

IODP WORKSHOP, WASHINGTON DC, APRIL 2024

HOLLY HOURSTON, ITA GONZÁLEZ-ÁLVAREZ, LUKE BATESON, EKBAL HUSSAIN, ALESSANDRO NOVELLINO

An automated InSAR time-series analysis tool for geological interpretations in near-real time

Europe heatwave, July 2023 (Credit: BBC Weather)

Winter storms, Dorset 2013/2014 (Credit: Richard Broome, accessed phys.org) We know from case studies, fieldwork trips, etc, where many geological hazards are...

But for monitoring new or hard to predict geological hazards, or for disaster prevention and monitoring, we cannot manually interpret 2 billion data points

Drilling rig pulled from a collapsed mineshaft, Glasgow, Scotland. (Credit: BGS, UKRI)

Storm Babet, 2023, Dundee, Scotland (Credit: Sky News)₂

WORKSHOP, WASHINGTON DC, APRIL

Geohazards in the UK

Shrink-swell subsidence/uplift

£64m in post-heatwave home insurance claims from Jul-Aug 2018 [BGS] Insurers paid £219 million after the 2022 UK heatwave [ABI] 23,000 subsidence claims in 2022-78% of them after the summer heatwave In 2022, a new subsidence claim submitted every 15 minutes in the second half of the year, with each costing an average sum of £9600 [City A.M.]

The costliest geohazard in the UK.

Image: a cracked wall in a subsiding house. Cracks can appear inside, outside, or both, causing extensive property damage. Image credit: BGS

IODP WORKSHOP, WASHINGTON D.C., APRIL 2024

European heatwave, July 2023 (Credit: BBC Weather)

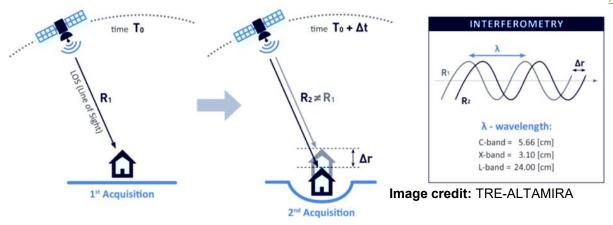
Richard Broome, accessed via phys.org)

Landslide on the Rest and be Thankful passage, Argyll & Bute, Scotland (Credit: Traffic Scotland)

Coastal erosion in Yorkshire (Credit: BBC)

Other hazards?

Storm Babet, 2023, Dundee, Scotland (credit: Sky News)


Drilling rig pulled from a collapsed mineshaft, Glasgow, Scotland. (Credit: BGS, UKRI)

IODP WORKSHOP, WASHINGTON D.C., APRIL 2024

Intro to InSAR

- Interferometric Synthetic Aperture Radar to measure ground motions
 - Satellite takes 2 radar images of the same point at different points in time
 - The difference between these two images produces an interferogram, indicating how the ground has moved.

- Accurately measures deformations on planetary bodies (mm-scale)
 - Planetary science mission: NASA VERITAS future mission (2031, Venus)
 - Earth science mission: NASA-ISRO NISAR (2024)

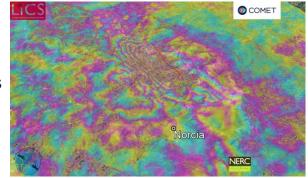
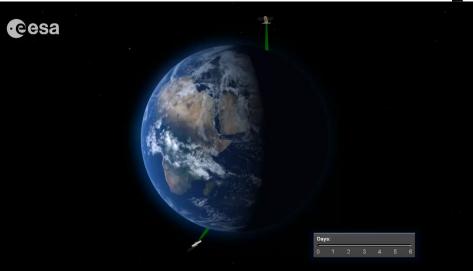


Image credit: COMET (UKRI NERC) https://comet.nerc.ac.uk/golden-age-tectonicremote-sensing/



