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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Whole-farm spatial appraisals are rare 
and often without yield data validation. 

• We processed, validated and analysed a 
ten year whole-farm yield map data set. 

• Wheat yield map data had a RMSE of 
1.0 t/ha with a mean error of 8.1%. 

• 33% of the farm was losing >£100/ha 
compared to the best performing zone 
per field. 

• Yield data validation is required when 
developing precision agriculture 
techniques.  
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A B S T R A C T   

CONTEXT: Statistical methods used for delineation of field management zones and yield stability are frequently 
only applied to relatively small areas, with few studies performing rotational, whole-farm economic spatio
temporal appraisals. To enable accurate economic analysis, yield map datasets must contain minimal errors 
while cleaning procedures are often used to remove errors, it is rare that cleaned data is validated before its 
application. 
OBJECTIVE: The objective of this study was to process, validate and combine spatial statistical approaches for a 
rotational yield map dataset from a whole-farm across 7 crops in a winter wheat based rotation. Developing a 
framework for using validated yield map datasets to support precision agriculture techniques that are applicable 
for farm-level decision making. 
METHODS: The rotational completeness of a 10 year combine yield map dataset for a 435 ha farm in Eastern 
England was assessed. The dataset was cleaned statistically, and its accuracy assessed by comparison with 
recorded yields from trailer weigh cells. The cleaned, validated, and corrected yield map dataset was used to 
identify management zones across the whole farm using fuzzy clustering. The temporal stability of management 
zones and economic performance across the rotation was also assessed. 
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RESULTS AND DISSCUSION: Data cleaning methods removed 16% of data points, improving the degree of spatial 
correlation within the individual yield maps. Independent validation demonstrated varied accuracy of yield maps 
from combine harvester data and errors in wheat ranged from 0.53 to 1.53 t/ha RMSE. These errors have im
plications for researchers using combine yield data to develop and validate precision agriculture technologies. 
This data set required correction before yield data can be applied with confidence for on-farm decision making. 
Compared to the zones with the highest margin in each field, 34% of zones had an average annual margin loss of 
>£100 ha. The temporal stability of the resulting management zones also varied. Areas with the lowest economic 
performance and greatest yield stability across years will potentially see the greatest economic and environ
mental benefits from precision agriculture techniques. 
SIGNIFICANCE: The accuracy of combine yield map data should not be assumed. The application of these 
datasets, including for the identification of management zones or in developing precision agriculture techniques 
should attempt to address this through data cleaning and validation procedures. Only then should it be used for 
on farm decision making, such as identifying areas with the most economic benefit by applying precision 
agriculture tools such as variable rate nutrient applications.   

1. Introduction 

The influence of soil properties on agricultural productivity usually 
shows structured or periodic temporal and spatial variation (Shaddad 
et al., 2016). It is therefore practical for farmers to divide fields into 
management zones (MZ) to account for this variation, potentially 
adjusting fertilizer, pesticide inputs or field operations to better suit the 
soil or potential yield of the zone (Milne et al., 2012). Identifying MZ can 
be achieved through measuring spatial variation in soil properties and 
adjusting inputs based on known crop responses to the quantified 
properties (Lark et al., 2020). Soil sampling in a random or grid scheme 
that is subsequently interpolated using geostatistical methods to provide 
spatial information about soil properties is one way to achieve this 
(Marchant et al., 2012). ‘On the go’ sensors such as those recording soil 
electrical conductivity (James et al., 2003; Moral and Terrón, 2010) and 
gamma ray spectrometry (Dierke and Werban, 2013; Kassim et al., 
2021) offer increased sampling density at relatively low cost and are 
therefore being increasingly used to delineate MZ. A limitation of these 
techniques is that it is assumed they sufficiently reflect those soil 
properties that are responsible for variation in crop yield and that 
therefore farmers would benefit economically from site specific man
agement through either increased yields or reduced inputs. For MZ to be 
advantageous there should be a strong and consistent relationship be
tween soil properties and the spatial and temporal patterns in yield 
(Guastaferro et al., 2010). These patterns in yield may also be impacted 
by other factors outside soil-climate interactions, for example spatial 
pattern in agronomic factors such as weed, and pest pressures (Metcalfe 
et al., 2019). 

Yield maps have been used to interpret spatial and temporal yield 
trends since their early adoption (Blackmore, 1999). More recently, 
farmers have compiled datasets having sufficient yield observations to 
allow spatial yield variability and temporal yield stability to be captured 
across rotations (Maestrini and Basso, 2021). Geostatistical methods for 
identifying spatially coherent MZ from combine harvester yield data 
often use non-hierarchical fuzzy clustering and spatial smoothing ap
proaches to ensure that zones are spatially coherent and are of practical 
use in farm management (Milne et al., 2012). The identification of MZ 
through clustering identifies homogenous yield zones that are signifi
cantly distinct from others. However, this provides little context for 
variation in the magnitude, scale or stability of yield without further 
investigation (Maestrini and Basso, 2021); this being a key influence on 
MZ-specific operations (Khosla et al., 2010; Muhammed et al., 2016). 
Identifying MZs where yield is consistently temporally higher or lower 
can allow for strategic soil and/or agronomic management that is pro
portional to the yield and economic trend (Basso et al., 2011). Man
agement zones with unstable yield trends over time may need more 
reactionary approaches that consider seasonal influences using remote 
sensing or crop and soil modeling (Maestrini and Basso, 2018). 

Statistical criteria used to assess the yield stability and/or manage
ment zone identification using yield maps are frequently applied at a 

sub-farm spatial scale (Cammarano et al., 2020; Bazzi et al., 2015) and 
over a large selection of fields across many farms (Maestrini and Basso, 
2018). Applying the zoning across whole farms and rotations are less 
common. Studies of spatial-temporal yield patterns across whole farms 
commonly only focus on a single crop (Filippi et al., 2019; Kharel et al., 
2019; Oliver et al., 2012) offering little context to the overall rotational 
productivity and stability of an area. 

