployed in real-time
closed-loop systems. To the best of the authors knowledge, this work
represents the first effort providing neural-based, passive fault-tolerant
control design, that deals with the entire range of actuator’s loss of
effectiveness. To showcase the reliability and strength of the procedure,
three realistic benchmarks are presented, indicative of typical faults
on diverse underwater platforms. As a further step towards devising
control laws practically usable in the field, a strategy to account for
actuator saturation is proposed, whilst still certifying the closed-loop

stability. The newly devised technique is compared against a robust
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Fig. 1. Augmented Neural Lyapunov Control architecture with Lyapunov function ANN (blue box), control function ANN (green box) and loss function backpropagation (red
dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
H∞ approach: the latter results in more energy-expensive control effort
and it does not satisfy saturation constraints. Additionally, given the
Lyapunov-based nature of the proposed method, key properties of the
closed-loop system such as the Region Of Attraction can not only
be investigated, but also tuned via dedicated gain parameters. The
proposed method allows for an intuitive understanding of the tolerated
performance degradation, defined as a maximum deviation from the
desired equilibrium. Finally, the algorithmic logic is illustrated and a
software tool is released open-source https://github.com/grande-dev/
pFT-ANLC.

2. Control Lyapunov function synthesis via CEGIS

The aim of this work is the design of passive fault-tolerant control
laws for a nonlinear dynamic system

�̇� = 𝒇 (𝒙, 𝒖, 𝜙𝑖), (1)

where 𝒙 ∈ D ⊆ R𝑛 is the system’s state, 𝒖 ∈ U ⊆ R𝑚 is the control
input, and 𝜙𝑖 denotes possible system faults. It is assumed that each
one of the 𝑝 actuators can be affected by faults (collected in a set 𝛷).
For brevity, the shorthand 𝒇𝒏(𝒙, 𝒖) is employed with reference to the
nominal system, i.e. in the absence of faults, whilst 𝒇𝝓𝒋

(𝒙, 𝒖) denotes the
dynamics characterised by the fault of the 𝑗th actuator (with 𝜙𝑗 ∈ 𝛷).
Aim of this work is the design of a control law that drives the system to
an equilibrium 𝒙⋆ ∈ D . Without loss of generality, in the following it
is assumed that the system exhibits an equilibrium 𝒙⋆ = 0. Along with
the design of a control law, a certificate of the closed-loop stability
via a CLF is provided. The synthesis of a CLF is built upon (Grande,
Peruffo, Anderlini, & Salavasidis, 2023) and it employs a neural control
framework, depicted in Fig. 1, in which two ANNs represent the CLF
and the control law, respectively. The control network can devise both
linear and nonlinear control laws, based on the user preference. Clearly,
the use of nonlinear control laws improves the learning capability of
the framework, at the expense of the computational complexity, as it
increases both the burden of the training algorithms, e.g. Stochastic
Gradient Descent (SGD), and of the verification step (carried out by
the SMT solver).

2.1. Method overview

The CEGIS paradigm evolves based on the information flow between
three modules, the Learner, the Translator and the Falsifier, as outlined
in Fig. 2. The first module trains the CLF and the control gains by iter-
atively minimising a loss function, expression of the three theoretical
Lyapunov conditions, as follows.

Definition 1 (Control Lyapunov Function Tedrake, 2023). Given a do-
main D and a system model 𝑓 ∶ D × U → D with unique equilibrium
3

point 𝒙⋆ ∈ D , such that 𝑓 (𝒙⋆, 𝒖) = 0; consider a function 𝑉 ∶ D ⊂
R𝑛 → R, 𝑉 ∈ 1. 𝑉 is a (Control) Lyapunov Function if there exists 𝒖
such that

𝑉 (𝒙⋆) = 0, (2a)

𝑉 (𝒙) > 0 ∀𝒙 ∈ D ⧵ {𝒙⋆}, (2b)

�̇� (𝒙, 𝒖) = ⟨𝛁(𝑽 )𝒙,𝒇 (𝒙, 𝒖)⟩ < 0, ∃𝒖 ∀𝒙 ∈ D ⧵ {𝒙⋆}, (2c)

where ⟨𝑎, 𝑏⟩ denotes the inner product of the terms 𝑎 and 𝑏. The
Learner, via the training of the neural networks, shall ensure that
the three conditions (2) are satisfied over a finite dataset. Once (2)
is valid over the finite size dataset, the training is halted and the
ANNs are passed to the Translator, which symbolically evaluates the
candidate controller (𝑢𝑐) and candidate CLF (𝑉𝑐). The resulting ex-
pressions are then transmitted to the Falsifier, where the Lyapunov
stability conditions are formally evaluated over a bounded domain
of real numbers. Following, either the candidate CLF is verified to be
valid and the procedure terminates, or a set of points violating the
Lyapunov conditions are generated. Such instances of points violating
(2) are called counterexamples (CEs). If any CE is found, it is added to
the dataset, which is fed back to the Learner, restarting the training
procedure with additional information.

2.2. Learner

Given a nominal dynamical system �̇� = 𝒇 (𝒙, 𝒖) and a target equi-
librium 𝒙⋆, the training procedure starts from a (small) initial sample
set 𝑆 composed of randomly selected states (𝒔𝒊) generated within a
domain D (containing 𝒙⋆). At each learning iteration, a cost function
is evaluated and the ANN parameters (𝜂) are updated according to the
SGD algorithm. A detailed description of the cost functions is outlined
in the following Section 3.

At the end of the training, this procedure returns a candidate control
law and a candidate CLF that satisfy the Lyapunov conditions (2) over
the finite sample set, i.e. 𝑉𝑐 (𝒔𝒊) > 0, �̇�𝑐 (𝒔𝒊, 𝒖𝒊) < 0, ∀ 𝒔𝒊 ∈ 𝑆, where 𝒖𝒊
represents the control law evaluated at sample 𝒔𝒊.

2.3. Translator

Once a candidate pair (𝑉𝑐 , 𝑢𝑐) is obtained, a corresponding symbolic
expression needs to be passed to the Falsifier. This step is carried out
by a module typically referred to as Translator (Abate et al., 2021),
hereby derived in the most general formulation for a feedforward ANN
encompassing bias. First, the output of a feedforward ANN layer 𝑖 is
recalled to be:

𝒛 = 𝜎 (𝑾 𝒛 + 𝑩 ), 𝑖 = 1,… , 𝑘 (3)
𝒊 𝑖 𝒊 𝒊−𝟏 𝒊
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Fig. 2. Learner-Falsifier CEGIS loop: the Learner trains the ANNs, the Translator transforms the ANN equations into symbolic expressions while the Falsifier verifies the formal
validity of the CLF (𝑉 ) (Grande, Peruffo, Anderlini, & Salavasidis, 2023).
where 𝒛𝒊−𝟏 represents the input to the 𝑖th layer, and 𝑾 𝒊,𝑩𝒊, 𝜎𝑖 are the
corresponding weight, bias and activation function, respectively, with
𝑘 the total number of ANN layers.

The symbolic expression of the CLF (𝑉 (𝒙)) can be obtained by a
forward pass of the Lyapunov network as:

𝑉 (𝑥) = 𝜎𝑘(𝑾 𝒌 𝒛𝒌−𝟏 + 𝑩𝒌). (4)

Next, to symbolically evaluate the Lie derivative, the formal defini-
tion is recalled first: �̇� = ⟨𝛁(𝑽 )𝒙,𝒇 (𝒙, 𝒖)⟩, with 𝛁(𝑽 )𝒙 ∶= 𝜕𝑉 (𝑥)

𝜕𝒙 =
[ 𝜕𝑉𝜕𝑥1

⋯ 𝜕𝑉
𝜕𝑥𝑛

]𝑇 .
This gradient can be evaluated as the following chain rule:

𝜕𝑉
𝜕𝒙

=
𝜕𝑧𝑖
𝜕𝒛𝒊−𝟏

𝜕𝒛𝒊−𝟏
𝜕𝒛𝒊−𝟐

⋯
𝜕𝒛𝟏
𝜕𝒛𝟎

(5)

with 𝒛𝟎 = 𝒙 and 𝑧𝑖 = 𝑉 . The partial derivative of the output of a generic
layer 𝑖 with respect to the output of the previous layer can be evaluated
by means of (3) as:
𝜕𝑧𝑖
𝜕𝒛𝒊−𝟏

=
𝜕𝜎(𝑾 𝒊 𝒛𝒊−𝟏 + 𝑩𝒊)

