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Numerous scientific fields are facing a replication crisis, where the results of a study often cannot be
replicated when a new study uses independent data. This issue has been particularly emphasized in psy-
chology, health, and medicine, as incorrect results in these fields could have serious consequences, where
lives might be at stake. While other fields have also highlighted significant replication problems, the
Earth Sciences seem to be an exception. The paucity of Earth Science research aimed at understanding
the replication crisis prompted this study. Specifically, this work aims to fill that gap by seeking to repli-
cate geological results involving various types of time-series. We identify and discuss 11 key variables for
replicating U-Pb age distributions: independent data, global sampling, proxy data, data quality, dispro-
portionate non-random sampling, stratigraphic bias, potential filtering bias, accuracy and precision, cor-
relating time-series segments, testing assumptions and divergent analytical methods, and analytical
transparency. Even while this work primarily focuses on U-Pb age distributions, most of these factors
(or variations of them) also apply to other geoscience disciplines. Thus, some of the discussions involve
time-series consisting of eHf, d18O-zircon, 14C, 10Be, marine d13C, and marine d18O. We then provide speci-
fic recommendations for minimizing adverse effects related to these factors, and in the process enhancing
prospects for replicating geological results.
� 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on

behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A ‘‘replication crisis” pervades the sciences. Some also call it a
‘‘reproducibility crisis”. However, the two terms have slightly dif-
ferent meanings. The Committee on Reproducibility and
Replicability in Science (2019) defines ‘‘reproducibility” as obtain-
ing consistent results using the same input data, which include
computational steps, methods, code, and conditions of analysis.
The Committee then defines ‘‘replicability” as obtaining consistent
results across various studies aimed at answering the same scien-
tific question, each of which has unique, independent data using
either the same or different methodologies. Here, we primarily
focus on problems associated with replicating U-Pb age distribu-
tions, while also giving attention to related time-series, such as
variation in eHf and d18O-zircon over time.

Awareness of significant replication problems in medicine,
heath, and psychology emerged at least 20 years ago (Redden
and Allison, 2003). Shortly thereafter, groundbreaking research
showed that most published medical research findings are false
(Ioannidis, 2005). Moonesinghe et al. (2007) attributed the lack
of replicable results from factors such as publication bias, selection
bias, inappropriate population stratification (the mixture of indi-
viduals from heterogeneous genetic backgrounds), and question-
able claims of statistical significance. Despite these efforts, the
early studies had limited impact on solving the replicability crisis,
as shown by a survey conducted by Nature nearly a decade later
(Baker, 2016). Of the 1,576 researchers participating in the survey,
more than 70% had tried and failed to reproduce experiments con-
g).
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ducted by other scientists, and quite amazingly, more than half
failed to reproduce their own experiments. More recently, Chang
and Li (2022) found that most economic research is not replicable,
while Sileshi (2023) attributed replication problems in agricultural
research to poor transparency in the analytical method utilized.
Wilson (2022) states that the replication crisis has spread through-
out all sciences, and wonders if it can be fixed.

In recent years, we have become increasingly aware of replica-
tion problems in our geological research. For instance, results from
various granitoid and geochemical databases reveal contrasting
variation in Earth’s secular composition (Keller and Schoene,
2012; Cox et al., 2018; Zerkle, 2018; Hasterok et al., 2019;
Johnson et al., 2019; Liu et al., 2019; Tamblyn et al., 2021;
Doucet et al., 2022; Condie et al., 2023; Lu et al., 2023). While
investigating this further, we were unable to find publications dis-
cussing Earth Science replication problems, which prompted the
current work.

Replication problems are likely to differ considerably for speci-
fic branches of Earth Science. This research focuses on analyzing
and discussing problems that we are familiar with. These include
global sampling problems, replicating global age distributions of
igneous rocks and sediments, and estimating mean values of vari-
ous time-series compositional properties. Factors that inhibit repli-
cating geological results include various types of sampling biases,
data collection biases, inappropriate analytical methods, and insuf-
ficient understanding and testing of assumptions linked to the
methods. Conversely, we do not address the closely linked problem
of hybrid reproducibility-replicability, which occurs when new
data are added to an existing database. Nor do we digress into
the divergent interpretations from the same or similar results,
which reside in the philosophical domain rather than being empir-
ical. Thus, the remainder of this work avoids interpreting results.
Instead, we investigate problems linked to empirically replicating
geological/geochemical results, specifically to time-series compo-
sitional data. This includes problems related to using the same data
but failing to replicate results because of different analytical
approaches. In these cases, one method might introduce a bias
whereas another method minimizes the bias. Thus, appropriate
methodology is central to achieving replicability.
2. Factors affecting replication

The overall approach to replicating results begins with meticu-
lously dissecting data from divergent perspectives to maximize
insights into the data properties. We identify 11 key factors that
influence replication, and then present them in a logical sequence
so that requisite factors are discussed first, while factors that depend
on the requisites are discussed last. After describing the key factors,
then existing methods as recommended for maximizing replication,
which primarily focus on global estimates of U-Pb age distributions.
Secondary attention is given to other related types of geological
time-series, including eHf(t), d18O-zircon, and geological proxy data.
In these instances, tests and illustrations are presented immediately
to reinforce the methodological effectiveness, or lack thereof, before
moving on to subsequent related factors.
2.1. Independent data

