
1206  |  	﻿�  Methods Ecol Evol. 2024;15:1206–1220.wileyonlinelibrary.com/journal/mee3

Received: 2 February 2024  | Accepted: 25 April 2024

DOI: 10.1111/2041-210X.14355  

R E S E A R C H  A R T I C L E

Adaptive sampling by citizen scientists improves species 
distribution model performance: A simulation study

Thomas Mondain-Monval1  |   Michael Pocock2  |   Simon Rolph2 |   Tom August2  |   
Emma Wright3 |   Susan Jarvis1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2024 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

1UK Centre for Ecology and Hydrology, 
Lancaster Environment Centre, Lancaster, 
UK
2UK Centre for Ecology and Hydrology, 
Wallingford, Oxfordshire, UK
3JNCC, Quay House, Peterborough, UK

Correspondence
Thomas Mondain-Monval
Email: thoval@ceh.ac.uk

Funding information
Natural Environment Research Council, 
Grant/Award Number: NE/R016429/1 
and NE/V003054/1

Handling Editor: Res Altwegg

Abstract
1.	 Volunteer recorders generate large amounts of biodiversity data through citi-

zen science which is used in conservation planning and policy decision-making. 
Unstructured sampling, where the volunteer can record what they want, where 
they want, leads to spatial unevenness in these data. While there are many statis-
tical techniques to account for the resulting biases, it may be possible to improve 
datasets by directing a subset of recorders to sample in the most informative 
locations, known as adaptive sampling. We investigated the potential for adap-
tive sampling to improve the performance of species distribution models built on 
citizen science data using simulated ecological communities.

2.	 We simulated ecological assemblages across Great Britain based on current but-
terfly data and modelled the distributions of each species. We then simulated the 
sampling of new data based on five adaptive sampling methods (one empirical 
method based simply on gap-filling, and four model-based methods using various 
measures from the model outputs) and one non-adaptive method (a method in 
which recording continued in the current pattern), and re-ran the species distribu-
tion models. In these, we also varied the rate of recording effort that was distrib-
uted according to adaptive sampling. The model predictions using the original and 
adaptively sampled data were compared to true species distributions to evaluate 
the performance of each method.

3.	 We found that all adaptive sampling approaches improved model performance, 
with greatest improvement for model-based approaches compared to the em-
pirical sampling method (i.e. simple gap-filling). All four model-based adaptive 
sampling approaches provided similar benefits for model outputs. Improvements 
in model performance were greatest when the amount of adaptive sampling 
changed from no uptake to 1% uptake, indicating that only a small amount of 
change in recorder behaviour is needed to improve model performance.

4.	 Directing volunteer recorders to places where records are most needed, based on 
information from model outputs, can improve species distribution models built 
on citizen science data, even with minimal uptake of suggested locations. Our 
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1  |  INTRODUC TION

The amount of biological data collected by citizen scientists has in-
creased exponentially in recent decades, which is proving to be of 
great value for biodiversity monitoring (Feldman et al., 2021). One 
major benefit of citizen science recording is the extent and scale 
at which it operates, facilitating sampling from more locations and 
at a finer resolution than would be feasible through conventional 
surveys. This has allowed researchers and conservationists to mon-
itor wildlife across spatial and temporal scales that were previously 
impossible (Weiskopf et al., 2022, eBird Status and Trends—https://​
scien​ce.​ebird.​org/​en/​statu​s-​and-​trends) and are increasingly used to 
understand the drivers of biodiversity trends (Mancini et al., 2023; 
Woodcock et al., 2016). One of the major facilitators of this change 
in biological recording is that new technology has increased the 
volume of unstructured data, by allowing recorders to collect data 
more easily than ever before (August et al., 2015). This unstructured 
data collection has generated significant biases in such datasets. For 
example, observers tend to record near to their homes (which are 
not evenly distributed in space) and sometimes show preferences 
for particular taxa, habitats, locations or times of year (Bowler, 
Callaghan, et  al.,  2022; Isaac & Pocock,  2015). These recording 
patterns reflect the broad range of interests and motivations of 
recorders (August et al., 2020; Bowler, Bhandari, et al., 2022) and 
make analyses using these data particularly challenging (Johnston 
et  al.,  2022). Attempting to account for these biases when trying 
to understand patterns and changes in biodiversity has led to the 
development of increasingly complex statistical models (Johnston 
et al., 2022). However, rather than just statistically accounting for 
these biases post-hoc, it could also be beneficial to improve the data 
at the point of collection (Callaghan, Rowley, et al., 2019).

Adaptive sampling is an approach whereby the design of a sur-
vey or monitoring scheme changes as data are collected (Shanahan 
et al., 2021; Turk & Borkowski, 2005; Wikle & Royle, 2005). The ra-
tionale behind adaptive sampling is that by adjusting sampling effort 
based on existing knowledge, we can increase cost-effectiveness 
and reduce data redundancy (Lindenmayer & Likens, 2009). 
Adaptive sampling designs have been implemented in many differ-
ent disciplines (e.g. sensor networks—Andersson et  al.,  2023; Jain 
& Chang, 2004, and the internet of things—Giouroukis et al., 2020), 
and are especially useful where there is change over time in the sys-
tem of interest (Lermusiaux, 2007). In these, a traditional sampling 
scheme that is fixed from the outset may become suboptimal over 
time, as the system itself changes. In extreme cases, the original 
design can become unsuitable for answering the original question 

of interest (Wikle & Royle, 2005), meaning that the ability to adjust 
our design to capture changes in the system is useful. This could 
become increasingly important given the current dramatic changes 
to biodiversity occurring globally. Even in cases where the system of 
interest does not change over time, adaptive designs may perform 
better than traditional methods because they can optimise data col-
lection based on data already collected (Specht et al., 2017; Turk & 
Borkowski, 2005). Importantly, changes in the sampling design can 
be accounted for in our analyses. This allows us to draw robust con-
clusions despite changes in sampling design over time.

