Check for updates

DATA NOTE

The genome sequence of the Oak Nycteoline moth, *Nycteola*

revayana (Scopoli, 1772) [version 1; peer review: awaiting peer

review]

Douglas Boyes¹⁺, Gavin R. Broad¹/₂, Peter W. H. Holland³,

University of Oxford and Wytham Woods Genome Acquisition Lab,

Natural History Museum Genome Acquisition Lab,

Darwin Tree of Life Barcoding collective,

Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team,

Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹UK Centre for Ecology & Hydrology, Wallingford, England, UK ²Natural History Museum, London, England, UK ³University of Oxford, Oxford, England, UK

+ Deceased author

 First published: 15 May 2024, 9:258 https://doi.org/10.12688/wellcomeopenres.21567.1
Latest published: 15 May 2024, 9:258 https://doi.org/10.12688/wellcomeopenres.21567.1

Abstract

We present a genome assembly from an individual male *Nycteola revayana* (the Oak Nycteoline moth; Arthropoda; Insecta; Lepidoptera; Nolidae). The genome sequence is 621.0 megabases in span. Most of the assembly is scaffolded into 26 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.25 kilobases in length. Gene annotation of this assembly on Ensembl identified 19,235 protein-coding genes.

Keywords

Nycteola revayana, Oak Nycteoline moth, genome sequence, chromosomal, Lepidoptera

This article is included in the Tree of Life gateway.

Open Peer Review

Approval Status AWAITING PEER REVIEW

Any reports and responses or comments on the article can be found at the end of the article.

Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Boyes D: Investigation, Resources; Broad GR: Investigation, Resources; Holland PWH: Writing – Original Draft Preparation, Writing – Review & Editing;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Wellcome through core funding to the Wellcome Sanger Institute [206194, https://doi.org/10.35802/206194] and the Darwin Tree of Life Discretionary Award [218328, https://doi.org/10.35802/218328]. *The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.*

Copyright: © 2024 Boyes D *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Boyes D, Broad GR, Holland PWH *et al.* The genome sequence of the Oak Nycteoline moth, Nycteola revayana (Scopoli, 1772) [version 1; peer review: awaiting peer review] Wellcome Open Research 2024, 9:258 https://doi.org/10.12688/wellcomeopenres.21567.1

First published: 15 May 2024, 9:258 https://doi.org/10.12688/wellcomeopenres.21567.1

Species taxonomy

Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Protostomia; Ecdysozoa; Panarthropoda; Arthropoda; Mandibulata; Pancrustacea; Hexapoda; Insecta; Dicondylia; Pterygota; Neoptera; Endopterygota; Amphiesmenoptera; Lepidoptera; Glossata; Neolepidoptera; Heteroneura; Ditrysia; Obtectomera; Noctuoidea; Nolidae; Chloephorinae; *Nycteola; Nycteola revayana* (Scopoli, 1772) (NCBI:txid988004).

Background

The Oak Nycteoline Nycteola revayana is a small moth in the family Nolidae, superfamily Noctuoidea, found widely across western, central and northern Europe, with scattered records from Russia and north Africa (GBIF Secretariat, 2023). In Britain and Ireland, the moth is recorded most frequently in southern and central England and Wales but rarely in large numbers; it has a scattered distribution across Scotland and is scarce in Northern Ireland and Ireland (GBIF Secretariat, 2023; NBN Atlas Partnership, 2023; Randle et al., 2019). An unusual feature of this species is the extensive variation in ground colour of the wings and in wing pattern. For example, moths may be ashy grey with indistinct markings, bronze-brown with pronounced black streaks running from the wing base, pale grey with 'domino-like' spots, or crossed by bands of brown, black and grey. In 1919, W.G. Sheldon combined previous work with examination of additional specimens to divide the species into 30 named 'varieties' (Sheldon, 1919). However, since intermediate forms exist, these may be better considered simply as combinations of variants in several independent wing pattern elements, rather than distinct morphs with co-inherited features.

