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A B S T R A C T   

Species occupancy is often defined as the proportion of areal units (sites) in a landscape that the focal species 
occupies, but it is usually estimated from the subset of sites that have been sampled. Assuming no measurement 
error, we show that three quantities–the degree of sampling bias (in terms of site selection), the proportion of 
sites that have been sampled and the variability of true occupancy across sites–determine the extent to which a 
sample-based estimate of occupancy differs from its true value across the wider landscape. That these are the 
only three quantities (measurement error notwithstanding) to affect the accuracy of estimates of species occu
pancy is the fundamental insight of the “Meng equation”, an algebraic re-expression of statistical error. We use 
simulations to show how each of the three quantities vary with the spatial resolution of the analysis and that 
absolute estimation error is lower at coarser resolutions. Absolute error scales similarly with resolution 
regardless of the size and clustering of the virtual species’ distribution. Finely resolved estimates of species 
occupancy have the potential to be more useful than coarse ones, but this potential is only realised if the esti
mates are at least reasonably accurate. Consequently, wherever there is the potential for sampling bias, there is a 
trade-off between spatial resolution and accuracy, and the Meng equation provides a theoretical framework in 
which analysts can consider the balance between the two. An obvious next step is to consider the implications of 
the Meng equation for estimating a time trend in species occupancy, where it is the confounding of error and true 
change that is of most interest.   

1. Introduction 

Species’ range sizes are often measured in terms of occupancy, which 
is to say, the proportion of “sites” that they occupy within some land
scape (Kéry and Royle, 2016; MacKenzie et al., 2002). Sites were orig
inally conceived as discrete habitat patches or relatively small sampling 
units, but increasingly they represent contiguous larger-scale units 
defined by the analyst (e.g. squares on a map; Van Strien et al., 2013). 
This latter definition has often been used when estimating species oc
cupancy at national and supranational scales (Boyd, August, et al., 2023; 
Coomber et al., 2021; Outhwaite et al., 2019; Powney et al., 2019). 

In most circumstances—and particularly at fine scales across large 
areas—data are not available for all sites, so occupancy must be esti
mated from the subset of sites that have been sampled (Kéry and Royle, 
2016). If the focal species is more or less likely to occupy sampled than 
non-sampled sites, then the sample is geographically biased (a formal 
definition is provided below), and the sample-based estimate will differ 
from its true value across the wider landscape (Boyd, Powney, et al., 

2023; Meng, 2018). Geographic sampling biases are just one source of 
error when estimating species occupancy, the other major source being 
measurement error at sampled sites (MacKenzie et al., 2002). 

A further complication when estimating species occupancy is that it 
varies with spatial resolution. Occupancy always increases as the reso
lution is coarsened, but the rate at which it increases depends on the size 
and clustering of the species’ distribution at the finer scales (Azaele 
et al., 2012; Kunin, 1998; Wilson et al., 2004). All else being equal, fine 
scale estimates of species occupancy are preferable to coarse ones. For 
example, colonisations and local extinctions at small-scale sites are more 
probable than at larger scales, so working at a finer resolution means 
that occupancy is more sensitive to change (Dennis et al., 2019). 

Although estimates of occupancy are nominally more useful at fine 
scales, there are reasons to work at coarser resolutions too. One reason is 
that, given finite resources, sampling at a fine scale might come at the 
expense of sampling over a large geographic area. Another is that the 
effects of sampling bias become more pronounced where there are more 
sites in the landscape (Boyd, Powney, et al., 2023; Meng, 2018a), which 
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is obviously the case at finer resolutions (i.e. where the sites are smaller). 
The fact that sampling biases are likely to be more pervasive at finer 
spatial resolutions raises questions about how the accuracy of estimates 
of species occupancy scales with resolution. Although working at 
coarser resolutions will clearly improve accuracy at the extremes—we 
can be surer a species occupies planet Earth than a set of small plots on 
its surface—how accuracy varies along the gradient from fine to coarse 
resolutions under sampling bias has not, to our knowledge, been 
investigated in ecology. 