Legitimate replication is based on analyzing and comparing inde-
pendent data. This is important because investigators often take a
previously published global database and add the latest available
data to compile an expanded database – working on the premise
that the larger database will be more representative of the true glo-
bal population. Even while the larger database might lead to revi-
sions to existing hypotheses, the new hypothesis cannot be
2

legitimately validated until the hypothesis is retested with indepen-
dent data. Even though a legitimate test requires independent data,
by randomly dividing the database records into two sub-databases,
a test can be conducted to determine the degree to which one sub-
database replicates the other. In other words, this legitimate replica-
tion test is an inappropriate test of the hypothesis because the data
are not independent. In addition to developing hypotheses, a pri-
mary reason for collecting independent data is to test existing
hypotheses, and there is no shortcut for assembling a completely
independent database in this endeavor. To legitimately conduct a
replication test, not a single record from the first database can be
included in the second database (Committee on Reproducibility
and Replicability in Science, 2019). A basic tenet of hypothesis test-
ing is that predictions from an empirical or statistical model, gener-
ally given in the form of an equation or probability model, can only
be validated after repeated successful testing with independent
data. That is, the data for conducting any test must not be used in
any way to revise parameters in the existing mathematical model,
nor the existing model must not be used in any way to revise the
data (Aber, 1997; McDowall, 2004; Waters and Craw, 2006; Crisp
et al., 2011; Puetz and Condie, 2022). Once a single parameter is
revised, a new hypothesis is formed, and then a whole new set of
independent data must be re-collected for a new validation test. A
successful hypothesis will survive repeated tests with independent
data without having to revise parameters. The tenet of indepen-
dence is often violated in stratigraphic research, where investigators
commonly ‘‘tune” the ages of sediments from an ocean drill-core to
a time-series aligned with Milankovitch cycles, performed prior to
conducting a spectral analysis test (Hilgen et al., 2015; Puetz et al.,
2016). Such tuning inflates the statistical significance of
Milankovitch-related spectral peaks (Vaughan et al., 2011, 2014).
Also, when tuning strata to competing Milankovitch models, the
divergent time-series generally produce conflicting results regard-
ing temporal resolution and age uncertainties (Laskar et al., 2004;
Hinnov, 2013). Although some justification for this approach might
be valid, this type of analytical bias, commonly referred to as circular
reasoning, is adamantly discouraged (Waters and Craw, 2006) for
certain types of hypothesis testing – in this case, testing to see if
the ‘‘tuned” time-series exhibits Milankovitch cyclicity (Hinnov,
2013). In recognition of these problems, some have proposed solu-
tions for minimizing circular reasoning in Milankovitch-related
research (Hinnov, 2013; Meyers, 2015). Yet, circular reasoning per-
sists in many areas of geological research. Importantly, circular rea-
soning increases the likelihood of replicating results, but doing so as
inadmissible evidence by violating the basic tenet of independence
between data and the model being tested.

After several years of continually amalgamating U-Pb detrital
zircon databases (Puetz, 2018; Puetz et al., 2018, 2021; Puetz
and Condie, 2019), the records have now been segregated into
three independent global databases (Puetz et al., 2024). As data
independence relates to detrital zircon samples, the same rock
type, the same geological formation, and the same geographic area
are non-factors for obtaining independent data. Thus, if two inves-
tigators sample the same geologic site, the results are considered
independent. Disproportionate geographic sampling is a separate
problem, of which attempts have been undertaken (Stehman and
Selkowitz, 2010; Keller and Schoene, 2012; Puetz et al., 2017)
and are ongoing to minimize time-series distortions caused by
sampling biases. Section 2.5 (Sample size and non-random sam-
pling) discusses non-random sampling in detail.

A violation of the independence criterion only occurs if U-Pb
analyses from one database are then included in another database.
This might be best explained by considering that each zircon grain
from a sedimentary rock is part of a cluster-sample, and each grain
has a unique age, being an independent data point. If one research
team collects and analyzes 150 grains from the rock and another
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team collects and analyzes 200 different grains from the same rock,
then all analyses are independent records – being no different than
a single team employing cluster-sampling with 350 zircon grains.
The independent U-Pb detrital zircon databases are filtered to
include only records with the highest concordance (minimal differ-
ences among 238U/206Pb, 235U/207Pb, and 207Pb/206Pb ages). In turn,
the accepted records are then segregated by the year the data
became publicly available at publication time, which can some-
times be multiple years after the analyses were performed: (a)
DB8 contains 296,315 records published from 1992–2017, (b)
DB9 contains 310,360 records published from 2018–2020, and (c)
DB10 contains 380,532 records published from 2021 to 2023.
These three independent global U-Pb detrital zircon databases
eliminate the often-tedious task of compiling large databases to
conduct replication tests. At the same time, the three databases
allow us to investigate possible inherent systemic biases as a func-
tion of time. Yet, any hypotheses developed from these databases
will still require gathering more independent data for an accept-
able post-hypothesis test.

We risk over-emphasizing that new, revised, and undeveloped
hypotheses must be continually retested with new, independent
data because this critical step is often omitted in scientific
research. We already know this from the replication crisis that per-
vades most scientific disciplines. Replicating results from a new
scientific model is incredibly difficult. Much of science is built
around the principle of parsimony, also known as Occam’s Razor.
This principle basically states that the simplest theory is the pre-
ferred theory. Other things being equal, science prefers (a) models
with fewer parameters and (b) models that make more precise
estimates, so that they place more restrictions on the range of data
structures they will fit (West et al., 2012). In opposition to parsi-
mony, one approach for making data fit a model is to add more
parameters to the model. Many modern classification and regres-
sion models are highly adaptable, being capable of modelling com-
plex relationships (Kuhn and Johnson, 2013). Each model’s
adaptability is typically governed by a set of tuning parameters,
which can allow each model to pinpoint predictive patterns and
structures within the data. However, these tuning parameters
often identify predictive patterns that are not replicable. This is
known as over-fitting. An over-fit model generally has excellent
predictivity for the samples from which they are built, but the
same model has poor predictivity for new samples (Kuhn and
Johnson, 2013). For these reasons, knowledgeable researchers gen-
erally insist on repeated tests with independent data, with multi-
ple independent research teams conducting the successful tests
using an identical, unrevised hypothesis – before finally accepting
the hypothesis as valid and legitimate.