𝜕𝒛𝒊−𝟏
=

𝜕𝜎(𝑾 𝒊 𝒛𝒊−𝟏 + 𝑩𝒊)
𝜕(𝑾 𝒊 𝒛𝒊−𝟏 + 𝑩𝒊)

𝜕(𝑾 𝒊 𝒛𝒊−𝟏 + 𝑩𝒊)
𝜕𝒛𝒊−𝟏

. (6)

It is thus possible to compute the first factor of Eq. (6) as:
𝜕𝜎(𝑾 𝒊 𝒛𝒊−𝟏 + 𝑩𝒊)
𝜕(𝑾 𝒊 𝒛𝒊−𝟏 + 𝑩𝒊)

= diag[𝜎′(𝑾 𝒊 𝒛𝒊−𝟏 + 𝑩𝒊)], (7)

where diag[𝒂] represents a diagonal matrix whose entries are the ele-
ments of vector [𝒂] and with ℎ𝑖 denoting the number of neurons of the
𝑖th layer, such that 𝑾 𝒊 ∈ Rℎ𝑖×ℎ𝑖−1 , 𝑩𝒊 ∈ Rℎ𝑖 and 𝒛𝒊 ∈ Rℎ𝑖 . Next, the
second factor of Eq. (6) can be calculated as:
𝜕(𝑾 𝒊 𝒛𝒊−𝟏 + 𝑩𝒊)

𝜕𝒛𝒊−𝟏
= 𝑾 𝒊. (8)

Overall, Eq. (6) can be expressed as:
𝜕𝜎(𝑾 𝒊 𝒛𝒊−𝟏 + 𝑩𝒊)

𝜕𝒛𝒊−𝟏
= diag[𝜎′(𝑾 𝒊 𝒛𝒊−𝟏 + 𝑩𝒊)] 𝑾 𝒊. (9)

To conclude, the Lie derivative of 𝑉 (𝑥) is computed as:

�̇� =

( 𝑘
∏

𝑖=1
diag[𝜎′𝑘−𝑖+1(𝑾 𝒌−𝒊+𝟏 𝒛𝒌−𝒊 + 𝒃𝒌−𝒊+𝟏)] 𝑾 𝒌−𝒊+𝟏

)

𝒇 (𝒙, 𝒖) (10)

where 𝒇 (𝒙, 𝒖) embeds the symbolic expression of 𝒖(𝒙), in turn obtained
via Eq. (3).

2.4. Falsifier

Given a candidate CLF 𝑉𝑐 (𝒙) and its corresponding Lie derivative
�̇�𝑐 (𝒙, 𝒖𝒄 ), the Falsifier ought to prove that conditions (2) are satisifed
over the entire dense domain D via SMT solving. As verifying complex
nonlinear expressions, such as the ones stemming from the computation
of the Lie derivative, represent the computational bottleneck of this
procedure, the number of callbacks to the SMT solvers should be
minimised. To this end, a Discrete Falsifier (DF) module is employed as
support, tasked with numerically evaluating the correctness of (2) over
4

a grid of prescribed precision (Grande, Peruffo, Anderlini, & Salava-
sidis, 2023). The DF device slims the overall computational burden
by reducing the number of callbacks to the SMT Falsifier, that gets
invoked only when no CE is found by the DF. Additionally, the DF
allows to return several CEs at each callback, speeding up the overall
learning capability of the framework while limiting issues linked to
dataset overfitting.

Upon invoking the SMT Falsifier, the proposed procedure searches
for an instance where conditions (2) do not hold. Formally, the Falsifier
seeks for an occurrence of 𝒙:

∃𝒙 ∶ 𝒙 ∈ D ⧵ {𝒙⋆} ⟹

(

𝑉 (𝒙) ≤ 0 ∨ �̇�𝑛(𝒙, 𝒖) ≥ 0
)

. (11)

As previously mentioned, such an occurrence 𝒙 violates the Lyapunov
conditions and is defined as a CE. If the Falsifier finds no CEs, the candi-
date CLF is indeed valid over D , and the overall procedure terminates.
Alternatively, it provides a CE point, where either Lyapunov condition
is invalidated. This point is then added to the training dataset, and the
learning restarts. Notice that condition 𝑉 (𝒙⋆) = 0 is omitted from the
Falsifier constraints (11): this condition is verified separately, since it
simply represents a pointwise evaluation.

It is worth recalling that dReal is a sound solver, namely, when
no CE is obtained, the CLF is formally valid over (a domain of) the
real numbers. Nonetheless, dReal is 𝛿-complete, thus spurious CEs might
be returned in the neighbourhood of the origin (within a precision
𝛿). Therefore, a small neighbourhood of the origin is excluded from
the SMT solver domain. This limits the stability certificate that can
be provided with dReal to the 𝜖-stability of 𝒙⋆: namely, at steady-
state the state-space trajectories contract to ‖𝒙‖2 ≤ 𝜖 (Gao et al.,
2019) (with ‖𝒂‖2 =

√

𝑎21 +⋯ + 𝑎2𝑛 denoting the 2-norm of vector 𝒂).
The latter property is of great importance in real world applications,
as even bounding a dynamics to oscillate sufficiently near the target
equilibrium is a desired outcome of a control system (La Salle &
Lefschetz, 1961). Especially within the fault-tolerant framework, this
feature, rather than being a limitation, represents a useful additional
tuning parameter. In presence of an actuator fault, the dynamical
model is expected to deviate from the reference trajectory: the scope of
fault-tolerant control includes the minimisation of this deviation. The
𝜖-stability property proves that trajectories never exit a neighbourhood
of the target setpoint, or, in other words, guarantees the forward
invariance of the 𝜖-stability bound. The validity domain of the CLF is
thus defined as: 𝒙 ∈ D ∶ 𝜖 ≤ ‖𝒙‖2 ≤ 𝛾, where 𝜖, 𝛾 are design parameters.
This property fulfils one of the most significant requirements of FTC,
i.e. guarantees a graceful performance degradation within a prescribed
region tuned during the control system design.

3. Synthesis of passive fault-tolerant control laws

The introductory ANLC method presented in Grande, Peruffo, An-
derlini, and Salavasidis (2023) proposes the synthesis of controllers
for nominal (faultless) dynamics. In this section, the ANLC method is
extended by devising tailored modification to both the Learner and
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the Falsifier, to guarantee resilient fault-tolerant properties. A crucial
assumption should be stated first.

Assumption 1. In this work, at most only one fault is assumed to be
present at each time. A situation where multiple faults materialise at
the same time is oftentimes symptomatic of a non-recoverable problem
on the platform, and more drastic countermeasures (e.g. abort of the
mission and recover the vehicle) are required.

The ANLC procedure can be extended to FTC by (𝑎) defining a set of
dynamics capturing the nominal and faulty systems and (𝑏) rendering
all the associated Lie derivatives negative definite. Hereby, the idea
is illustrated in the case of complete loss of effectiveness, and, in
Section 8, the framework is generalised to the case when partial losses
of actuator effectiveness are accounted for. It is assumed that each one
of the 𝑝 actuators can be affected by complete faults, hence a total of
(𝑝+1) dynamics (i.e. models with a fault on the 𝑗th actuator in addition
to the nominal model) can be used to describe the nominal and faulty
scenarios. To guarantee that 𝒙⋆ is stable for all the (𝑝 + 1) dynamics,
the corresponding (𝑝 + 1) Lie derivatives need to be negative definite;
formally:

(�̇�𝑛(𝒙, 𝒖) < 0) ∧ (∀𝑗 ∈ 𝛷 ∶ {�̇�𝜙𝑗 (𝒙, 𝒖) < 0}) (12)

where �̇�𝑖(𝒙, 𝒖) = ⟨𝛁𝑽 (𝒙),𝒇 𝒊(𝒙, 𝒖)⟩, for 𝑖 = 𝑛 (nominal dynamics) or
𝑖 ∈ 𝛷, where 𝛷 represents the set of faults.

The training is set up in order to synthesise a CLF abiding (12).

