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Abstract: Soil organic carbon (SOC) measurements are an indicator of soil health and an important
parameter for the study of land-atmosphere carbon fluxes. Field sampling provides precise mea-
surements at the sample location but entails high costs and cannot provide detailed maps unless
the sampling density is very high. Remote sensing offers the possibility to quantify SOC over large
areas in a cost-effective way. As a result, numerous studies have sought to quantify SOC using Earth
observation data with a focus on inter-field or regional distributions. This study took a different
angle and aimed to map the spatial distribution of SOC at the intra-field scale, since this distribu-
tion provides important insights into the biophysiochemical processes involved in the retention
of SOC. Instead of solely using spectral measurements to quantify SOC, topographic and spectral
features act as predictor variables. The necessary data on study fields in South-East England was
acquired through a detailed SOC sampling campaign, including a LiDAR survey flight. Multi-spectral
Sentinel-2 data of the study fields were acquired for the exact day of the sampling campaign, and
for an interval of 18 months before and after this date. Random Forest (RF) and Support Vector
Regression (SVR) models were trained and tested on the spectral and topographical data of the fields
to predict the observed SOC values. Five different sets of model predictors were assessed, by using
independently and in combination, single and multidate spectral data, and topographical features for
the SOC sampling points. Both, RF and SVR models performed best when trained on multi-temporal
Sentinel-2 data together with topographic features, achieving validation root-mean-square errors
(RMSEs) of 0.29% and 0.23% SOC, respectively. These RMSEs are competitive when compared with
those found in the literature for similar models. The topographic wetness index (TWI) exhibited the
highest permutation importance for virtually all models. Given that farming practices within each
field are the same, this result suggests an important role of soil moisture in SOC retention. Contrary
to findings in dryer climates or in studies encompassing larger areas, TWI was negatively related
to SOC levels in the study fields, suggesting a different role of soil wetness in the SOC storage in
climates characterized by excess rainfall and poorly drained soils.

Keywords: soil organic carbon; Sentinel-2; random forest; support vector machine; topographic
wetness index

1. Introduction

Soil organic matter (SOM) represents the major terrestrial store of soil organic carbon
(SOC), but global stocks can only be estimated with high uncertainty [1]. The SOC content
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is an important indicator of soil health and fertility as its presence regulates nutrient
provisioning, moisture of soil health, and fertility [2].

In addition to its implications for soil health and sustainable food production, SOC
has a profound role in land-atmosphere carbon fluxes [3]. Indeed, the combined uptakes of
both terrestrial and oceanic carbon sinks sequester over half of all anthropogenic emissions
where the terrestrial reservoir alone accounts for a mass three times larger than current
levels of atmospheric carbon [4,5].

Changes in SOC depend largely on land use, climate, agricultural management, and
topography [6]. Intensive farming where little biomass is left over for incorporation into the
soil, combined with high tillage intensities, induces SOC loss, thereby impacting soil health
and promoting net positive emissions [7]. In contrast, well-implemented regenerative
agriculture such as conservation tillage or crop residue retention, can enhance the organic
carbon storage in soils. In order to promote regenerative agriculture and emission offsetting,
the carbon credit market rewards farmers who adopt these practices. However, this market
is currently hindered by a lack of objective, transparent, and cost-effective ways to monitor,
report, and verify (MRV) the effectiveness of such regeneration practices [8].

Earth observation (EO) systems measure the radiation reflected or emitted by the
Earth’s surface in different spectral bands. Given the strong absorption of SOC in the
optical domain (wavelengths from 350 to 2500 nm [9,10]) several studies have attempted to
measure and map SOC content in the topsoil using EO data from various platforms such as
satellites, piloted aircraft, and unmanned airborne vehicles (UAVs, [11–13]).

The use of satellite platforms such as Sentinel-2 provides periodic, consistent, and
cost-effective observations over large areas which would be unfeasible for aircraft [14].
Satellite periodicity is of particularly high importance as it facilitates the use of multidate
images with a high temporal resolution, enabling potential improvement in model perfor-
mance while minimizing cloud issues [15]. While the use of airborne hyperspectral data
typically outperforms spaceborne sensors as more details in the spectral signatures can be
resolved [16], clear limitations are apparent such as limited availability and relatively high
cost. Of those studies utilising spaceborne data, the use of Sentinel-2 is very common hav-
ing been shown to often outperform comparable platforms such as Landsat-8. This is likely
due to its higher spatial resolution in the visible and NIR range, greater temporal resolution,
and the inclusion of the red edge bands. The commonality of Sentinel-2 in remote sensing
also facilitates a more apt comparison between this study and the literature. While the
aforementioned studies demonstrate that EO spectral measurements provide quantitative
information on SOC [10], some studies have shown that the incorporation of topographical
features such as terrain elevation or topographical wetness index (TWI, [17]) can improve
the SOC predictions [13,18]. Topography is closely related to the movement and accumu-
lation of water and material across the landscape and, consequently, contributes to SOC
distribution. The use of TWI in larger studies typically exhibits a positive correlation with
SOC [19–24]. This is theorised to be due to erosion and/or overland flow which transport
SOC over large distances [21]. Furthermore, water accumulation can induce anaerobic
conditions, decreasing the decomposition rate of SOC. However, the use of topographic
covariates, especially with regard to soil moisture, lacks research on smaller, crop field
scales where microtopography becomes important. Therefore, the study of topographical
covariates over, smaller, intra-field scales is vital and complimentary to the analysis of
larger field sites with low sampling densities.