The larvae of *N. revayana* feed on pedunculate oak *Quercus robur* and sessile oak *Q. petraea*, and the moth is found in deciduous woodlands or in fields, parks and hedgerows where oaks are present. In Britain, the species is thought to be primarily bivoltine: one generation is on the wing in autumn and spring, overwintering as an adult, with the eggs laid by these moths developing into a summer generation with more individuals. However, this pattern may be overlain by some moths having a univoltine life history, and supplemented by migrant moths from mainland Europe (DorsetMoths, 2023; Randle *et al.*, 2019).

A genome sequence for *N. revayana* will facilitate studies into adaptations to oak feeding and the genetic basis of wing pattern variation, and will contribute to the growing set of genomic resources for Lepidoptera.

Genome sequence report

The genome was sequenced from a male *Nycteola revayana* (Figure 1) collected from Wytham Woods, Oxfordshire, UK (51.77, -1.34). A total of 33-fold coverage in Pacific Biosciences single-molecule HiFi long reads was generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 8 missing joins or mis-joins and removed 2 haplotypic duplications, reducing the scaffold number by 4.26%.

Figure 1. Photograph of the *Nycteola revayana* (ilNycReva1) specimen used for genome sequencing.

The final assembly has a total length of 621.0 Mb in 44 sequence scaffolds with a scaffold N50 of 22.0 Mb (Table 1). The snail plot in Figure 2 provides a summary of the assembly statistics, while the distribution of assembly scaffolds on GC proportion and coverage is shown in Figure 3. The cumulative assembly plot in Figure 4 shows curves for subsets of scaffolds assigned to different phyla. Most (99.79%) of the assembly sequence was assigned to 26 chromosomallevel scaffolds, representing 24 autosomes and the Z sex chromosome. Chromosome-scale scaffolds confirmed by the Hi-C data are named in order of size (Figure 5; Table 2). While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited. The mitochondrial genome was also assembled and can be found as a contig within the multifasta file of the genome submission.

The estimated Quality Value (QV) of the final assembly is 66.3 with *k*-mer completeness of 100.0%, and the assembly has a BUSCO v completeness of 98.4% (single = 98.2%, duplicated = 0.2%), using the lepidoptera_odb10 reference set (n = 5,286).

Metadata for specimens, BOLD barcode results, spectra estimates, sequencing runs, contaminants and pre-curation assembly statistics are given at https://links.tol.sanger.ac.uk/ species/988004.

Genome annotation report

The *Nycteola revayana* genome assembly (GCA_947037095.1) was annotated at the European Bioinformatics Institute (EBI) on Ensembl Rapid Release. The resulting annotation includes 19,453 transcribed mRNAs from 19,235 protein-coding genes (Table 1; https://rapid.ensembl.org/Nycteola_revayana_GCA_947037095.1/Info/Index).

Methods

Sample acquisition and nucleic acid extraction

Two Nycteola revayana (ilNycReva1 and ilNycReva2) were collected from Wytham Woods, Oxfordshire (biological

Project accession data				
Assembly identifier	ilNycReva1.2			
Species	Nycteola revayana			
Specimen	ilNycReva1			
NCBI taxonomy ID	988004			
BioProject	PRJEB55450			
BioSample ID	SAMEA10107012			
Isolate information	ilNycReva1, male: whole organism (PacBio DNA sequencing) ilNycReva2, male: whole organism (Illumina Hi-C sequencing) ilNycReva3: abdomen (RNA sequencing)			
Assembly metrics*		Benchmark		
Consensus quality (QV)	66.3	≥ 50		
k-mer completeness	100.0%	≥95%		
BUSCO**	C:98.4%[S:98.2%,D:0.2%], F:0.2%,M:1.4%,n:5,286	<i>C</i> ≥ <i>95</i> %		
Percentage of assembly mapped to chromosomes	99.79%	≥95%		
Sex chromosomes	Z	localised homologous pairs		
Organelles	Mitochondrial genome: 15.25 kb	complete single alleles		
Raw data accessions				
PacificBiosciences Sequel IIe	ERR10100492			
Hi-C Illumina	ERR10107966			
PolyA RNA-Seq Illumina	ERR12708729			
Genome assembly				
Assembly accession	GCA_947037095.2			
Accession of alternate haplotype	GCA_947038005.1			
Span (Mb)	621.0			
Number of contigs	110			
Contig N50 length (Mb)	11.3			
Number of scaffolds	44			
Scaffold N50 length (Mb)	22.0			
Longest scaffold (Mb)	41.45			
Genome annotation				
Number of protein-coding genes	19,235			
Number of gene transcripts	19,452			