3.1. Fault-tolerant learner

As proposed in Grande, Peruffo, Anderlini, and Salavasidis (2023),
two loss functions are employed in this work. The first one, denoted
as Strict Lyapunov Risk Loss (LSLR), is employed to detect when, over
every sample (𝒔𝒊) within the training set 𝑆, the theoretical Lyapunov
conditions are verified, namely occurring when:

∀𝒔𝒊 ∈ 𝑆 ∶ {𝑉 (𝒔𝒊) > 0, �̇� (𝒔𝒊, 𝒖𝒊) < 0}. (13)

The LSLR, is therefore defined as:

𝐿𝑆𝐿𝑅 =
𝑁
∑

𝑖=1
R(−𝑉 (𝒔𝒊)) +

𝑁
∑

𝑖=1
R(�̇� (𝒔𝒊, 𝒖𝒊)) + 𝑉 (0)2 (14)

where R(𝑎) = 𝑅𝑒𝐿𝑈 (𝑎) = max(0, 𝑎) for a generic input 𝑎 and 𝑁 the
cardinality of the sample set 𝑆. When the 𝐿𝑆𝐿𝑅 is equal to zero, all the
points within 𝑆 respect the theoretical Lyapunov conditions (2) as the
Learner finds a candidate CLF, that can be translated and passed to the
Falsifier for formal verification. Although a candidate CLF is obtained
when 𝐿𝑆𝐿𝑅 = 0, a user may be interested in encouraging a paraboloid
shape to the CLF, in order to increase the Region Of Attraction (ROA)
of the closed-loop system around 𝒙⋆. To this end, an improved loss
function is defined, referred to as Empirical Lyapunov Risk Loss (𝐿𝐸𝐿𝑅),
whilst 𝐿𝑆𝐿𝑅 is employed as a logical condition to stop the learning
procedure.

The Empirical Risk Loss extends the definition of LSLR by accounting
for a fourth term regulating the size of the ROA and CLF shape, and for
further properties of the Lie derivative as:

𝐿𝐸𝐿𝑅 = 𝛼1
𝑁
∑

𝑖=1
R(−𝑉 (𝒔𝒊)) + 𝛼2𝐿�̇� + 𝛼3𝑉 (0)2

+𝛼4
1
𝑁

𝑁
∑

𝑖=1
(‖𝒔𝒊‖2 − 𝛼𝑅𝑂𝐴 𝑉 (𝒔𝒊))2, (15)

with 𝛼1,… , 𝛼4, 𝛼𝑅𝑂𝐴 tuning coefficients that can be selected as dis-
cussed in Grande, Peruffo, Anderlini, and Salavasidis (2023). The loss
term associated with the Lie derivative (𝐿�̇� ), capturing both nominal
and faulty dynamics is:

𝐿�̇� =
𝑁
∑

R(𝛁𝑽 (𝒔𝒊) ⋅ 𝒇𝒏(𝒔𝒊, 𝒖𝒊) + 𝛼off) +
5

𝑖=1
Fig. 3. CLFs with different 𝛼𝑅𝑂𝐴 tuning, where 𝛾 denotes the upper boundary of the
domain D.

𝑝
∑

𝑗=1

𝑁
∑

𝑖=1
R(𝛁𝑽 (𝒔𝒊) ⋅ 𝒇𝝓𝒋

(𝒔𝒊, 𝒖𝒊) + 𝛼off) (16)

where 𝛼off is an additional tuning term used to enforce more negative
Lie derivatives (Chang et al., 2019).

This loss function at the same time enforces the positiveness of 𝑉 ,
the negativeness of the Lie derivatives �̇�𝑖, the condition 𝑉 (0) = 0, and
it fosters circular level sets of the CLF. It is important to recall that
the goal of the training is to achieve 𝐿𝐸𝐿𝑅 ≈ 0, namely it is required
that approximately the CLF resembles a paraboloid of revolution, whilst
verifying 𝐿𝑆𝐿𝑅 = 0 strictly. The lower 𝛼𝑅𝑂𝐴 the steeper the CLF, with
the effect of tuning 𝛼𝑅𝑂𝐴 illustrated in Fig. 3.

3.2. Fault-tolerant falsifier

Once the training procedure reaches the end of its operations, the
Learner returns a suitable candidate CLF which is checked by the
verification engine to formally certify that the Lyapunov conditions are
satisfied over the whole continuous domain D . If the CLF is found not
abiding the theoretical Lyapunov conditions, a CE is returned, added to
the training set 𝑆 and the training is restarted. The verification check
(11) can be modified to accommodate faulty dynamics as follows:

∃𝒙 ∶ 𝒙 ∈ D ⧵ {𝒙⋆} ⟹

(

𝑉 (𝒙) ≤ 0 ∨ �̇�𝑛(𝒙, 𝒖) ≥ 0 ∨

{�̇�𝜙𝑗 (𝒙, 𝒖) ≥ 0}𝑝𝑗=1
)

, (17)

where the latter term denotes the sequence of the 𝑝 Lie derivatives
associated to the faulty systems. Similarly to the nominal case, if the
Falsifier cannot find an instance satisfying (17), the CLF is certified
to be valid, and, consequently, the system stability is guaranteed even
when an actuator within the set 𝛷 fails. The proposed method is hereby
referred to as passive Fault-Tolerant Augmented Neural Lyapunov Control
(pFT-ANLC).

4. Software

Following the description of the proposed pFT-ANLC method, in
Algorithm 1 the pseudocode underlying the open-source software tool
is introduced. The algorithm covers the Learner, Discrete and SMT
falsifiers, whilst illustrating the overall learning logic.

The algorithm starts by generating a training dataset 𝑆 composed
of random samples 𝒔𝒊 from a uniformly distributed hypercube of size
𝛾. Next, at each training iteration the Learner gradually minimises the
loss 𝐿𝐸𝐿𝑅 by updating the ANN weights through a SGD step. At each
learning iteration, the current values of the ANNs weight and bias
are collected in a vector 𝜂, defining 𝑉𝜂 and 𝑢𝜂 . The learning steps are
iterated until the Lyapunov conditions are verified ∀𝒔𝒊 ∈ 𝑆, i.e. when
𝐿𝑆𝐿𝑅 = 0. Once the latter relationship holds, the candidate CLF (𝑉 𝑆

𝑐 ),
the nominal Lie derivative (�̇� 𝑆 ) and the set of Lie derivatives associated
𝑛𝑐
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to the faulty systems (�̇� 𝑆
𝜙𝑖,𝑐

) are symbolically obtained by means of the
Translator. The Discrete Falsifier is thus invoked to find CEs (𝐶𝐸𝐷𝐹 )
ver a prescribed discretisation of the domain. If CEs are found, the
atter are added to 𝑆 and the learning stage is restarted. When no
Es are obtained instead, the SMT Falsifier is tasked with verifying the
yapunov conditions over the dense domain of the Reals. If a CE is
btained via SMT-solving (𝐶𝐸𝑆𝑀𝑇 ) the latter is added to 𝑆 and the
earning stage restarted. Otherwise, the candidate CLF 𝑉 𝑆

𝑐 is formally
erified to be correct, and the algorithm returns the synthesised control
aw.

As the aim of the tool is to synthesise CLFs that minimise the
oss function 𝐿𝐸𝐿𝑅, a parameter 𝜏 is introduced, setting a prescribed
recision of approximation of the CLF, i.e. the smaller 𝜏 the closer
he CLF will resemble the paraboloid of revolution with the desired
haracteristics. Note that this is an additional feature that can be turned
ff when not required.

It is worth recalling that the verification of first-order logical for-
ulae with generic nonlinear functions over the theory of nonlinear

rithmetic is an undecidable problem. The SMT solver chosen for this
tudy solves a 𝛿-complete falsification constraint stemming into an NP-
ard task (Chang et al., 2019). Such a SMT choice guarantees that the
roblem can be formally solved provided the exclusion of the 𝜖-stability
ound in the neighbourhood of the origin, as detailed in Section 2.4.
s the verification step represents the computational bottleneck of the
rocedure, a timeout is introduced, defining a maximum time threshold
or the SMT Falsifier to compute the CEs. If the timeout is exceeded, the
raining run is halted, flagged as not successful and a new run initialised
ith a different seed started.

Finally, the use of a selective sliding window is recalled (Grande,
eruffo, Anderlini, & Salavasidis, 2023), ensuring the dataset size to
emain bounded as the training proceeds and new CEs are generated.
urther algorithmic details regarding the use of a learning rate sched-
ler and about the sampling step of the Discrete Falsifier are discussed
n Grande, Peruffo, Anderlini, and Salavasidis (2023).

The software tool aims at synthesising a unique set of gain that
guarantees closed-loop stability in both the nominal and in the faulty-
case scenarios. The control function, trained offline, is then deployed
online in closed-loop applications without requiring further adjust-
ments or real-time tuning. The proposed software tool employs Python
3.9, dReal 4.21 and PyTorch 1.7. Installation instructions designed to
enhance portability over different Operating Systems and a user-guide
are provided within the associated repository page.