Many studies have demonstrated the efficacy of using multitemporal data in ML
models [13,25–27]. The use of multidate imagery helps smooth the effects of single-date
spectral anomalies and reduce the effects of spectrally active dynamic variables which do
not exhibit covariance with SOC. Moreover, Vaudour et al. suggest that, although the use
of multitemporal data does not guarantee improved performance, its use does improve
generalisability [28]. No study to date has incorporated a comparison of multitemporal
data and topography at smaller crop intra-field scales to study scalability for small areas at
high resolution.
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The objectives of the study presented here were to: (1) assess the capability of single
and multidate Sentinel-2 spectral data for quantifying the spatial distribution of SOC within
crop fields, using common models such as Random Forest and Support Vector Regression;
(2) to assess if the conjunctive use of spectral data with topographical features improved
the SOC prediction accuracy; (3) to assess the importance of different predictors. These
objectives are motivated by the aim to better understand processes related to organic carbon
conservation in the soil and their relationship to soil moisture at smaller, high resolution
scales. To permit the analysis of these objectives, an intensive field campaign was conducted
within an agricultural site in Southeast England owned by the University of Surrey. The
site has 30 years of recorded farming practices which suggested a large range of SOC values
and thereby potentially improving model validation.

2. Study Area

The study area consists of three crop fields located in the county of Surrey, in the
Southeast of the United Kingdom (UK), extending across 51◦13′42.7′′ to 51◦14′17.0′′ North
latitude and 0◦37′40.6′′ to 0◦38′19.8′′ West longitude (WGS84 datum). The fields are labelled
F1, F2 and F3 in Figure 1 and have areas of approximately 10, 5, and 2.5 hectares, respectively.
These fields have been regularly farmed for over three decades. Oat was the crop grown
on the three fields from October 2020 till August 2021, before our sampling campaign in
September 2021.
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Figure 1. (a) location of the study fields: F1, F2, F3 (backgrounds from Google Earth and Open Street
Maps), (b) close view of one of the sampling points.

F1 has shallow calcareous silty soils characterised by the Upton series [29] (grey
rendzinas), with thickness varying from 0.25 m to 0.75 m depth. The northern end of F1,
and fields F2, F3 contain poorly draining loamy and fine silty soils over clay primarily in
the Wickham 4 association (typical stagnogley) [30]. A soil survey commissioned by the
farmer in 2014 (personal communication) confirmed this general soil description. This
survey also pointed at higher SOC content in field F3, presumably due to cows from an
old dairy farm having pastured in it. A nearby abandoned stable was observed during the
site work.

3. Materials and Methods

The soil sampling campaign and a UAV survey flight were conducted simultaneously
over the study fields on the 7–8 September 2021. The three study fields had been harvested
between the 25–26 of August.
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3.1. Onsite Sampling

Samples were acquired at 55 locations distributed over the study fields as shown
in Figure 1. The sampling locations were planned so that their spatial distribution was
approximately uniform, while capturing subtle spatial anomalies observed in the long-term
average (2017–2021) of Normalised Difference Vegetation Index (NDVI). The resulting
average spatial density (55 samples over 17.5 ha) clearly exceeded those found in the
literature of SOC remote sensing.

Soil samples representative of the top 10cm soil layer were collected at different points
randomly distributed within a 2.0 m × 2.0 m plot. This sampling depth is recommended
in the UK Farm Toolkit [31]. Crop residue and stones were carefully excluded from the
soil samples, which were then introduced into a plastic bag per sampling point, labelled
and immediately stored in a cool, dark container. The sample bags were deposited in a
dark laboratory refrigerator at the end of each sampling day and kept there until the SOC
analysis was conducted.

For all locations, the square sampling plots of 2.0 m × 2.0 m with North-South orienta-
tion were defined. This extent is consistent with that used in the Countryside Survey: Soil
Report from 1998 and 2007 [32]. A small white-clay mark was placed at the south-eastern
corner of each sampling plot. The very-high-resolution UAV imagery acquired during
the survey flight was used to identify and extract the coordinates of the clay marks (i.e.,
sampling points) with a 0.05 m accuracy (see Section 3.5 for survey details). It is worth
noting that the marks were placed right after the Sentinel-2 overpass, to avoid any impact
on the satellite spectral measurements.

3.2. Laboratory Analysis of Soil Organic Carbon

Soil samples were analysed at the University of Surrey Advanced Geotechnical Engi-
neering Laboratory for organic matter and soil texture. The raw samples, with mass ranging
between 400 g and 700 g, were air-dried overnight to allow for manual disaggregation
of soil clumps and passed through a 2 mm sieve. They were then mixed and divided by
Cone Quartering (British Standards Institute [33]) until subsamples of approximately 10 g
were obtained.