2.2. Database globality

Investigators often claim that a database is global, but this
description is subjective, without a clear definition of its meaning.
To explore the concept of globality, we calculate a ‘‘globality index”
with five levels of spatial resolution from which global sampling
densities are obtained from grid systems with surface areas
approximately the size of equatorial trapezoids of 18� � 18�,
12� � 12� (Fig. 1, red), 9� � 9�, 6� � 6�, 4� � 4� (Fig. 1, black), illus-
trated with grid-centers. The ‘‘globality index” is calculated from
the percentage of all grids having at least one sample. Various ver-
sions of the globality index include: 1) only continents and sub-
merged continental shelves, 2) only the oceans, and 3) the entire
globe.

The databases of Puetz et al. (2024) include GPS coordinates
recorded in decimal degrees. Published coordinates are increas-
ingly reported as decimals. This format has significant advantages
over alternatives such as Degrees-Minutes-Seconds (DMS), Univer-
3

sal Transverse Mercator (UTM), and other arcane formats – of
which simplified recording and straight-forward calculations are
primary advantages. A database’s decimal GPS coordinates are
the inputs for calculating our five globality indices, which are the
percentages (n/N) of all trapezoidal grids (N) having some samples
(n). Thus, globality ranges from 0% to 100% (Data, file 1) and
depends on the scale of the grid system being used. Each grid sys-
tem is defined in terms of three surface areas: continents and con-
tinental shelves, oceanic areas, and global total. Quantifying the
extensiveness of global sampling is critical because geological
and geochemical properties often have unique, heterogeneous
populations. Our tentative assessment is that the likelihood of
results from one database being replicated by results from another
independent database increases with global coverage. Based on
limited experiments, a preliminary classification system is defined
as: low globality (<30%), moderate globality (30% to70%), and high
globality (>70%). A more rigorous classification system will require
randomly selecting thousands of subsets of the samples in DB8,
DB9, and DB10, constructing time-series from the subsets, finding
the correlation coefficients between the time-series, and then pro-
ducing a table of globality versus expected correlations. While
being time-consuming, such as project will ultimately make the
globality index far more meaningful.

The five grid systems are constructed because assessments of
globality are scale dependent. The high-resolution measurement
(4� � 4� grid system) is preferable to the low-resolution measure-
ment (18� � 18� grid system). However, a trade-off exists between
high globality and high resolution. Finding an appropriate grid sys-
tem requires using the same database at all five scales. Globality
naturally deteriorates as resolution becomes finer. This is because
the 4� � 4� grid system has 2602 grids, whereas the 18� � 18� grid
system only has 130 grids. Filling 70%+ of the large 18� � 18� grids
is far easier than filling 70%+ of the small 4� � 4� grids. For exam-
ple, a recent d18O database (Puetz et al., 2024) has the following
globality measurements for the five grid systems: 87.9%
(18��18�), 74.3% (12� � 12�), 65.4% (9� � 9�), 43.0% (6� � 6�),
and 29.0% (4� � 4�). Supplementary Data file 1 contains the
detailed calculations for populating the five grid systems, and Sup-
plementary Data file 2 contains details for calculating grid surface
areas. A high globality index is preferable to a low globality index
when the goal is to study global variation. In this instance, the
three highest resolution estimates of globality should be rejected
(<70% globality), whereas the 12� � 12� grid estimate is acceptable
because it meets the minimum criterion of >70% globality, but the
18� � 18� grid estimate is preferable because it exceeds 80% glob-
ality. Thus, the five grid systems provide means for finding the
highest resolution globality index that exceeds either the 70% min-
imum or the 80% preferred threshold.

Although more work is needed, we strive toward compiling
large global databases with high globality indices. Using the
12� � 12� globality index for continents and continental shelves,
the U-Pb detrital zircon databases DB8, DB9, and DB10 have glob-
ality indices of 94.7%, 85.7%, and 82.2%, respectively. In other
words, for database DB8, 94.7% of the samples populate grids
(Fig. 1, red) associated with continents and oceanic shelves, and
likewise for DB9 (85.7%) and DB10 (82.2%). Consequently, assum-
ing other unknown factors do not introduce significant biases,
time-series from these databases should be highly replicable. For
comparison, the �76,000 record database of the Sedimentary Geo-
chemistry and Paleoenvironments Project (Farrell et al., 2021) has
a 12� � 12� globality index of 68.5%.