Here then, we investigate how the error of sample-based estimators 
of species occupancy vary with spatial resolution. Assuming no false 
absences (or that a model has adequately corrected them), we begin by 
demonstrating that three, and only three, quantities determine the 
magnitude of the error: the degree of sampling bias (in terms of site 
selection), the proportion of sites sampled and the variability of true 
occupancy across sites. That these are the only quantities affecting 
estimation error is a key implication of Meng’s (2018) decomposition of 
survey error. We use simulations to show how each of the three quan
tities, and both relative and absolute error, vary with spatial resolution 
under sampling bias (at the finest resolution) and how varying the level 
of sampling bias affects the error. A trade-off emerges between finely 
resolved and accurate estimates, which we discuss in detail. 

2. Methods 

2.1. Quantifying estimation error 

We consider a landscape comprising N contiguous sites of equal area. 
The presence of at least one individual of the focal species is a binary 
variable Y taking the value 1 at sites where it is present and 0 elsewhere. 
Occupancy P(Y = 1) is the proportion of sites at which the species is 
present, which is equivalent to the mean of Y across sites Y. Of the N 
sites, a subset n are sampled. Whether each site is one of the n sampled 
sites is another binary variable R (R = 1 where the site is sampled and R 
= 0 otherwise). It is not possible to calculate mean occupancy across all 
N sites, YN, because information on Y is not available for sites with R =
0. Instead, it is common to estimate YN as mean occupancy across 
sampled sites Yn. 

Assuming no measurement errors, or that a model has corrected 
them, the absolute error of Yn as an estimator of YN is (Meng, 2018) 

Yn − YN = ρ(R,Y)

̅̅̅̅̅̅̅̅̅̅̅
1 − f

f

√

σY . (1) 

The first quantity on the right, ρ(R,Y), is the (population) correla
tion between Y and R. It is a measure of both the sign and magnitude of 
sampling bias. In simple terms, ρ(R,Y) is positive where Y is generally 
larger in the sample than in the population (often the result of “prefer
ential sampling”; Aubry et al., 2024) and vice versa. f is the sampling 
rate (n /N), and the second quantity on the right is a measure of data 
quantity. The final quantity σY is the population standard deviation of Y. 
It is 0 where Y is constant, in which case a sample size of 1 is sufficient to 
estimate YN with no error, and it is largest where Y is most variable. 
Hence, it can be considered a measure of “problem difficulty” (Meng, 
2018), although we refer to it as occupancy variability given the context 
in which we are working. 

Importantly, Eq. (1) gives the absolute error of Yn as an estimator of 
YN for a given sample: that is, for one realisation of R. In what follows, 
we consider replicate realisations of R from given R-generating (i.e. 
sampling) mechanisms and the average Yn − YN across those samples. 

2.2. Effects of spatial resolution on error 

Eq. (1) provides a basis for understanding the effects of resolution on 
absolute error when estimating species occupancy. Assuming perfect 

detection, it implies that there are three, and only three, ways to reduce 
error: decrease the sampling bias ρ(R,Y), increase the sampling rate f 
and/or decrease the occupancy variability σY . Below we describe a set of 
simulations that demonstrate the effects of coarsening the spatial reso
lution on each of these quantities and on both absolute and relative 
error. 

2.3. Simulation setup 

2.3.1. Virtual landscape, species and samples 
The virtual landscape comprises a square grid of N = 6400 cells (80 

× 80) at the finest resolution. Each cell might represent, say, a 1 × 1 km 
grid square, but the precise definition is not important for drawing 
general conclusions. 

We simulated six species’ geographic distributions of different sizes 
and with different levels of clustering in the virtual landscape. Our 
approach was a simplified version of the one used by Guélat and Kéry 
(2018). For each species, the first step was to populate every cell in the 
landscape with a continuous index X sampled from a multivariate 
normal distribution 

X ∼ N (μ, δ), (2)  

where μ is an N-vector of zeros (i.e. mean X for each grid cell) and δ is an 
N × N covariance matrix. We used an exponential decay function to 
define the covariance matrix 

δ = e− φ Di,j , (3)  

where φ is the decay constant and Di,j is the Euclidian distance between 
grid cells i and j. Larger values of φ result in patchier distributions, 
because the covariance between grid cells diminishes faster with the 
distance between them. 

