Seismic characterisation of the subsoil under a historic building: Cathedral Church of Saint Mary in Murcia case study
Martínez-Segura, Marcos A.; García-Nieto, María C.; Navarro, Manuel; Vasconez Maza, Marco; Oda, Yoshiya; García-Jerez, Antonio; Enomoto, Takahisa. 2024 Seismic characterisation of the subsoil under a historic building: Cathedral Church of Saint Mary in Murcia case study. Engineering Geology, 335, 107529. 10.1016/j.enggeo.2024.107529
Before downloading, please read NORA policies.Preview |
Text (Open Access Paper)
1-s2.0-S0013795224001297-main.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (21MB) | Preview |
Abstract/Summary
This research focuses on the Cathedral Church of Saint Mary in Murcia, Spain, which is located in a moderate-to-high seismic risk zone in the Spanish context. The study uses geophysical techniques and geotechnical investigation to characterise seismic ground models at the building's scale, aiming to understand the real amplification of the ground under seismic effect in historic buildings. Three soil layers (silt, sand with gravel, and gravel) were identified through core borings. Multichannel Analysis of Surface Waves (MASW) profiles and Mini-array profiles revealed Vs values of 305 ± 32 m/s, 296 ± 62 m/s, and 440 ± 38.5 m/s, respectively, for these materials. Seismic Refraction Tomography (SRT) showed Vp values of 586 ± 73 m/s, 700 m/s, and 1466 ± 489 m/s for the corresponding layers. The horizontal-to-vertical spectral ratio (HVSR) approach identified a ground predominant period ranging from 0.37 to 0.38 s. Another significant peak at 2.3 s is observed, probably associated to the Triassic basement. Three seismic events with magnitudes Mw between 4.9 and 5.1 were used as inputs to determine the amplification factor (AF). The results indicate a PGA amplification factor between 1.7 and 2.1. These results contribute to the conservation and mitigation of seismic risk of this cultural heritage generating input data that enables precise computation of the soil-structure interaction.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1016/j.enggeo.2024.107529 |
ISSN: | 00137952 |
Date made live: | 06 Jun 2024 12:50 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/537527 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year