2.3. Proxy data

When testing hypotheses and attempting to replicate results,
using proxy data can sometimes alleviate the need to compile



Fig. 1. Robinson projection of 4��4� grid centers (black dots) and 12��12� grid centers (red x’s). The grids serve two purposes: (1) estimating a globality index from the
samples in a database, and (2) weighting database records inversely proportional to sampling densities. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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direct data independently. Proxy data are indirect measurements
of a process that should serve as a reliable substitute for more
direct measurements. The proxy data must be strongly correlated
(either positively or negatively) with the primary direct measure-
ments. Numerous types of proxy data are commonly used in vari-
ous disciplines. In Earth Science, isotope ratios, elemental
abundances, and elemental ratios are commonly used as composi-
tional proxies for measurements that cannot easily be obtained
from direct measurements, such as thickness of the continental
crust, or for measurements in the past that have no means of direct
measurement, such as past ocean temperatures. For example,
direct measurements of solar activity from 1749 to present are
recorded as sunspot numbers from WDC-SILSO, Royal Observatory
of Belgium in Brussels. Due to the limited temporal range of reli-
able sunspot data, researchers sometimes rely on cosmogenic 14C
from marine environments (which extends dating by �50-kyr)
and 10Be from polar ice cores (which further extends dating to
�1-Myr) as proxies for variation in solar activity (Usoskin and
Kovaltsov, 2012). Similarly, Reimer et al. (2009) use both tree-
ring and marine radiocarbon data as proxies for devising a 50-
kyr climatic time-series. Time-series of marine carbonate d13C
and d18O are used as carbon-cycle and paleotemperature proxies
respectively (Zachos et al., 2001; Jones et al., 2013). Likewise, trace
element ratios in detrital zircon are used as proxies for the compo-
sition of igneous magmatic activity over time (Barth et al., 2013;
Balica et al., 2020). Thus, utilizing proxy data can readily expand
upon the possibilities for legitimate independent tests that attempt
to replicate results. The tests can involve comparisons between the
primary data and proxy data, or alternatively, comparisons
between one type of proxy data with another type of proxy data.

2.4. Data quality

Even if independent databases are available with high globality
indices, poor data quality can inhibit replication. Poor data quality
can occur simply from the omission of key data items, or results
might be questionable if one uses data with large uncertainties.
Ideally, all key items from published data are available with mini-
mal uncertainties, but that is not always to case. For instance, a
database without GPS coordinates eliminates the possibility of
using inverse spatial weighting to minimize negative effects from
non-random, disproportionate sampling (Stehman and Selkowitz,
2010; Keller and Schoene, 2012; Puetz et al., 2017). For U-Pb data,
the method of determining the preferred age (Vermeesch, 2018;
4

Gehrels et al., 2019; Puetz et al., 2024) influences replicability.
Specifically, the common practice of choosing between 206Pb/238U
and 207Pb/206Pb ages at a specified cutoff age produces an age dis-
tribution with an artificial depression at the cutoff age (Puetz et al.,
2021; Puetz and Spencer, 2023). The artificial depression from this
common method inhibits replication. For this reason, we advocate
the use of Non-Iterative Probability (NIPr) ages as the preferred U-
Pb ages (Puetz and Spencer, 2023). Closely associated with data
quality, Section 2.8 (Accuracy and precision) expands upon repli-
cating U-Pb age distribution based on reported 2r precision errors.

2.5. Sample size and non-random sampling

Equally crucial, nearly all geological samples are selected non-
randomly in both space and time. The established method is geo-
logically informed sampling, which depends on project objectives.
The research team will either seek appropriate archived samples or
find a convenient location where specific rocks or sediments are
abundant or outcropped. Moreover, sampling tends to be most
abundant in wealthier countries and least abundant in developing
countries. Understandably, dense tropical forests, deserts, and
polar regions tend to be sparsely sampled. For these reasons, the
regional densities of samples from large global databases vary con-
siderably (Fig. 1), which differs noticeably from a quasi-uniform
distribution expected from large set of randomly generated GPS
coordinates.

Additionally, the zircon grains extracted from rocks and sedi-
ments are cluster-samples, which serve as subsets of quasi-
random samples, but only if the grains are collected via a random
process. Moreover, the recommended size of a cluster-sample has
steadily increased over time. Dodson et al. (1988) recommended
obtaining at least 60 grains from a sample. Later, Vermeesch
(2004) recommended 117 grains. More recently, the University of
Arizona LaserChron lab (Dobbs et al., 2022; Kushner et al., 2022;
Wahbi et al., 2023) and the University of Houston lab (Smith
et al., 2023) often obtain 300 + zircon grains in provenance studies.
And the University of Calgary CPPATT Lab recently extracted 600
zircon clusters from 9 samples from the Magallanes Basin
(Bartelt, 2022). Thus, as preferences for the size of zircon cluster
samples continues to increase, regional sampling densities are
affected. Regardless of the source of the sampling biases, being
either disproportionate convenience sampling or inconsistent
cluster-sample sizes, means exist for simulating global random
sampling from these non-random samples.
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Various methods have been proposed for simulating random
sampling by weighting records inversely proportional to sampling
densities (Stehman and Selkowitz, 2010; Keller and Schoene, 2012;
Puetz et al., 2017). Two common techniques exist: (a) if the time-
series is a histogram, frequency plot, or age distribution, then
inverse spatial weighting applies (Keller and Schoene, 2012;
Puetz et al., 2017); or (b) if the time-series consists of mean values,
then inverse spatial–temporal weighting applies (Keller and
Schoene, 2012). The steps for calculating inverse spatial weights
(Supplementary Data file 1 and file 3) are relatively simple: (i)
determine the sampling density by counting the GPS coordinates
that fall within each grid, (ii) use the sampling density for each grid
with its surface area to find the grid-density relative to the global-
density, and (iii) assign the weights from the grid-density inverses
(1/q). Inverse spatial–temporal weighting uses identical methods,
with the sole exception being that the process is applied to each
bin in the time-series (bandwidth) rather than being applied to
the entire time-series.