Table 1. Genome data for Nycteola revayana, ilNycReva1.2.

* Assembly metric benchmarks are adapted from column VGP-2020 of "Table 1: Proposed standards and metrics for defining genome assembly quality" from Rhie *et al.* (2021).

** BUSCO scores based on the lepidoptera_odb10 BUSCO set using version v5.4.3. C = complete [S = single copy, D = duplicated], F = fragmented, M = missing, n = number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/Nycteola_revayana/dataset/GCA_947037095.2/ busco.

Dataset: GCA_947037095.2

Figure 2. Genome assembly of Nycteola revayana, ilNycReva1.2: metrics. The BlobToolKit snail plot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 621,039,493 bp assembly. The distribution of scaffold lengths is shown in dark grey with the plot radius scaled to the longest scaffold present in the assembly (41,453,523 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 scaffold lengths (21,960,024 and 18,563,743 bp), respectively. The pale grey spiral shows the cumulative scaffold count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the lepidoptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/Nycteola_revayana/dataset/GCA_947037095.2/snail.

vice-county: Berkshire), UK (latitude 51.77, longitude –1.34) on 2021-03-31 by Douglas Boyes (University of Oxford), using a light trap. The specimens were identified by the collector and then snap-frozen on dry ice. Individual ilNycReva1 (specimen Ox001089) was used for genome

sequencing, while ilNycReva2 (specimen Ox001090) was used for Hi-C scaffolding.

The specimen used for RNA sequencing (specimen ID NHMUK010636607, ToLID ilNycReva3) was collected

Figure 3. Genome assembly of *Nycteola revayana*, **iINycReva1.2: BlobToolKit GC-coverage plot.** Sequences are coloured by phylum. Circles are sized in proportion to sequence length. Histograms show the distribution of sequence length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/Nycteola_revayana/dataset/GCA_947037095.2/blob.

from Tonbridge, Kent, UK (latitude 51.19, longitude 0.29) on 2022-03-10 by Gavin Broad (Natural History Museum), using actinic light.

The workflow for high molecular weight (HMW) DNA extraction at the Wellcome Sanger Institute (WSI) Tree of Life Core Laboratory includes a sequence of core procedures: sample preparation; sample homogenisation, DNA extraction,

fragmentation, and clean-up. In sample preparation, the ilNycReval sample was weighed and dissected on dry ice (Jay *et al.*, 2023). Tissue from the whole organism was homogenised using a PowerMasher II tissue disruptor (Denton *et al.*, 2023a). HMW DNA was extracted using the Automated MagAttract v1 protocol (Sheerin *et al.*, 2023). DNA was sheared into an average fragment size of 12–20 kb in a Megaruptor 3 system with speed setting 30 (Todorovic *et al.*, 2023). Sheared DNA

Figure 4. Genome assembly of Nycteola revayana, ilNycReva1.2: BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all sequences. Coloured lines show cumulative lengths of sequences assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/Nycteola_revayana/dataset/GCA_947037095.2/cumulative.

was purified by solid-phase reversible immobilisation (Strickland *et al.*, 2023): in brief, the method employs a 1.8X ratio of AMPure PB beads to sample to eliminate shorter fragments and concentrate the DNA. The concentration of the sheared and purified DNA was assessed using a Nanodrop spectrophotometer and Qubit Fluorometer and Qubit dsDNA High Sensitivity Assay kit. Fragment size distribution was evaluated by running the sample on the FemtoPulse system.