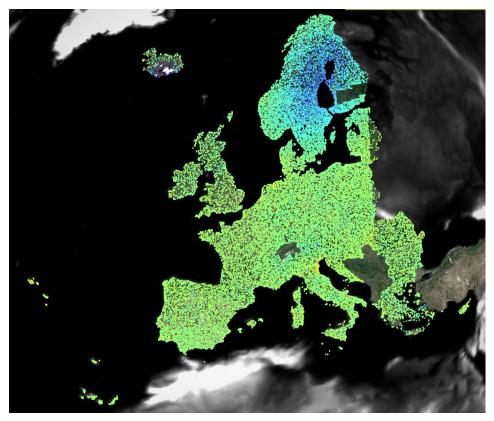
Intro to InSAR

Downloaded InSAR data can look like this:

 Which isn't very helpful, or easy on the eye!

⊿													M				Q
1		pid	easting	northing	height	rmse	mean_velo	mean_velo	accelerati	accelerati	seasonali	seasonali	20160105	20160111	20160117	20160123	20160129 20:
2	62440	40d1glmW	3617050	3200050	4.1	0.8	-1.6	0	-0.14	0.03	0.2	0	0.2	0.8	1.1	0.3	0.1
3	62441	40d1ISRIR	3617050	3200150	4.7	0.8	-2.2	0	0	0.03	0.1	0	1.6	0.4	-0.2	-0.1	-0.2
	62442	40d1q970e	3617050	3200250	5	0.7	-2.3	0	0.15	0.03	0.2	0	-0.1	-0.6	-1.3	-0.7	-0.5
	62443	40d1upmF	3617050	3200350	4.9	0.6	-1.8	0	0.03	0.03	0.4	0	0.7	0.6	0.4	0.7	1.1
	62444	40d1zWRV	3617050	3200450	8.1	0.6	-1.7	0	0.02	0.03	0.3	0	-0.4	0.7	1.1	0.9	0.7
	62445	40d24D6kl	3617050	3200550	4.9	0.7	-1.5	0	0.09	0.03	0.6	0	0.2	0.1	0.2	0.3	0.2
	62446	40d28tlzQ	3617050	3200650	4.2	0.7	-1.6	0	0.19	0.03	0	0	0.8	1.5	1.2	0.6	0.3
	62447	40d2DaRE	3617050	3200750	14.4	0.9	-1.7	0	0.15	0.03	0.1	0	-2.2	-2	-1.4	-0.5	0.6
D	62448	40d2IH6Tc	3617050	3200850	16.8	0.9	-1.3	0	0.17	0.04	0.3	0	-1	-1.4	-1.3	-0.2	0.5
1	62449	40d2Mxlj0	3617050	3200950	7.3	0.9	-1.4	0	-0.08	0.03	0.3	0	0.8	1.1	1.3	0.1	-1
2	62450	40d2ReQy	3617050	3201050	6	0.8	-1.3	0	0.14	0.03	0.6	0	-1.1	-0.7	-0.5	-0.6	-0.4
3	62451	40d2WL6E	3617050	3201150	6.2	0.6	-1.3	0	0.16	0.02	0	0	-0.4	-0.7	-0.4	0	-0.2
ŧ	62452	40d2b1lSa	3617050	3201250	8.5	0.4	-1.3	0	0.04	0.02	0	0	0.4	-0.5	-0.8	-0.4	-0.1
5	62453	40d2fiQhn	3617050	3201350	11.8	0.6	-1.3	0	0.09	0.02	0.8	0	-0.1	0.1	0.6	1.2	1.2
5	62454	40d2p5lC/	3617050	3201550	4.3	1.6	-1.6	0	0	0.06	1.1	0.1	-0.7	1.2	0.7	-1	-2.5
7	62455	40d2tmQF	3617050	3201650	8.8	.0.6	-1.5	0	0.04	0.02	0.1	0	0	0.2	0.6	0.3	0.2
3	62456	40d2yT5g2	3617050	3201750	9.8	0.8	-2	0	-0.13	0.03	0.2	0	-0.4	-0.3	-0.6	-0.4	0.5
)	62457	40d339kvl	3617050	3201850	10	0.7	-2	0	-0.13	0.03	0.3	0	0.3	-0.5	-1.1	-1.5	-1.3
)	62458	40d37qQA	3617050	3201950	11.4	0.6	-1.6	0	0.21	0.02	0.5	0	-0.7	-0.5	-1	-1.4	-0.7
I.	62459	40d3CX5C	3617050	3202050	8.3	0.9	-1.1	0	0.11	0.04	0.9	0	-0.3	0.5	0.2	-1.5	-2.3
2	62460	40d3HDkf	3617050	3202150	7.2	0.7	-1.5	0	0.04	0.03	0.4	0	-1.5	-0.7	-0.1	-0.1	-0.1
3	62461	40d3LuPu	3617050	3202250	6.6	0.9	-1.5	0	0.01	0.03	0.7	0	1.4	0.7	0.2	-0.2	-0.4
1	62462	40d3Qb59	3617050	3202350	9.2	0.7	-1	0	0.03	0.03	0.4	0	0.7	0.8	0.6	0	-0.4
;	62463	40d3VHkC	3617050	3202450	13.8	0.5	-1	0	0.07	0.02	0.1	0	0.7	0.5	0	-0.4	-0.8
;	62464	40d3ZyPe7	3617050	3202550	12.6	0.6	-0.9	0	0.12	0.02	0.1	0	0.1	-0.1	-0.5	-0.6	-0.6
Í	465	40d3ef4tJa	3617050	3202650	8.6	0.8	-0.7	0	0.04	0.03	0.4	0	0.8	0	-0.6	-0.6	-0.1
	757	40d1glmW	3617150	3200050	5.9	0.7	-1.8	0	0.06	0.03	0.1	0	-0.3	0.2	1.1	0.8	0.3