To test the efficiency of these techniques, we construct four
databases from three synthetic samples, each with 50 records from
three locations. To simulate disproportionate sampling, several
steps are involved. First, the data are restricted to three grids in a
hypothetical globe limited to the same three grids. This simplified
scenario easily illustrates the concepts (Fig. 2). Then, to test the
validity of using inverse spatial weighting for enhancing replicabil-
ity, four synthetic databases are constructed from three samples by
exactly duplicating all 50 records in each sample-set in the follow-
ing proportions: SynDB1 (blue) 3:1:6 with 100% globality; SynDB2
(red) 1:5:2 with 100% globality; SynDB3 (brown) 5:2:1 with 100%
globality; and SynDB4 (green) 1:0:5 with (67% globality). SynDB4
only includes two of the three samples, which simulates estimating
Fig. 2. Raw and weighted age distributions from synthetic databases SynDB1-SynDB4. C
(short-dashed red) SynDB2 with 1:5:2 sample proportions and 100% globality; (long-das
green) SynDB4 with 1:0:5 sample proportions and 67% globality. Panels: (a) raw age dis
Supplementary Data file 4. (For interpretation of the references to color in this figure le
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the age distribution and mean values from a database with a glob-
ality index of 67%. To enhance transparency, the synthetic database
details are available in Supplementary Data file 4, which includes
the synthetic data, the four databases constructed from the syn-
thetic data, the 12� � 12� grid system tables, all Excel calculations,
and the code for Figs. 2 and 3.

The first set of tests illustrate raw age distributions without
considering disproportionate sampling. This unweighted approach
produces an age-histogram commonly used in geological research
– either a probability density plot (PDP) or a Gaussian kernel
smoothed version of a PDP, referred to as kernel density estimation
(Vermeesch, 2012). With the unweighted approach, the divergent
sampling proportions will yield distinctly unique age distributions
(Fig. 2a). Of course, this inhibits replicability. The second set of
tests utilize inverse spatial weighting to compensate for the dis-
proportionate sampling (Fig. 2b). When this method is applied,
despite the samples being added in different proportions, the
weighted age distributions with 100% globality (Fig, 2b, blue, red,
and brown) give identical results. Thus, disproportionate sampling
densities have no effect on the resultant age distributions after
applying inverse spatial weighting with 100% global sampling cov-
erage. However, for the database with a globality index of 67%
(Fig. 2b, green) the age distribution resembles the three with
100% globality but falls short of perfect replication. This demon-
strates that to optimize replicability: (a) inverse spatial weighting
should always be applied, and (b) a globality index of �70% is a
minimum, but with the preferred level �90% or higher – a level
which is desirable but perhaps difficult to achieve in practice.

The third set of tests illustrate mean values over time without
considering disproportionate sampling (Fig. 3a). Again, this
unweighted approach yields distinctly unique mean values, solely
olor codes: (solid blue) SynDB1 with 3:1:6 sample proportions and 100% globality;
hed brown) SynDB3 with 5:2:1 sample proportions and 100% globality; and (dotted
tributions, and (b) age distributions with inverse spatial weighting. Methods are in
gend, the reader is referred to the web version of this article.)
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dependent on variation in sampling densities. The fourth set of
tests utilize inverse spatial–temporal weighting (which is a type
of weighted average) to compensate for the disproportionate sam-
pling (Fig. 3b). After applying the spatial–temporal weight adjust-
ments, the three mean values with 100% globality (Fig. 3b, blue, red
and brown) are again identical. However, for the database with a
globality index of 67% (Fig. 3b, green) the mean values fail to repli-
cation those with 100% sampling globality.
2.6. Stratigraphic bias

A raw U-Pb age distribution that only includes sedimentary
rock samples will naturally contain a stratigraphic bias. The bias
exists because the ages for all U-Pb analyses from non-
metamorphic detrital zircon grains found to be concordant (where
ages match for both the 238U and 235U decay chains) will be older
than the stratigraphic age, with no zircon grains younger than
the stratigraphic age. If a database contains too many ancient sed-
imentary rocks and a scarcity of modern sediments and Phanero-
zoic rocks, then the resulting age distribution might replicate a
time-series that only includes rocks with stratigraphic
ages > 500 Ma (Fig. 4, blue) – which is atypical of a ‘‘global” detrital
zircon age distributions because it excludes Phanerozoic ages.
Thus, to compensate for stratigraphic bias (Puetz et al., 2021;
Puetz and Condie, 2021; Reimink et al., 2021), records are
weighted proportionally to the cumulative number of records,
binned at fixed intervals, by stratigraphic age. The other curves
illustrate the raw detrital zircon age-distribution (Fig. 4, green),
the age-distribution from inverse spatial weighting (Fig. 4, red),
and the age-distribution from inverse spatial weighting combined
with the adjustment for stratigraphic bias (Fig. 4, black). Even
while the globality index is poor at 22.9%, the latter time-series
Fig. 3. Raw and weighted mean values from synthetic databases SynDB1-SynDB4. Color c
dashed red) SynDB2 with 1:5:2 sample proportions and 100% globality; (long dashed bro
SynDB4 with 1:0:5 sample proportions and 67% globality. Panels: (a) raw mean value
Supplementary Data file 4. (For interpretation of the references to color in this figure le
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(Fig. 4, black) is otherwise optimized for replication. This approach
somewhat mimics inverse spatial weighting but weights the time-
series based on the cumulative stratigraphic ages – rather than
geographic location as done for inverse spatial weighting. Supple-
mentary Data 3 includes a method for adjusting for stratigraphic
bias.