The next step was to convert the continuous index X to a binary one 
(i.e. occupied vs unoccupied) with a specified proportion of cells being 
occupied. For each species, we set a threshold percentile of X across grid 
cells (1 − YN) above which the cell was designated occupied and below 
which it was designated unoccupied. Table 1 lists the parameters used to 
simulate each species’ geographic distribution and the resulting prop
erties of those distributions. 

It was important that the simulated species’ distributions spanned a 
range of plausible sizes and levels of clustering, because these properties 
determine how YN scales with resolution (Kunin, 1998). We tested 
whether the distributions covered sufficiently wide ranges of these pa
rameters using their fractal (Kunin, 1998). The fractal dimension D of a 

Table 1 
Properties of the six virtual species’ distributions at the finest spatial resolution. 
The autocorrelation parameter is the exponential decay constant in Eq. (3), and 
higher values produce a more dispersed distribution. The theoretical limits for 
the fractal dimension are 0, representing a highly dispersed species, and 2, 
representing a very clustered one. The fractal dimension also varies with YN 

(Wilson et al., 2004).  

Distribution 
properties 

Exponential decay 
parameter in 
autocorrelation function 

Proportion of sites 
occupied (at the 
finest scale) 

Fractal 
dimension 

Rare and 
sparse 

0.6 0.01 0.19 

Rare and 
clustered 

0.1 0.01 0.88 

Medium and 
sparse 

0.6 0.25 1.19 

Medium and 
clustered 

0.1 0.25 1.42 

Common and 
sparse 

0.6 0.5 1.58 

Common and 
clustered 

0.1 0.5 1.71  
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species’ distribution is given by D = 2(1 − b), where b is the slope of its 
scale-area curve or occupancy-area relationship (Hartley and Kunin, 
2003). We calculated b over the finest three resolutions, because, for the 
medium and common species, including the coarsest two resolutions 
resulted in nonlinear scale-area curves (i.e. their distributions are 
non-fractal at coarse scales). The theoretical limits of the fractal 
dimension are 0, representing a species whose distribution is very 
sparse, and 2, representing a species whose distribution is very clustered 
(Hartley and Kunin, 2003). Our virtual species’ distributions spanned 
most of this range (0.19− 1.71). Like Wilson et al. (2004), we found that 
D is positively related to YN, which reflects the facts that a small dis
tribution can only be so clustered, and a large distribution can only be so 
dispersed. See Fig. S1 for maps of the virtual species’ distributions. 

For each species, we simulated 100 virtual samples at the finest 
resolution. Whilst it might seem more logical to simulate one set of 
samples for all species, this would not allow control over ρ(R, Y), the 
sampling bias, which depends on the focal species’ geographic distri
bution. For most simulations, we simulated the samples in such a way 
that ER[ρ(R,Y)] ∼ 0.05 and f = 0.1, where ER[ρ(R,Y)] is the expectation 
(average) of ρ(R,Y) over the 100 simulated samples (i.e. with respect to 
R). See the supplementary Fig. S2 for the distributions of ρ(R,Y) across 
samples for each species. We based the values of ρ(R,Y) and f on an 
empirical example: a citizen science dataset on vascular plant sampling 
and the species Calluna vulgaris’ occupancy in Britain (Boyd, Powney, 
et al., 2023). Whilst we generally set ER[ρ(R,Y)] ∼ 0.05 and = 0.1, we 
also demonstrate the effects of varying both parameters (in the supple
mentary material for f). Switching the sign of ρ(R,Y) (i.e. whether oc
cupancy is larger or smaller in the sample than the population) would 
switch the sign of the error in the estimate of mean occupancy, but for 
simplicity we only present the positive case. 

Our algorithm for generating samples with the prescribed ρ(R,Y)
uses “brute force”. It starts by creating a random sample with the desired 
f then iteratively seeks the target value of ρ(R,Y) by flipping values of R 
at selected sites (i.e. from sampled = 1 to not sampled = 0 or vice versa). 
It stops once the values of ρ(R,Y) and f are within small tolerance limits 
of the target values. We are not aware of an analytical approach to 
generating correlated binary vectors (R and Y) with fixed proportions of 
1 s. 