The organic matter content of the sub-samples was determined using the Loss-on-
ignition method [11,34]. Two subsamples from each sampling point were used to calculate
the organic matter. The air-dried sub-samples were placed on a dry alumina crucible
of known dry mass and oven dried at 105 ◦C for 24 h. They were later cooled to room
temperature inside a silica gel dissector to ensure that moisture did not contaminate the
sample. The dry mass of the subsamples was measured to an accuracy of 0.1 mg and then
kept in a furnace at 375 ◦C for 16 h to induce the combustion of the organic matter [35]. This
temperature is lower than the 400 ◦C reported in other studies to prevent the CO2 release
from carbonates, as visible chalk fragments were present in some of the samples [36,37].
When taken out from the furnace, the subsamples were cooled down in a silica gel dissector
and the dry mass measured to an accuracy of 0.1 mg. The percentage weight of SOC in the
subsamples was calculated as follows

SOC = 55
(

w105 − w375

w105

)
(1)

where w105 is the mass of the soil subsample after drying at 105 ◦C for 24 h (mg) and
375 ◦C is the mass of the soil subsample after heating at 375 ◦C in the furnace for 16 h (mg).
Equation (1) was adapted from SOM to SOC by multiplying by a factor of 0.55 [38].

The SOC percentages obtained for the two subsamples from each location were consis-
tent in all cases, except for one which was resampled and reanalysed. After this reanalysis,
SOC pairs of results differed by less than 0.2% in 80% of the locations, and by less than
0.4% for all of them. The sampling point’s SOC was calculated as the average of the pair
of results.
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3.3. Satellite Data, Image Pre-Processing and Indices Calculation

A cloud-free Sentinel-2 image of the study area was acquired on the 8 September
2021, coinciding with the soil acquisition campaign. The Sentinel-2 data was downloaded
from the Copernicus open access hub as Level-2A bottom of atmosphere (BoA) reflectance
product. Our analysis used the (10) Sentinel-2 bands (Table 1) considered sensitive to soil
properties [39]. The nearest neighbour method was used for resampling all 20 m pixels
to 10 m. Time series of cloud-free Level-2A BoA spectral reflectance were then extracted
for each sampling point using the Google Earth Engine (GEE) platform. These Sentinel-2
spectral data were then imported into Python 3.11. This served as the environment in
which further preprocessing and spectral index calculations were conducted.

Table 1. Technical specification of Sentinel-2 bands used in this study [40].

Band Spectral Range (nm) Spectral Position (nm) Bandwidth (nm) Spatial Resolution (m)

B2 458–523 490 65 10
B3 543–578 560 35 10
B4 650–680 665 30 10
B5 698–713 705 15 20
B6 733–748 740 15 20
B7 773–793 783 20 20
B8 785–900 842 115 10

B8a 855–875 865 20 20
B11 1565–1655 1610 90 20
B12 2100–2280 2190 180 20

To reduce the effects of non-linearity and scattering, the reflectance spectra were
converted to apparent absorbance such that

A = ln
1
R

(2)

where R is the reflectance [41]. This is primarily due to the gaussian nature exhibited by
both the actual and apparent absorbances [42].

From the spectral reflectance values, two spectral indices were initially calculated: the
Normalised Difference Vegetation Index (NDVI) and the Normalised Burn Ratio (NBR2) [43,44].
NDVI and NBR2 are indicative, respectively, of the amount of photosynthetically active
vegetation and crop residue present in a pixel. Pixels with values higher than 0.2 for these
indices were excluded from the analysis as their vegetation or crop residue coverage could
hinder the spectral response of the soil This left roughly 40 pixels remaining to be analysed.

In addition to the above, other spectral indices were calculated, as their use has been
shown to improve the modelling of SOC [45]. Table 2 summarizes these indices.

Table 2. Spectral indices used in this study.

Index Definition Reference

Normalised Difference Vegetation
Index (NDVI)

ρNIR − ρRed
ρNIR + ρRed

Rouse et al. [44]

Normalised Burn Ratio (NBR2) ρSWIR1 − ρSWIR2
ρSWIR1 + ρSWIR2

Van Deventer et al. [43]

Enhanced Vegetation Index (EVI) 2.5
(

ρNIR − ρRed
ρNIR + 6ρRed − 7.5ρBlue + 0.5

)
Liu & Huete [46,47]

Green Normalised Difference
Vegetation Index (GNDVI)

ρNIR − ρGreen
ρNIR + ρGreen

Gitelson, Kaufman &
Merzlyak [48]

Normalised Difference Red
Edge (NDRE)

ρNIR − ρRE1
ρNIR + ρRE1

Huete et al. [47]
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Table 2. Cont.

Index Definition Reference

Modified Triangular Vegetation Index
1 (MTVI) 1.2(1.2(ρNIR − ρGreen) − 2.5(ρRed − ρGreen)) Haboudane et al. [49]

Normalised Difference Cloud
Index (NDCI)

ρRE3 − ρBlue
ρRE3 + ρBlue

Marshak et al. [50]

Optimised Soil-Adjusted Vegetation
Index (OSAVI)

ρRE2 − ρBlue
ρRE2 + ρBlue

Rondeaux, Steven &
Baret [51]

Triangular Vegetation Index (TVI) 0.5(120(ρRE1 − ρGreen) − 200(ρRed − ρGreen)) Broge & Leblanc [52]
Ratio Vegetation Index (RVI) ρNIR

ρRed
Birth & McVey [53]

Chlorophyll Absorption Reflectance
Index (CARI)

(
ρRE1
ρRed

)
(0.2(ρRE1 − ρRed)− 200(ρRE1 − ρGreen)) Haboudane et al. [54]

Modified Soil-Adjusted Vegetation
Index (MSAVI) 0.5

(
2ρNIR + 1 +

√
(2ρNIR + 1)2 − 8(ρNIR − ρRed)

)
Qi et al. [55]