More recently field level economic information such as fixed and 
variable costs and grain market price has been incorporated to produce 
multi-field economic appraisals, identifying economically optimal areas 
for delivering ecosystem services and precision agriculture techniques 
(Adhikari et al., 2023; Capmourteres et al., 2018). In addition to eco
nomic appraisals researchers and farmers are increasingly relying on 
combine harvester yield data to support more complex processes such as 
the spatial calibration and validation of crop simulation models at a 
management zone level (Cammarano et al., 2020; Wallor et al., 2018), 
conducting on-farm field experiments (Marchant et al., 2019) or vali
dating remote sensing technologies (Maresma et al., 2020). 

Systematic and operator error can lead to inaccuracies within 
combine yield data (Arslan and Colvin, 2002; Blackmore and Marshall, 
1996; Robinson and Metternicht, 2005). This can be addressed using a 
range of methods to remove outliers and erroneous points and has led to 
the development of data cleaning protocols (Sun et al., 2013; Vega et al., 
2019) and software (Sudduth and Drummond, 2007). It is often assumed 
that after cleaning procedures this represents a true reflection of the 
yield. However, systematic errors within the data sets can occur (Mor
gan, 2020; Simbahan et al., 2004)in some cases deviating by 5–10% 
(Grisso et al., 2002; Morgan, 2020). Validating combine yield data with 
independent yield data is scarce. In the few cases where validation oc
curs this has been performed under controlled conditions on small data 
sets collected under optimum use and calibration (Arslan and Colvin, 
2002; Grisso et al., 2002; Morgan, 2020). These conditions are unlikely 
to represent inaccuracies resulting from commercial combine yield data 
typically used in research and for decision making on farm. For greater 
levels of accuracy appropriate calibration using specific manufacturer 
recommendations is crucial. In most studies using combine yield data it 
is rare for details of calibration procedures to be described. However, 
calibration procedures are often skipped or not possible during harvest 
under time and resource pressures. Previous studies have concentrated 
on each aspect in isolation such as data cleaning or management zone 
formation/stability analysis or economic mapping or accuracy valida
tions. Our work integrated all these components into a comprehensive 
framework. This framework considered these different sources of error 
so that accurate yield data is used in spatio-economic appraisals or for 
supporting precision agriculture technology such as validating crop 
model outcomes. Accounting for all these errors avoids erroneous out
puts or misguided management decisions. Specifically, the framework 
demonstrated how long-term, rotational yield map datasets can effec
tively underpin the application, development, and monitoring of pre
cision agriculture techniques. The framework used a long-term yield 

D.E. Clarke et al.                                                                                                                                                                                                                                



Agricultural Systems 218 (2024) 103972

3

map dataset for an entire farm in Eastern England. The dataset was 
cleaned statistically and evaluated by comparison with recorded field 
yields. Management zones were identified across the whole farm using 
the corrected dataset and their temporal stability was assessed along 
with the economic margins across rotation. 

2. Materials and methods 

2.1. Study site and data sets 

The study was conducted across 35 fields at Lodge Farm, Westhorpe, 
Suffolk, UK (Lat: 52.262837, Lon: 1.005092), with a total farm area of 
457 ha. The soils range from a clay loam to sandy clay loam (Ashley and 
Beccles 1 associations, Cranfield University 2022). The farm operates a 
twelve-year rotation comprised of first and second wheats (Triticum 
aestivum) with spring barley (Hordeum vulgare), spring beans (Phaseolus 
vulgaris), winter oilseed rape (Brassica napus), and a two-year grass seed 
crop (Lolium perenne) as break crops, in this context these are defined as 
non-cereal crops. In addition, spring oats (Avena sativa), spring linseed 
(Linum usitatissimum) and spring wheat (Triticum aestivum) have also 
been grown intermittently. For each field, operations, fertilizer and 
pesticide inputs and management costs were recorded by the farm. The 
mean market value (grain price) that outputs were sold for, by year was 
also recorded. This enabled the profitability (net margin (£ ha− 1)) for 
each location within a yield map to be calculated. Over a ten-year period 
(2011− 2020) 258 yield maps were collected using a combine harvester 
equipped with yield monitoring capabilities. Two combine harvesters 
were used, a CLAAS 570+ from 2011 to 2014 and a CLAAS 760tt from 
2015 to 2020. The yield monitoring equipment was calibrated at in
tervals throughout the seasons, primarily when switching between va
rieties within crops or between different crop types and is likely 
representative of typical on-farm use. At each yield point the combine 
harvester records a time stamp and grain moisture content. In addition 
to yield maps, total grain offtake was recorded for each field using an 
RDS Liftlog weighing system fitted to the grain trailers. These were 
calibrated using a public weighbridge and provide an accurate record of 
total field crop offtake (tonnes) at harvest grain moisture. The spatial 
and temporal completeness of the dataset was assessed in two ways: i) 
the number of yield maps were recorded for each crop for the harvest
able crops grown, and ii) the proportion of spatially mapped farm 
margin was recorded from arable operations for the ten-year period. 