RNA was extracted from abdomen tissue of ilNycReva3 in the Tree of Life Laboratory at the WSI using the RNA Extraction: Automated MagMaxTM *mir*Vana protocol (do Amaral *et al.*, 2023). The RNA concentration was assessed using a Nanodrop spectrophotometer and a Qubit Fluorometer using the Qubit RNA Broad-Range Assay kit. Analysis of the integrity of the RNA was done using the Agilent RNA 6000 Pico Kit and Eukaryotic Total RNA assay.

Figure 5. Genome assembly of *Nycteola revayana*, **ilNycReva1.2: Hi-C contact map of the ilNycReva1.2 assembly, visualised using HiGlass.** Chromosomes are shown in order of size from left to right and top to bottom. An interactive version of this figure may be viewed at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=EP63k2ELTVC8tQ8OwXI0mg.

Table 2. Chromosomal pseudomoleculesin the genome assembly of Nycteolarevayana, ilNycReva1.

INSDC accession	Chromosome	Length (Mb)	GC%
OX344838.1	1	41.45	36.0
OX344839.1	2	40.64	36.5
OX344840.2	3	34.57	36.5
OX344841.2	4	26.46	36.0
OX344843.2	5	26.1	36.0
OX344844.2	6	26.03	36.5
OX344845.2	7	25.63	36.5
OX344846.2	8	25.58	36.5
OX344847.2	9	22.26	36.5
OX344848.2	10	21.96	36.0
OX344849.2	11	21.64	36.0
OX344850.2	12	21.17	36.5

INSDC accession	Chromosome	Length (Mb)	GC%
OX344851.2	13	21.02	37.0
OX344852.2	14	20.89	36.0
OX344853.2	15	20.8	36.0
OX344854.2	16	20.55	35.5
OX344855.2	17	20.54	37.5
OX344856.2	18	19.94	36.5
OX344857.2	19	19.9	36.5
OX344858.2	20	19.2	37.0
OX344859.2	21	18.77	38.0
OX344860.2	22	18.56	37.0
OX344861.2	23	18.29	36.5
OX344862.2	24	17.91	36.0
OY855748.1	25	16.62	37.5
OX344842.1	Z	33.29	36.0
OX344863.1	MT	0.02	19.5

Protocols developed by the WSI Tree of Life laboratory are publicly available on protocols.io (Denton *et al.*, 2023b).

Sequencing

Pacific Biosciences HiFi circular consensus DNA sequencing libraries were constructed according to the manufacturers' instructions. Poly(A) RNA-Seq libraries were constructed using the NEB Ultra II RNA Library Prep kit. DNA and RNA sequencing was performed by the Scientific Operations core at the WSI on Pacific Biosciences Sequel IIe (HiFi) and Illumina NovaSeq 6000 (RNA-Seq) instruments. Hi-C data were also generated from \$HIC_TISSUE tissue of ilNycReva2 using the Arima2 kit and sequenced on the Illumina NovaSeq 6000 instrument.

Genome assembly and curation

Assembly was carried out with Hifiasm (Cheng et al., 2021) and haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using YaHS (Zhou et al., 2023). The assembly was checked for contamination and corrected using the gEVAL system (Chow et al., 2016) as described previously (Howe et al., 2021). Manual curation was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and PretextView (Harry, 2022). The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2023), which runs MitoFinder (Allio et al., 2020) or MITOS (Bernt et al., 2013) and uses these annotations to select the final mitochondrial contig and to ensure the general quality of the sequence.