Adaptive sampling designs are not routinely used in ecology, 
where there is typically a strong focus on sampling design being es-
tablished a priori. Where adaptive sampling designs have been used, 
they are usually in cases where the survey manager has full control 
over the data collection process, such as when contracted staff are 
sent to specific locations (Hooten et al., 2009; Pacifici et al., 2016; 
Wikle & Royle, 2005), or where the data are collected by sensor net-
works which can be managed remotely (Cardell-Oliver et al., 2005). 
However, adaptive sampling could be equally applicable where 
the data are collected by citizen or volunteer scientists (Callaghan, 
Poore, et  al.,  2019; Callaghan, Rowley, et  al.,  2019). This could be 
achieved by identifying regions in which sampling would have a large 
impact on the information content of the data or the performance 
of a statistical model (Callaghan, Rowley, et  al.,  2019). For exam-
ple, Callaghan, Poore, et  al.  (2019) predicted the marginal benefit 
of sampling in all possible locations across a region for improving 
population trend estimates. From these, they created priority maps 
defining where future recording would be the most beneficial. If re-
corders could be influenced to record in such high priority regions, 
which evidence suggests is possible (Callaghan et  al.,  2021; Flint 
et al., 2023; Xue et al., 2016), then adaptive sampling could be used 
to enhance the impact of species recording in the field by volunteers.

The concept of redirecting volunteer effort in biological recording 
is not new. For example, comprehensively mapping species distribu-
tions through citizen science in atlassing projects requires recorders 
to be directed to unrecorded locations (Harris et al., 2021; Robertson 
et al., 2010). Recorders may also be asked to look for specific species 
(e.g. the Lost and Found Fungi Project—https://​www.​kew.​org/​read-​
and-​watch/​​lost-​and-​found​-​fungi​) or visit areas that have had few re-
cent records or none at all (e.g. Targeting Revisits map: https://​conne​
ct-​apps.​ceh.​ac.​uk/​targe​ting_​revis​its_​grass​hoppe​rs/​ and the estab-
lishment of new Breeding Bird Survey routes: https://​www.​pwrc.​
usgs.​gov/​BBS/​Route​Map/​Map.​cfm). Importantly, the objective of 
interest of any adaptive sampling design needs to be specifically de-
fined a priori for its successful implementation. By doing this, we can 

results therefore suggest that adaptive sampling by recorders could be beneficial 
for real-world citizen science datasets.

K E Y W O R D S
adaptive sampling, butterfly, citizen science, simulations, species distribution model
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design a scheme which improves the information content of the data 
about the objective of interest (Callaghan, Poore, et al., 2019). The 
objective can be derived directly from the data, by filling gaps in the 
records of a species' distribution, which we term ‘empirical adaptive 
sampling’. Alternatively, the objective can be derived from models of 
the data, i.e. improving model outputs in a pre-defined way, which 
we term ‘model-based adaptive sampling’. In the latter approach, 
models are constructed from the data, and sampling locations are 
based on one or more of the model outputs. For example, model-
based objectives could be to obtain better occupancy estimates of 
rare species (Pacifici et al., 2016; Specht et al., 2017) or to reduce 
uncertainty in estimates of species' current or future distributions 
(Reich et al., 2018; Williams et al., 2018). In the context of citizen 
science, there may also be secondary objectives, such as reduced 
spatial bias in observations, increased spatial coverage or increased 
participation (Xue et al., 2016).

Previous work has shown the potential for adaptive sampling 
to be beneficial for citizen science, but it is unclear which types of 
adaptive sampling (empirical or model-based) are most effective and 
how much survey effort needs to be redirected. To address these 
questions, we used a virtual ecologist approach (Zurell et al., 2010) 
and simulated the effects of adaptive sampling on species distri-
bution modelling (SDMs) with citizen science data. We simulated 
assemblages of species, which allowed us to evaluate SDM perfor-
mance against true species distributions, and applied six different 
scenarios of recording behaviour by volunteers: continued sampling 
with existing spatial biases, filling spatial gaps (‘empirical adaptive 
sampling’), and four different model-based adaptive sampling meth-
ods. Within these scenarios, we varied the rate of uptake of adaptive 
sampling, that is the proportion of new locations that were sampled 
adaptively. The virtual ecologist approach enabled us to evaluate 
the impact of each sampling approach, at different uptake rates, on 
the performance of SDMs for the whole assemblage and for species 
individually.

2  |  METHODS

2.1  |  Replication statement

Scale of  
inference

Scale at which factor 
of interest is applied

Number of replicates at 
the appropriate scale

Assemblage Assemblage 50 species × 50 
assemblages = 2500

2.2  |  Virtual species generation

All analyses were carried out in R v4.3.1 (R Core Team, 2023) and 
the code available online (Mondain-Monval et  al.,  2024a, 2024b). 
We used the virtualspecies package (Leroy et al., 2016) to generate 
50 virtual assemblages across GB, with each assemblage containing 

50 species (Figure 1). We chose 50 species because it approximates 
the number of butterfly species in GB, based on the Butterflies 
for the New Millennium (BNM) dataset, an unstructured recording 
scheme coordinated by Butterfly Conservation. Multiple virtual as-
semblages were simulated to account for natural variation in eco-
logical communities; variation between assemblages was generated 
by stochasticity in the species simulations. We used 33 environ-
mental input layers, describing climate (Hollis et al., 2018), elevation 
(Copernicus EU-Digital Elevation Model v1.1) and habitat variation 
(Rowland et al., 2017) across GB (Table S1). The habitat and eleva-
tion layers were provided at a 25 m resolution, these were aggre-
gated to the 1 km resolution of the climatic variables (Table S1). We 
used a principal component analysis (PCA)-based approach to cre-
ate species niches using differing combinations of the environmental 
layers (Leroy et al., 2016). Species distributions were simulated in-
dependently from one another to simplify our simulation. To ensure 
sufficient variation in species distributions, we did not include all 33 
input layers in each species generation; instead, we randomly se-
lected 10 layers from the 33 available. We generated a probability of 
occurrence (pocc,i,j) for each virtual species j in each 1 km cell i in GB. 
This was used to generate a binary occurrence map for each species 
using the convertToPA function (Leroy et al., 2016). We did this using 
a probabilistic approach, assuming a logistic relationship between 
presence and environmental suitability (Leroy et al., 2016). This was 
defined as the true species distribution. We did not explicitly con-
sider time, with only two ‘time points’: one for baseline sampling and 
a second time point for adaptive sampling (see below). For simplic-
ity, we assumed that there was no change in species distributions 
between these two sampling points.