The stratigraphic adjustment only applies to sedimentary rock
samples and demonstrates that a specific geological methodology
might have peculiarities irrelevant to other types of research. Thus,
each specialist must seek the relevant biases that are critical to
replicating results – which are often biases unrecognized by
outsiders.
2.7. Potential filtering biases

If not disclosed, any type of database filtering could introduce a
bias that hinders replicability. For example, investigators some-
times intentionally remove records from a database presumed to
be of inferior quality or deemed to be outliers. The latter can exist
as analytical outliers that may bias the results, or merely natural
outliers that exist due to natural heterogeneity in geological pro-
cesses. Outlier rejection should always be objective, consistent,
and openly stated. Which filtering method is chosen depends on
the type of study. One would normally expect this type of filtering
to enhance replicability. However, the assumption that filtering
does not introduce a bias might be incorrect. For instance, in U-
Pb geochronology, Gehrels et al. (2019) advise caution when
removing discordant U-Pb ages from a time-series – a process that
might bias the results. Thus, we tested the possibility that U-Pb
discordance filtering introduces a bias by constructing five U-Pb
age distributions based on degree of discordance (defined as the
smaller of the age differences between |235U/207Pb-207Pb/206Pb|
odes: (solid blue) SynDB1 with 3:1:6 sample proportions and 100% globality; (short-
wn) SynDB3 with 5:2:1 sample proportions and 100% globality; and (dotted green)
s, and (b) mean values with inverse spatial–temporal weighting. Methods are in
gend, the reader is referred to the web version of this article.)



Fig. 4. Four versions of a U-Pb detrital zircon age distribution from a small subset of DB8, with a poor globality index of 22.9%. Color codes: (solid blue) raw time-series for
records with stratigraphic ages >500 Ma; (dotted green) raw time-series for all records; (short-dashed red) time-series adjusted by inverse spatial weighting; and (long-
dashed black) time-series adjusted by inverse spatial weighting in addition to adjusting for stratigraphic bias. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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and |235U/207Pb- 238U/206Pb|), with class 1 having the highest con-
cordance and class 5 the lowest (Puetz et al., 2021; Puetz and
Spencer, 2023). After constructing the age distributions, each is
compared with the other four global U-Pb age distributions to
determine if the five produce similar age peaks (Fig. 5). The age
peaks become progressively flattened from concordance class 1
(sharp peaks) through class 5 (smoothed peaks), which is due to
greater imprecision for classes 4 (Fig. 5, red) and 5 (Fig. 5, dark
red). The illustrations also highlight the bias introduced by choos-
ing an arbitrary cutoff-age when the best age is limited to either
the 238U/206Pb age or the 207Pb/206Pb age (Fig. 5a, b). Thus, we
use U-Pb preferred ages based on a non-iterative probability
method (Fig. 5c) of Puetz and Spencer (2023), which yields age-
distributions like the iterative IsoplotR approach (Fig. 5d) of
Fig. 5. Stacked U-Pb age distributions (relative frequency probability) with 10-Myr bin-s
along the right column. Global U-Pb detrital zircon data are from Puetz et al. (2021). Col
class 4; and (dark red) class 5. Panels illustrate best age models for: (a) a 238U/206Pb versus
1000 Ma; (c) non-iterative probability ages (Puetz and Spencer, 2023); and (d) IsoplotR si
color in this figure legend, the reader is referred to the web version of this article.)
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Vermeesch (2018). These results indicate that systematic filtering
of discordant U-Pb analyses does not significantly bias U-Pb age
distributions. Such tests can convert assumptions and guesswork
into operational empirical formulations, which in turn enhances
replicability. In some instances, methods might not exist for eval-
uating filtering biases, but when available, such tests should be
conducted. Essentially, if the rejected records are of sufficient
quantity and quality to compare with the accepted records, then
a means might exist for evaluating potential filtering biases.
2.8. Accuracy and precision

When evaluating replicability, one must ponder the question:
At what resolution? The answer is highly dependent on the accu-
ize, from four ‘‘best age” models, for concordance classes 1 through 5, as designated
or coded concordance classes: (purple) class 1; (blue) class 2; (green) class 3; (red)
207Pb/206Pb cut-off age of 1700 Ma; (b) a 238U/206Pb versus 207Pb/206Pb cut-off age of
ngle grain concordia ages (Vermeesch, 2018). (For interpretation of the references to
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racy and precision of the measurements. For instance, a global U-
Pb detrital zircon age distribution might be highly replicable when
U-Pb ages are binned at 40-Myr intervals, but replicability might
be questionable at 1-Myr resolution (Section 2.9). The uncertain-
ties of most geological, geochemical, and isotopic measurements
are related to precision rather than accuracy (Schoene et al.,
2013), and precision errors are not directly linked to accuracy. As
a rule, accuracy remains unknown for geologically related mea-
surements. However, for certain disciplines, accuracy can be deter-
mined from independent measurements that are traceable through
to scientific units, as is the case for Isotope Dilution Thermal Ioni-
sation Mass Spectrometry (ID-TIMS) U-Pb geochronology (Condon
et al., 2015). In addition, it is sometimes possible to devise indirect
means for estimating accuracy. For instance, a comparison of age
distributions from igneous reference standard materials, using
both U-Pb ID-TIMS and U-Pb Laser Ablation Inductively Coupled
Mass Spectrometry (LA-ICP-MS) methods, indicates that U-Pb LA-
ICP-MS ages are commonly highly accurate, likely being within
±1.5-Myr of the true age (Puetz and Spencer, 2023). If one incor-
rectly assumes that accuracy is always equivalent to precision, this
is far more accurate than one might initially guess, based on the
1%–2% precision errors associated with LA-ICP-MS from previous
inter-laboratory tests (Košler et al., 2013) which involved relatively
small sample sizes. To partially overcome estimating accuracy
from imprecise measurements, we reject analyses for concordance
classes >3 (Puetz and Spencer, 2023). The remaining hundreds of
thousands of highly concordant U-Pb ages from three independent
databases (DB8, DB9, and DB10) are used to construct time-series.
Estimating LA-ICP-MS accuracy from age peaks (mode statistics) in
these independent time-series requires correlation studies at mul-
tiple resolutions.
2.9. Segmented correlations