2.4. Analysis of error at each resolution 

The goal of our analysis was to determine how the absolute error of 
Yn as an estimator of YN (Yn − YN; assuming perfect detection) varies 
with spatial resolution. Starting at the finest resolution, we calculated 
the value of each quantity in Eq. (1) (including the absolute error; 
averaged across the 100 samples). We then coarsened the resolution by 

aggregating every square of four grid cells into one (i.e. doubling the 
length and width of the site). After coarsening the resolution, we 
recalculated each quantity in Eq. (1), coarsened the resolution again and 
repeated the process until each grid cell was 16× its original height and 
width (see Fig. S5 for the results of additional coarsening on a larger 
grid). Fig. 1 shows how a species’ distribution (medium and clustered; 
Table 1) and a sample vary with resolution. 

3. Results 

3.1. Error 

For all virtual species, estimates of occupancy are more accurate at 
coarser resolutions. This result is evident both in terms of the absolute 
actual error (Fig. 2A), which is on the left side of Eq. (1), and the relative 
actual error (Fig. 2B), which expresses the absolute error as a percentage 
of true occupancy. Relative error is larger for rare species. Absolute error 
is larger for the medium and common species, particularly at the finer 
resolutions. There is little difference in absolute or relative error be
tween clustered and dispersed species. 

3.2. True occupancy 

Although well-documented (Azaele et al., 2012; Kunin, 1998), it is 
worth revisiting the scaling properties of YN (true occupancy) here, 
because they provide insight into the scaling properties of error. YN 
always increases with resolution, but the rate at which it increases de
pends on the properties of the species’ distribution at the finest resolu
tion (Fig. 2C). Species that are common and sparsely distributed at the 
finest resolution quickly reach YN = 1 as the resolution is coarsened. By 
contrast, species that are rare and clustered at the finest resolution do 
not reach YN = 1 at any of the resolutions we considered (Fig. 2A). 

3.3. Sampling bias 

In our simulations, the sampling bias ρ(R,Y) tends towards 0 as the 
resolution is coarsened (Fig. 2D). There are plausible scenarios in which 
it will not (e.g. when the samples are highly clustered), however, a point 
that we expand on in the Discussion. 

3.4. Sampling rate 

Like YN, the sampling rate always increases with resolution. 

Fig. 1. Top row: a virtual species’ (“medium and clustered”; Table 1) geographic distribution at each spatial resolution. Green cells are occupied, and grey cells are 
not. Bottom row: a virtual sample at each resolution. ρ(R,Y) ∼ 0.05 and f ∼ 0.1 at the finest resolution (1× 1). Purple cells are sampled, and grey cells are not. 
Sampled cells may be either occupied or not. 
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3.5. Occupancy variability 

As occupancy is binary, its standard deviation σY is given by 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

YN(1 − YN)

√

. σY is largest where YN is near 0.5 and smallest where YN 

is near 0 or 1. Given that YN increases with resolution (Fig. 2C), coars
ening the resolution for species with YN < 0.5 increases σY until YN =

0.5 (Fig. 2F). Further coarsening the resolution decreases σY , because YN 

moves away from 0.5 and towards 1. For species with YN ≥ 0.5 at the 
finest resolution, coarsening the resolution always decreases σY . 

3.6. Scaling of error with resolution at different levels of sampling bias 

In most simulations, we set ρ(R,Y) ∼ 0.05 at the finest resolution, 
but it is instructive to see how actual error scales with resolution under 
different levels of sampling bias. Absolute error generally scales in the 
same way with resolution regardless of the level of sampling bias but is 
greater in magnitude under stronger sampling bias (Fig. 3; the same is 
true of relative error [Fig. S3]). Under a simple random sample at the 
finest resolution, where the expected sampling bias ER[ρ(R, Y)] ∼ 0, 
there is roughly no error at any resolution (recalling that we present the 
average error across samples, which essentially removes sampling 
error). Note that we were not able to simulate highly biased samples 
(ER[ρ(R,Y)] ∼ 0.15) for the common species (green lines in Fig. 3). For 
these species, YN is very different to f , which makes a large and positive 
ρ(R,Y) highly unlikely, and our algorithm for generating the samples 

could not achieve it (two binary variables with very different pro
portions of 1 s can only be so positively correlated). 