Final assembly evaluation

The final assembly was post-processed and evaluated with the three Nextflow (Di Tommaso et al., 2017) DSL2 pipelines "sanger-tol/readmapping" (Surana et al., 2023a), "sanger-tol/ genomenote" (Surana et al., 2023b), and "sanger-tol/blobtoolkit" (Muffato et al., 2024). The pipeline sanger-tol/readmapping aligns the Hi-C reads with bwa-mem2 (Vasimuddin et al., 2019) and combines the alignment files with SAMtools (Danecek et al., 2021). The sanger-tol/genomenote pipeline transforms the Hi-C alignments into a contact map with BEDTools (Quinlan & Hall, 2010) and the Cooler tool suite (Abdennur & Mirny, 2020), which is then visualised with HiGlass (Kerpedjiev et al., 2018). It also provides statistics about the assembly with the NCBI datasets (Savers et al., 2024) report, computes k-mer completeness and QV consensus quality values with FastK and MerquryFK, and a completeness assessment with BUSCO (Manni et al., 2021).

The sanger-tol/blobtoolkit pipeline is a Nextflow port of the previous Snakemake Blobtoolkit pipeline (Challis *et al.*, 2020). It aligns the PacBio reads with SAMtools and minimap2 (Li, 2018) and generates coverage tracks for regions of fixed size. In parallel, it queries the GoaT database (Challis *et al.*, 2023) to identify all matching BUSCO lineages to run BUSCO (Manni *et al.*, 2021). For the three domain-level

BUSCO lineage, the pipeline aligns the BUSCO genes to the Uniprot Reference Proteomes database (Bateman *et al.*, 2023) with DIAMOND (Buchfink *et al.*, 2021) blastp. The genome is also split into chunks according to the density of the BUSCO genes from the closest taxonomically lineage, and each chunk is aligned to the Uniprot Reference Proteomes database with DIAMOND blastx. Genome sequences that have no hit are then chunked with seqtk and aligned to the NT database with blastn (Altschul *et al.*, 1990). All those outputs are combined with the blobtools suite into a blobdir for visualisation.

All three pipelines were developed using the nf-core tooling (Ewels *et al.*, 2020), use MultiQC (Ewels *et al.*, 2016), and make extensive use of the Conda package manager, the Bioconda initiative (Grüning *et al.*, 2018), the Biocontainers infrastructure (da Veiga Leprevost *et al.*, 2017), and the Docker (Merkel, 2014) and Singularity (Kurtzer *et al.*, 2017) containerisation solutions.

Table 3 contains a list of relevant software tool versions and sources.

Genome annotation

The BRAKER2 pipeline (Brůna *et al.*, 2021) was used in the default protein mode to generate annotation for the *Nycteola revayana* assembly (GCA_947037095.2) in Ensembl Rapid Release at the EBI.

Wellcome Sanger Institute – Legal and Governance

The materials that have contributed to this genome note have been supplied by a Darwin Tree of Life Partner. The submission of materials by a Darwin Tree of Life Partner is subject to the **'Darwin Tree of Life Project Sampling Code of Practice'**, which can be found in full on the Darwin Tree of Life website here. By agreeing with and signing up to the Sampling Code of Practice, the Darwin Tree of Life Partner agrees they will meet the legal and ethical requirements and standards set out within this document in respect of all samples acquired for, and supplied to, the Darwin Tree of Life Project.

Further, the Wellcome Sanger Institute employs a process whereby due diligence is carried out proportionate to the nature of the materials themselves, and the circumstances under which they have been/are to be collected and provided for use. The purpose of this is to address and mitigate any potential legal and/or ethical implications of receipt and use of the materials as part of the research project, and to ensure that in doing so we align with best practice wherever possible. The overarching areas of consideration are:

- Ethical review of provenance and sourcing of the material
- Legality of collection, transfer and use (national and international)

Each transfer of samples is further undertaken according to a Research Collaboration Agreement or Material Transfer