2.2. Yield data cleaning 

Yield data cleaning is required to identify and remove points that are 
unlikely to hold an accurate representation of yield and will therefore 
lower the accuracy of the yield map and any subsequent analysis. These 
points are most easily denoted through identifying points recorded 
outside optimal combine harvester operation or expected yield values. 
The time stamp recorded for each field yield point was used to provide 
the combining sequence for each yield map. The sequence was split at 
data points recording a change of direction that exceeds 0.6 rad (34.4◦) 
(Kindred et al., 2016). These points are recorded as the combine 
harvester turns out of, or into, each transect (swath) and were removed. 
The point preceding and succeeding these points were also removed to 
exclude points with yield values obtained as the combine harvester fills 
and empties at the beginning and end of a respective transect (Sudduth 
and Drummond, 2007). Points recorded at combining speeds in excess of 
10 km/h were also deleted as these are considered outside realistic 
optimal working speeds. Very short swaths (< 3 yield points) were also 
removed as the combine harvester has likely not reached optimal grain 
flow operation over a short distance. The distance to the closest parallel 
swath was further calculated for each point. The mean yield and dis
tance to adjacent swath was also calculated for each swath. Any such 
transect with a mean distance <5.5 m (2 m less than header width) to the 
closest adjacent transect was identified as a potential partially filled 

swath. Then, to avoid the closest full swaths to the partial swaths being 
also identified, only swaths with a yield 10% below or above the field 
average swath yield for the field were removed. The final cleaning stage 
was to remove data outliers. Firstly, all points lying well outside ex
pected yield values (<0.1 or > 18 t/ha) were removed. Secondly, all 
points that were greater or less than the mean field yield, plus or minus 
2.5 standard deviations respectively were also removed. This is 
threshold is often applied for outlier identification in yield maps data 
sets (Córdoba et al., 2016; Muhammed et al., 2016; Sun et al., 2013). 

The success of the cleaning process was then assessed by comparing 
the points removed for each step, and the effect that this had on the 
mean field yield. An experimental semi-variogram was also used to 
quantify the spatial correlation evident within each yield map, prior to 
and after the cleaning process. Spherical, exponential and gaussian 
models were used to fit the semi-variogram, and the model with the best 
fit selected and recorded for each field year. The relative structural 
variability has been used to determine the success of data cleaning in 
other studies (Vega et al., 2019). However, this method fails to include 
the range of spatial correlation, which might only be a few meters, 
implying little spatial correlation between nearby yield points regardless 
of the nugget to sill ratio used in the calculation. Here, we measure the 
degree of spatial correlation by considering the ratio of the area under 
the variogram to the area of the pure nugget model with the same sill 
variance up to 40 m. The 40 m threshold was used for all yield maps as 
some degree of spatial correlation is expected but is also of adequate 
distance to feature sufficient yield points. It is also the same threshold 
that other spatial variation statistics for yield maps have used (Peralta 
et al., 2013). The values reported are 1 minus the ratio, so a higher value 
indicates a higher degree of spatial correlation at a distance 40 m. 

2.3. Yield data validation 

To create co-located yield measurements across years, a 10 m × 10 m 
grid was imposed over each field area. Cleaned yield and corresponding 
moisture content in each year were assigned to their nearest grid cell, 
and if more than one measurement was found within a grid cell the mean 
of all points within that grid cell was calculated. Applying data to a grid 
prevents areas having a potentially greater density of yield points, for 
example if combine speeds were slower in certain areas of the field (e.g. 
due to lodging), having a disproportionate impact on the mean yield for 
that combine yield map. A Combine Yield (CY) mean for each field was 
calculated using the mean of all grid cell yields. Yields were not adjusted 
for moisture at this stage so they could be compared to yields recorded 
by the grain trailer weigh cells which recorded weights at the actual 
moisture content at harvest. Some yield maps displayed areas of fields 
with gaps (no yield points). Field years were discarded from the analysis 
if large areas of missing data were found to be due to recording error, for 
example if the yield monitoring software was not engaged or a field trial 
had taken up a large area of the field. Also, gaps in the data identified 
through consultation with the farmer as having been a result of ‘failed’ 
or ‘unharvestable’ crop were treated as zero yields, these gaps often 
arose as a result of crop destruction prior to harvest to minimize grass 
weed return. In these maps a field average CY would likely overestimate 
yield as these zero yields do not feature in the mean. To mitigate this, the 
CY average for these fields was calculated by dividing the total offtake 
(the combine yield map average yield, multiplied by the total area of the 
yield map) by the true field area. Trailer Weigh cell Recorded Yield (RY) 
was then calculated by dividing total crop offtake (t) by the recorded 
sown crop area (ha). The accuracy of CY compared to RY was assessed 
for each crop. For winter wheat, which had the greatest number of fields 
in each year (>10), the accuracy over time was also assessed. The Root 
Mean Square Error (RMSE), Mean Bias Error (MBE) and Mean Absolute 
Error (MAE) were used to evaluate combine yield monitor accuracy 
compared to recorded yields. These were calculated by: 
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where, n is the number of yield maps, XRY is the recorded field average 
yield (t/ha), and XCY is the combine field average yield (t/ha). The mean 
percent error was also calculated from the MAE and the RY. 

2.4. Yield correction and gridded net margin 

To account for large errors in the dataset, gridded yields were 
adjusted so the mean of the CY equaled the mean of the RY for that field. 
Corrected points were then adjusted to an industry standard of 15% 
moisture for cereals and pulses, and 9% moisture for oilseeds. This 
adjustment used the corresponding gridded moisture content recorded 
by the combine. For each yield value, moisture adjusted yields were 
normalized to have a mean unit variance (μ = 0, σ = 1) to allow for 
comparison between years and different crops. 

Net margin (NM) (£) for each grid cell in each year was calculated 
using the following formula: 

NM = (YCYGp) − (Fc+Vc) (4)  

where YCY is the grid cell corrected and moisture adjusted yield recorded 
by the combine yield monitor (t/ha), Gp is the grain price (£) for that 
crop achieved on farm that year, Fc is the fixed costs (£) (including 
machinery depreciation, and land rent) and Vc is the variable costs (£) 
(seed, pesticides, fertilizers and machinery operations). All Fc and Vc are 
actual costs incurred on the farm for inputs and machinery costs for a 
given season, not values derived from an industry standard reference 
material such as the John Nix Farm Management Pocket Book (e.g., 
Redman, 2015). 