5. Case study A: Control of an autonomous underwater vehicle

In this section, the proposed method is applied to a case study
encompassing the control of an AUV. Differently from the neural-
Lyapunov studies (Chang et al., 2019; Grande, Peruffo, Anderlini, &
Salavasidis, 2023), the goal is to synthesise a control to stabilise the
system around a non-zero equilibrium, that, in this case, coincides
with maintaining the AUV at a desired target speed. The AUV actuator
configuration is inspired to the hover-capable AUV developed at the
National Oceanography Centre,1 as reported in Fig. 4. Each thruster is
capable of generating force both in the positive and negative direction.

For this preliminary study, a two-dimensional dynamics accounting
for surge speed (𝑢) and angular velocity around the vertical axis (𝑟),
is used to describe the planar motion of the AUV, whilst the sway
speed (𝑣) is neglected. Each one of the three thrusters 𝐹𝑖 is oriented
t an angle 𝛼𝑖 with respect to the y-body axis (𝑦𝐵), considered positive
lockwise, and is located at distance 𝑙𝑖 from the CoG, with 𝑙𝑖,𝑥 and 𝑙𝑖,𝑦
ndicating the projections of 𝑙𝑖 along the 𝑥𝑏 and 𝑦𝑏-axis, respectively.

By denoting with 𝑚 the mass of the vehicle and with 𝐽𝑧 the moment

1 https://noc.ac.uk/technology/technology-development/marine-
utonomous-robotic-systems
6

a

Algorithm 1 Passive Fault-Tolerant Augmented Neural Lyapunov
Control
1: function Learner(𝑆, 𝑓 ,ANN𝜂)
2: repeat
3: 𝑉𝜂(𝑠𝑖), 𝑢𝜂(𝑠𝑖) ← ANN𝜂(𝑠𝑖) ⊳ ANN forward pass
4: �̇� ← Translator
5: Compute loss 𝐿𝐸𝐿𝑅, 𝐿𝑆𝐿𝑅
6: 𝜂 ← 𝜂 − ∇𝜂 𝐿𝐸𝐿𝑅 ⊳ Update weights
7: until (𝐿𝑆𝐿𝑅 > 0)
8: return 𝑉𝜂(𝑠𝑖), 𝑢𝜂(𝑠𝑖)

9:
0: function Discrete Falsifier(𝑉 𝑆

𝑐 , �̇� 𝑆
𝑛𝑐
, �̇� 𝑆

𝜙𝑖,𝑐
,D)

1: Discretise D and numerically evaluate (𝑉 𝑆
𝑐 ≤ 0, �̇� 𝑆

𝑛𝑐
≥ 0, �̇� 𝑆

𝜙𝑖,𝑐
≥

0)
2: 𝐶𝐸𝐷𝐹 ← Violations points
3: return 𝐶𝐸𝐷𝐹

4:
5: function SMT Falsifier(𝑉 𝑆

𝑐 , �̇� 𝑆
𝑛𝑐
, �̇� 𝑆

𝜙𝑖,𝑐
,D)

6: Using SMT solver to verify conditions
7: return sat or 𝐶𝐸𝑆𝑀𝑇

8:
9: function Main()
0: Input: dynamics (𝑓𝑛, 𝑓𝜙𝑖 ), initial dataset (𝑆), Falsifier domain

D (𝜖, 𝛾), loss function (𝛼(⋅), 𝜏), learning rate, optional initial linear
control gains (𝑞𝑙𝑞𝑟)

21: Initialise ANN size (optional: initialise linear control gains with
𝑞𝑙𝑞𝑟)

2: repeat
3: if (size(𝑆) ≥ 𝑆𝑚𝑎𝑥): Apply sliding window

24: 𝑉𝜂(𝑥), 𝑢𝜂(𝑥) ← Learner(𝑆, 𝑓 ,ANN𝜂)
5: Compute symbolic values: 𝑓𝑆

𝑛𝑐
, 𝑓𝑆

𝜙𝑖,𝑐
, 𝑢𝑆𝑐 , 𝑉

𝑆
𝑐 , �̇� 𝑆

𝑛𝑐
, �̇� 𝑆

𝜙𝑖,𝑐
6: if (𝐿𝑆𝐿𝑅 == 0 and 𝐿𝐸𝐿𝑅 ≤ 𝜏) then

27: 𝐶𝐸𝐷𝐹 ← Discr. Falsifier(𝑉 𝑆
𝑐 , �̇� 𝑆

𝑛𝑐
, �̇� 𝑆

𝜙𝑖,𝑐
,D)

28: if 𝐶𝐸𝐷𝐹 is None then
29: 𝐶𝐸𝑆𝑀𝑇 ← SMT Falsifier(𝑉 𝑆

𝑐 , �̇� 𝑆
𝑛𝑐
, �̇� 𝑆

𝜙𝑖,𝑐
,D)

30: 𝑆𝐶𝐸 ← (𝐶𝐸𝐷𝐹 ∪ 𝐶𝐸𝑆𝑀𝑇 )
31: if (not sat): 𝑆 ← (𝑆 ∪ 𝑆𝐶𝐸 )
32: until not (converged or timeout)

of inertia around the vertical axis, the AUV dynamics, characterised by
𝒙 = [𝑢, 𝑟]𝑇 and 𝒖 = [𝐹1, 𝐹2, 𝐹3]𝑇 , is described as:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

�̇�1 =
−𝑋𝑢𝑥1 −𝑋𝑢𝑢𝑥21 + ℎ1𝐹1,𝑥 + ℎ2𝐹2,𝑥 + ℎ3𝐹3,𝑥

𝑚

�̇�2 =
−𝑁𝑟𝑥2 −𝑁𝑟𝑟𝑥22 + (−𝐹1,𝑥𝑙1,𝑦 + 𝐹1,𝑦𝑙1,𝑥)ℎ1

𝐽𝑧
+

(−𝐹2,𝑥𝑙2,𝑦 + 𝐹2,𝑦𝑙2,𝑥)ℎ2 + (−𝐹3,𝑥𝑙3,𝑦 + 𝐹3,𝑦𝑙3,𝑥)ℎ3
𝐽𝑧

(18)

where 𝐹𝑖,𝑥 = 𝐹𝑖 sin(𝛼𝑖) and 𝐹𝑖,𝑦 = 𝐹𝑖 cos(𝛼𝑖) represent the projections of
𝑖 along the 𝑥𝐵 and 𝑦𝐵-axis, respectively; 𝑋𝑢, 𝑋𝑢𝑢 denote the linear
nd quadratic surge drag coefficients, whilst 𝑁𝑟, 𝑁𝑟𝑟 the linear and
uadratic yaw drag coefficients.

The proposed case study investigates the capability to synthesise
ontrol laws in scenarios involving progressively more faults. Starting
ith a possible fault occurring on the first thruster 𝐹1 (aft port) only,

aults on 𝐹1 or on 𝐹3 (bow) are considered, and finally, on 𝐹1 or on
2 (aft starboard) or on 𝐹3. The aim is to maintain the AUV at 𝒙⋆ =
0.5, 0.0] both in the nominal and faulty scenarios. For this application,
nonlinear control law is employed. The selected ANN architecture is

https://noc.ac.uk/technology/technology-development/marine-autonomous-robotic-systems
https://noc.ac.uk/technology/technology-development/marine-autonomous-robotic-systems
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Fig. 4. AUV vehicle model with three (fixed) thrusters moving over the horizontal
plane, characterised by surge speed (𝑢), sway speed (𝑣) and angular rate (𝑟).

Table 1
AUV campaign – ANN architecture.

Parameter Lyapunov ANN Control ANN

Layer size [2, 10, 10, 1] [2, 30, 3]
Bias [No, No, No] [Yes, Yes]
𝜎 [𝑥2, linear, linear] [tanh, linear]

reported in Table 1, where the input, hidden, and output layers’ sizes
are outlined, along with the presence of the bias and the activation
functions.