Each of the virtual species were simulated with ‘narrow’ species 
ranges using the generateSpFromPCA function (Leroy et  al.,  2016). 
Narrow ranges are calculated by limiting the standard deviations of 
the PCA axes to between 1% and 10%, essentially recreating spe-
cies with low tolerance to variation in habitat and/or climate. We 
assessed how well the virtual assemblages matched real communi-
ties in terms of the relative distribution of common and rare species 
using rank abundance curves. For each of the 50 assemblages we 
generated, we verified that their rank abundance curves broadly 
matched the rank abundance curve generated for butterflies in GB 
in the BNM dataset (Figures S1 and S2), ensuring a realistic balance 
between common and rare species.

2.3  |  Baseline sampling of virtual species

To include realistic existing patterns of sampling we used data from 
the BNM scheme to produce a layer of spatially varying effort over 
GB. We counted the number of unique days that each 1 km grid cell 
was visited (Di) and at least one species was reported between 2001 
and 2019, inclusive. We used this layer as weights to probabilistically 
sample our virtual species' distributions and generate baseline dis-
tribution data. To ensure that unvisited cells did not have zero prob-
abilities of future visits, we added 1 to all cells (D+1,i). The probability 
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of an unvisited grid cell being sampled was therefore half the prob-
ability of a grid cell which was visited once. This ensured that records 
could be made in areas with no visits in the real butterfly dataset, but 
that the broad pattern of intensity of simulated visits was strongly 
associated with the real pattern. The probability of sampling a cell i 
as part of the baseline sampling (pbase,i) was

where Nbase is the total number of cells sampled for baseline sampling.
To generate species observations we selected 20,000 cells 

(Nbase, ~10% of the total N = 216,774 1 km cells) with the probability 
pbase,i. We simulated occurrence of species j in each selected cell i by 
using the binary occurrence maps generated from the virtualspecies 

package to identify whether or not a species was present. To gen-
erate species observations, we applied a detection probability such 
that not all species present were observed. We assumed a con-
stant detection probability of 0.2 for each species present (Isaac 
et al., 2011; Riva et al., 2020) for simplicity so we could understand 
the effect of adaptive sampling and uptake on model performance 
without additional noise from varying detection probabilities. This 
value was chosen based on studies of butterfly detectability in stan-
dardised Pollard Walk surveys (Isaac et al., 2011), and the effect of 
weather (Riva et al., 2020).

We did not simulate reporting probability, assuming that all spe-
cies that were detected were reported (i.e. ‘complete checklists’). 
Therefore, the data from each visited cell was a vector of detected 
species (non-detections were discarded to simulate a presence-only 

(1)pbase,i =

�

D+1,i ∕
∑

D+1,i

�

Nbase

,

F I G U R E  1  Outline of the simulation 
and modelling process. We simulated 50 
species distributions for each of the 50 
assemblages, using 33 environmental 
variables. These species distributions 
were sampled according to the recording 
patterns in the Butterflies for the New 
Millennium dataset. This generated 
baseline species presence data which 
mimicked those collected by recorders 
in real-world recording schemes. We 
modelled these data using ensemble 
models to generate predicted distributions 
and uncertainty used for our model-based 
adaptive sampling methods. Ensemble 
models consisted of averaging predictions 
from generalised linear models (GLM), 
generalised additive models (GAM) and 
random forest (RF) models. Six different 
methods were used to sample new data: 
business-as-usual, empirical gap-filling 
adaptive sampling and four model-based 
adaptive sampling methods (see the 
main text for full details). These new 
data were combined with the baseline 
data and ensemble models were used to 
generate a new predicted distribution 
for each species and sampling method. 
The predicted distributions were 
evaluated against the true distributions 
of each species. We then compared the 
performance of models before and after 
sampling to determine the effectiveness 
of the six sampling methods.
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dataset, as is the nature of many datasets collected by volunteer 
recorders).

2.4  |  Modelling of baseline data

To inform our model-based adaptive sampling approaches, and to 
generate predictions which we could use to determine changes in 
model performance due to sampling, we needed an initial model 
of the species distributions from the simulated observations. 
To produce initial SDMs for each virtual species in each assem-
blage, we used an ensemble of three commonly applied models: 
logistic regression (GLM), generalised additive models (GAM) and 
random forests (RF) using code modified from the package soaR 
(https://​github.​com/​robbo​yd/​soaR; Boyd et  al.,  2023). Ensemble 
models are commonly used in analyses of species distributions, 
particularly when modelling large numbers of species for which 
it is infeasible to fine-tune the explanatory variables used for 
individual species (Hao et  al.,  2020). Each species was assumed 
to be independent from the other species in the assemblage and 
the distributions were modelled as a function of seven environ-
mental variables randomly sampled from the 10 used to generate 
the species' distribution. This was done to mimic the imperfect 
knowledge of species distributions by the modeller. We selected 
pseudo-absences using the target background approach (Phillips 
et al., 2009). The estimate of occurrence probability was averaged 
across model types to give p̂occ,i,j. Note that because detection was 
not explicitly modelled, we cannot separate occurrence and detec-
tion with our models, so p̂occ,i,j combines estimates of occurrence 
and detection.

For each model fitted to each species within each assemblage, 
we used a k-fold cross-validation approach to evaluate model per-
formance and generate comparable measures of uncertainty across 

model types (see below). Each dataset is split into k folds and the 
models are run on k − 1 folds while holding one out. Performance 
is then evaluated against this test fold and the process repeated k 
times. We chose k = 10. We used these 10 cross-validated model 
runs to generate predicted probability of occurrence maps for GB. 
We calculated the standard deviation across these predictions for 
each 1 km square for each model type for each species. We then 
calculated the mean probability of presence and standard devia-
tion across the 10 model runs, for each of the three model types 
(GLM, GAM, RF) separately. We chose this method rather than 
calculating standard deviation across all 30 iterations per species 
(3 models × 10 runs) to allow each model to be investigated sepa-
rately if required. We took the mean of these standard deviations 
for each model type to use as our metric of uncertainty in model 
estimates, ûnci,j.