New Vegetation Index (NVI) ρRE3 − ρRE2
ρRed

Gupta, Vijayan &
Prasad [56]

In addition to using a single-date Sentinel-2 image, a multi-temporal approach was
also assessed, where average (median) spectral signatures were used as predictor variables.
Multi-temporal data has the advantage of being largely unaffected by single date spectral
anomalies and, moreover, is resistant to the effects of dynamic variables such as surface
moisture and roughness which have no correlation with SOC. Cloud-free Sentinel-2 images
acquired up to 18 months before and after the soil sampling campaign data (7th and 8th
of September 2021) were collected. The 18 month period either side of the sampling date
was chosen because the SOC change due to agricultural practices over this time span is
expected to be clearly below the detection threshold of spectral methods [57]. Over the
1.5 year window, the maximum change would be lower than 0.08% SOC, which is below
the RMSE of remote sensing based SOC models [58]. Hence, the SOC measurements should
still be related to the spectral data acquired less than 18 months apart.

3.4. Extraction of Topographical Features

A terrain elevation point cloud of fields F1, F2 and F3 was acquired using the Headwall
Photonics hyperspectral and LiDAR sensor (Bolton, MA, USA), mounted on a DJI M600 Pro
UAV and operated by the Field Spectroscopy Facility (FSF) of the UK Natural Environment
Research Council (NERC). The UAV flight was conducted on the 7th and 8th of September
2021, concomitantly with the soil sampling campaign, between 10:00 and 14:00 solar time
at 120 m height above ground. A GPS base station was used to convert the UAV GPS
records to post-processed kinematic (PPK) coordinates with 0.05 m accuracy. The LiDAR
measurements were filtered for atmospheric artefacts (e.g., dust) and a point cloud for
the overflown areas was produced at PPK geospatial accuracy. The cloud was converted
into a digital elevation model (DEM) in raster format at 0.05 m spatial resolution for
the orthorectification of the hyperspectral data by NERC-FSF using own software. The
later was used for the visual identification of the sampling point marks (see Section 3.1).
Unfortunately, the hyperspectral measurements presented some radiometric inaccuracies
that invalidated their use as SOC predictors.

The LiDAR point cloud was also used to produce a 1m-resolution raster DEM using
the Envi 5.8 software and used to extract the topographical features of the study fields at
the location of each soil sampling point (coded in Python 3.11). These features included
relative terrain elevation, drainage path length, local surface gradient, curvature, convexity,
aspect, and topographical wetness index (TWI). The relative elevation was calculated for
each field by subtracting the minimum field elevation. The surface gradient was calculated
as the maximum slope in the eight directions of a 9 × 9 DEM window centred at each
pixel. Hurst et al. [59] found that fitting a 6-degree polynomial surface to a nine-by-nine



Remote Sens. 2024, 16, 1510 7 of 20

window was apt for estimating the curvature of the surface. This was used to calculate the
minimum and maximum curvature at each sampling point and the convexity.

The drainage path length of each sampling point represents the distance along the
steepest gradient line from the sampling point to the highest upper end of the field. This
length is indicative of the amount of runoff that reaches the point during and after a rainfall
event. This path length was measured by performing gradient ascent from each respective
pixel until the upper field boundary, assumed to impede runoff from upstream surfaces.
Finally, the TWI is defined for a point p as:

TWI(p) = ln
As(p)

tan β(p)
(3)

where As(p) and tan β(p) are the specific catchment area and the slope at a given point p,
respectively. The specific catchment is the upslope area draining through a point per unit
contour length. For approximately planar fields, as F1, F2 and F3, the area per unit length
becomes constant and equal to the drainage path length, (L), so TWI can be expressed as

TWI ∝ ln
L

tan β
. (4)

Expression (4) was used to calculate TWI at the sampling points. These topographical
parameters could then be used simultaneously with the spectral metrics with the aim of
improving model performance. Of the larger set of topographical covariates, it was decided
that redundant variables and those with poor correlation be removed for model clarity (See
Section 3.8).

3.5. Machine Learning Models for SOC Prediction

Random Forest (RF) and Support Vector Regression (SVR) algorithms, with a radial
basis function kernel for the latter, were trained, tested, and validated to predict SOC using
Sentinel-2 spectral data, topographical data, and a combination of both data types. Both RF
and SVR were implemented using the Scikit package in Python 3.11 [60].

The data set was partitioned such that 80% formed the training set for the model,
and the remaining 20% a validation or testing set. All the predictors were normalised for
the training set such that the population mean equalled zero and the standard deviation
equalled one. This was necessary due to both the Gaussian assumption inherent in SVR as
well as the large differences in the value ranges between spectral bands. The training set
could then be used to optimise the models. To permit a better comparison with previous
studies [12,61–63], an RBF kernel was selected for the SVR model [12,61–63]. Moreover, RBF
is a common choice as it exhibits isotropy, is stationary, and has fewer tuning parameters
making it is easier to apply for complicated non-linear systems.

3.6. Random Forest

RF involves the generation of a large collection of decision trees commonly referred
to as a ‘forest’ [64]. A given decision tree normally uses a subset of the available features
in the dataset. The first node is then created by generating a given number of randomly
generated inequalities where any given statement splits the dataset in one dimension of
the multidimensional feature space. The inequality is then selected which results in the
greatest reduction in the total variance of the system. This process is then repeated to build
the decision tree until a given variance threshold is achieved. Upon completion, a highly
specified decision tree has been generated capable of sorting the data although said tree
is highly likely to be an example of overfitting. By generating a collection of trees in the
same fashion, each using a different feature subset, the overfitting of the decision trees is
reduced. The RF hyperparameters are specified in Table 3.
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Table 3. Hyperparameters for both models.