2.5. Clustering and yield stability analysis 

Spatially coherent zones of homogenous yield performance for each 
field were identified using the Fuzzy c-means clustering algorithm with 
optimal completion strategy as outlined by Hassall et al. (2019) was 
employed. The Fuzzy c-means algorithm was used to identify clusters 
within the standardized yield dataset, the auto completion strategy of 
which allows for the algorithm to be run on locations (grid cells) when a 
complete set of yield observation is not available. In long term datasets 
such as this study this can be a high proportion. Normalized classifica
tion entropy was used to identify the appropriate number of clusters. 
The number of clusters was restricted to between 2 and 6 to avoid a high 
number of clusters having only subtle yield variations, with cluster en
tropy used to distinguish the optimal number clusters. Clusters were 
then smoothed using a coherence index and variogram. 

The temporal yield stability for each grid cell was identified using the 
methods set out by Maestrini and Basso (2018) and thresholds reported 
by Maestrini and Basso (2021). The mean and standard deviation of the 
normalized yields across all available years for every grid cell was 
calculated. A grid cell was classed as stable if the mean SD of all grid cells 
within that cluster was <0.8, and unstable if SD >0.8. The stable grid 
cells were classified as high yielding if the standardized mean yield was 
>0.2, or low yielding if the standardized mean yield was <− 0.2, and 
those falling between these boundaries classed as medium. These 
thresholds were identified by Maestrini and Basso (2021) using a sim
plex search procedure to ensure repeatability regardless of what years 
yield map data was included in the analysis. No thresholds for catego
rizing cluster, rather than grid cell, stability have been previously 

reported. Therefore, to provide context to cluster stability, the standard 
deviation of the mean standardized yield across seasons for each cluster 
is reported. 

3. Results and discussion 

3.1. Spatial data availability across rotations 

Between 2011 and 2020 harvestable crops were grown in 345 fields, 
and the yields spatially mapped in 258 (75%) (Table 1). A large pro
portion of the fields missing yield maps were found to occur when fields 
were cropped with herbage grass seed. Combine yield monitors do not 
currently reliably measure yields for this crop as combining takes place 
at high seed moisture content and lodging is often widespread. The 258 
yield maps accounted for 65% of the total farm margin (2011–2020), 
with over one third of the total farm net margin (2011–2020) unable to 
be spatially allocated. In this study herbage grass accounted for just 16% 
of crops grown but 25% of the total farm margin. These data gaps, place 
limitations on the confidence in spatially mapping productivity for 
rotational management decisions, particularly if, as is the case in this 
study, a high value, rotationally valuable crop is not spatially mapped. 
This will likely be representative of the situation on many UK farms. In 
2020, 15% of the total cropped area was in crops not widely spatially 
mapped (DEFRA, 2021a, 2021b), a large proportion of these where high 
value potato and vegetable crops (El Chami and Daccache, 2015). The 
reason for areas having relatively poor economic performance in a 
combinable crop might not follow the same patterns of spatial vari
ability in crops that are biologically very different, such as root or 
horticultural crops (Boubou, 2018). The true rotational value of these 
area/zones could therefore be undervalued. 

For precision agriculture the spatial patterns identified in combin
able crops is likely to provide sufficient contextual information to enable 
management decisions for that crop alone. However, land managers are 
now being incentivized to take areas of land out of production across 
rotations to support environmental schemes. Under a re-design of the 
European Union’s Common Agricultural Policy, farmers will be 
encouraged to devote between 3 and 7% of their land to non-productive 
schemes (European Commission, 2023). In England under the Sustain
able Farming Incentive as currently outlined, this area will be between 5 
and 10% of land entered (DEFRA, 2021a, 2021b). Yield maps, and the 
economic productivity maps derived from them, can be used to under
take cost/benefit analysis by growers to identify areas that are 

Table 1 
Number of field years and number of yield maps for each crop across the 35 
fields (2011–2020). Margins are reported as a % of the total farm net margin for 
each crop (2011–2020). Financial (£) data not presented for data protection. 
Margin contribution is the total contribution that the crop has made to total farm 
profits. Margin mapped is the percent of which this has been spatially mapped 
through yield maps.  

Crop Field 
years (n) 

Yield 
mapped (n) 

Margin 
contribution (%) 

Margin 
mapped (%) 

Winter 
Wheat 186 172 54 48 

Spring 
Barley 31 30 7 7 

Spring 
Beans 22 19 3 2 

Winter OSR 21 19 7 6 
Spring 

Linseed 21 12 3 1 
Spring Oats 5 4 1 1 
Spring 

Wheat 2 2 1 1 
Herbage 

Grass 55 0 25 0 
Other crops 2 0 1 0 
Total 345 258 100 65  
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economically likely to obtain the best returns from these schemes 
(Capmourteres et al., 2018). However, gaps in spatial productivity data 
as described here will limit the applicability of these “precision con
servation” approaches. 

An incomplete record of spatial productivity across a rotation also 
imposes limitations of some precision agriculture techniques. Crop-soil 
nutrient cycling models developed using experimental plot data could 
be extrapolated to guide precision management decisions. These models 
often require a complete across-season record of crop offtake (yield) in 
order to perform correctly (Shan et al., 2021). Even simpler nutrient 
removal calculations based on grain analysis or standard figures (Inman 
et al., 2005) will have significant limitations with large gaps in the data 
set (Longchamps et al., 2022). The limitations of rotational data sparsity 
will need to be addressed for complete nutrient budgeting to be 
achievable, either through yield mapping of all crops across the rotation 
or using other sources of information to fill in the data gaps, such as 
remote sensing and crop modeling techniques (Jeffries et al., 2020; 
Pasquel et al., 2022). 