2.5  |  Sampling new data

To test the impact of different adaptive sampling methods, we 
simulated sampling of the virtual assemblages using six differ-
ent sampling strategies (Figure  2), specifically: a single, non-
adaptive, sampling method—‘business-as-usual’; and five adaptive 
methods—‘gap-filling’, ‘rare species’, ‘uncertainty only’, ‘uncer-
tainty of rare species’ and ‘gap-filling with uncertainty’ (see below 
for full descriptions). The ‘business-as-usual’ method was used 
as a comparison for the other methods, to show the change in 
model performance if no adaptive sampling was carried out. The 
five other methods were chosen because of their potential to in-
crease the value of the new data in informing SDMs of the simu-
lated species. In real-world adaptive sampling schemes, decisions 
are required about the number of times adaptive sampling will be 
done and the number of samples taken each time (dictated by, for 

F I G U R E  2  The empirical and model-based adaptive sampling methods evaluated in the simulation. From left to right, these are: Business-
as-usual (non-adaptive), Gap-filling (empirical adaptive sampling), target areas where rare species are likely to occur, target areas of high 
model uncertainty, target gaps that have high model uncertainty across all species, and target areas with high model uncertainty of rare 
species (all of the last four—model-based). Filled circles in the left two images show old (black circles) and new (red circles) records. The four 
images on the right show the probability of each cell being sampled for each of the adaptive sampling metrics. For the adaptive sampling 
replicates, 2000 cells were sampled, with 1%, 10% or 50% according to each adaptive sampling method and the remainder as business-as-
usual.
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example, funding or species life-cycle characteristics). We simu-
lated a single round of adaptive sampling for simplicity and due to 
computational limitations. For each of the sampling methods, we 
sampled 2000 cells in a single sampling effort. For the ‘business-
as-usual’ method, we sampled 2000 cells as outlined in the ‘base-
line sampling of virtual species’ section above. For each of the five 
adaptive sampling methods we sampled a set proportion of the 
2000 cells (1% [20 cells], 10% [200 cells] or 50% [1000 cells] of the 
total) according to the adaptive sampling rules, and the remain-
der according to the baseline recording pattern (i.e. ‘business-as-
usual’). This was done to explore the importance of the uptake rate 
of adaptive sampling. The 2000 cells were selected independently 
from the previous 20,000 cells, so each new cell could have been 
in a location that was or was not previously sampled.

2.5.1  |  Business-as-usual

This method samples additional locations probabilistically, according 
to the baseline recording pattern (i.e. samples are more likely to be 
made in areas with large numbers of butterfly records, see ‘baseline 
sampling of virtual species’ above). The probability of each cell being 
sampled was defined as pbase above, except that Nbase was replaced 
with the number of newly sampled cells Nadapt (set to 2000). This 
method was used as a comparison (‘control’) for the other sampling 
methods described below.

2.5.2  |  Gap-filling

This empirical adaptive method samples additional locations only in 
1 km grid cells with no previous records, as is done in many exist-
ing adaptive strategies in citizen science. For each 1 km square we 
define Yi as the number of observations in each cell obtained during 
baseline sampling and then sample Nadapt new locations with equal 
probability (pgap,i) where Yi is zero.

2.5.3  |  Target rare species presence (‘rare species’)

In this model-based method, sampling locations are chosen based 
only on the predicted probability of occurrence of rare species, so 
that areas with high predicted probabilities are prioritised (Chiffard 
et  al.,  2020). While this approach might be useful for finding rare 
species (e.g. Pacifici et al., 2016), there is a danger that it might re-
inforce existing spatial biases in data by targeting effort only in well 
recorded locations. We defined prevalence for species j (Pj) as the 
proportion of all grid cells in which a species occurred (where Zi,j 
indicates the presence of species j in cell i), and defined rarer species 

as those with lower prevalence. There were similar numbers of rare 
species in each assemblage (Figure S2).

We multiplied the predicted occurrence probability in each grid 
cell for each species p̂occ,i,j by 1 − Pj to upweight the contribution of 
rarer species. To obtain an assemblage level adaptive sampling layer 
for each cell i we then calculated the mean across all species of the 
rarity-weighted occurrence probability layers so that each cell ob-
tained a weight Wrare,i defined as below:

2.5.4  |  Target uncertainty only (‘uncertainty only’)

In this model-based method, we chose new sampling locations based 
on the uncertainty derived from the SDMs, ûnci,j. This approach 
should improve model performance the most, as it directly considers 
where the model is most uncertain. However, it could lead to the se-
lection of locations which are less appealing to recorders due to re-
moteness or low species richness (Mair & Ruete, 2016). We averaged 
uncertainty metrics across all 50 species to create a single adaptive 
sampling layer Wunc,i. The resulting layer therefore represents loca-
tions with the highest average uncertainty across all species in the 
virtual assemblage

2.5.5  |  Target high uncertainty while gap-filling 
(‘gap-filling with uncertainty’)

In this method, new cells are chosen based on having high model 
uncertainty and a low number of records from baseline sampling. 
This approach therefore combines both model-based and empirical 
adaptive methods. The problem with only targeting uncertainty is 
that future sampling locations could be chosen in areas that have 
previously been visited, which may make recorders feel like their 
previous records are not valued. We attempted to overcome this, 
so to down-weight grid cells according to the number of existing re-
cords, we multiplied uncertainty by 1/Yi, so that

2.5.6  |  Target uncertainty of rare species models 
(‘uncertainty of rare species’)

This model-based method targets sampling where the uncertainty of 
SDMs of rare species models is highest. Optimising elements of both 
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uncertainty and prevalence of rare species might allow us to improve 
model performance while retaining user engagement by targeting 
locations that are desirable to visit, based on the chance of seeing 
rarer species. Combining elements of both uncertainty and preva-
lence may upweight areas containing rare species but could also 
reinforce existing biases. To calculate a score Wurare,i, we multiplied 
the rarity-weighted occurrence probability of each species by the 
uncertainty layer for each species. We then took the mean across all 
species in the assemblage

For each of the model-based adaptive sampling methods de-
scribed above the derived weight layers were converted into proba-
bilities of sampling based on Nadapt new locations:

2.6  |  Variation in uptake

We recognise that in citizen science, the level of uptake of adaptive 
sampling will vary. As stated above, we varied the proportion of the 
2000 cells that were sampled according to the adaptive sampling 
rules. We defined a new variable called uptake (U) which is set be-
tween 0 and 1 and determines the relative influence of the adaptive 
sampling methods. Uptake is assumed to be constant across cells and 
across species. For the gap-filling method uptake is implemented by 
altering the proportion of Nadapt selected using gap-filling; when U is 
0.1 then 10% of cells are selected using gap-filling and the remaining 
90% are selected using business-as-usual.