Model Hyperparameter Description Search Range

RF
Estimator number The number of decision trees generated. 500–25,000
Maximum Depth The maximum depth a given tree can reach. 5–4000

Feature proportion The proportion of the total feature set used in decision tree construction. 0.1–1.0

SVR
Regularisation, C The penalty associated with point distance. 0.1–100

Epsilon, ε The distance from the hyperplane within which no penalty is applied. 0.001–100
Gamma, γ An RBF kernel coefficient determining the range of influence each point exerts. 0.001–100

3.7. Support Vector Machine

SVR (with a radial basis function) attempts to minimise the sum of the squared
differences between observed and predicted values subject to a constraint whereby a
proportion of the points have to be within a given squared difference threshold value, ε.
The algorithm, therefore, can be imagined as generating a series of regression lines in a space
with as many dimensions as model’s predictors. The observed SOC can be represented
as points in the same space. The regression lines are iteratively refined to achieve the
overall least sum of squared differences between observed SOC values and corresponding
predictions in the regression line, while containing the largest proportion of observation
points within a threshold distance, ε, of the regression line. The hyperparameters for this
algorithm are specified in Table 3.

3.8. Model Assessment and Optimisation

In total, 5 different feature sets were analysed to quantify the spatial distribution
of SOC within crop fields (Table 4): (1) single date Sentinel-2 spectral data, multidate
Sentinel-2 spectral data, and topographical covariates independently; (2) a conjunction
of topographical covariates with single-date and multidate spectral data, respectively. It
was decided that, to improve model performance and importance analysis, highly auto-
correlated and redundant topographic variables would be removed to form an ‘optimum’
subset. We defined redundant variables such that their removal from the model resulted in
no change or even an improvement in model performance.

Table 4. Model name and input data.

Model Name Input Data

Single-date spectral (SD) Sentinel-2 spectral reflectance taken from one day only

Multidate spectral (MD) Median spectral reflectance of time series taken from
Sentinel-2 over a 3 year period

Topographical (T) Topographical covariates (relative height, slope, TWI)
extracted from high resolution DEM only

Single-date spectral and
topographical (SDT)

Both Sentinel-2 spectral reflectance data (target date
only) and topographical covariates

Multidate spectral and
topographical (MDT)

Both median Sentinel-2 spectral reflectance data (3 year
period) and topographical covariates

To determine the optimal hyperparameters for the SVR and RF models, the Multiob-
jective Tree-structured Parzen Estimator (MOTPE) was used through the Python package
Optuna [65]. This method utilises 5-fold cross-validation (CV) to determine the root-mean-
square error (RMSE) at given points in the hyperparameter space. Although k can be
any integer greater than zero, 5 or 10 are common values picked in remote sensing stud-
ies [61,66–69]. As a 10-fold CV would have been inappropriate with only 5 to 6 points in
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each fold, a 5-fold CV was chosen. CV also outputted the R2 and the mean absolute error
(MAE) as further metrics to monitor model performance. These metrics are such that

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(5)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (6)

MAE =
∑n

i=1|yi − ŷi|
n

(7)

where n is the total number of points, y is the set of ‘true’ or observed values, ŷ is the set of
predicted values, and y is the mean of the y.

Using the CV metrics, the algorithm seeks to maximise the probability density function

p(x) =
{
ℓ(x), Y < Y∗

g(x), Y ≥ Y∗ (8)

where Y is a given observation, x is a vector of hyperparameters, and Y∗ is the point
that maximises the function. As a form of Bayesian optimisation, MOTPE requires an
acquisition function to establish a global optimum. MOTPE utilises Expected Improvement
(EI) to select the optimum model for each iteration. By applying EI to our probability
function (8), it can be shown that points with a high probability of model improvement
become separated from those with a low probability, allowing the algorithm to converge
toward the optimum hyperparameters in fewer iterations than would be achieved by other
popular methods such as grid search. After N iterations, the hyperparameters of the most
successful model are extracted and used to fit the training data. The model in question now
performs well when predicting data it has been trained with.

While a combination of Bayesian optimisation and CV reduce model overfitting, it
should be noted that achieving an approximately optimal CV error does not fully eliminate
the possibility of overfitting. Therefore, to validate the model, it is necessary to split the total
dataset into training and validation sets as mentioned prior. The ‘optimum’ model achieved
via Bayesian optimisation is then tested on the individual and independent validation set.
From this, the validation RMSE, R2, and MAE are calculated so as to assess the accuracy of
the model. Therefore, overfitting can be identified accurately: a low CV error contrasted by
a high validation error suggests as such.

In addition to these metrics, models exhibiting higher accuracy were used to extrap-
olate and predict the SOC content over the entire field set and, in this way, analyse the
associated spatial distribution of SOC prediction. To achieve this, topographic and spectral
data were inputted for each respective pixel forming rasters of SOC prediction. From these
data, coherent maps could then be generated using the Python packages Cartopy 0.23 and
Salem 0.3.09 [70,71].

