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Work Package-A Approach and Datasets 
Executive Summary 

This report describes work on the project “Improving Land Use Change Tracking in the UK Greenhouse 
Gas Inventory” for the Department for Business, Energy & Industrial Strategy (reference TRN 
2384/05/2020). The aim of the project was to make improved estimates of land-use change in the UK, 
using multiple sources of data. We applied a method for estimating land-use change using a Bayesian 
data assimilation approach. This allows us to constrain estimates of gross land-use change with 
national-scale census data, whilst retaining the detailed information available from several other 
sources. We produced a time series of maps describing our best estimate of land-use change given the 
available data, as well as the full posterior distribution of this space-time data cube. This quantifies the 
joint probability distribution of the parameters, and properly propagates the uncertainty from input 
data to final output. The output data has been summarised in the form of land-use vectors. The results 
show that we can provide improved estimates of past land-use change using this method. The main 
advantage of the approach is that it provides a coherent, generalised framework for combining 
multiple disparate sources of data, and adding further sources of data in future would be 
straightforward. Future work could focus on more detailed analysis of existing data sets, introducing 
independent constraints where possible, and obtaining further relevant data sets. The code is available 
via GitHub. 
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1 Introduction 

1.1 Tracking land-use change 
The tracking of land use and land-use change is fundamental to producing accurate and consistent 
greenhouse gas inventories (GHGI) for the Land Use, Land-Use Change and Forestry (LULUCF) sector. 
This is necessary to meet the international requirements of the Kyoto Protocol to the UN Framework 
Convention on Climate Change (UNFCCC) and the Paris Agreement and the national requirements of 
the UK’s Climate Change Act and related legislation within the UK’s Devolved Administrations.  

The estimation of land-use change in the current UK GHGI is based on a combination of infrequent CEH 
Countryside Surveys and afforestation/deforestation statistics from the GB Forestry Commission. It 
uses Approach 2 (non-spatial land-use change matrices) as described in the KP Guidance. However, 
this matrix-based approach, and its implementation in the UK, have some important limitations. Firstly, 
the non-spatial matrix-based approach is insufficient for tracking annual land-use change: the matrices 
have no time dimension and are defined independently each year. There is therefore no possibility of 
representing a sequence of land-use on the same parcel of land (such as afforestation followed by 
deforestation, or crop-pasture rotations). Secondly, the data used to estimate these matrices in the 
UK are rather limited. The CEH Countryside Surveys were only carried out approximately once per 
decade, and whilst the geographical extent was very wide, the actual ground area surveyed was small 
as a fraction of the total UK area. The afforestation/deforestation statistics from the Forestry 
Commission have good national coverage (excluding Northern Ireland) but do not contain any 
information on the spatial location or land use prior to afforestation or following deforestation. 

In October 2019, the UNFCCC Expert Review of the UK 1990-2017 GHG inventory raised concerns in 
relation to the reporting requirements of the second commitment period of the Kyoto protocol. They 
questioned whether the current approach is appropriate for the identification and tracking of lands 
where the elected Article 3.4 activities occur (i.e. Cropland Management, Grazing Land Management 
and Wetland Drainage and Rewetting). They recommended that the UK explore how to make the best 
possible use of available data and prepare and implement a work-plan to enable the use of these data. 
The UK has already explored several approaches to land use tracking, including a data assimilation 
approach to integrate available land-use data into land-use vectors, which was successfully piloted in 
Scotland (Levy et al. 2018). This project builds on that approach to assess gross land-use change, and 
land-use history for the whole of 7 8 SECTION 1. INTRODUCTION the UK from 1990 to 2019. 

 As well as improving accuracy of the GHGI, a time series of spatially explicit land-use change would 
enable better tracking of mitigation activities and improve baseline data for scenario modelling. These 
baseline data are needed for understanding the potential of land-based mitigation and adaptation 
options. The government’s ambitions for Net Zero by 2050 or sooner means that the LULUCF sector 
will have an increasingly critical role in the UK’s overall GHG balance. This kind of scenario modelling 
will become very important to inform the setting of future carbon budgets and monitor progress 
towards the UK’s legal obligations to GHG emissions reductions. An accurate spatio-temporal land-use 
change data set would be useful to other stakeholders and UK government departments. For example, 
from the perspectives of biodiversity conservation, air quality, or ecosystem services, there are clear 
applications of these data for understanding and tracking the effects of land use. 