With the relevant factors identified for developing a replicable
time-series, it is possible to take the raw records from the data-
bases and transform them into detrended time-series, with the
goal of testing if the time-series are replicable with minimal bias.
Or, perhaps more correctly, if multiple, independent, bias-
corrected time-series are available, then performing correlation
tests among them provides a means for assessing if the time-
series are indeed replicable. In addition to correlating the entire
independent time-series, a more comprehensive analysis involves
correlating segments of the time-series. Segmented correlations
are especially important for identifying end-point biases, which
occur in many types of nature-based time-series because of diffi-
culties in measuring the beginning and ending points. A paucity
of samples and/or measurements with extreme outliers are two
common contributors to end-point bias.

A straight correlation between two independent time-series
provides one approach for evaluating replicability. After finding
the correlation, in which each data point within a time-series is
also independent, Student’s t-test (Owen, 1965) provides a means
for assessing statistical significance, as defined by Eq. (1).

t ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffi

n� 2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p ð1Þ

In Eq. (1), t is the student value (t-statistic) where, r is the sam-
ple correlation coefficient required for statistical significance, and n
is the sample size. For a time-series with infinite points, the cut-off
value t95 corresponding to a 95% confidence level, which is 1.645
for a one-sided test and 1.960 for a more conservative two-sided
test. For a time-series with finite points, t95 values vary dependent
on sample size (n), taken from Owen (1965). The differences
between the infinite and finite versions are minimal, which is
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why a t95 value of 1.960 is commonly used for a two-sided test
involving a finite time-series. Refer to Supplementary Data file 5
for two tables and one figure showing the relationship between
sample-size (n) and statistically significant correlation coefficients.

Because the mentioned correlation analysis is based on Pear-
son’s product moment correlation coefficient (r), the time-series
must be detrended to form stationary time-series. One way to
detrend is to apply a band-pass filter to remove the background
trend (i.e., the dominant slope). After detrending, we find correla-
tions among the three independent band passed time-series: DB8,
DB9, and DB10, and then compare them with the correlations
required for 95% confidence [Eq. (1)]. These threshold correlations
provide an initial set of tests for assessing the replicability of U-Pb
detrital zircon age distributions. The correlation studies were con-
ducted for the time-series binned at 1, 2, 5, 10, 20, and 40-myr. The
extent of each time-series increases with bin-size, which is a con-
sequence of obtaining a sufficiently large number of records per
bin to a produce a stationary sequence. Then, each time-series is
segregated into three sub-intervals to evaluate replicability as a
function of time. Table 1 summarizes the correlation results. The
results indicate the extent to which global detrital zircon age dis-
tributions are generally replicable (significant for at least 2 of the
3 correlation tests) at the following resolutions: 40-Myr (4240–
0 Ma), 20-Myr (2720–0 Ma), 10-Myr (3800–0 Ma), 5-Myr (3400–
0 Ma), 2-Myr (1880–0 Ma), 1-Myr (not replicable). Supplementary
Data file 6 contains details of Table 1 methods and calculations.

These segmented correlation tests are consistent with the esti-
mated ±1.5-Myr accuracy of U-Pb LA-ICP-MS ages (Puetz and
Spencer, 2023). If U-Pb LA-ICP-MS accuracy exceeded ±1.5-Myr, it
is inconceivable that the independent DB8, DB9, and DB10 age dis-
tributions could be replicated from 1880 to 0 Ma at 2-Myr resolu-
tion. Likewise, because the DB8, DB9, and DB10 age distributions
fail to produce statistically significant correlations at 1-Myr resolu-
tion, U-Pb LA-ICP-MS accuracy is unlikely to be as small as ±1-Myr.

Deciding when to terminate a time-series can be problematic
due to a scarcity of samples deeper into time. Likewise, choosing
the resolution for binning data can be equally disconcerting
because the accuracies of records within a database are often
unknown. By using segmented correlation studies with indepen-
dent time-series, as described in this section with U-Pb detrital zir-
con time-series, problems with age-related degradation and
replicability can be minimized. This understanding should enhance
decisions related to the age at which a time-series should be termi-
nated. Supplementary Data file 6 contains the spreadsheet with the
correlation calculations for the U-Pb study in this section, which
can serve as a template for similar types of time-series studies.

2.10. Testing assumptions and alternative methods

Quite frequently, multiple methods exist for minimizing
adverse effects from a known bias. If the methods have equal suc-
cess attenuating the bias, then selection becomes a personal
choice. However, when the success rate is unknown, tests should
be conducted to determine the advantages/disadvantages of the
competing methods. For example, by employing a grid-based
methodology for hypothetical databases with divergent sampling
densities, raw age distributions (Fig. 2a) are inconsistent. But when
the time-series are adjusted by inverse spatial weighting (Fig. 2b),
they are either identical (100% globality) or similar (67% globality).
Likewise, considerable inconsistences appear for time-series from
raw mean values (Fig. 3a), whereas mean values adjusted by
inverse spatial–temporal weighting (Fig. 3b) yield either identical
or similar results.