We typically use data from the ESA Copernicus Sentinel-1AB satellite pair


Sentinel-1 satellites revisit each measurement point every 6 days

Credit: ESA/ATG medialab

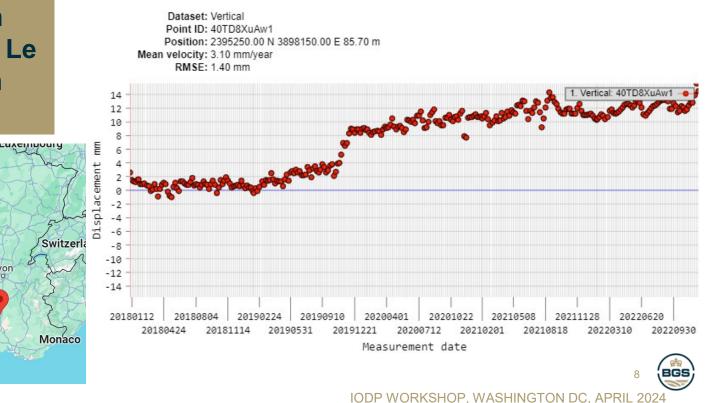
OPEN ACCESS DATA, AVAILABLE AT: HTTPS://EGMS.LAND.COPERNICUS.EU/

EGMS Interface

The UK alone has **2.5 billion** data points for a 5year period (standard EGMS data download size)

→ A lot of data for Europe!

OPEN ACCESS DATA, AVAILABLE AT: HTTPS://EGMS.LAND.COPERNICUS.EU/


EGMS Time Series: what can we see?

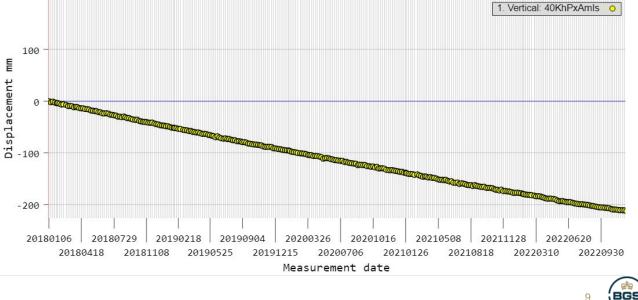
Earthquake in November 2019, Le Tiel, southern France

Paris

France

Lyon

Credit: google maps


OPEN ACCESS DATA, AVAILABLE AT: HTTPS://EGMS.LAND.COPERNICUS.EU/

EGMS Time Series: what can we see?