The training is carried out on an unassuming office laptop without
GPU: the machine features an Intel Core i7-8665U CPU with 4 cores
running at 1.90 GHz and 16 GB of RAM. During the training, 4 threads
are generated and executed over 2 CPU cores, whilst 0.7 GB of RAM is
requested. Table 2 reports the results of three simulation campaigns run
for different faults scenarios. Each simulation campaign is composed
of 10 tests, all sharing the same hyperparameters with the exception
of the seed (within each campaign, the seeds are cycled from 1 to
10). Results are reported in terms of: number of learning iterations
(as minimum, maximum, mean and standard deviation), computational
time and success rate (how many of the 10 tests successfully find a valid
CLF). Note that if a CLF is not found within 1000 learning iterations, the
run is flagged as unsuccessful. For the most demanding test scenario,
i.e. the one with faults occurring on 𝐹1 or on 𝐹2 or on 𝐹3, all the 9
converged tests terminate within a maximum time of 39 [s]. The results
reported in Table 2 illustrate how the required computational effort
increases as more faults are accounted for. Additionally, fine-tuning
the hyperparameters of the control ANN becomes more decisive as the
number of faults increases: smaller architectures were tested for the
case of faults on 𝐹1 alone and of (𝐹1 or 𝐹2) faulty, without significant
differences in the success rate values. On the other hand, ANN architec-
tures with limited number of neurons fail to systematically synthesise
CLFs when faults can occur on all the three thrusters, highlighting
the need to select sufficiently expressive nonlinear control functions as
the problem complexity rises. One resulting CLF, obtained after 772
training iterations is reported in Fig. 5.

Finally, closed-loop performance of the resulting fault-tolerant dy-
namics is illustrated and discussed. Fig. 6 reports the AUV surge dynam-
ics, showing the range of different dynamics emerging from different
control laws (depicted with the blue interval), stemming from the 10
7

converged runs synthesised for the case of (𝐹1 or 𝐹3) thrusters possibly
failing. The dynamics are initialised at 0.4 [m/s], and are shown
converging to the desired 𝜖-stability bound (0.5 ± 0.01 [m/s]). When a
fault occurs at 𝑡=50 [s] on thruster 𝐹1, the surge speeds undergo a drop,
that, anyhow, always remain within the desired 𝜖-stability threshold.
This behaviour is achieved as the pFT-ANLC learns automatically to set
the steady-state target higher to compensate for the possible occurrence
of faults. This is in turn accomplished by applying an excess of force
on 𝐹2 with respect to 𝐹1 and a non-zero 𝐹3, as illustrated in Fig. 7. An
analogous behaviour is noticed in the angular rate dynamics, reported
in Fig. 8, as the controllers learn to converge to an offset value with
respect to 𝑥⋆2 during nominal operations, to mitigate for possible faults.

6. Case study B: Underwater glider with saturated control

The next case study focuses on an UG during the most common oper-
ating condition, i.e. a profiling steady dive, covering the majority of the
deployment time (Leonard & Graver, 2001). Gliders follow a saw tooth
pattern adopting steady gliding conditions on the ascent and descent.
The UGs alternate a positive buoyancy and a nose-up configuration
during the climbing phase to negative buoyancy combined with nose-
down during dives. For this case study, only the vertical dynamics is
considered as the sagittal plane is demonstrated to be invariant: when
no initial linear or angular out-of-plane accelerations are provided, the
vehicle remains indefinitely on the plane (Graver, 2005). A North-East-
Down (NED) frame with origin {𝑂𝑖} is chosen as inertial reference since
the distances involved in the simulations proposed are of small scale
as compared to the Earth radius. Next, a body-fixed reference frame
of origin {𝑂𝑏} and axes 𝑥𝑏-𝑧𝑏 is fixed at the centre of buoyancy of
the glider, which in turn coincides with the centroid of the hull. The
orientation of the latter is obtained by applying a rotation of 𝜃 (pitch
angle) around 𝑦𝑖 (positive nose-up). The 𝑥𝑏-axis of the body frame
is aligned with the longitudinal axis of the vehicle, while the 𝑧𝑏-axis
points downward. Following, a flow reference frame is aligned with
the direction of the glider speed (𝑉 ), with its origin coinciding with
{𝑂𝑏}, and the axes 𝑥𝑓 and 𝑧𝑓 are obtained by applying a rotation
of 𝛼 (angle of attack) from the body-fixed axes. This choice of the
terns, reported in Fig. 9, is convenient to express forces according to
standard hydrodynamic theory (Graver, 2005). In detail, hydrodynamic
forces, namely lift (𝐿) and drag (𝐷), are aligned with the flow-tern axes,
restoring forces, namely gravity (𝐺) and buoyancy (𝐵) act parallel to
the inertial axes and, finally, inertial forces (accounting for added mass
terms) are expressed in the body-fixed reference.

The aim of this study is to devise a control law that maintains
the body-fixed velocities of the UG within prescribed bounds when
potential faults occur. The body-fixed velocity along the 𝑥𝑏-axis is
hereby denoted as 𝑣1, while 𝑣3 is used for the velocity along 𝑧𝑏. The
onboard system leverages three actuators, a Variable Buoyancy Device
(VBD) and a pair of independent twin stern planes (𝛿1 and 𝛿2). This
vehicle concept is inspired by AUVs with redundant movable surfaces
designed in ‘‘+’’ or ‘‘×’’ configurations, such as the ones onboard the
Autosub Long Range series (Phillips et al., 2020) and to hybrid AUVs
as the Sea-Whale 2000 (Huang et al., 2019). These AUV configurations
allow to exploit redundant actuators when one of the two stern surfaces
fail. Additionally, as per standard gliders design, two masses can be
identified: a uniformly distributed static mass, lumped within a single
term (𝑚𝑠) located at {𝑂𝑏}, and an internal shifting mass (𝑚𝑝). The
position of 𝑚𝑝 is typically used to control the angular momentum of
the vehicle: as neither the pitch angle nor the associated angular rate
are controlled in this study, 𝑚𝑝 is modelled within the system dynamics,
but not included in the control vector.

Hydrostatic forces accounting for the gravity effect of the static
mass (𝑚𝑠) and of the shifting mass (𝑚𝑝) are computed as 𝐺𝑠 = 𝑚𝑠𝑔
and 𝐺𝑝 = 𝑚𝑝𝑔, respectively. The buoyancy force, accounting both
for the constant volume of the hull (∇ℎ) and for the variable volume
associated to the VBD, is computed as 𝐵 = 𝐵(∇ ) + 𝐵(𝑢 ) = 𝜌𝑔∇ +
ℎ 𝑉 𝐵𝐷 ℎ
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Fig. 5. Synthesised CLF for the AUV system.

Fig. 6. Closed-loop test AUV system: range of surge dynamics associated to 10 synthesised controllers (blue interval) — fault on 𝐹1 injected at 𝑡 = 50 [s]. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Closed-loop test AUV system: range of control efforts associated to 10 synthesised controllers (blue, red and green intervals) — fault on 𝐹1 injected at 𝑡 = 50 [s]. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2
AUV campaign – Synthesis result statistics.

Faulty Learning Time [s] Success
actuators iterations rate [%]

min mean(std.) max min mean(std.) max
𝐹1 18 96(67) 253 1 3(2) 5 100
𝐹1 or 𝐹3 18 116(85) 300 1 4(2) 9 100
𝐹1 or 𝐹2 or 𝐹3 64 562(343) 1000 4 10(10) 39 90
Fig. 8. Closed-loop test AUV system: range of angular rate dynamics associated to 10 synthesised controllers (blue interval) — fault on 𝐹3 injected at 𝑡 = 50 [s]. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Underwater Glider dynamics in the sagittal plane with restoring forces (𝐺𝑠 , 𝐺𝑝 , 𝐵(∇ℎ)), hydrodynamic forces (𝐿,𝐷), control forces (𝐵(𝑢𝑉 𝐵𝐷), 𝐹𝛿1 , 𝐹𝛿2 ) and inertial forces
(including added mass). The forces are modelled in the inertial frame (origin {𝑂𝑖}, in orange), body-fixed frame (origin {𝑂𝑏}, in green) and flow-fixed frame (origin {𝑂𝑏}, in red).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
𝜌𝑔𝑢𝑉 𝐵𝐷, with 𝜌 the density of the surrounding fluid. In this preliminary
study, the hull glider volume is assumed constant and not depending
on the vehicle depth. More advanced formulations embedding hull
compression due to pressure and temperature can be considered when
advancing this application (Anderlini et al., 2020; Bennett et al., 2021).
According to Zhang and Tan (2015), each stern plane 𝑗 generates an
additional lift force parallel to 𝑧𝑏, computed as 𝐹𝛿𝑗 = 𝐾𝐹𝛿𝐾𝑢𝛿𝑉

2𝛿𝑗 ,
with 𝐾𝑖 representing wing-specific hydrodynamic coefficients and 𝛿𝑗
the deflection angle, as shown in Fig. 9. Finally, 𝑚1 and 𝑚3 represent
the sum of the overall dry glider mass (𝑚𝑠 + 𝑚𝑝) and the added mass
along the longitudinal and vertical body axes, computed approximating
the glider hull to a prolate spheroid (Grande et al., 2021).