For the model-based methods U modifies the weight calculated 
for the corresponding method (Wi). To do so we calculate a modified 
weight Wuptake,i so that as U increases to 1 the relative influence of 
adaptive sampling over business-as-usual increases:

Wuptake,I then replaces Wi in Equation (10) to calculate padapt,i.
We consider three values of U; 0.01, 0.1 and 0.5, which simulate 

a small (0.01 = 1%) to very strong (0.5 = 50%) influence of adaptive 
sampling (Xue et al., 2016). This means that with the amount of up-
take at 50%, new locations are equally influenced by the adaptive 
sampling method and the existing pattern of recording. Our uptake 
parameter should be thought of as a measure of overall recorder 
behaviour, rather than simulating the actual number of visitors to 
suggested locations.

2.7  |  Modelling new data

Once the 2000 new locations were selected, we used the binary 
occurrence maps for each species to identify all the species occur-
ring in the new locations, as done for baseline sampling. A list of 
new observations was generated at each location by applying the 

same detection probability of 0.2. We then ran SDM ensembles, as 
described above, of the combined existing and new data to update 
our predicted distributions of each species.

2.8  |  Evaluation

We averaged the probability of presence predictions across each of 
the SDM types (GLM, GAM, RF) to get an average prediction for 
each species. Hereafter, we only present the predictions averaged 
across the three models and not each model type separately be-
cause they did not substantially differ from one another; we refer to 
them as ‘model(s)’ for simplicity. We evaluated the model predictions 
against the true distributions of each species using three traditional 
metrics of model performance; the AUC, the mean square error 
(MSE) and the correlation between true and predicted occurrence 
(correlation). We used AUC because it is a commonly reported met-
ric in studies of species distributions and is a useful measure of the 
relative predictive accuracy of the model. MSE provides an absolute 
measure of each model's predictive performance against the true 
species distributions, and correlation provides a relative measure. In 
total, we ran three models per species, and there were 50 species 
in each of the 50 assemblages (3 models × 50 species × 50 assem-
blages = 7500 models). These models were run two separate times, 
once for the baseline modelling and once after sampling (2 × 7500 
models). To obtain the changes in model performance caused by ad-
ditional sampling, we subtracted the values of the three evaluation 
metrics after additional sampling from those of the baseline models. 
We only present the changes in MSE (delta MSE) in the results be-
cause results were very similar across model performance metrics 
(see supplementary material for other metrics).

First, we investigated our adaptive sampling metrics at the as-
semblage level because sampling was conducted across all species 
in an assemblage (assemblage-level adaptive sampling). To calculate 
changes in assemblage-level model performance caused by addi-
tional sampling, we averaged the changes in the value of each eval-
uation metric across all species in an assemblage. This resulted in 50 
values of change in model performance for each metric, one value 
for each assemblage averaged across all species in the given assem-
blage. We also reported the number of species models improving in 
MSE by at least 1%, to investigate the influence of adaptive sampling 
on individual species.

Second, we assessed the effect of the prevalence of individual 
species (Pj) on the benefit of adaptive sampling (i.e. not at the as-
semblage level). To do this, we split the continuous variable prev-
alence into deciles with approximately equal numbers of species 
in each (median = 237 species, 50 species × 50 communities/10 
deciles = 250; models could not be run for the rarest species because 
of lack of data). Within each decile, we investigated the proportion 
of models whose MSE improved or deteriorated by 0%–5% and the 
proportion that improved or deteriorated by ≥5%.

Third, we were interested in understanding the mechanism 
through which adaptive sampling affected model performance. To 
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do this, for each of the sampling methods we extracted the number 
of observations that were made in new locations. We did this for 
each species within each assemblage, allowing us to investigate the 
effect of prevalence on the number of new observations of a spe-
cies. We used this to calculate the proportion of each species' range 
that was sampled by visiting new locations for each of the sampling 
methods. This was done by dividing the number of new locations in 
which observations of a species were made (i.e. new grid cells visited 
and a species detected) by the total number of locations in which a 
species was present (i.e. the total number of grid cells in which a spe-
cies was present across all of GB). Because multiple species could be 
observed at each sampling location, we also extracted the number 
of new locations sampled across all species in each assemblage. This 
provided information about the number of new locations in which 
observations were made across an assemblage.

3  |  RESULTS

3.1  |  Empirical versus model-based adaptive 
sampling

We found that adaptive sampling (of any kind) benefitted the per-
formance of SDMs. Importantly, all of our model-based adaptive 
sampling had benefits even at low levels (1%) of uptake (Figure 3). 
Increasing the uptake of adaptively sampled locations benefitted 
model performance, but this effect was not linear. For example, for 

most of the model-based adaptive sampling methods, there was 
much more of a difference in model performance between no adap-
tive sampling and 1% uptake than the difference between 1% and 
10% uptake (Figure 3a). The empirical sampling ‘gap-filling’ method 
(randomly selecting gaps) showed improvements in model perfor-
mance only with large levels of uptake. Furthermore, even with the 
maximum uptake value we considered (50% uptake), model improve-
ment of the empirical gap-filling was always smaller than any of the 
model-based adaptive sampling methods (Figure  3a). This general 
pattern was also observed when investigating the number of species 
models that improved by over 1% (Figure 3b).

While on average, models improved after sampling new data, 
we found that some models decreased in performance. This meant 
that extra sampling in these assemblages was detrimental to aver-
age model performance (Figure 3a). Interestingly, our results show 
that the business-as-usual method (i.e. continuing recording accord-
ing to the current pattern) led to MSE becoming worse, on average 
(Figure 3a), despite increased sample size from additional sampling. 
However, this was not reflected in the other evaluation metrics, in 
which the business-as-usual method resulted in marginal improve-
ments in model performance (Figures S4 and S5).