Groundwater extraction, Lorca, southern Spain

IODP WORKSHOP, WASHINGTON DC, APRIL 2024

Credit: google maps

Landslides

BGS Datasets & InSAR

Shrink-Swell

- BGS is the authoritative body on geohazards in the UK
- Founded in 1835→ nearly 200 years of geological data!

Running

Sands

- GeoSure: hazard susceptibility maps for 6 UK geohazards

Compressible

Ground

Collapsible

Deposits

Soluble Rocks

IODP WORKSHOP, WASHINGTON DC, APRIL 2024

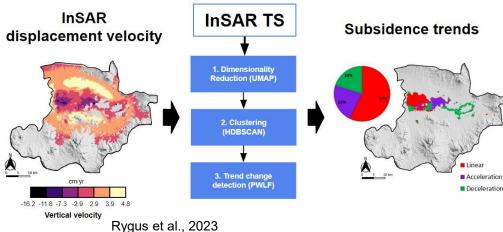
• We utilise EGMS data, from Sentinel-1 satellites, for InSAR

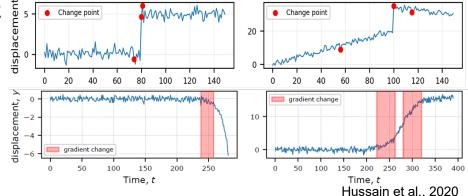
THE POINT IS ...

We cannot manually interpret every data point! We need to know not only where is vulnerablebut what is happening and why it's happening.

Accurate prediction models

Quicker disaster responses

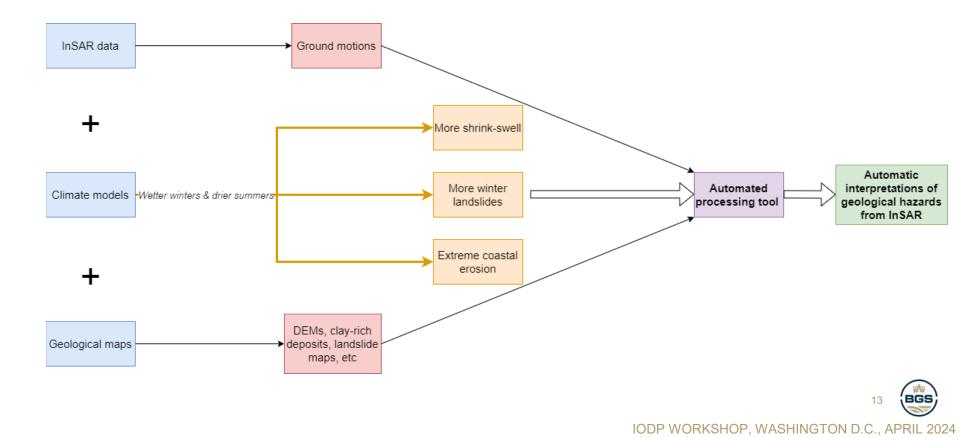

Functioning warning & forecast systems



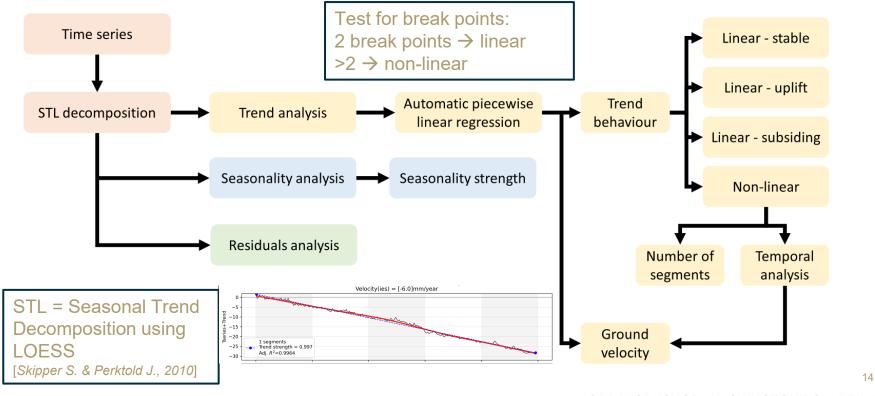
Current Research at BGS

Automatic extraction of information from InSAR time series:

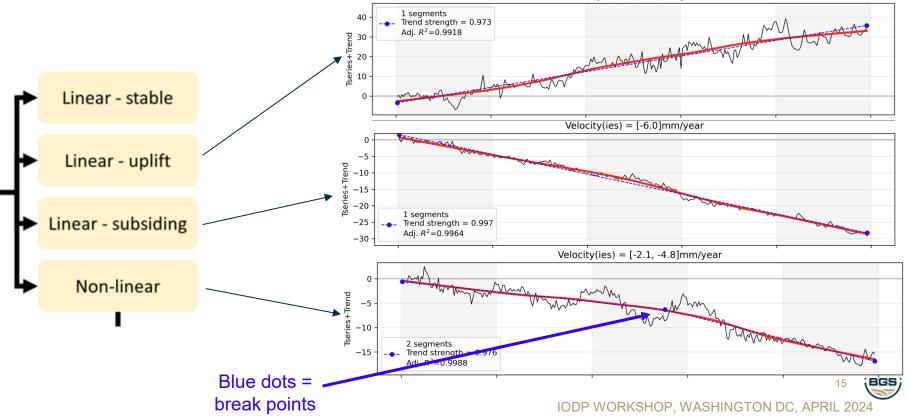
- Methods to cluster data into areas of statistically similar motions (unsupervised machine learning)
- Methods to identify changes within a time series – detectors.


InSAR change detector allows significant changes in time series to be identified for millions of measurement points in **near-real time**

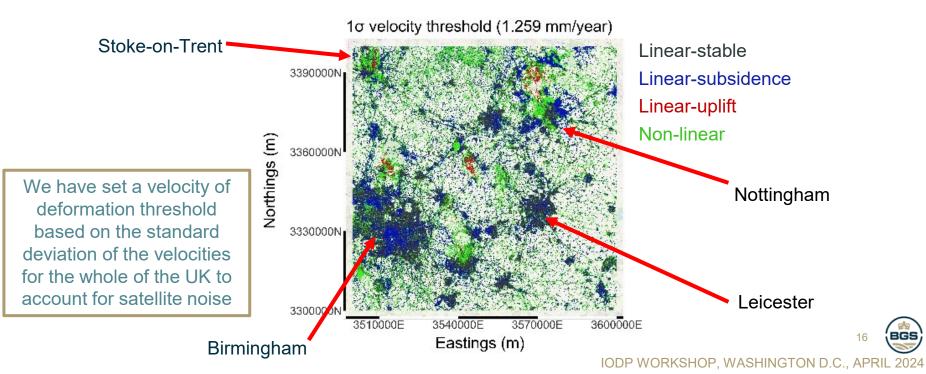
ML methods applied to InSAR reveals subsidence trends in Indonesia



The Big Idea:


Automatic piecewise linear regression (PLR) of time series trends:

IODP WORKSHOP, WASHINGTON DC, APRIL 2024

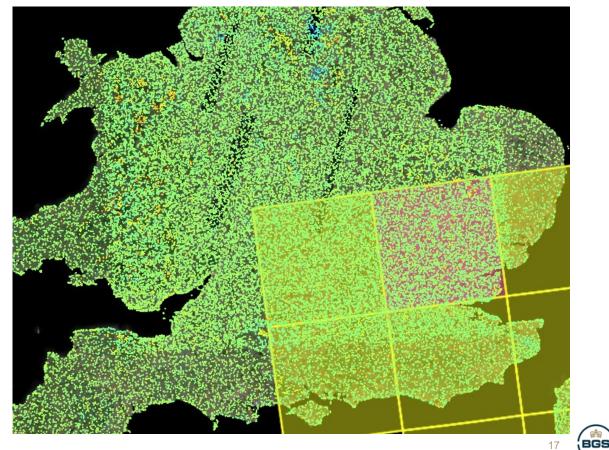

BGS

Automatic piecewise linear regression (PLR) of time series trends:

Results: Test 1

- By plotting the different groups of trend behaviours, we observe spatial trends
 - The algorithm takes in no spatial data, yet returns spatial information

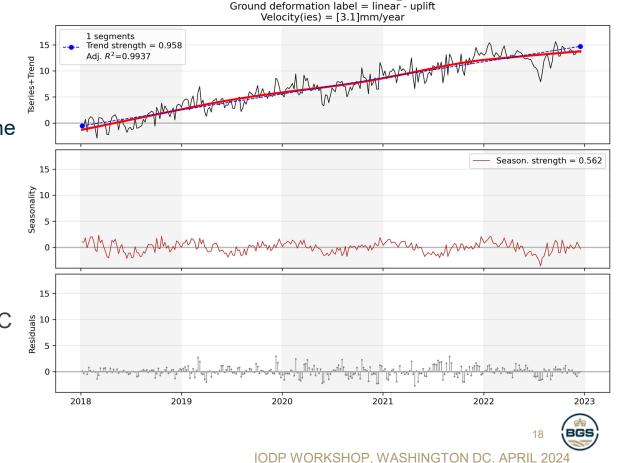
TEST AREA 2- SOUTHEAST ENGLAND (CLAY-RICH GEOLOGY)


Results

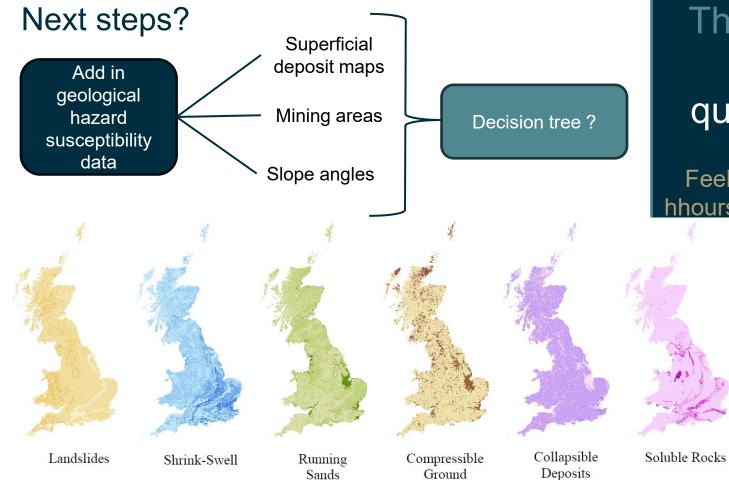
Location: SE England (selected quadrant in EGMS in pink)

Geology: clay-rich soils → high risk area for shrink-swell hazard

Velocity threshold: 1.5σ (σ = deviation in the mean rates of ground motions in Great Britain as a whole)


1.5*σ* = 1.889 *mm/year*

TEST AREA 2- SOUTHEAST ENGLAND (CLAY-RICH GEOLOGY)


Results

- Example processed measurement point: uplifting
- Only uses 1 segment to map the general trend (blue dashes)
- Looking only at the modulus of seasonality, notice a large increase in seasonality strength in Summer 2022
 - UK Heatwave, SE
 England reached 42 ° C
 (107° F)

Location id = 40 dBauvctG, 1year period

IODP WORKSHOP, WASHINGTON DC, APRIL 2024

Thank you! Any questions?

Feel free to email: hhourston@bgs.ac.uk

Add synthetic InSAR data from expected trends → future climate impacts

-reference with prological time data → identify nation change triggers