This model leverages three assumptions: in profiling operations, as
the VBD is actuated over long time span of 30 [s] or above in order to
save energy, the VBD dynamics is neglected (Bennett et al., 2021). Next,
it is assumed that the body-fixed velocities are measured, for instance
by means of a Doppler Velocity Logger. Finally, pitch angle and angle
of attack changes are considered negligible, as it is standard practice
for the pilots to tune flight parameters to ensure a constant glide slope
angle.
9

The corresponding dynamic model, derived based on previous
works (Bennett et al., 2021; Graver, 2005; Zhou et al., 2020), is
described as:

⎧

⎪

⎨

⎪

⎩

�̇�1 =
1
𝑚1

(−𝐷 cos 𝛼 + 𝐿 sin 𝛼 + sin 𝜃(𝐵 − 𝐺𝑠 − 𝐺𝑝))

�̇�3 =
1
𝑚3

(−𝐷 sin 𝛼 − 𝐿 cos 𝛼 + cos 𝜃(−𝐵 + 𝐺𝑠 + 𝐺𝑝) + 𝐹𝛿1 + 𝐹𝛿2 )
(19)

with the state-space vector defined as 𝒙 = [𝑣1, 𝑣3]𝑇 , and 𝒖 =
[𝑢𝑉 𝐵𝐷, 𝛿1, 𝛿2]𝑇 denoting the control vector. The control signals are in
turn embedded in the corresponding restoring and hydrodynamic forces
as 𝑢1 = 𝐵(𝑢𝑉 𝐵𝐷), 𝑢2 = 𝐹𝛿1 (𝛿1) and 𝑢3 = 𝐹𝛿2 (𝛿2). Given the steady-state
nature of the glides, hydrodynamic forces are computed through the
quasi-steady state approximation as:

𝐷 ≈ (𝐾𝐷0 +𝐾𝐷𝛼
2)𝑉 2

2 (20)

𝐿 ≈ (𝐾𝐿0 +𝐾𝐿𝛼)𝑉
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Fig. 10. Synthesised control function for the Underwater Glider encompassing actuator
saturation (𝑢1 with 𝜎1 = 1.0).

where 𝑉 =
√

𝑣21 + 𝑣23, and 𝐾𝐷0, 𝐾𝐷, 𝐾𝐿0, 𝐾𝐿 represent the hydro-
dynamic coefficients, estimated through model identification or CFD
analyses.

For this study, the Seaglider (ogive model) geometric and hydro-
dynamic parameters derived in Grande et al. (2021) are employed as
follows: 𝑚𝑠 = 44.9 kg, 𝑚𝑝 = 11.0 kg, 𝑚1 = 64.84 kg, 𝑚3 = 99.43 kg,
𝐾𝐷0

= 0.04 kg/m, 𝐾𝐷 = 9.44 kg/(m rad2), 𝐾𝐿0
= 2.16 kg/m, 𝐾𝐿 = 4.88

kg/(m rad), ∇ℎ = 0.054 m3, 𝜌 = 1027.5 kg∕m3. Finally, 𝐾𝐹𝛿 = 10.0
kg/(m rad), 𝐾𝑢𝛿 = 1.0 are calculated as per standard glider stern planes
design (Zhang & Tan, 2015).

For this case study, interest lies in investigating the effect of a
stern plane jamming at a specific angle during the ascent phase, due
to a frozen hinge or due to the presence of detritus. Additionally, a
more advanced control system accounting for saturated control inputs
is designed. The control function with saturation is synthesised as
follows:

𝒖 =
⎡

⎢

⎢

⎣

𝜎1 tanh(⋅)
⋱

𝜎𝑚 tanh(⋅)

⎤

⎥

⎥

⎦

(𝑲𝒆+ 𝑩) (21)

where 𝜎𝑗 represents the saturation limits of the 𝑗 actuator, 𝑲 the ANN
weight, 𝑩 the ANN bias and 𝒆 the state-space error vector.

The software tool synthesises a control function for the selected
equilibrium 𝒙⋆ = [0.300,−0.018] after 1944 training iterations (com-
pleted within 103 [s]). The resulting 𝑢1, saturated to the desired
actuator limit 𝜎1 = 1.0, is illustrated in Fig. 10. The control function
is obtained as 𝑢1 = tanh(0.014 − 6.571𝑥1 + 4.912𝑥2), while the resulting
CLF is synthesised as: 𝑉 = 0.264975𝑥1𝑥2 + 0.522009𝑥21 + 0.288912𝑥22.

The evolution of the learning process is showcased by reporting the
changing shape of the Lie derivative function for the nominal dynamics
(note that the evolution of the Lie derivatives associated to the system
with faults follow the same trend). In Fig. 11(a) (learning iteration
#1) and Fig. 11(b) (learning iteration #5) the contour lines of the
Lie derivatives can be appreciated exhibiting positive values within D .
Upon convergence, the Lie derivative becomes negative definite over
the entire domain, as reported in Fig. 11(c). Eventually, a closed-loop
system verification test is reported in Fig. 12, showing the capability to
track 𝒙⋆ within the target bounds despite the jamming of 𝛿2 happening
at t = 1.8 [s].

7. Control law selection

The output of a pFT-ANLC training campaign is not a unique con-
trol law, but rather a series of synthesised laws, all certified to hold
stabilising properties, but with performance slightly different from one
10
another. As each run is generated via a different (random) seed, every
training starts from a different initialisation of the ANN parameters
and it might converge to different minima. Scope of this section is to
provide tools to select which control law among the ones generated
better fits target operating objectives, such as prescribed values of
steady-state tracking accuracy, or lower energy consumption.

A Linear-Quadratic criterion is conventionally employed to assess
control-system performance (Jiang & Yu, 2012). In this work, a crite-
rion encompassing both a term related to the reference tracking error
and a factor associated to the control effort is proposed as:

𝐽 = ∫

∞

0
(𝒆𝑇𝑸𝒆 + 𝒖𝑇𝒇𝑹𝒖𝒇 )𝑑𝑡 (22)

where 𝒖𝒇 represents the control signal embedding the faults, 𝒆 the
reference tracking error with 𝒆(𝑡) = 𝒓(𝑡) − 𝒙(𝑡) and 𝒓(𝑡) the reference
tracking value, while 𝑸 and 𝑹 (symmetric positive semi-definite) are
the weighting matrixes. For convenience, the performance index 𝐽 is
split into the sum of two terms:

𝐽 = 𝐽𝑒 + 𝐽𝑢 (23)

where 𝐽𝑒 denotes the performance related to the tracking error and 𝐽𝑢
the one associated to the control input. 𝐽𝑒 can be designed to evaluate
the tracking ability of a controller, namely:

𝐽𝑒 = �̄�𝑇𝑸𝟏�̄� + �̄�𝑇𝒃𝒇𝑸𝟐�̄�𝒃𝒇 + �̄�𝑇𝒂𝒇𝑸𝟑�̄�𝒂𝒇 + 𝑒𝑇𝑠𝑡𝑄4𝑒𝑠𝑡 (24)

where:

• �̄� denotes the Root Mean Square Error (RMSE) of 𝒆, computed as:

�̄� = RMSE(𝒆) =

√

∑𝑇
𝑖=0(𝑟𝑖−𝑥𝑖)

2

𝑇 , with 𝑇 the number of available
samples;

• the subscript bf stands for before fault and af for after fault ;
• the subscript st indicates the settling time;
• 𝑸𝟏,𝑸𝟐,𝑸𝟑, 𝑄4 are the weighting matrixes.

Note that the first three terms of (24) express how accurate the dynam-
ics tracks the target value, whilst the last one indicates how fast the
dynamics reaches the steady-state value. The settling time is calculated
as the time required to reach and to remain bounded within a ±2% error
from the target setpoint value.

