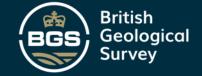


MATT ARRAN

FOSS for largedataset geostatistics



Outline

- Motivation
- New software for variogram calculation
- Existing software for model fitting
- Conclusions

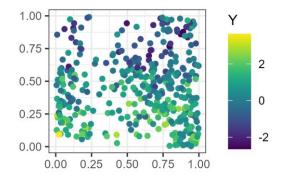
Motivation

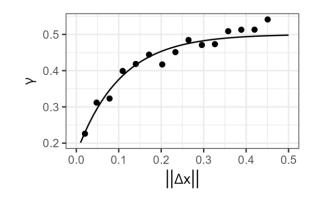
Geostatistics

• Tobler's first law of geography:

"everything is related to everything else, but near things are more related than distant things"

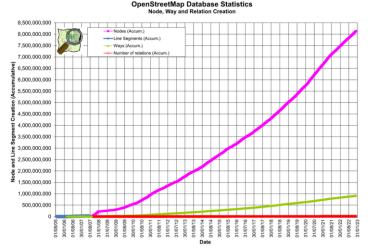
- Standard approach:
 - 1. Examine how correlation varies with distance, via an empirical variogram
 - 2. Fit a model, via an inferred spatial covariance matrix
 - 3. Predict values at new locations, via kriging





Large datasets

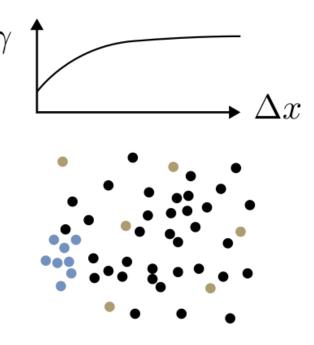
- Datasets are growing with increasing computing power
- Geostatistics' computational costs grow faster than dataset size n
 - # of inter-datapoint distances/covariance matrix entries: $O(n^2)$
 - # of operations for covariance matrix decomposition: $O(n^3)$



Variogram calculation

Sampling risks

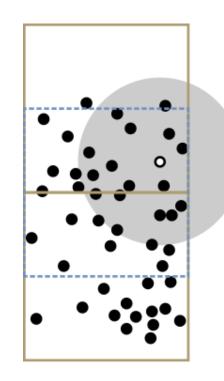
- Excessive spatial span:
 - Covariate variation dominates variability
 - Spatially correlated effect unconstrained
 - Inefficiency from low intercorrelation
- Insufficient spatial span:
 - Correlation dominates variability
 - Covariate dependence unconstrained
 - Inefficiency from high intercorrelation



Efficient sampling

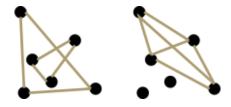
- Estimate maximum significant correlation length λ
- Divide datapoints into $2\lambda \ge 2\lambda$ boxes with overlaps λ
 - All significant pair-interactions within some box
- From each box, sample # pairs ∝ # datapoints
 - First approx. to Reilly and Gelman (2012)
- # of comparisons $O[A\lambda^2 \rho \rho_{min}]$ rather than $O[(A\rho)^2]$

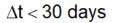
(for Area A, typical and low datapoint density ρ , ρ_{min})

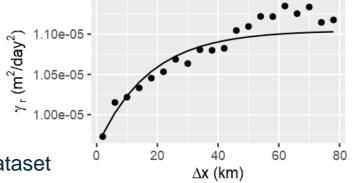


Variogram implementation

- Development version implemented in R
- Euclidean and WGS84 distances supported
- Options for subsampling:
 - Complete coverage
 - Complete network
- Options for estimator:
 - Matheron (1962)'s
 - Cressie & Hawkins (1980)'s
 - Genton (1998)'s
- Applied to 78,878-datapoint Punjab groundwater dataset
 - ~ 1 hour to identify ~ 1.6 million interacting pairs