3.9. Variable Importance Analysis

To evaluate the relative importance of each input variable with regard to the model’s
accuracy, permutation feature importance was used from the Python package Scikit [60].
As developed by Breiman, permutation importance starts by computing a reference score
based on the standard permutation of input variables [72]. Then, for each variable, the
values are randomly shuffled such that a given input variable is now given in the place of
another. For example, B2 absorption might be inputted in place of B3 and vice vera. The
score of this new permuted dataset is calculated for a particular feature and subbed into

ij = s − 1
K

K

∑
k=1

s′k,j (9)
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where s is the baseline score, K is the total number of repetitions, and s′ is the shuffled
score for some given permutation. While permutation importance is still a local property
and thus cannot predict intrinsic value, it is resistant to the effects of variables with high
cardinality. Therefore, said metric will be used as indication of relative importance of
input variables.

4. Results
4.1. SOC Analysis of the Soil Samples

Figure 2 depicts the SOC laboratory measurements at their respective sampling lo-
cations and the elevation measurements collected from the UAV flight. The SOC values
vary from ~1.5% to ~3.5% in fields F1 and F2 with values above 3% for most samples of F3.
Field F1 shows higher SOC content in the southern half, coinciding with an area of chalk
substrate where the soil is better drained. The higher SOC concentrations in F3 are due
presumably to the fact that cows used to pasture on the field. Therefore, the study site has
a relatively varied distribution of SOC values. Details of SOC statistics can be found in
Table 5.

1 
 

  Figure 2. Map showing (a) SOC results and (b) elevation, shown in a graduated chromatic scale
(Background image: Google Earth).

Table 5. SOC content statistics for each respective field.

Field Minimum
(%)

Maximum
(%) Mean (%) Standard

Deviation (%) Kurtosis Skewness Coefficient of
Variation (%)

F1 1.52 3.19 2.35 0.41 −0.19 0.16 17.65%
F2 1.63 2.52 2.06 0.25 −0.78 0.12 12.11%
F3 2.65 3.52 3.16 0.24 0.32 −0.32 7.44%

4.2. SOC Model Performance for SVR and RF

Using the different combinations of the input data, 5 models were formed for SVR
and RF (Table 4—above). The performance of these models in summarised in Table 6. For
SD, the CV-RMSEs were found to be 0.42% and 0.30% for RF and SVR, respectively. The
uncertainties inherent to both suggest there is a significant difference between the CV errors
attained for both models with regard to RMSE and R2 but not MAE. On the other hand,
the validation RMSEs were found to be 0.47% and 0.53% for RF and SVR, respectively.
Therefore, contrary to the CV metrics, RF performed better although both values are
relatively poor. Figure 3a provides a detailed visual comparison of the performance of
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each model by plotting the observed values vs those predicted by the model. The circular
points represent the five folds used in CV while the black indicate the predictions on the
validation set. A ‘perfect’ model would only occupy the y = x line.

Table 6. Performance of SOC prediction models for RF and SVR. The statistics include both the CV
on the training set and the error from the validation set.

Model Algorithm Metric RMSE R2 MAE

SD
RF

Cross-validation 0.418 ± 0.047 0.413 ± 0.187 0.338 ± 0.082
Validation test 0.471 0.535 0.402

SVR
Cross-validation 0.301 ± 0.027 0.693 ± 0.066 0.228 ± 0.037
Validation test 0.531 0.408 0.449

MD
RF

Cross-validation 0.354 ± 0.019 0.541 ± 0.141 0.292 ± 0.023
Validation test 0.346 0.696 0.269

SVR
Cross-validation 0.320 ± 0.028 0.633 ± 0.130 0.246 ± 0.042
Validation test 0.310 0.756 0.236

T
RF

Cross-validation 0.462 ± 0.080 0.328 ± 0.344 0.339 ± 0.120
Validation test 0.515 0.445 0.433

SVR
Cross-validation 0.259 ± 0.028 0.762 ± 0.096 0.204 ± 0.040
Validation test 0.450 0.575 0.374

SDT
RF

Cross-validation 0.332 ± 0.024 0.638 ± 0.030 0.267 ± 0.036
Validation test 0.395 0.672 0.292

SVR
Cross-validation 0.274 ± 0.019 0.739 ± 0.059 0.205 ± 0.032
Validation test 0.283 0.832 0.225

MDT
RF

Cross-validation 0.337 ± 0.035 0.604 ± 0.084 0.273 ± 0.034
Validation test 0.293 0.782 0.243

SVR
Cross-validation 0.327 ± 0.044 0.525 ± 0.109 0.264 ± 0.062
Validation test 0.229 0.867 0.177

The use of temporal data, In MD as opposed to single-date resulted in CV-RMSEs of
0.35% and 0.32% for RF and SVR, respectively. While significant improvement is only noted
in the CV-RMSE of RF between SD and MD, the validation metrics of both models improve
significantly between with RMSEs of 0.34% and 0.31% for RF and SVR, respectively.

It was necessary to train both models using just the topographic variables so as to
ensure the models are not ‘guided’ by these features alone. If this were the case, Sentinel-
2 data would be obsolete for determining SOC levels and confirm a lack of temporal
transferability. Model T in Table 6 summarises the performance statistics (R2, RMSE, and
MAE) for all assessed models when using just the topographic variables and scatter plots
for both. RF performs worse than the combined model and is comparable to the model
trained on Sentinel-2 data alone. This is true of both the CV error and the validation error.
For SVR, the CV error is the lowest of any of three single-date models. However, the
validation error is significantly worse than the combined model, implying overfitting when
using the topographical variables alone.