4. Discussion 

Nobody would dispute the fact that estimates of species occupancy 
are more accurate at coarse scales asymptotically: we can be surer that a 
species occupies Britain than it does some 1 km grid square therein. Our 
contribution has been to show that accuracy varies somewhat predict
ably along the spectrum from fine to coarse resolutions. Indeed, Meng’s 
(2018) three-part decomposition of statistical error provides a clear 
theoretical framework within which analysts can consider quantities 
like the potential sampling bias and the sampling rate when deciding on 
the appropriate resolution at which to estimate occupancy. Coarsening 
the resolution may be particularly beneficial where sampling biases are 
likely to be large (e.g. when using citizen science data; Pescott et al., 
2019; Stroh et al., 2023a). 

The Meng (2018) equation tells us that to increase the accuracy of 
estimates of species occupancy, we should work at the spatial resolution 
at which the sampling bias and the variability of occupancy in the 
landscape are smallest and at which the sampling rate is highest. Max
imising the sampling rate is simplest in theory, because it always in
creases with resolution (practice of course introduces issues of 
resourcing and planning). The effect of resolution on the variability of 
occupancy in the landscape depends on the species’ prevalence (i.e. YN) 
at the finest resolution. If there is good reason to think that 

Fig. 2. (A) absolute error, (B) relative error (i.e. the absolute error expressed as a percentage of true occupancy), (C) mean occupancy (i.e. true occupancy), (D) 
sampling bias, (E) sampling rate and (F) occupancy variability σY at each resolution. The resolution is the height and width of the grid cells in arbitrary units. Points 
represent the average of each statistic over 100 simulated samples. At the finest resolution, ρ(R,Y) ∼ 0.05 and f ∼ 0.1, the target values for the simulations. 
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YN ≥ 0.5—say, from an expert drawn range map—then coarsening the 
resolution will always reduce σY . On the other hand, if there is good 
reason to think that YN is truly low, then coarsening the resolution will 
increase σY until the YN reaches 0.5. 

In our simulations, sampling bias was clearly lower at coarser reso
lutions (Fig. 2D), but this will not be universally true. One minor thing to 
note is that we presented the average ρ(R,Y) across 100 samples: for 
some of the individual samples, ρ(R,Y) occasionally increased from one 
resolution to the next. More importantly, our algorithm for creating 
samples starts by simulating random samples then adjusts them to reach 
the desired ρ(R,Y). Starting with a random sample makes it unlikely that 
the final sample will be highly clustered (Fig. 1). One might expect real 
samples to be clustered in accessible or attractive areas: say, near where 
people live or in nature reserves (Tulloch et al., 2013). It is not clear 
whether simulating clustered samples would alter our finding that 
ρ(R,Y) decreases with spatial resolution; more detailed simulations that 
account for drivers of species’ occupancy and sampling would be needed 
to answer this question. 

As it is often time trends in species occupancy, rather than one-off 
estimates, that are of interest, it is worth considering estimation error 
in this context. It is generally understood that time-varying sampling 
bias (and therefore error) can confound true change in occupancy 
(Bowler et al., 2022), but knowing how sampling bias changes over time 
is made difficult by the various sampling schemes and analytical ap
proaches that might be employed by researchers. The simplest scenario 
is where the analyst estimates occupancy separately for multiple 
time-periods and calculates the differences between them. If the sam
pling bias changes over time, then the estimated differences will be 
erroneous. Another way to estimate time trends in occupancy is to 
restrict the analysis to the pool of sites that were sampled at some point 
within the relevant timeframe and to predict (or impute) missing values 
in each time-period (Boyd, August, et al., 2023; Isaac et al., 2014). 
Putting to one side the fact that there are almost certain to be prediction 
errors, one ends up in a situation where the distribution of R across sites 
is effectively time-invariant. Crucially, however, this does not mean that 
the sampling bias will remain constant over time unless the distribution 
of Y across sites is also time-invariant (i.e. the species’ distribution does 

not change over time at the relevant scale). A similar scenario arises 
when occupancy is estimated using unrepresentative monitoring data 
whose geographic distribution does not change over time: for example, 
long-term monitoring of protected sites. 