3.2. Data cleaning 

Across the 10-year period, the farm collected 912,485 individual 
yield data points. Across all crops, 16% of points were identified as 
erroneous through the cleaning procedures and were removed (Table 2), 
an example field prior to and after cleaning is shown in Fig. 1. Spring 
linseed, winter oilseed rape and spring oats had a higher proportion of 
errors (22% and 28% respectively). The cleaning process increased the 
yields on average in all crops; for winter wheat, field mean yields 
increased by 0.72 t/ha after cleaning. Across all yield maps the degree of 
spatial correlation was found to improve following data cleaning, 
increasing from 0.09 to 0.26 across all crops. Spring wheat presented the 
greatest degree of spatial correlation after data cleaning (0.36), although 
from a relatively small sample size (n = 2). The degree of spatial cor
relation at 40 m was found to be relatively consistent across all other 
crops, ranging from 0.22 to 0.26. Previous studies have shown that large 
errors in yield maps can occur, and cleaning is advantageous (Blackmore 
and Marshall, 1996; Sudduth and Drummond, 2007; Vega et al., 2019). 
The identification of areas of similarity (management zones) relies on 
the data having a certain level of spatial correlation, the larger degree of 
spatial correlation achieved through cleaning indicates that 

geostatistical prediction (in this study through clustering) is likely to be 
more accurate than if performed with raw yield map data (Scha
benberger and Pierce, 2001). 

3.3. Yield map accuracy 

All crops except for spring barley had CY mean yields higher than RY, 
with an MBE of 0.46 t/ha for all winter wheat crops (Fig. 2 and Table 3). 
The accuracy of the combine yield maps varied depending on crop. The 
MAE as a percent of mean recorded yield (%E) was 8.1% for winter 
wheat and 6.0% for spring barley, representing 63% of crops grown 
across the rotation. The reported accuracy of yield monitor data by 
manufacturers has been found to vary between 1% and 6% (Arslan and 
Colvin, 2002; Blackmore and Marshall, 1996; Blackmore, 1999; 

Table 2 
Yield map cleaning results including data points removed in each cleaning step, valid points retained, mean yields before and after cleaning (t/ha) and the degree of 
spatial corelation (DSC) for all raw (unprocessed) and cleaned yield maps by crop.  

Crop Raw points Swath spacing Turning Yield outliers Distance Total removed Valid Raw yield Clean yield Raw DSC Clean DSC 

Winter Wheat 586,742 5788 55,186 23,963 915 85,852 500,890 9.80 10.52 0.07 0.24 
Spring Barley 128,631 1617 11,150 5395 150 18,312 110,319 7.92 8.57 0.06 0.25 
Winter OSR 62,580 3602 8240 2107 74 14,023 48,557 4.75 5.29 0.07 0.25 
Spring Linseed 57,298 2319 7813 2026 267 12,425 44,873 3.35 3.79 0.12 0.26 
Spring Beans 49,246 132 4895 2389 31 7447 41,799 3.93 4.26 0.07 0.24 
Spring Oats 17,702 992 3318 597 58 4965 12,737 6.94 7.80 0.05 0.22 
Spring Wheat 10,286 37 1129 480 5 1651 8635 5.28 5.89 0.17 0.36 
All (n258) 912,485 14,487 91,731 36,957 1500 144,675 767,810 – – 0.09 0.26  

Fig. 1. Yield map cleaning example, Field 4, 2015 winter wheat.  

Fig. 2. Average field yield from recorded and. Combine harvester yield monitor 
(t/ha), grey line is y = x, red line is y = x plus and minus 10% error. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Blackmore et al., 2003; Larscheid and Blackmore, 1996). The mean 
percent errors for winter wheat and spring barley of 8.1% and 6.0% 
respectively, are comparable to errors reported in previous, smaller 
validation studies. (Grisso et al., 2002) reported errors of 10%, while 
(McNaull and Darr, 2020) found mean field yield errors of around 5% for 
a single cropping season calibration study in corn (maize) and (Morgan, 
2020) reported a 5.7% mean error over two seasons for wheat. Accuracy 
decreased to 12.3% and 12.8% for winter oilseed rape and spring beans 
respectively. The greater inaccuracies in these two crop types are likely 
to be a result of larger variations within the field due to agronomic and 
external (pest damage) pressures experienced in these crops (Ortega- 
Ramos et al., 2022; Wright, 2008). The accuracy of spring linseed, spring 
oats and spring wheat was very poor, with differences between RY and 
CY of 52.2%, 74.4% and 56.4% respectively. These crops are not part of 
the main rotation, the farmer in this study acknowledged that it is 
possible that yield monitoring equipment calibration was not as rigorous 
prior to the harvesting of these crops as they were not considered of 
long-term importance to the farm, this may explain the much larger 
errors in these crops. It is not possible to provide evidence of the cali
bration steps taken for each yield map across the ten-year dataset, nor 
would it be for most studies using yield map data. It is likely that during 
harvest, a time-pressured operation, with work rates optimized to 
maintain efficiency, that occasionally yield monitor calibration pro
cedures can be missed, or operational errors occur. This study presents a 
real-world data set, that is likely to be comparable to those collected 
under commercial farms in the UK and globally. Generally, in the main 
combinable crops (wheat and barley), yield map accuracy was good, 
however with potential for large errors were present, with 29 out of the 
171 wheat fields (17%) presenting errors >15% (Fig. 2). These large 
errors will have significant limitations for their use on farm, reducing 
the accuracy and effectiveness of the methods discussed previously 
including spatial economic analysis and nutrient budgeting. 