3.2  |  The effect of species prevalence

We found that the models of prevalent species were more likely 
to improve than those of rare species under all forms of sampling 

F I G U R E  3  The effect of six sampling 
methods and the proportion of uptake on 
assemblage-level model improvements 
in MSE across 50 simulations of virtual 
recorders and virtual species assemblages. 
Plot (a) shows differences in MSE 
between model predictions before and 
after additional sampling and true species 
distributions, averaged across all species 
in an assemblage, for different levels of 
uptake. Note that the y-axis is reversed, so 
values above the dashed line, that is more 
negative, are better. Values falling more 
than two standard deviations away from 
the mean have been removed for clarity. 
Plot (b) shows the number of species in 
each assemblage whose models had a 
greater than 1% improvement in MSE for 
different levels of uptake. There are 50 
data points in each box and whisker for 
both (a) and (b), one for each assemblage. 
For plots containing outliers and other 
evaluation metrics (AUC and correlation) 
see Figures S3–S5.
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but particularly for the model-based adaptive sampling methods 
(Figure  4). However, the largest improvements in model perfor-
mance were seen for those of rare species (Figure 4; Figures S6–S8). 
These benefits were greatest when using the model-based adap-
tive sampling methods, with a much higher proportion of models 
improving by over 5% in these compared with either the business-
as-usual or empirical gap-filling methods (Figure 4). Interestingly, 
the pattern seen in Figure 3a, that overall model performance de-
creased in the business-as-usual method, appears mostly caused 
by the models of rarer species becoming worse (Figure 4). In fact, 
across all sampling methods and prevalence, some models be-
came worse (i.e. improvement in MSE <0%); approximately 50% 
of models in the business-as-usual method but closer to 25% in 
the model-based adaptive sampling methods. The proportion of 
models becoming worse (improvements in MSE <0%) was lower 
for commoner species than rarer species, but the proportion of 
models showing substantial improvements (improvement in MSE 
>5%) was greater for the rarer species. This suggests that, despite 
the variability, adaptive sampling is particularly beneficial for the 
models of rarer species (Figure 4).

3.3  |  Exploring the mechanism influencing model 
performance

In order to investigate the mechanisms that might have driven the 
improvements in model performance due to adaptive sampling, we 
extracted the number and location of samples chosen by the vari-
ous sampling methods. We found that each species was observed in 

more new locations under the adaptive sampling methods than the 
business-as-usual method. For some individual species, this resulted 
in as many as 80 new records being made (Figure 5a). Furthermore, 
we found that in some assemblages almost 500 new locations were 
visited in total under adaptive sampling, compared with less than 
100 new locations under the business-as-usual sampling method 
(Figure 5b). More observations from new locations were made after 
model-based adaptive sampling than empirical gap-filling. In the 
latter, only the highest value of uptake matched the model-based 
methods in terms of total numbers of observations. These records 
also increased the proportion of each species' range that had been 
sampled (Figure  S9). This benefited the rarest species in each as-
semblage the most, with a greater proportion of their range being 
sampled by new the observations than those of more prevalent spe-
cies (Figure S10).

4  |  DISCUSSION

Our results show that adaptive sampling improved the perfor-
mance of SDMs, even at low levels of uptake. This supports the 
proposition that optimising data collection by citizen scientists 
could be a powerful mechanism to maximise the potential of these 
datasets (Callaghan et  al.,  2023; Callaghan, Poore, et  al.,  2019; 
Callaghan, Rowley, et al., 2019; Kays et al., 2021; Xue et al., 2016). 
Furthermore, we showed that model-based adaptive sampling im-
proved SDM performance more than a simple gap-filling (empiri-
cal) sampling approach. This demonstrates the value of optimising 
sampling based on models and not simply data gaps. Several other 

F I G U R E  4  The proportion of models whose MSE improved or became worse by different percentages across prevalence deciles and 
sampling methods for the 50% uptake value. Prevalence deciles (going from 1: the rarest 10% of species to 10: the most prevalent 10% of 
species) were created to contain approximately the same number of species in each prevalence decile (median = 237 species) and prevalence 
ranges between 0.001 and 0.65. See Figures S6–S8 for the changes in model performance as determined by AUC and correlation, and for all 
levels of uptake.
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studies have also found that model-based adaptive sampling de-
signs can have important benefits for model performance (e.g. 
Camp et al., 2020; Flint et al., 2023; Shanahan et al., 2021, but see 
Bird et al., 2022). Interestingly, we found that the type of model-
based method had little effect on model performance: provided 
some form of model-based sampling was used, the benefits to 
SDM performance were similar. It is very promising that our re-
sults suggest that even small levels of adaptive sampling (just 1% 
of new recording visits) can improve model performance, espe-
cially given the growing demand for citizen science derived mod-
elling outputs to be used in policy-making decisions (Callaghan & 
Gawlik, 2015; Weiskopf et al., 2022).

Some previous studies have suggested that adaptive sampling is 
only beneficial in specific scenarios. For example, Pacifici et al. (2016) 
found adaptive cluster sampling to be an improvement over random 
sampling only when detection probability was low (Bird et al., 2022; 
Camp et  al.,  2020). The contrast with our results, where adaptive 
sampling was generally beneficial, might be explained by the non-
random and spatially biased nature of the citizen science datasets 
on which our simulations were based. The gains from adaptive sam-
pling may be smaller when initial data are randomly sampled or when 
compared against the data obtained by structured or random sam-
pling designs. However, it is likely that newly implemented adaptive 
sampling schemes will use existing data, which could be biased in 
various ways (e.g. towards certain species or locations). Continuing 
to record wildlife without correcting for such biases could reduce the 

suitability of data for answering ecological questions. Our simulation 
used real patterns of butterfly recording in the UK to generate initial 
data, which had a strong spatial bias towards well-recorded locations 
as do many ecological datasets (Isaac & Pocock, 2015). Our results 
suggest that adaptive sampling may be particularly beneficial in cit-
izen science, where redirecting effort to new locations could help 
to optimally address the biases generated by non-random sampling.