Understanding how the potential for confounding of error and true 
temporal change in occupancy varies with spatial resolution is difficult, 
but the Meng equation provides several insights here too. For example, 
working at coarser resolutions means less temporal variation in YN (as 
colonisations and local extinctions are less probable), which means less 
temporal variation in σY . It is also likely to mean less variation in ρ(R,
Y)—especially if occupancy is predicted across a fixed pool of sites in 
each year, in which case the distribution of R is effectively constant over 
time (again, one must also consider the fact that the predictions could be 
wrong at unsampled site/time-period combinations). Reducing tempo
ral variation in the quantities in Eq. (1) will reduce temporal variation in 
error, which should reduce the potential for confounding of error and 
true change in occupancy in many cases. An obvious exception is where 
the per-period errors cancel each other out over long timeframes, in 
which case they will not bias the estimated trend; however, it is not 
likely that biodiversity monitors will know that they are in this sit
uation—if the per period direction of error was known, then it could be 
modelled. More elaborate simulations and theoretical work are needed 
to fully understand the effects of spatial scale on error when estimating 
time trends in species occupancy. 

Although not the focus of this paper, the Meng equation could also 
shed light on how accuracy scales with spatial resolution when esti
mating mean abundance. Whether measuring occupancy or abundance, f 
always increases as the resolution is coarsened. For abundance, which is 

numeric, σY =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/N
∑

(yi − YN)
2

√

, where i indexes the site. Conse
quently, σY is likely to be smaller at coarser resolutions, because 
aggregating multiple cells into one should smooth over local variations 
in abundance. Smoothing over local variation in abundance by coars
ening the spatial resolution might also reduce ρ(R,Y) if it means that 
differences in Y between sampled and non-sampled sites become 
smaller. One might speculate then, that estimates of mean abundance 
are likely to be more accurate at coarser resolutions, and it would be 
useful to test this assertion more thoroughly (noting that measurement 

Fig. 3. Absolute error at each resolution under four levels of sampling bias ρ(R,Y) (at the finest resolution). The resolution is the height and width of the grid cells in 
arbitrary units. The simple random sample has approximately no sampling bias at the finest resolution. Points represent the average of each statistic over 100 
simulated samples. f ∼ 0.1 at the finest resolution in all cases. 
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error is likely to more prevalent when measuring species abundance 
than occupancy—especially at coarser resolutions). 

The fact that error in estimates of species occupancy is likely to be 
lower at coarser spatial resolutions sets up a trade-off between accuracy 
and “usefulness”. Estimates of species occupancy clearly have the po
tential to be more useful at fine scales. For example, working at a finer 
resolution, at which local extinctions and colonisations are more prob
able, means having a greater power to detect change. (Of course, this 
argument supposes that the estimates are accurate or at least consis
tently inaccurate over time. It also supposes that the power to detect 
change at some significance level is of primary interest, which is not 
always true.) Working at coarse resolutions also means that results are 
potentially (i) less relevant to policy (Spake et al., 2022) and (ii) less 
biologically meaningful (e.g. if the site is much larger than the species’ 
home range size; Altwegg and Nichols, 2019). When deciding on the 
appropriate resolution at which to analyse their data, analysts must 
balance the need for accurate and useful estimates and remember that 
an estimate will not be useful if it is completely wrong. 

A good example of the potential for bias being balanced against the 
desire for finely resolved estimates of species occupancy is found in the 
latest plant atlas of the Botanical Society of Britain and Ireland (Stroh 
et al., 2023). The data were analysed at a 10 × 10 km scale—much 
coarser than the 1 × 1 km resolution used by others in the area (Boyd, 
August, et al., 2023)—and some time-periods were omitted, due to 
serious concerns about sampling biases affecting species data at finer 
scales across the 20th century. For example, both rarer and more chal
lenging to identify taxa were more likely to be reported at finer scales in 
the early part of the time series. Moreover, f was known to be far smaller 
at smaller scales in these earlier periods (Pescott et al., 2019). 