These reported errors would also have implications for the use of 
yield map data for implementing PA technologies. It is common to use 
combine yield data to calibrate and validate modeling and remote 
sensing techniques. For a model/technique to be appropriately assessed, 
high quality “observed” data that is free from errors is required (Boote 
et al., 2016), particularly when identifying the best performing from a 
selection of models/methods. For remote sensing applications (Zhao 
et al., 2020) reported an RMSE of 0.88 to 1.44 t/ha when comparing 6 
canopy indices derived from Sentinel 2 data with yield monitor data. 
(Wallor et al., 2018) used yield monitor data to assess the accuracy of 11 
crop simulation models for modeling within-field variation in yield, 
reporting a RMSE ranging from 0.5 to 3.5 t/ha for a field in Germany. 
There is nothing to suggest that the yield map data in those studies has 
the same level of errors as the dataset reported in this study. However, 

the errors in modeling techniques reported in these studies are of a 
similar magnitude to the average errors reported in this study between 
yield map data and weighed recorded yields for winter wheat across 
years (0.53 to 1.53 t/ha RMSE). If similar exercises were performed on 
this data set, there is potential to not identify the best model, but that 
which is closest to the errors in the validation data set. (Kersebaum et al., 
2005) found that when spatially validating the HERMES crop model, 
results agreed well with hand-harvested yield data, but poorly with 
combine harvester yield map data, demonstrating the limitations that 
inaccurate yield map data can pose in modeling exercises. 

Researchers and farmers should make use of, and where currently 

Table 3 
Summary statistics for combine harvester mapped yield and recorded yield.  

Crop Year n Recorded mean yield Combine mean yield r MBE MAE %E RMSE 

Spring Barley All 30 7.79 7.77 0.94 − 0.02 0.47 6.0 0.69 
Spring Beans All 19 3.73 3.98 0.90 0.25 0.48 12.9 0.63 
Spring Linseed All 12 2.01 3.06 0.90 1.05 1.05 52.2 1.18 
Spring Oats All 4 5.42 9.45 0.95 4.03 4.03 74.4 4.04 
Spring Wheat All 2 3.07 4.80 – 1.73 1.73 56.4 2.43 
Winter OSR All 19 4.95 5.36 0.02 0.41 0.61 12.3 0.73 
Winter Wheat All 171 9.78 10.25 0.77 0.46 0.79 8.1 1.03  

2011 20 9.54 10.39 0.54 0.85 1.30 13.6 1.53  
2012 20 9.67 10.44 0.26 0.77 0.96 9.9 1.21  
2013 11 9.74 9.81 0.65 0.08 0.69 7.1 0.93  
2014 13 11.30 11.47 0.64 0.17 0.43 3.8 0.60  
2015 17 11.05 11.81 0.03 0.76 1.20 10.9 1.39  
2016 21 8.68 8.76 0.88 0.08 0.51 5.9 0.64  
2017 18 10.34 10.16 0.84 − 0.18 0.37 3.6 0.53  
2018 16 8.40 9.20 0.56 0.80 0.92 11.0 1.16  
2019 20 10.58 11.22 0.91 0.64 0.71 6.7 0.84  
2020 15 8.85 9.28 0.76 0.44 0.66 7.5 0.80 

n = number of fields, r = correlation coefficient, MBE = mean bias error, MAE = mean absolute error, %E = mean percent error, RMSE = root mean square error. 

Fig. 3. Clustering results for each field, with field number, grey scale is used as 
no significance in cluster number between fields. 
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not available commence collecting, data sets to validate combine 
harvester yield data, including field level yields recorded over weigh
bridges or grain trailer weigh cells. Studies, using combine yield data 
would also benefit from reporting the specific calibration methods 
employed, an exact record of calibration timings would have also 
strengthened this study. Further development and testing of automatic 
methods of identifying erroneous yield maps is also required (Blasch 
et al., 2020). These additional data sources will provide validation of 
yield map data and where possible allow for some level of correction for 
large errors, strengthening the applicability of yield maps on farm and in 
the development of precision agriculture techniques. 

To minimize the impact of potential yield map errors in subsequent 
management zone and yield stability analysis in this study, the field 
combine yields were adjusted to the mean RY for a given field. This 
correction assumed that the errors in the yield maps were relative, i.e., 
consistent across the whole field. The majority (158/258) of CY are 
within 10% of RY, so adjustments required for these maps were small. 
The main purpose of this correction is to reduce the influence large er
rors will have on interpreting temporal trends in yield stability or the 
accuracy of long-term margin analysis. 

3.4. Clustering and yield stability 

In this study 159 clusters (MZ) were identified across an entire 35 
field, 457 ha arable farm in eastern England using a fuzzy-c means 

clustering algorithm with an optimal completion strategy (Fig. 3). The 
optimal number of clusters in each field varied. With limits set between 
2 and 6 clusters, no fields had just two clusters, 6 fields had 3 clusters, 12 
fields had 4 clusters, 9 fields had 5 clusters, and 8 fields had 6 clusters. 
The mean cluster area was 2.87 ha. It is recognized that the number of 
zones and the size of these zones needs to be manageable for a farmer. 
While its recognized managing 159 individual zones is more complex 
than 35 individual fields it is by no means infeasible. Recent estimates 
indicate 31% of UK farms, 36% of farms in the United States and 49% of 
Australian farms are already using variable rate technology (Lowenberg- 
deboer and Erickson, 2019). At a fundamental level, yield based man
agement could be employed using the validated and corrected man
agement zone yield performance (Rodriguez et al., 2019), for which 
there are UK specific nitrogen recommendations (AHDB, 2023). Sam
pling management zones either at a single composite sample from 
within each zone (Oliver et al., 2010) or multiple points within each 
zone to provide some context of homogeneity within the identified zones 
(Tagarakis et al., 2019). Both methods would also require less samples 
compared to commercial grid sampling services, typically surveying at 
one sample per ha (Marchant et al., 2012). In the past, farmers bore the 
financial burden of adopting PA technologies. However, in the UK, there 
has been a notable shift, with farmers now having the opportunity to 
receive payments for implementing PA technologies (DEFRA, 2024). 
This incentivizes the adoption of these technologies, offering financial 
support to manage the increased complexity associated with 