1.2 Approach 
If we had reliable maps of land use each year, we could infer land-use change by difference. However, 
even with advances in satellite sensors, GIS and spatial data handling, the accuracy of change detection 
from EO-based products is generally too poor to do this; the different EO products are inconsistent 
(with each other, and with themselves over time), irregular, and become more infrequent as we go 
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back in time. Change is more reliably detected by repeat ground-based surveys, but these have other 
short-comings. For example, the annual June Agricultural Census gives a long record of areas in 
different land uses, but does not provide spatial data, or any information on gross change (i.e. what 
land uses have changed to which other land uses). The CEH Countryside Survey did provide spatial data 
with gross change, but without complete coverage, and only at infrequent intervals. 

In light of the above, some data assimilation method, which combines the spatiotemporal data with 
non-spatial repeat survey data, would appear to provide a solution. To this end, we previously 
developed a methodology using a Bayesian data assimilation approach, and this has been applied 
successfully to Scotland (Levy et al. 2018). This method allowed for the use of a wider range of data 
types, including high-resolution spatial data, and combined them in a mathematically coherent way. 
Importantly, the method produced the appropriate data structure needed for modelling the effects of 
land-use change on GHG emissions - the set of unique land-use vectors (i.e. unique sequences of land 
use, or land-use histories) and their associated areas. An important feature is that the uncertainty in 
land-use change can be easily propagated to provide the uncertainty in GHG emissions, because the 
procedure explicitly handles the distribution of plausible vectors of land-use change. The approach 
provides a general framework for combining multiple disparate data sources with a simple model 
which describes how these data sources inter-relate. This allows us to constrain estimates of gross 
land-use change with reliable national-scale census data, whilst retaining the detailed spatial 
information available from several other sources. Here, we apply this methodology to improve and 
update the tracking of land-use change for the UK. Our aim was to apply a Bayesian approach to make 
spatially- and temporally-explicit estimates of land-use change in the UK, using multiple sources of 
data. 

 The tasks required to achieve this aim were:  

• A.1 updating and obtaining new data, and the necessary processing;  
• A.2 running the data assimilation algorithm to produce a time series of maps (deliverable A.1);  
• A.3 summarising the output in vector format and characterising the uncertainty with respect 

to random, systematic, and correlated error terms (deliverables A.1 & A.2);  
• A.4 documenting the code and data processing workflow (deliverable A.3); 

The remainder of this report describes these four tasks. The Methods section describes the basic 
methodology for the data assimilation. The Data Sources section and subsequent sections describes 
the data sources assessed for inclusion. The Data Assimilation section describes the data assimilation 
procedure in some more detail, with results in subsequent sections. Finally, we discuss the results 
compared with the previous method, and consider areas where further work is needed.  

All the code is written in R using the “literate programming” paradigm implemented with Rmarkdown, 
which combines the source code, text/graphical output, documentation, and report text within the 
same document. This ensures integrity of documentation, code and corresponding outputs. All the 
Rmarkdown files are held in a GitHub repository, for version control and wider accessibility. The 
documentation is rendered using bookdown and made publicly available as a web site via GitHub 
Pages. This documentation describes the data processing workflow so as to make it reproducible. 
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1. Methods 

2 Mathematical representation of 

land use and land-use change 
We begin by describing the data structures which are used to represent land use and its change over 
time, U, A, B, G, and L, as in Levy et al. (2018). 

2.1 Notation 
We use the mathematical convention of representing vectors, matrices and arrays as uppercase bold 
(e.g. U), and individual elements thereof as uppercase italic (e.g. Uxyt). Objects from R code are shown 
in sans-serif typeface, e.g. s_U[[t]][x,y]. The R code follows the mathematical notation defined 
in the journal paper, and uses a consistent naming convention, based on a few rules. Details of the 
notation are given in the GitHub documentation. In short, the maths are written in LaTeX, and the R 
code tries to mirror this. 

2.1.1 U 

The AFOLU Guidance (IPCC 2006) recommends use of six types of land for broad descriptive purposes: 
forest, grassland, cropland, settlements, wetlands and other land. However, the area of grassland in 
the UK is very large, and heterogeneous in terms of soil carbon. For the purposes of modelling soil 
carbon in the current GHGI, grassland is subdivided into improved grassland and semi-natural/rough 
grazing land, on the basis of aggregating classes in the CORINE classification. The soil carbon 
parameters associated with these two grassland types are given by Bradley et al. (2006). Wetlands in 
the UK are very small, consisting only of those areas undergoing active commercial peat extraction, 
areas of inland water and flooded land. GHG emissions associated with peat extraction are calculated 
separately, and emissions associated with transitions to/from wetlands are considered negligible. 