Like all simulations, ours are a simplification of reality, which might 
have implications for the wider applicability of our results. We did not 
account for the fact that additional data tend to be available at coarser 
resolutions; for example, digitised specimens may be resolved only to 
some vague locality, and historic distribution data from species’ Atlases 
tend to be more coarsely resolved than contemporary data (Groom et al., 
2018; Kunin et al., 2000; Pescott et al., 2019). These additional data 
would increase the sampling rate f at coarse resolutions, which, as we 
have shown, would be likely to increase the accuracy of sample-based 
estimates of mean occupancy. [Note that it is possible to combine fine 
and coarse data using integrated distribution models and to draw in
ferences at the finer scale (Pacifici et al., 2019). Whether the fact that 
data might be available solely at coarse scales for historic time-periods, 
and at multiple scales for recent ones, will impact inference is an open 
question.] Our assumption of perfect detection (i.e. no false absences) is 
also unrealistic, so it is worth considering whether the prevalence of 
false absences is likely to be lower at fine or coarse resolutions. On the 
one hand, if a coarse resolution is chosen when planning data collection, 
false absences might be higher if the portions of the larger cells that are 
sampled are not suitable for the focal species (Altwegg and Nichols, 
2019). On the other, if the resolution is chosen at the analysis stage, 
coarsening the spatial resolution increases the number of sampling 
events per site, so, all else being equal, it is more likely that the focal 
species will be detected if it is present. 

Rather than accepting false absences, it is common practice to try to 
correct them using some sort of occupancy-detection model (MacKenzie 
et al., 2002; Royle, 2006). Coarsening the resolution of the analysis risks 
violating the closure assumption of occupancy-detection models (Alt
wegg and Nichols, 2019; Jönsson et al., 2021), but it also increases the 
amount of repeat visits to the same site, which are needed to estimate 
detectability and correct false absences. Interesting possibilities are that 
multi-scale occupancy models (Mordecai et al., 2011), which relax the 
closure assumption, could be used and that fine-scale sampling events 
could be used as spatial replicates to estimate detection probabilities and 
correct false absences at coarser scales (Srivathsa et al., 2018). While 
failing to correct false absences can make estimates of species occupancy 
worse, it is important to remember that successfully correcting them 

only reduces error to its baseline level determined by sampling biases 
(Meng, 2018). 

Coarsening the resolution of an analysis is one approach to counter 
some of the error introduced by sampling biases, but there are alterna
tives. One is to estimate mean occupancy in the population using a 
weighted sample mean, where the weights are equal to the inverse of the 
(possibly estimated) sample inclusion probabilities (Boyd, Stewart, 
et al., 2023; Johnston et al., 2020). If successful, weighting of this type 
brings the distribution of occupancy in the sample closer to its distri
bution in the population and can be recast as a means to minimising 
ρ(R,Y) (Meng, 2022). Several approaches to estimating sampling 
weights for unstructured (i.e. nonprobability) samples, the principal 
type of data used to estimate species occupancy, exist (Boyd, Stewart, 
et al., 2023; Elliott and Valliant, 2017). Weighting is often more suc
cessful where available covariates explain larger portions of the variance 
in sample inclusion (i.e. R) and the variable of interest (occupancy; 
Collins et al., 2001), and it would be useful to investigate how this scales 
with spatial resolution. 

5. Conclusions 

Analysts consider several factors when deciding on the appropriate 
resolution at which to estimate species occupancy. Examples include the 
focal species’ home range sizes (Wilson and Schmidt, 2015), the scale at 
which they use the landscape more generally (Powney et al., 2019), the 
number of replicate visits to the same site within closure periods (Out
hwaite et al., 2019) and the resolution at which the data were collected 
(Higa et al., 2015). We propose that analysts should also consider the 
fact that estimates are likely to be more accurate at coarse resolutions, 
because a highly erroneous finer-scale estimate is unlikely to be useful 
for most applications. The Meng (2018) equation provides a theoretical 
framework in which accuracy and the desire for finely resolved infor
mation can be balanced. 
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