Keller and Schoene (2012) suggest using a similar method for
disproportionate sampling densities. While being similar, differ-
ences exist. Firstly, Keller and Schoene (2012) do not assess the



Table 1
Correlations among various bandpass filtered detrital zircon time-series.

Color codes: 95% confidence levels (green) and correlations below the 95% threshold (red).
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globality of the samples, as discussed in Section 2.2, but they do
provide bivariate kernel density estimates adjusted for sampling
densities. Secondly, rather than using grids, they define density
from a theoretical perspective, which involves calculations to
determine the proximity of a single sample relative to all other
samples in the database, as described in the appendix of Keller
and Schoene (2012). From these, weights are assigned that are
inversely proportional to the density index for each sample. They
also provide two versions: (a) inverse spatial weighting for his-
tograms, frequency plots, and age distributions, and (b) inverse
spatial–temporal weighting for time-series plotting mean values.

To further assess the appropriateness of these methods, we use
the same data as in Section 2.2 (Figs. 2-3) and apply the inverse
spatial–temporal approach of Keller and Schoene (2012). Both
methods produce nearly identical mean-value time-series (which
indicates both methods are acceptable); however, the error bands
do occasionally differ noticeably. Here, comparing results from two
inverse spatial–temporal methods for weighting time-series serves
as an example for assessing replicability.

Every branch of science likely has unique replication problems
unrelated to other branches of science. For example, attempts to
9

assign high-resolution ages to otherwise undatable Paleozoic sed-
imentary layers (Wu et al., 2023) present problems that are far dif-
ferent from assigning low-precision U-Pb ages to detrital zircon.
Thus, we cannot prescribe specific tests for all situations, in all dis-
ciplines. Yet, the example illustrates how similar comparative
studies that use the same data, but with different methods, can
provide meaningful insights into the degree to which methodology
affects replicability.

2.11. Analytic transparency

Insufficient analytic transparency is a common problem in pre-
venting replication (Horstwood et al., 2016; Sileshi, 2023). To repli-
cate results, it is imperative to know the exact steps that other
investigators followed. Obfuscating methods with vague or incom-
prehensible terms is unacceptable. Methods defined with equa-
tions greatly enhance replicability, but only if all terms are
clearly stated. Earth Sciences can move forward from its current
state by journal editors adopting the minimum transparency stan-
dards used in other disciplines. These include (a) providing details
of the software used, including exact version numbers, (b) sharing
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all the processing data and analytical code via a permanently and
openly archived online portal, (c) sharing data packaged together
with the processing code and computational environment, so the
whole analysis pipeline can be re-run using GitHub releases, Code
Ocean, etc., and (d) providing meta-data describing all the vari-
ables in all data files and clearly organizing and annotating any
analytical code. Supplementary Data file 1 through file 6 include
the details and calculations that promote analytic transparency.
3. Discussion

Given full transparency of data and analyses, it is possible to
systematically isolate and assess the degree to which various fac-
tors might significantly bias results. Minimal biases can often be
ignored, whereas a major bias should be addressed to prevent
unreliable results. After discovering a major bias, methods often
exist for mitigating risks prior to reporting results, which should
optimize replication attempts from independent data. Of course,
biased data can also be replicated. Thus, replication alone is an
insufficient criterion for assessing reliability. Assessing biases and
data quality are issues separate from, but generally a requisite to,
attempts to replicate reliable results. Some of the methods we have
described primarily pertain to U-Pb detrital zircon studies, while
other methods likely apply to a broader range of disciplines,
including disciplines beyond Earth Sciences.

For our research, multiple requirements and adjustments pre-
cede attempts to replicate various global geological and geochem-
ical time-series. The requirements and adjustments include: (a)
amalgamating a global database with a bare minimum globality
index of 30% to 70% but preferably with a high globality index
exceeding 70%; (b) when appropriate, objectively removing ques-
tionable data or data of inferior quality; (c) for detrital zircon
time-series, adjusting for stratigraphic bias; (d) have some under-
standing of the precision of the database measurements, which
provides guidance for the number of analyses required for assess-
ing accuracy; (e) after adjusting for all known biases, simulating
random sampling by producing age distributions with an inverse
spatial weighting method; (f) alternatively, simulating random
sampling by producing mean-value time-series with an inverse
spatial–temporal weighting method; (g) performing segmented
correlation analysis for independent time-series to determine if
the methods for minimizing biases are sufficient for replicating
results for all intervals; and (h) varying the bandwidth for the seg-
mented correlation studies to evaluate data accuracy.
4. Conclusion

This research outlines an approach for developing replicable age
distributions from large global databases of U-Pb detrital zircons.
Testing replication starts with representative global databases con-
taining independent data. Before developing a time-series, adjust-
ments are essential for known biases such as poor data quality,
stratigraphic bias, and geographically disproportionate non-
random sampling. Then, segmented correlation analyses from the
independent bias-adjusted time-series provide a means for assess-
ing if the adjusts are sufficient for replicating results, the accuracy
limits of the data, and the temporal extent to which the time-series
are replicable. To augment this approach, Supplementary Data file
3 is an operational spreadsheet containing the documentation and
functionality for calculating: five globality indices, inverse spatial
weighting, inverse spatial–temporal weighting, and adjustments
for stratigraphic bias.
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