Software tool	Version	Source
BEDTools	2.30.0	https://github.com/arq5x/bedtools2
Blast	2.14.0	ftp://ftp.ncbi.nlm.nih.gov/blast/executables/ blast+/
BlobToolKit	4.3.7	https://github.com/blobtoolkit/blobtoolkit
BUSCO	5.4.3 and 5.5.0	https://gitlab.com/ezlab/busco
bwa-mem2	2.2.1	https://github.com/bwa-mem2/bwa-mem2
Cooler	0.8.11	https://github.com/open2c/cooler
DIAMOND	2.1.8	https://github.com/bbuchfink/diamond
fasta_windows	0.2.4	https://github.com/tolkit/fasta_windows
FastK	427104ea91c78c3b8b8b49f1a7d6bbeaa869ba1c	https://github.com/thegenemyers/FASTK
gEVAL	N/A	https://geval.org.uk/
GoaT CLI	0.2.5	https://github.com/genomehubs/goat-cli
Hifiasm	0.16.1-r375	https://github.com/chhylp123/hifiasm
HiGlass	44086069ee7d4d3f6f3f0012569789ec138f42b84 aa44357826c0b6753eb28de	https://github.com/higlass/higlass
MerquryFK	d00d98157618f4e8d1a9190026b19b471055b 22e	https://github.com/thegenemyers/MERQURY.FK
MitoHiFi	2	https://github.com/marcelauliano/MitoHiFi
MultiQC	1.14, 1.17, and 1.18	https://github.com/MultiQC/MultiQC
NCBI Datasets	15.12.0	https://github.com/ncbi/datasets
Nextflow	23.04.0-5857	https://github.com/nextflow-io/nextflow
PretextView	0.2	https://github.com/wtsi-hpag/PretextView
purge_dups	1.2.3	https://github.com/dfguan/purge_dups
samtools	1.16.1, 1.17, and 1.18	https://github.com/samtools/samtools
sanger-tol/genomenote	1.1.1	https://github.com/sanger-tol/genomenote
sanger-tol/readmapping	1.2.1	https://github.com/sanger-tol/readmapping
Seqtk	1.3	https://github.com/lh3/seqtk
Singularity	3.9.0	https://github.com/sylabs/singularity
YaHS	vahs-1.1.91eebc2	https://github.com/c-zhou/yahs

Table 3. Software tools: versions and sources.

Agreement entered into by the Darwin Tree of Life Partner, Genome Research Limited (operating as the Wellcome Sanger Institute), and in some circumstances other Darwin Tree of Life collaborators.

Data availability

European Nucleotide Archive: *Nycteola revayana* (oak Nycteoline). Accession number PRJEB55450; https://identifiers.org/ ena.embl/PRJEB55450 (Wellcome Sanger Institute, 2023). The genome sequence is released openly for reuse. The *Nycteola revayana* genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. Raw data and assembly accession identifiers are reported in Table 1.

Author information

Members of the University of Oxford and Wytham Woods Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.7125292.

Members of the Natural History Museum Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.7139035. Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.4893703.

Members of the Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team are listed here: https://doi.org/10.5281/zenodo.10066175.

Members of Wellcome Sanger Institute Scientific Operations: Sequencing Operations are listed here: https://doi.org/10.5281/ zenodo.10043364.

Members of the Wellcome Sanger Institute Tree of Life Core Informatics team are listed here: https://doi.org/10.5281/ zenodo.10066637.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5013541.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.4783558.

References

Abdennur N, Mirny LA: Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics. 2020; 36(1): 311–316. PubMed Abstract | Publisher Full Text | Free Full Text

Allio R, Schomaker-Bastos A, Romiguier J, et al.: MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol Ecol Resour. 2020; 20(4): 892-905. PubMed Abstract | Publisher Full Text | Free Full Text

Altschul SF, Gish W, Miller W, et al.: Basic local alignment search tool. J Mol Biol. 1990: 215(3): 403-410.