Fig. 4. Standardized (mean unit variance μ = 0, σ = 1) yields for each cluster by field number. Field number can be identified in Fig. 4.  
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transitioning from a whole-field approach to a more nuanced manage
ment zone strategy. 

Across the rotation, all clusters where profitable, but large variation 
in cluster performance was recorded with the least profitable cluster 
recording a mean annual margin of £10 ha, the most profitable with a 
mean annual margin of £781 ha (Fig. 5). Caution should be exercised 
when comparing cluster performance across fields. Margins within a 
field are impacted by the number of data years available for each field, 
ranging from 4 to 10 years (Fig. 4). Other compounding factors such as 
different cropping histories, drilling dates, inputs and crop varieties 
make it difficult to compare cluster margins across fields. Capmourteres 
et al. (2018) claim to be the first study estimating economic feasibility of 
set-aside to deliver ecosystem services, using a small sample size of 3 
farms across 140 ha in Ontario Canada. More recently Adhikari et al. 
(2023) produced spatial margin data and stability across 3 fields (56.3 
ha) in Texas from 3 years of yield data. In this study a whole farm ten- 
year rotational margin map across 435 ha in the UK is created, where 
farmers have the potential to be paid for actions that protect and 
improve the environment (DEFRA, 2023). There are areas that are 
clearly underperforming compared to the margin potential for a given 
field and therefore might be suitable candidates for environmental land 
management schemes. For example, the most productive zone in field 19 
(Fig. 3) has a mean annual margin of £654 (top 5th percentile of all 
clusters) compared to the worst performing cluster which had a mean 
margin of £275 (85th percentile of all clusters). This can be compared 
with the actions that support farmland and wildlife, paying between 
£590 - £732 ha/per year under the Sustainable Farming Incentive 
(DEFRA, 2023). Although calculations on the cost of establishment and 
management of these actions would need to be subtracted and fixed 
costs accounted for these areas have to potential to be more profitable 
under agri-environmental schemes. In a high yielding system, with mean 

wheat yields of 10 t ha (Table 3) however, the profitability appraisal of 
cropping against environmental schemes is likely to be close and 
therefore having accurate data that has been under appropriate cleaning 
and validation to generate such analysis is vital, and to our knowledge 
this validation applied here is a novel step in the analysis. 

As well as identifying areas most suitable for environmental land 
management schemes whole farm economic assessments such as this 
provide information to guide more targeted management. All though 
rotational history make it difficult to compare across zones, it is possible 
to compare economic performance of zones within the same field 
(Fig. 5B). Across the farm the highest margin MZ within each field ac
count for 30% of the total farm area (135.0 ha). Over 34% (155.5 ha) of 
total farm area had a margin loss > £100 ha compared to the most 
productive (economically) performing MZ within each field, 13% (58.2 
ha) had a margin loss > £200 ha and 6% (25.9 ha) had a margin loss 
>£300 ha. 

Across the farm 31% (140.5 ha) of grid cell yields are classified as 
high yielding and stable, 15% (66.2 ha) as medium yielding and stable, 
17% (79.0 ha) as low yielding and stable, and 35% (159.0 ha) of grid 
cells as unstable Fig. 6. When averaged across clusters mean standard
ized yield standard deviation is below 0.8 t/ha in all clusters (Fig. 6B). 
Visually, the rank order of cluster yields tends to be fixed with only a few 
clusters exhibiting large inter-annual variation in standardized yield 
performance (Fig. 4). The highest yielding and most stable grid cells are 
notably concentrated away from field edges (Fig. 6). The lower yields 
and greater yield instability close the field edges is likely attributed to 
the presence of headlands where wheeled traffic is more intensive and 
grater levels of soil compaction is expected (Sunoj et al., 2021), possible 
shading from trees, and greater weed competition(Robinson et al., 
2022). However, yields can sometimes be higher close to field bound
aries as a result of helpful ecosystem services (Duelli and Obrist, 2003). 

Fig. 5. A: Mean cluster margin across rotation (£ ha, 2011–2020), B: Mean annual cluster net margin loss compared to the cluster with the highest net margin within 
each field (£ ha, 2011–2020). 
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It is recognized that there will always be a certain level of subjec
tivity to interpreting stability (Maestrini and Basso, 2021). This allows 
the stability of a MZ performance to be compared with the long-term 
economic performance. As all management has historically been uni
form within a field (no precision agriculture technologies used), net 
margin maps change proportionally with yield, however it highlights the 
range of income within fields across the rotation, not just across a single 
crop or year providing an economic justification for precision agricul
ture technologies. This rotational validated spatial economic data set is 
vital for monitoring the success of precision agricultural techniques that 
might be employed on farm. The benefit of precision agriculture is often 
inconclusive and further ground truthing is required on many technol
ogies (Ingram et al., 2022; Jin et al., 2019). This need for “validation 
research” has been recognized in recent perception studies analyzing 
digital agriculture/smart farming technologies (Ingram et al., 2022; 
Regan, 2019). Accurate measurements of crop yield is crucial for the 
science of crop production at the field and farm scale (Sylvester-Bradley 
et al., 2017). The validated management zone yield performance, sta
bility maps along with spatial economic data provides a framework for 
the farm to measure the economic success of any precision agriculture or 
environmental scheme adopted against relative historic economic per
formance. Precision agriculture techniques might reduce input costs (i. 
e., fertilizer application) to account for lower yield potential and de
mand, therefore, yield map patterns will remain unchanged in subse
quent years, but the relative economic performance of the zone, in 
theory will improve. 