Our results support the idea that redistributing recording activ-
ity into new areas could benefit SDM performance, particularly for 
rare species (Johnston et al., 2022). Our simulated adaptive sampling 
resulted in more observations from new locations, which increased 
the proportion of each species' range that was sampled. This pro-
portion increase in range coverage was greater for rare species 
than common species, likely driving greater model improvements 
in the former. However, current recording patterns may be biased 
towards places with high species diversity and rare species (August 
et al., 2020; Isaac & Pocock, 2015). This means that datasets in well 
recorded countries or regions may already sample most of the true 
range of even the rarest species. In this case, the benefits from adap-
tive sampling that we found may be exaggerated compared with their 
real-world benefit. Additionally, we found that rarer species showed 
greater variability, with a higher proportion of the models of rare 
species becoming worse (as well as a higher proportion also becom-
ing better) through sampling compared to those of common species. 
Indeed, it is unlikely that a single approach to adaptive sampling is 
suitable for all species (Specht et al., 2017; Turk & Borkowski, 2005). 

F I G U R E  5  The influence of the six 
sampling methods on (a) the number 
of times each species was seen at new 
locations and (b) the total number of 
observations from new locations across all 
species in each assemblage, for the three 
different uptake values. In (a), each data 
point is a single species (maximum number 
of data points per box and whisker, 50 
species × 50 assemblages = 2500 species). 
In (b), each data point represents an 
assemblage (50 assemblages per box and 
whisker).
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Adaptive schemes therefore need to be specifically designed for 
the questions of interest. For example, assemblage-level adaptive 
sampling, as we implemented, may not effectively capture all spe-
cies within large assemblages. In these, different adaptive sampling 
methods could be considered, perhaps focussing on specific subsets 
of species. While our findings do suggest that model-based adaptive 
sampling improves model-based inference from citizen science data, 
more work is needed to determine its influence in a range of record-
ing scenarios, for assemblages of different sizes and for species with 
differing distributions and traits. Our study provides a useful frame-
work for testing and implementing such designs.

The engagement of citizen science recorders in adaptive sam-
pling schemes is likely to be an important determinant of its effec-
tiveness (Callaghan et  al.,  2023) and will impact spatial coverage 
and representativeness (Pocock et  al.,  2023). Fortunately, studies 
have found that recorder motivations often align with the goal of 
sampling schemes (Thompson et al., 2023), suggesting that citizen 
scientist-based adaptive sampling could be a very powerful tool 
(Callaghan et al., 2023; Thompson et al., 2023). In our simulations, 
SDMs using citizen science datasets would benefit even if only 1% 
of data were sampled adaptively. The improvements associated 
with increased engagement were also nonlinear; the incremental 
benefit to models decreased as uptake increased. Xue et al. (2016) 
and Kays et  al.  (2021) also found that models improved with only 
moderate amounts of engagement. The amount of engagement in 
citizen science has been shown to vary according to skill, experience 
and demographic characteristics (Isaac & Pocock,  2015; Johnston 
et  al.,  2022; Rotman et  al.,  2012; West et  al.,  2021). An adaptive 
scheme that does not consider recorder preferences could reduce 
recorder engagement and risk decreasing the number or information 
value of observations. One solution could be to implement mixed 
adaptive designs, which combine elements of both empirical (i.e. 
data-based) and model-based methods. These could be relatively 
simple, such as our uncertainty with gap-filling method. More com-
plex methods could tailor recommended sampling locations to the 
preferences of individual recorders. Alternatively, professional con-
tractors could be used to supplement data in unappealing and data-
deficient locations. Developing adaptive sampling methods that 
appeal to recorders with a diverse range of motivations and skills 
is an exciting opportunity for further investigation. Regardless, we 
found that if adaptive sampling is intelligently applied (i.e. model-
based) then even only small levels of uptake have positive impact, 
thus supporting its use in ecological citizen science.

4.1  |  Future research directions

Our probabilistic approach to adaptive sampling, i.e. locations for 
sampling are drawn with a probability proportional to the predicted 
utility of each location, meant that slight shifts in the underlying 
probability layer could cause relatively large changes in sampling dis-
tribution. In reality, citizen science datasets are biased, with records 
close to the homes of recorders, from a few particular ‘hotspots’ 

and are affected by land access rights and infrastructure (Bowler, 
Callaghan, et al., 2022; Isaac et al., 2014; Mair & Ruete, 2016). These 
are likely to limit the benefit of adaptive designs as they restrict the 
potential movements of recorders. Further simulation work could 
focus on the effect of these limitations on the benefit afforded by 
adaptive sampling schemes compared to traditional survey methods. 
Our study also considered changes in overall recorder behaviour, but 
uptake could also be influenced by recorder identity and their capac-
ity and willingness to change behaviour. This should be investigated 
further in both empirical studies of volunteer recorders and simula-
tion studies.

Our work highlights the need to understand the influence of 
spatial structure in citizen science data and modelling frameworks. 
Spatially explicit SDMs are not often employed in ecological litera-
ture despite some evidence that these may improve model perfor-
mance (Domisch et al., 2019; Hao et al., 2019). Without spatially 
explicit model terms, adaptive sampling methods target gaps in 
environmental, rather than geographic, space. Including spatial 
terms in models would likely change sampling priority maps, as 
they would account for the current distribution of records. While 
we did not investigate the effect of spatially explicit models on the 
adaptive sampling layers, we did find that model-based adaptive 
sampling resulted in more new locations being visited than with 
empirical methods. In general, uncertainty is likely to increase as 
distance from current sampling locations also increases. Therefore, 
including spatial components in models could result in regions of 
high priority being identified even further from current recording 
locations than we found with our current models. This is interest-
ing considering that the current true recording pattern across GB 
is correlated with species diversity and rarity which means that 
diversifying recording locations might not lead to improved sam-
pling of species' ranges (Isaac & Pocock, 2015). It might therefore 
be helpful to run simulations which account for the current distri-
butions of species across the area of interest when considering 
adaptive sampling schemes.