PubMed Abstract | Publisher Full Text

Bateman A, Martin MJ, Orchard S, et al.: UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023; 51(D1): D523–D531. PubMed Abstract | Publisher Full Text | Free Full Text

Bernt M, Donath A, Jühling F, et al.: MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013; 69(2): 313–319. PubMed Abstract | Publisher Full Text

Brůna T, Hoff KJ, Lomsadze A, et al.: BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom Bioinform. 2021; 3(1): Iqaa108. PubMed Abstract | Publisher Full Text | Free Full Text

Buchfink B, Reuter K, Drost HG: Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021; 18(4): 366-368. PubMed Abstract | Publisher Full Text | Free Full Text

Challis R, Kumar S, Sotero-Caio C, et al.: Genomes on a Tree (GoaT): A versatile, scalable search engine for genomic and sequencing project metadata across the eukaryotic tree of life [version 1; peer review: 2 approved]. Wellcome Open Res. 2023; 8: 24.

PubMed Abstract | Publisher Full Text | Free Full Text

Challis R, Richards E, Rajan J, et al.: BlobToolKit - interactive quality assessment of genome assemblies. *G3* (*Bethesda*). 2020; **10**(4): 1361–1374. PubMed Abstract | Publisher Full Text | Free Full Text

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021; 18(2): 170 - 175

PubMed Abstract | Publisher Full Text | Free Full Text

Chow W, Brugger K, Caccamo M, et al.: gEVAL - a web-based browser for evaluating genome assemblies. Bioinformatics. 2016; 32(16): 2508–2510. PubMed Abstract | Publisher Full Text | Free Full Text

da Veiga Leprevost F, Grüning BA, Alves Aflitos S, et al.: BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017; 33(16): 2580–2582. PubMed Abstract | Publisher Full Text | Free Full Text

Danecek P, Bonfield JK, Liddle J, et al.: Twelve years of SAMtools and BCFtools. GigaScience. 2021; 10(2): giab008

PubMed Abstract | Publisher Full Text | Free Full Text

Denton A, Oatley G, Cornwell C, et al.: Sanger Tree of Life sample homogenisation: PowerMash. protocols.io. 2023a. **Publisher Full Text**

Denton A, Yatsenko H, Jay J, et al.: Sanger Tree of Life wet laboratory protocol collection V.1. protocols.io. 2023b. **Publisher Full Text**

Di Tommaso P, Chatzou M, Floden EW, et al.: Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017; 35(4): 316-319. PubMed Abstract | Publisher Full Text

do Amaral RIV, Bates A, Denton A, et al.: Sanger Tree of Life RNA extraction: automated MagMax[™] mirVana. protocols.io. 2023. **Publisher Full Text**

DorsetMoths: Oak Nycteoline Nycteola revayana, DorsetMoths.co.uk. 2023;

[Accessed 12 January 2023].

Reference Source

Ewels PA, Peltzer A, Fillinger S, et al.: The nf-core framework for communitycurated bioinformatics pipelines. Nat Biotechnol. 2020; 38(3): 276-278. PubMed Abstract | Publisher Full Text

Ewels P, Magnusson M, Lundin S, et al.: MultiQC: summarize analysis results for multiple tools and samples in a single report. *Bioinformatics*. 2016; **32**(19): 3047–3048.

PubMed Abstract | Publisher Full Text | Free Full Text

GBIF Secretariat: Nycteola revayana (Scopoli, 1772). GBIF Backbone Taxonomy. 2023; [Accessed 12 January 2023].

Reference Source

Grüning B. Dale R. Siödin A. et al.: Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018; 15(7): 475-476. PubMed Abstract | Publisher Full Text

Guan D, McCarthy SA, Wood J, et al.: Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020; 36(9 2896–2898 PubMed Abstract | Publisher Full Text | Free Full Text

Harry E: PretextView (Paired Read Texture Viewer): a desktop application for viewing pretext contact maps. 2022; [Accessed 19 October 2022] **Reference Source**

Howe K, Chow W, Collins J, et al.: Significantly improving the quality of genome assemblies through curation. *GigaScience*. 2021; **10**(1): giaa153. PubMed Abstract | Publisher Full Text | Free Full Text

Jay J, Yatsenko H, Narváez-Gómez JP, et al.: Sanger Tree of Life sample preparation: triage and dissection. protocols.io. 2023. Publisher Full Text

Kerpedjiev P, Abdennur N, Lekschas F, et al.: Higlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 2018; **19**(1): 125

PubMed Abstract | Publisher Full Text | Free Full Text

Kurtzer GM, Sochat V, Bauer MW: Singularity: Scientific containers for mobility of compute. PLoS One. 2017; 12(5): e0177459. PubMed Abstract | Publisher Full Text | Free Full Text

Li H: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34(18): 3094-3100.