To evaluate the performance of the control signals instead, the
following cost function 𝐽𝑢 is defined:

𝐽𝑢 = max(𝒖)𝑇𝑹𝟏 max(𝒖)+max
(𝑑𝒖
𝑑𝑡

)𝑇
𝑹𝟐 max

(𝑑𝒖
𝑑𝑡

)

+𝑅3 ∫

𝑇

0
𝑃 (𝑡)𝑑𝑡 (25)

where the first and second terms penalise the maximum values of the
control input and of the actuator rates, respectively, while the latter
factor accounts for the power consumption over time. If the force
generated by each thruster (𝐹𝑖) is know, the overall power consumption
at time 𝑡 = 𝑘𝑡 can be computed as 𝑃𝑘𝑡 = (

∑𝑚
𝑖=0|𝐹𝑖,𝑘𝑡 |

(3∕2)), with 𝑚
the total number of available thrusters (Fossen, 2011). With such a
convention, it follows that:

𝒆 ∈ R𝑛 (26)

𝒖 ∈ R𝑚 (27)

𝑸𝟏,𝑸𝟐,𝑸𝟑 ∈ R𝑛×𝑛 (28)

𝑹𝟏,𝑹𝟐 ∈ R𝑚×𝑚 (29)

𝑅3, 𝑄4 ∈ R. (30)

Hereby, quantitative examples of choices of performance criteria are
provided. Given system (18), a simulation campaign consisting of 10
runs is executed. Two cost function tunings are devised. The first tun-
ing, hereby denoted as 𝐽

𝑎
, prioritises reference tracking performance

after the faults over the control effort, i.e. the tracking error penal-
isation terms are the highest. On the other hand, the second tuning
aims at limiting the overall power consumption: tracking goals are
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Fig. 11. Underwater Glider training: Lie derivative associated to the nominal dynamics at successive training iterations.
Fig. 12. Underwater Glider verification test: surge speed when the control surface 𝛿2
jams at t=1.8 [s].

relaxed while the power consumption penalisation gain is the highest.
For instance, possible weighting terms associated with the first tuning
choice are as follows:

𝑸𝒂
𝟏 = 𝑸𝒂

𝟐 = diag(1.0, 1.0)
𝑹𝒂

𝟏 = 𝑹𝒂
𝟐 = diag(1.0, 1.0, 1.0)

𝑄𝑎
4 = 𝑅𝑎

3 = 1.0

𝑸𝒂
𝟑 = diag(100.0, 100.0),

where the term 𝑸𝟑 penalises the tracking error following the occurrence
of the faults and 𝑄4 penalises the settling time.

On the other hand, the control tuning that minimises the overall
power consumption, denoted as 𝐽

𝑏
, can be selected by choosing the

following factors:

𝑸𝒃
𝟏 = 𝑸𝒃

𝟐 = 𝑸𝒃
𝟑 = diag(1.0, 1.0)

𝑹𝒃
𝟏 = 𝑹𝒃

𝟐 = diag(1.0, 1.0, 1.0)
𝑄𝑏

4 = 1.0

𝑅𝑏
3 = 100.0.

The closed-loop dynamics resulting from the two different tunings
are compared hereby. Fig. 13(a) reports the vehicle surge speed associ-
ated with the tuning prioritising the reference tracking error following
the fault, where 𝑥1 (dotted line) denotes the controller minimising
𝐽
𝑎
. Similarly, Fig. 13(b) illustrates the resulting dynamics of the more

energy-conservative tuning 𝐽
𝑏
. A zoomed view of the surge dynamics

following the injection of a fault on 𝐹1 is reported in Fig. 14: the chosen
control law associated with 𝐽

𝑎
minimises the tracking error following

the occurrence of a fault, as desired.
Finally, the forces generated by the three thrusters are illustrated

in Figs. 15(a) and 15(b) for the tuning 𝐽
𝑎

and 𝐽
𝑏
, respectively. As
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Fig. 13. Range of possible surge dynamics associated to the converged controllers with
fault on 𝐹1 at 50 [s].

Fig. 14. Zoomed view of Fig. 13(a): the selected controller minimises the tracking
error (𝑥⋆1 − 𝑥1) following a fault on 𝐹1 at 50 [s] (tuning 𝐽

𝑎
).
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Fig. 15. Range of control efforts associated to the converged controllers with different tuning following a fault on 𝐹1.
al
expected, tuning 𝐽
𝑎
, devised to lead to fast converging dynamics,

requires an excess of forces when compared to 𝐽
𝑏
.

8. Actuator loss of efficiency

In the previous sections, the cases of a jammed control surface and
of a complete loss of one or more actuators were investigated. Whilst
the case of the complete loss of actuator effectiveness represents an
interesting case study, oftentimes, in real-life applications, faults appear
as partial loss of actuator efficiency. This is the case when minor electric
or mechanical issues arise, or when fishing debris or seaweed get
tangled in the underwater thrusters, increasing the spinning resistance
and limiting the overall revolving speed. In the specific case of gliders
with missions lasting for weeks or months, biofouling of marine growth
on the control surfaces can reduce the efficiency of the lift generated by
a stern plane or the thrust generated by a propeller. These occurrences
do not lead to a complete actuator loss altogether, but rather limit the
delivered actuator effort, and can be modelled as a factor multiplying
the nominal control effort.

In line with the rest of this work, the aim of the present section
remains the design of a control law that stabilises the system around
a target equilibrium when the loss of efficiency of an actuator occurs.
To this end, the modelling introduced in Section 5 can be extended
by accounting for the efficiency of the 𝑗th actuator, modelled as a real
variable 𝜇𝑗 ∈ [0, 1]. In practical terms, the Lyapunov conditions (2) can
be extended to include non-binary faults. This formally results in:

𝑉 (𝒙⋆) = 0, (31a)

𝑉 (𝒙) > 0 ∀𝒙 ∈ D ⧵ {𝒙⋆}, (31b)

�̇�𝑛(𝒙) < 0 ∧ {�̇�𝜇𝑗 (𝒙, 𝒖) < 0}𝑝𝑗=1 ∀𝒙 ∈ D ⧵ {𝒙⋆}, (31c)

where �̇�𝜇𝑗 (𝒙, 𝒖) represents the Lie derivative in presence of a fault on the
𝑗th actuator with actuator efficiency 𝜇 . In a similar spirit, the Falsifier
12

𝑗

conditions (17) can be modified accordingly, as follows:

∃(𝒙 ∶ 𝒙 ∈ D ⧵ {𝒙⋆},𝝁 ∶ 𝝁 ∈ [0, 1]) ⟹
(

𝑉 (𝒙) ≤ 0 ∨ �̇�𝑛(𝒙, 𝒖) ≥ 0 ∨ {�̇�𝜇𝑗 (𝒙, 𝒖) ≥ 0}𝑝𝑗=1
)

, (32)

where any instance (𝒙, 𝝁) that satisfies these conditions would falsify
the candidate CLF, and hence the proposed control law, triggering a
restart of the training procedure.

8.1. Case study C: Autonomous underwater vehicle with loss of efficiency

The concept is once more illustrated in the case of the two-dimension
AUV introduced in Section 5. The model including a possible loss of
efficiency on the first actuator (𝐹1) can be expressed as:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

�̇�1 =
−𝑋𝑢𝑥1 −𝑋𝑢𝑢𝑥21 + 𝜇1𝐹1,𝑥 + 𝐹2,𝑥

𝑚

�̇�2 =
−𝑁𝑟𝑥2 −𝑁𝑟𝑟𝑥22 + (−𝐹1,𝑥𝑙1,𝑦 + 𝐹1,𝑦𝑙1,𝑥)𝜇1

𝐽𝑧
+

(−𝐹2,𝑥𝑙2,𝑦 + 𝐹2,𝑦𝑙2,𝑥) + (−𝐹3,𝑥𝑙3,𝑦 + 𝐹3,𝑦𝑙3,𝑥)
𝐽𝑧

(33)

where the same coefficients introduced in (18) are employed. The
result of a successful training run with target 𝐱⋆ = [0.5, 0.0]𝑇 and
𝜖 = 0.025 is illustrated hereby. To verify the correctness of the method,
the efficiency 𝜇1 is varied over time according to the profile reported
in Fig. 16. The corresponding forces applied by the controller during a
closed-loop test can be viewed in Fig. 17, with the resulting dynamics
illustrated in Fig. 18(a) and Fig. 18(b).

It is possible to notice how, despite the efficiency of the actuator
is arbitrarily varied over different values in the range (100% to 0%),
the control systems is able to bound the dynamic response within the
prescribed 𝜖-stability threshold.
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Fig. 16. Partial loss of efficiency for the AUV case study: efficiency of the first actuator
(𝜇1) over time.