While variations of adaptive sampling designs have been im-
plemented in ecology for decades, such as recording in unvisited 
grid squares for atlas mapping, there are still significant barri-
ers to their mainstream use. For example, many schemes try to 
maintain the same sampling design because they are interested 
in trends through time, as well as increasing spatial coverage of 
their data. We, and others, have shown that adaptive sampling can 
work for improving estimates of species' distributions (Callaghan 
et  al.,  2023; Camp et  al.,  2020; Kays et  al.,  2021; Shanahan 
et  al.,  2021) and trend detection (Callaghan, Poore, et  al.,  2019; 
Lindenmayer & Likens, 2009). However, further work needs to 
consider trade-offs between the intended and unintended out-
comes of adaptive designs. For example, intentionally changing 
the distribution of site coverage could impact occupancy esti-
mates but not trend estimates (Pocock et al., 2023). Determining 
the influence of adaptive sampling for estimating species' distribu-
tions on the ability to detect trends, and vice versa, is likely to be 
key for its mainstream use.
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More work is needed to test adaptive sampling in real world 
contexts. For example, the magnitude of improvements to models 
needed to make real world changes will depend on the objectives of 
interest. Our simulations assumed a constant value of detectability 
(0.2). However, in reality, detectability is likely to be species-specific 
and to change spatially and throughout the year, particularly as 
volunteers differ in their recording expertise (August et al., 2020; 
Isaac & Pocock,  2015). Adaptive sampling may be more effective 
for more easily detectable species than cryptic species; the latter 
could be missed in areas which were identified as important by the 
sampling method. At the assemblage level, variation in detectability 
may preferentially benefit highly detectable species, which may not 
be the goal of the sampling method. This might mean that variability 
in detection would lead to smaller gains in performance across the 
whole assemblage, suggesting further work is required to under-
stand its impact. Sampling methods could also be informed by the 
detectability of the species of interest if this can be estimated. For 
example, adaptive sampling could be targeted to areas that have a 
high probability of containing species with low detectability.

5  |  CONCLUSIONS

Our study highlights the large potential benefit of adaptive sam-
pling for improving unstructured citizen science datasets. We 
showed that even small amounts of uptake using model-derived 
adaptive sampling metrics have the potential to dramatically 
improve model performance in simulated assemblages. Given 
the increased use of citizen science datasets for SDM (Feldman 
et  al.,  2021), there is ample opportunity to develop metrics to 
improve the quality of data being collected. Jansen et  al.  (2022) 
highlight the importance of presenting uncertainty maps as a key 
part of SDM outputs. We suggest that these maps could also be 
used to identify optimal sampling locations. More work is needed 
to determine the barriers to the implementation of adaptive sam-
pling. To do this, it is key that future simulation work engages with 
recorders, to implement and assess real-world adaptive recording 
activities. Such projects could be very successful given the desire 
of recorders to help with conservation focused wildlife recording 
(Callaghan et al., 2023; Thompson et al., 2023). Adaptive sampling 
clearly has a large amount of potential for improving citizen science 
datasets (Callaghan et  al.,  2023; Callaghan, Rowley, et  al.,  2019; 
Kays et al., 2021) and more work is needed to determine whether 
and how it can be exploited to address existing biases (Callaghan, 
Poore, et al., 2019; Isaac & Pocock, 2015).
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1: Rank-abundance curve for butterfly species at a 1 km 
resolution in Great Britain using the Butterflies for the New 
Millennium dataset.
Figure S2: Rank-abundance curves for all 50 simulated assemblages 
at a 1 km resolution.
Figure S3: The effect of six sampling methods and the proportion of 
uptake on assemblage-level model improvements in MSE including 
all outliers. The maximum number of species in each assemblage was 
50. Note that the y-axis is reversed, so values above the dashed line, 
that is more negative, are better. There are 50 data points in each 
box and whisker.
Figure S4: The effect of six sampling methods and the proportion 
of uptake on assemblage-level model improvements in AUC. Plot 
(a) shows differences in AUC between model predictions after 
additional sampling and before additional sampling, averaged across 
all species in a assemblage, for different levels of uptake. Plot (b) 
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shows the number of species in each assemblage whose models (out 
of a maximum of 50 models) had a greater than 1% improvement in 
AUC for different levels of uptake. There are 50 data points in each 
box and whisker. Data points above the dashed line for plot (a) are 
assemblages for which the models improved.
Figure S5: The effect of six sampling methods and the proportion of 
uptake on assemblage-level model improvements in correlation. Plot 
(a) shows differences in correlation between model predictions after 
additional sampling and true species distributions, averaged across 
all species in an assemblage, for different levels of uptake. Plot (b) 
shows the number of species in each assemblage whose models (out 
of a maximum of 50 models) had a greater than 1% improvement in 
correlation for different levels of uptake. There are 50 data points in 
each box and whisker. Data points above the dashed line for plot (a) 
are assemblages for which the models improved.
Figure S6: The proportion of models whose MSE improved or 
became worse by different percentages across prevalence deciles 
and sampling methods for the three uptake values. Prevalence 
deciles (going from 1: the rarest 10% of species to 10: the most 
prevalent 10% of species) were created to contain approximately 
the same number of species in each prevalence decile (median = 237 
species).
Figure S7: The proportion of models whose AUC improved or 
became worse by different percentages across prevalence deciles 
and sampling methods for the three uptake values. Prevalence 
deciles (going from 1: the rarest 10% of species to 10: the most 
prevalent 10% of species) were created to contain approximately 
the same number of species in each prevalence decile (median = 237 
species).
Figure S8: The proportion of models whose correlation improved or 
became worse by different percentages across prevalence deciles 
and sampling methods for the three uptake values. Prevalence 

deciles (going from 1: the rarest 10% of species to 10: the most 
prevalent 10% of species) were created to contain approximately 
the same number of species in each prevalence decile (median = 237 
species).
Figure S9: Proportion increase in the true range of a species, as 
defined by the number of grid cells in which a species is present, that 
is covered by observations for each sampling method and uptake 
value. In (a) all data are shown, in (b) values over three standard 
deviations away from the mean are excluded. In (a), each data point 
is a single species (maximum number of data points per box and 
whisker, 50 species × 50 assemblages = 2500 species). In (b), each 
data point represents an assemblage (50 assemblages per box and 
whisker).
Figure  10: The proportion of the true range of a species (in 
percentage) sampled by new observations for the different sampling 
methods and for all three of the uptake values. Prevalence deciles 
(going from 1: the rarest 10% of species to 10: the most prevalent 
10% of species) were created to contain approximately the same 
number of species in each prevalence decile (median = 237 species).
Table  S1: The environmental layers used in the simulation and 
modelling, their sources and the aggregation methods used to 
combine them.
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