It was found that the introduction of topographical data to models using Sentinel-2
spectral data (model SDT), greatly improved the models’ SOC predictions. However, as
mentioned in Section 3.8, there was redundancy and autocorrelation in the contribution
of the topographical features, and the subset of them providing the best predictions was
found to be: relative elevation, TWI, and slope. Therefore, curvature, aspect, and convexity
served only to reduce model performance or obscure importance metrics. Model SDT
achieved CV-RMSEs of 0.33% and 0.27% for SVR and RF, respectively. Both models see
an improvement in the mean CV metrics and a reduction in the associated uncertainties
although there is no significant difference noted between the two models with the exception
of the CV-RMSE for the RF model. In spite of this, the validation RMSEs are 0.395% and
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0.283% for RF and SVR, respectively. Therefore, both experience improvement with SVR
performing best. Figure 3d shows the CV and validation predictions from both models.
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Finally, MDT was found to produce CV-RMSEs of 0.34% and 0.33%, respectively.
While these values represent no significant difference between those in the SDT, both
algorithms exhibited their best validation performance with RMSEs of 0.29% and 0.23%,
respectively. Therefore, SVR for MDT resulted in the greatest validation performance of
any of the models generated.

4.3. Permutation Importance

Figure 4 gives the permutation importance for each of the respective models with
the exception of model using topographic covariates alone. Each figure label aligns to its
respective model. In SD, SVR attributes importance to a small subset of variables with NVI
being the most important while RF exhibits a largely even spread of importance across all
features. For model MD, both algorithms exhibit largely similar values to SD although with
minor increase in band importance. For SDT, it is evident that the SVR model likely has a
high reliance on a smaller subset of features. Clearly, both algorithms indicate that TWI is
important for performance. Finally, RF for MDT showed consistency with the single-date
importance having a similar distribution of importance which improves our veracity in the
algorithm. On the other hand, SVR attributed high importance to the visible bands and, in
contrast to the single-date models including topography, although still attributed a high
importance to TWI.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 21 
 

 

TWI is important for performance. Finally, RF for MDT showed consistency with the sin-
gle-date importance having a similar distribution of importance which improves our ve-
racity in the algorithm. On the other hand, SVR attributed high importance to the visible 
bands and, in contrast to the single-date models including topography, although still at-
tributed a high importance to TWI. 

 
Figure 4. The permutation importance for the chosen Sentinel-2 bands and topographical features 
for SVR and RF. 

4.4. Model Extrapolation over Sample Area 
To evaluate the spatial SOC predictions of the models in question, spectral and topo-

graphical raster were input into models MD and MDT respectively, generating SOC pre-
diction heatmaps over the extent of F1, F2, and F3. Figure 5a shows the maps for both SVR 
models. It is clear that the introduction of topographic features creates a smoother distri-
bution of SOC prediction. Figure 5b demonstrates the same effect but for the RF models.  

Figure 4. The permutation importance for the chosen Sentinel-2 bands and topographical features for
SVR and RF.



Remote Sens. 2024, 16, 1510 14 of 20

4.4. Model Extrapolation over Sample Area

To evaluate the spatial SOC predictions of the models in question, spectral and to-
pographical raster were input into models MD and MDT respectively, generating SOC
prediction heatmaps over the extent of F1, F2, and F3. Figure 5a shows the maps for both
SVR models. It is clear that the introduction of topographic features creates a smoother dis-
tribution of SOC prediction. Figure 5b demonstrates the same effect but for the RF models.

 

2 

 Figure 5. Models extrapolated to predict SOC over entire area of interest using SVR (a) and RF (b) for
both MD (left) and MDT (right) (Background image: Google Earth).
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5. Discussion

Our results, depicted in Figure 3, indicate that both RF and SVR models perform
aptly in their CV prediction of SOC for Sentinel-2 data taken on an intra-field scale. The
obtained CV accuracy, which yielded an RMSE between 0.42% and 0.27% and the validation
accuracy, with an RMSE of between 0.53% and 0.23%, is consistent with that reported in
similar studies reviewed by Lamichhane et al. [73]. Contrary to Latmichhane et al., our
analysis, however, found that SVR largely outperformed the equivalent RF models. This
does not represent an inherent contradiction as they note that RF continued to perform well
for smaller sample sizes but typically over large, diverse areas. Therefore, the intra-field
scale combined with a smaller sample size may favour SVR. Indeed, RF is a bootstrap
process and so can experience performance issues due to repetition for smaller sample sizes.
Moreover, Zhou et al. suggest that no single predictive model attains peak performance
for every circumstance, supporting the validity of our results [26]. On a more cautionary
note, the best performing single-date models were poorer in the context of some other
contemporaneous studies [45,74,75]. However, it is suggested that said studies differ
sufficiently from this study that the performance achieved remains comparably competitive.
For example, Yang et al. employed a 250m resolution grid of soil properties. This was
the most important variable in their model and is therefore most likely to account for
the improved performance [75] multi-date (MD) and multi-date + topography (MDT)
models showed improvement in validation performance over their single-date counterparts
although the latter showed no significant difference when comparing the CV error. This
improvement is to be expected as the temporal averaging contributes to reinforce the
spectral contribution of the soil inherent optical properties, such as SOC, while reducing
noise [13,15,18,26]. In our research, the use of multitemporal data was found to improve
model performance, for both RF and SVR, on an intra-field scale.