Model fitting

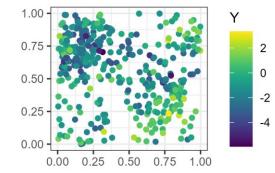
Published approaches

• Take advantage of low correlation at distance:

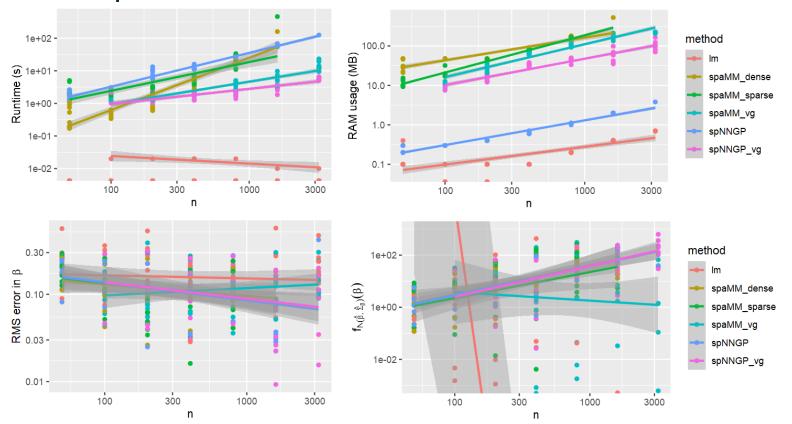
- Tapered covariance matrices (e.g. with R package spaMM)
- Nearest-Neighbour Gaussian Process (R package spNNGP)
- Take advantage of high correlation in proximity:
 - Fixed Rank Kriging (R package FRK)
 - Predictive Process (R package spBayes)
- Both: Multi-Resolution Approximation (Julia package MRA_JASA, Python pyMRA)
- Solve equivalent problem with more sparsity:
 - Lattice Kriging (R package LatticeKrig)
 - INLA for equivalent SPDE (R package R-INLA)
- Few direct comparisons between different approaches

Comparison method

- Simulate datapoints at *n* = 50, 100, ..., 3200 locations in the unit square
 - Locations: mixture of three Gaussian clusters and a uniform distribution
 - Covariates: one uncorrelated, one spatially correlated
 - Errors: exponential correlation structure with nugget
- Estimate coefficients with linear regression Im, as control, &:
 - Dense covariance matrix, using spaMM
 - Sparse, spherically tapered covariance matrix, using spaMM
 - Nearest-Neighbours Gaussian Process, using spNNGP
- Specify correlation structure:
 - As part of the model fit
 - Using the empirical semivariogram



Comparison results



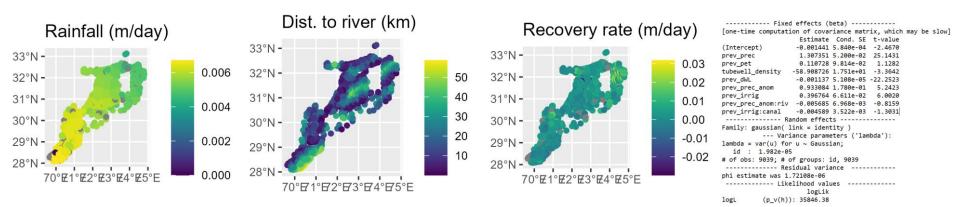
Application

Consider monsoonal groundwater change rates in Punjab, Pakistan, 1979 – 2009

- 41,852 records at 2,967 sites
- Low residual inter-year temporal correlation
- Spatially correlated covariates and errors

• Fit a linear model with a spatially correlated error term

- Using spaMM, with a tapered covariance matrix specified from the variogram



Conclusions

Conclusions

- Computationally efficient methods key to large-dataset geostatistics
- Variety of free, open-source software available, especially in R
- New tool promising for empirical variogram calculation
- For model fitting and prediction, spNNGP's the best option when applicable

Future work

- Rewrite variogram calculation as production code
 - Which language would be most useful?
- Test more existing methods
 - Which dataset complications are most important to model?
- Extend tests to prediction
 - Against which non-statistical methods would tests be most useful?