Fig. 17. Partial loss of efficiency for the AUV case study: control input forces.

9. Control techniques comparison and region of attraction shap-
ing

In this section, results of the synthesis of pFT-ANLC laws for the
two-dimensional AUV are compared to the state-of-the-art technique
within the frame of Passive Fault-Tolerant Control for Autonomous
Underwater Vehicles, namely the H∞ robust controller. H∞-control
synthesis aims at finding a stabilising controller that minimises the
infinity norm of the transfer matrix 𝑇𝑧𝑤 between exogenous inputs
𝑤 and desired performances 𝑧, namely ‖𝑇𝑧𝑤‖∞ (Blanke et al., 2006).
The problem entails the simultaneous stabilisation of a plant under
both nominal and multiple failure modes, each one associated to the
failure of one actuator. As the pFT-ANLC aims at optimising the tunable
parameters of a fixed ANN structure, the H∞ control problem is equiv-
alently formulated as an optimisation procedure of a fixed-structure
control subjected to a set of design requirements. Design requirements
are specified in terms of target response time, maximum steady-state
error, and, at times, in terms of the maximum effort of an actuator.
Additionally, actuator saturation is accounted for in this control design
problem. Realistic saturation values are proposed as taken from the
BlueRobotics T200 thruster, chosen as an example due its ubiquitous
presence in underwater robotics applications.

Three H∞ optimisation problems with different requirements are
formulated as reported in Table 3, stemming in controllers with
significantly different performance. All the controllers are computed
after linearising the dynamics around the target operating point 𝐱⋆ =
13
Fig. 18. Partial loss of efficiency for the AUV case study: dynamic response to varying
thruster efficiency (𝜇1).

[0.5, 0.0]𝑇 , coinciding with the prescribed setpoint equilibrium. To tune
the gain, a target response time of 10 [s] is set (a realistic value in the
considered application) while the maximum tolerated steady-state error
is varied from 40% in the conservative scenarios, to a more stringent
5% in the aggressive counterpart. In the conservative scenarios, an
additional constraint to limit the control effort is considered. To this
aim, MATLAB systune toolbox is employed to synthesise a control gain
that stabilises the closed-loop whilst subjected to design requirements
expressed as hard optimisation goals. The aggressive tuning problem is
promptly solved within 1 [s] of computational time. On the other hand,
the synthesis fails to converge when the saturation limit of BlueRobotics
T200 thruster (namely 37.1 [N]) is imposed on the control values
of the three thrusters, despite 10 successive rounds of optimisation.
The conservative solution is thus obtained by iteratively increasing the
control effort saturation limit from 37.1 [N] until 880.0 [N], found
to be the first value that prompts the H∞ synthesis to successfully
converge. The conservative synthesis scenarios are solved within a
maximum of 208 iterations, completed within 10 [s] of computational
time.

Next, the H∞ laws are compared to one instance of converged pFT-
ANLC. The pFT-ANLC solution is obtained by selecting the architecture
hyperparameters described in Table 1, whilst adding the control satura-
tion value of 37.1 [N]. The resulting closed-loop systems when a fault
on 𝐹 occurs are compared: Fig. 19(a) reports the closed-loop surge
2
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Table 3
H∞-control tuning design specifications and synthesis results.

Control Response Max. steady- Control Controller
tuning time [s] state error [%] saturation found

Aggressive 10 5 None Yes
Conservative 10 40 37.1 [N] No
Conservative 10 40 880.0 [N] Yes

Fig. 19. Control laws comparison for AUV case study: pFT-ANLC (blue) vs multiple
H∞ tuning (purple and orange). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

dynamics, while Fig. 19(b) illustrates the corresponding angular rate
dynamics. It can be appreciated how the synthesised pFT-ANLC law (in
blue) stems into dynamics that show qualitatively comparable steady-
state errors to the H∞ ones, whilst slower in terms of convergence
time. As expected, the aggressive H∞ tuning (in orange) shows faster
convergence rate and improved tracking performance both before and
after the occurrence of the fault at the price of an increased control
effort, reported in the case of 𝐹1 in Fig. 20. The aggressive H∞ tuning
in fact requires control effort two orders of magnitude higher than the
pFT-ANLC one (𝐹1 and 𝐹3 follow similar trends). Additionally, Fig. 20
highlights how pFT-ANLC is the only controller that guarantees feasible
control actions by strictly respecting the actuator saturation limit.

These results highlight how the proposed framework can synthesise
control laws that are qualitatively comparable with well established
robust control techniques, whilst providing additional benefits from
a formal guarantees perspective. Despite H∞ techniques benefit from
highly optimised commercial tools resulting in faster tuning of control
14
laws (10 [s] for the H∞ tuning, against the 92 [s] of the pFT-ANLC, in
this study), pFT-ANLC provides benefits from both theoretical and prac-
tical perspectives. First, pFT-ANLC does not rely on the linearisation
of the system dynamics, representing an advantage in every applica-
tion catering for highly nonlinear and coupled dynamics, such as the
ones characterising the underwater domain. Second, as the pFT-ANLC
synthesises a CLF, additional information regarding the properties of
the nonlinear closed-loop system is available, such as the shape and
dimension of the ROA. Conventionally, in control design applications,
interest lies in providing a control law stemming into a ROA as large as
possible. To this aim, pFT-ANLC allows shaping the ROA by calibrating
𝛼4 and 𝛼𝑅𝑂𝐴 in (15). To showcase the ROA shaping procedure, a first
training is run with 𝛼4 = 0.0 (disabling the ROA tuning factor), and,
following, a second training encompassing 𝛼4 = 1.0 and 𝛼𝑅𝑂𝐴 = 100.0
is carried out. Upon training completion, the resulting ROAs associated
with the two CLFs are calculated by means of a line search algorithm.
The results are reported in Figs. 21(a) and 21(b) for the ROA without
tuning factor, and with tuning factor, respectively. It is noteworthy
how, in the latter case, the ROA approximately overlaps the whole
domain D as circular level sets are enforced during the training.

This analysis highlights how the joined synthesis of nonlinear con-
trol laws and CLFs proposed in this manuscript can be employed to
generate control laws capable of catering for practical nonlinear effects,
such as actuator saturation. As additional benefit, the resulting ROA
can not only be estimated, but can be shaped via dedicated tuning
parameters during the synthesis stage. These elements represent key
advantages in further assessing closed-loop dynamic properties when
compared to the robust techniques traditionally employed in the field.

10. Further discussions and conclusions

In this paper, a novel, automated method to design Passive Fault-
Tolerant Control laws is presented. The proposed approach relies on the
ANLC architecture to synthesise a control function with fixed gain that
guarantees the 𝜖-stability of the target equilibrium in both the nominal
and faulty conditions. Both linear and nonlinear control laws can be
synthesised based on user preference. The approach is shown capable
of maintaining the system dynamics within prescribed stability bounds,
without relying on external information flow from a Fault Detection
and Isolation system. The method further benefits from an intuitive
understanding of the tolerated performance degradation, expressed as
the maximum state-space deviation from the target equilibrium value.
A dedicated software tool is developed and released open-source. The
proposed tool can be run on standard office laptops without demanding
performance requirements. The approach is of relevance for every
control application where extensive sensoring or fault monitoring algo-
rithms cannot be assumed, as in the case of autonomous underwater
platforms. Faults of different nature, covering control surfaces jam-
ming, full and partial loss of actuator efficiency are analysed, with
encouraging outcomes. The approach devised in this work represents
a first step towards the inclusion of correct-by-design machine-learning
based techniques, leveraging formal guarantees via SMT solvers, to
navigation problems. As the integration of artificial intelligence within
both common and niche applications is becoming ubiquitous, mod-
ern control designs can be devised to guarantee desirable dynamical
behaviours, without compromising on formal stability guarantees. Far
from being a universal answer to nontrivial control problems, this work
exploits the flexibility of neural networks to compose complex control
laws accounting for actuator saturation and allowing to shape the
Region Of Attraction, proposing out-of-the-box solutions to an expert
control engineer. Future efforts encompass improving the approach’s
scalability to higher-dimensional systems, along with the inclusion of
noisy measurements and disturbances.
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Fig. 20. Control laws comparison for AUV case study: 𝐹1 control effort with pFT-ANLC strictly respecting the desired actuator saturation.
Fig. 21. pFT-ANLC controller — different CLF tuning factors. Domain boundaries in
dashed lines and ROA in white solid line.
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