The introduction of topographical covariates exhibited clear improvements in perfor-
mance for both the single-date and multitemporal counterparts. The validation errors of
these conjunctive models were significantly lower than those achieved for model using
solely topographic features (T). Therefore, we assert that union of spectral data and topo-
graphical was advantageous to achieve optimum model performance. Of the topographical
models, MDT was found to have the highest validation performance of any of the respec-
tive models with reductions in RMSE of 38% and 57% in comparison to SD. Therefore,
based purely on validation RMSE, the multitemporal SVR model, including topographical
features, had the best performance of any of the previously trained models. Moreover,
this This value represented a significant difference to the mean value of similar studies
appraised over the last 5 years [13,26,27,45,76]. In the case of RF, both the spectral bands
and the covariates had comparable importance despite their inherent autocorrelation. On
the other hand, SVR tended to attribute higher importance to a smaller subset of features.
These did not necessarily corroborate one another though. For example, B12 was found to
be important in the single-date spectral model. Castaldi et al. notes the importance of B12
for the detection of water and its sensitivity to vegetation. However, the reduction in im-
portance for SVR in the multitemporal models suggests that the single-date importance, in
this case, has little physical meaning. Overall, the four SVR models consistently attributed
importance to NVI and, to a lesser extent, CARI and B12. NVI and CARI both use bands
from the red to red-edge wavelengths. Gholizadeh et al. found that SOC had the highest
correlations with Sentinel-2’s B4 and B5 bands (VIS region & red edge) while working on
Chernozems and Cambisols with low levels of SOC (0.63/4–2.62%) [11,77,78]. Therefore,
the importance of both NVI and CARI may be emergent from the sole input of wavelengths
falling between the red and red-edge sections of the spectrum. NVI was also found to have
relatively low correlation with other features and, therefore, high permutation importance
could be due to the autocorrelation of the system and not any direct physical relation
imparted by NVI.

Of the topographical features, TWI was found to have a consistently high importance
in the SVR models. This was also true of RF although it was exhibited more clearly in MDT.



Remote Sens. 2024, 16, 1510 16 of 20

Since TWI represents water accumulation by relief (Sena et al. [79]), performance appears
improved by introducing knowledge of soil moisture likelihood. In contrast, de Almeida
Minhoni et al. [13] found TWI to be a poor indicator of SOC and favoured elevation which,
in this study, saw greater importance for RF models. Moreover, Li et al. [80] noted a
strong positive correlation between TWI and SOC, theorising that high moisture leads to
enhanced plant production and root biomass. We observe the opposite, with a negative
trend between SOC and TWI. In our study fields, soil moisture is not a limiting factor for
plant development. On the contrary, some areas are often water saturated. We therefore
hypothesize that the excessive soil moisture could have led to poorer root development
and lower inputs of plant biomass in general.

6. Conclusions

This study assessed the viability of mapping intra-field SOC distribution using
Sentinel-2 spectral data. SOC was measured at 55 sampling locations over three study
fields and used to train RF and SVR machine learning models. Five different sets of model
predictors were assessed: the use of Sentinel-2 spectral measurements from a single-date
(SD); multidate Sentinel-2 spectral measurements (MD); topographical data alone (T);
the conjunctive use of the single-date Sentinel-2 data (SDT) and topographical data; the
conjunctive use of topographical data and multitemporal satellite data (MDT).

We found that the models based exclusively on Sentinel-2 data showed slightly poorer
performance than other similar ones in the literature. Contrary to other publications,
our SVR model performed better than the RF one, with CV-RMSE of 0.47% and 0.30%,
respectively. The relative importance analysis indicated that a spectral index combining the
red and red edge bands (NVI) and B12 were the most informative predictors for SVR. The
spread of importances exhibited by RF was such that no one feature could be said to be
most informative with any significance.

By introducing topographical features, the SOC prediction improved both the CV and
validation accuracies compared to the models based on single-data Sentinel-2 data only
(SDT), resulting in validation RMSE reductions of 21% and 9% for RF and SVR, respectively.
Similarly, RMSE validation reductions of 16% and 47% were observed between the purely
topographic models and the conjunctive single-date models for RF and SVR, respectively,
clearly demonstrating the usefulness of spectral data for predicting local SOC distributions
which cannot be captured by topographical variables alone. SVR and RF attributed the
highest permutation importances to, firstly, TWI and, secondly, NVI. Similar to the spectral
models, RF had a more even spread of importances across all features whereas SVR relied
more heavily on a smaller subset of bands.

The best performing models were achieved by using topographical features and
multitemporal Sentinel-2 data, MDT, with a reduction in validation RMSE from the single-
date spectral model of 38% and 52% for RF and SVR, respectively. The validation RMSE
of 0.23% for SVR was found to be comparable or outperform those reported in similar
studies. Although some disparity was observed in the relative importance of features, TWI
consistently showed high relative importance for RF and SVR.

The SOC models SDT and MDT yielded similar CV accuracies of 0.33% and 0.34%,
for RF and 0.27% and 0.33% for SVR, respectively. These results strongly highlight the
relevance of topographical features and multitemporal spectral data for the high-resolution
intra-field mapping of SOC. TWI emerged as a very relevant parameter for explaining intra-
field differences in SOC, exhibiting negative correlation with SOC concentration, which
could be potentially explained by the role of soil moisture in plant and root development.
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