PubMed Abstract | Publisher Full Text | Free Full Text Manni M, Berkeley MR, Seppey M, et al.: BUSCO update: novel and

streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. *Mol Biol Evol.* 2021; **38**(10): 4647–4654.

PubMed Abstract | Publisher Full Text | Free Full Text

Merkel D: Docker: lightweight Linux containers for consistent development and deployment. Linux Journal. 2014; 2014(239): 2. **Reference Source**

Muffato M, Butt Z, Challis R, et al.: sanger-tol/blobtoolkit: v0.3.0 - Poliwag. 2024

Publisher Full Text

NBN Atlas Partnership: Nycteola revayana (Scopoli, 1772) Oak Nycteoline. NBN Atlas, 2023; [Accessed 12 January 2023]. **Reference Source**

Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26(6): 841-842. PubMed Abstract | Publisher Full Text | Free Full Text

Randle Z. Evans-Hill LI. Parsons MS. et al.: Atlas of Britain & Ireland's Larger Moths. Newbury: NatureBureau, 2019.

Rao SSP, Huntley MH, Durand NC, et al.: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159(7): 1665-1680.

PubMed Abstract | Publisher Full Text | Free Full Text

Rhie A, McCarthy SA, Fedrigo O, *et al.*: **Towards complete and error-free genome assemblies of all vertebrate species.** *Nature.* 2021; **592**(7856): 737–746.

PubMed Abstract | Publisher Full Text | Free Full Text

Sayers EW, Cavanaugh M, Clark K, et al.: GenBank 2024 Update. Nucleic Acids Res. 2024; 52(D1): D134–D137.

PubMed Abstract | Publisher Full Text | Free Full Text Sheerin E, Sampaio F, Oatley G, *et al.*: Sanger Tree of Life HMW DNA

extraction: automated MagAttract v.1. protocols.io. 2023. Publisher Full Text

Sheldon WG: **The variation of** *Sarcothripus revayana*, *Scopoli*. *The Entomologist*. 1919; **52**: 97–129.

Strickland M, Cornwell C, Howard C: Sanger Tree of Life fragmented DNA clean up: manual SPRI. protocols.io. 2023. Publisher Full Text

Surana P, Muffato M, Qi G: Sanger-tol/readmapping: sanger-tol/ readmapping v1.1.0 - hebridean black (1.1.0). Zenodo. 2023a. Publisher Full Text Surana P, Muffato M, Sadasivan Baby C: sanger-tol/genomenote (v1.0.dev). Zenodo. 2023b.

Publisher Full Text

Todorovic M, Sampaio F, Howard C: Sanger Tree of Life HMW DNA fragmentation: diagenode Megaruptor®3 for PacBio HiFi. protocols.io. 2023. Publisher Full Text

Uliano-Silva M, Ferreira JGRN, Krasheninnikova K, *et al.*: MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. *BMC Bioinformatics*. 2023; 24(1): 288. PubMed Abstract | Publisher Full Text | Free Full Text

Vasimuddin M, Misra S, Li H, et al.: Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019; 314–324. Publisher Full Text

Wellcome Sanger Institute: **The genome sequence of the Oak Nycteoline moth**, *Nycteola revayana* (Scopoli, 1772). European Nucleotide Archive, [dataset], accession number PRJEB55450, 2023.

Zhou C, McCarthy SA, Durbin R: **YaHS: yet another Hi-C scaffolding tool.** *Bioinformatics.* 2023; **39**(1): btac808. **PubMed Abstract | Publisher Full Text | Free Full Text**