4. Conclusion 

This study has demonstrated how the accuracy of yield map data 
from a combine harvester after data cleaning steps cannot be assumed, 

and that any application of yield map datasets, including the identifi
cation of management zones in developing and validating precision 
agriculture techniques should attempt to address this through careful 
data cleaning and accuracy validation procedures, ideally with the po
tential to correct for errors. Once the data has been validated and cor
rected only then the real value can be obtained from geostatistical 
analysis at the farm level. We advocate for a proactive approach, 
encouraging farmers to not only conduct proper calibration but also 
collect data sets for suitable data validation. Allowing for more reliable 
and robust results in precision agriculture applications and economic 
assessments. The fuzzy clustering with an autocompletion strategy 
identified management zones and allowed for yield stability assessed at 
the farm scale. The data validation and correction allowed for an ac
curate whole farm, rotational spatial economic appraisal. Such data sets 
will be key in performing economic cost benefit (compared to continued 
cropping) analysis of environmental schemes for which farmers will be 
paid for delivering ecosystem services. 

The accurate management zone yield, yield stability, and economic 
performance data should be used to develop, and access the success of 
precision agriculture management strategies, particularly those that 
require the calibration and validation of crop, soil, or nutrient budgeting 
models. 
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Vega, A., Córdoba, M., Castro-Franco, M., Balzarini, M., 2019. Protocol for automating 
error removal from yield maps. Precis. Agric. 20, 1030–1044. https://doi.org/ 
10.1007/s11119-018-09632-8. 

Wallor, E., Kersebaum, K.C., Ventrella, D., Bindi, M., Cammarano, D., Coucheney, E., 
Gaiser, T., Garofalo, P., Giglio, L., Giola, P., Hoffmann, M.P., Iocola, I., Lana, M., 
Lewan, E., Maharjan, G.R., Moriondo, M., Mula, L., Nendel, C., Pohankova, E., 
Roggero, P.P., Trnka, M., Trombi, G., 2018. The response of process-based agro- 
ecosystem models to within-field variability in site conditions. Field Crop Res 228, 
1–19. https://doi.org/10.1016/j.fcr.2018.08.021. 

Wright, I., 2008. Combinable Protein Crop Production. 
Zhao, Y., Potgieter, A.B., Zhang, M., Wu, B., Hammer, G.L., 2020. Predicting wheat yield 

at the field scale by combining high-resolution Sentinel-2 satellite imagery and crop 
modelling. Remote Sens. (Basel) 12. https://doi.org/10.3390/rs12061024. 

D.E. Clarke et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.fcr.2018.10.006
https://doi.org/10.1016/j.fcr.2018.10.006
https://doi.org/10.1016/j.compag.2020.105236
https://doi.org/10.1016/j.compag.2020.105236
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0230
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0230
https://doi.org/10.1016/j.ecolmodel.2018.11.002
https://doi.org/10.1016/j.compag.2011.10.007
https://doi.org/10.1016/j.compag.2011.10.007
https://doi.org/10.1016/j.still.2009.12.002
https://doi.org/10.1016/j.still.2009.12.002
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0250
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0250
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0250
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0255
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0255
https://doi.org/10.1016/j.eja.2009.05.002
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0265
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0265
https://doi.org/10.1111/gcbb.12922
https://doi.org/10.1007/s11119-022-09885-4
https://doi.org/10.4141/CJSS2012-022
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0285
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0285
https://doi.org/10.1016/j.njas.2019.02.003
https://doi.org/10.1016/j.njas.2019.02.003
https://doi.org/10.1016/j.agsy.2004.07.010
https://doi.org/10.1016/j.agsy.2004.07.010
https://doi.org/10.1016/j.agee.2022.107956
https://doi.org/10.2134/agronj2018.07.0479
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0310
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0310
https://doi.org/10.1007/s11119-015-9417-6
https://doi.org/10.3390/agriculture11070624
https://doi.org/10.2134/agronj2004.1091
https://doi.org/10.2134/agronj2004.1091
https://doi.org/10.2134/agronj2006.0326
https://doi.org/10.2134/agronj2006.0326
https://doi.org/10.1007/s11119-012-9300-7
https://doi.org/10.1007/s11119-012-9300-7
https://doi.org/10.1002/agj2.20489
https://doi.org/10.1017/S2040470017001029
https://doi.org/10.1017/S2040470017001029
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0350
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0350
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0350
https://doi.org/10.1007/s11119-018-09632-8
https://doi.org/10.1007/s11119-018-09632-8
https://doi.org/10.1016/j.fcr.2018.08.021
http://refhub.elsevier.com/S0308-521X(24)00122-7/rf0365
https://doi.org/10.3390/rs12061024

	Whole-farm yield map datasets – Data validation for exploring spatiotemporal yield and economic stability
	1 Introduction
	2 Materials and methods
	2.1 Study site and data sets
	2.2 Yield data cleaning
	2.3 Yield data validation
	2.4 Yield correction and gridded net margin
	2.5 Clustering and yield stability analysis

	3 Results and discussion
	3.1 Spatial data availability across rotations
	3.2 Data cleaning
	3.3 Yield map accuracy
	3.4 Clustering and yield stability

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