Here, we represent land use u as a number of discrete states from the 
set {woods,crops,grass,rough,urban,other}{woods,crops,grass,rough,urban,other}, encoded as 
integers 1-6. “Woods” means all forested land, “grass” is short for improved grassland, and “rough” is 
short for rough grazing and semi-natural land. 

At a single location (x,y), land use can change between these states over time, represented by the 
vector Uxy. Spatially, we represent land use on a grid, where each grid cell contains a vector of land 
use. Combining the spatial and temporal dimensions, we have the 3-D space-time array U={Uxyt}. 

2.1.2  A 

We denote the area occupied by each land use u at time t as Aut, obtained by counting the frequency 
of land uses in Ut: 

1.  

where the square brackets are Iverson notation, evaluating to 1 where true and zero otherwise, 
and Agridcell is the area of a single grid cell. We denote the set of all these areas as A={Aut}. By difference, 
we obtain the areas of net land-use change: 

https://nerc-ceh.github.io/luc_track/
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2.  

2.1.3  B 

At each time step, we have a square transition matrix, which we collect in the 3D array B: 

  

 

where the elements represent the gross area changing from one land use to another that year, and 
there are nu possible land uses. For example, β23 in Bt=2 is the area changing from land-use type 2 to 
land-use type 3 between years 1 and 2. The transition matrix at time t can be derived from the array 
layer Ut by comparison with the previous layer at t−1. Each element is given by 

3.  

2.1.4 G and L 

For a given time step, the net change in the area occupied by each land use is given by the gross gains 
(the vector of column sums, Gut) minus the gross losses (the vector of row sums, Lut): 

 

where i and j are the row and column indices, respectively, and 

4. ΔAut=Gut−Lut 

2.2 Data Assimilation 
Almost all of the information on the history of land use can be expressed in the form of U, B, A, G, 
and L, and the equations above tell us how these are inter-related. U contains complete information 
about the system. B contains partial information about the system, which can be summarised in the 
form of A, G, and L, but does not directly specify U. In themselves, A, G, and L do not directly specify 
either U or B but can be used as constraints in their estimation. 

Observations from the data sources described in subsequent sections provide information in the form 
of one or more of the data structures described above. Our approach here is to use the above 
equations as a simple model to relate the different observations via data assimilation in a two-stage 
process. Firstly, we use a Bayesian approach to estimate the parameters in B, given all the available 
information. Secondly, we use the posterior distribution of B and likelihood for the location of land use 
and land-use change to estimate the posterior distribution of U. The maximum a posteriori probability 
(MAP, the mode of the posterior distribution) realisations represent our best estimate of land use and 
land-use change, given the available data. 

file://///nercbuctdb/projects1/07643_Tracking_Land_Use/luc_track/docs/data-sources.html%23data-sources
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We refer to this as a “Bayesian data assimilation” procedure. The term “data assimilation” is usually 
applied to methods which use observed data to update the state variables of a model; terms such as 
“calibration” and “inversion” are usually applied to methods which use observed data to update 
the parameters of a model. The distinction is not very important, as the underlying mathematics is 
essentially the same, and particularly here where the distinction between parameters and states is 
itself sometimes blurred. We use the term “data assimilation” because it better conveys the idea that 
observations are brought together to form something greater than the sum of their parts. The 
procedure is Bayesian because it updates the parameters according to Bayes Theorem, i.e. using prior 
knowledge and an explicit calculation of the probability of the data given the parameters (the 
likelihood). This has the advantages that it provides a robust means of estimating uncertainty on the 
estimates, and it allows us to combine data from different sources, as well as informative priors. 

2.3 Rationale for two-stage procedure 
The ultimate problem is to estimate the state of the 3-D space-time array U={Uxyt}using the available 
observations from different data sources. If we are only interested in the best estimate of land use at 
a given location and time, the assimilation of data is relatively simple. We want to estimate p[û|u], 
that is, the probability of an estimated land-use state û  being correct, given a vector of observations u. 
For example, with a vector of observations u="crop","crop","grass" from three data sources (e.g. LCM, 
IACS and CORINE), we might estimate the probability that the true land-use state is “crop” to be 2/3. 
If we know the precision of these different observations, we can adjust this accordingly. 

However, if we are interested in land-use change at national scale, the problem is more complex. The 
crux of this is that calculating the probability of correctly estimating a change to a new state unew at 
location xy is no longer independent at each location. For example, the prediction of whether a 
particular forest changes to grassland at time t depends on how many other forests we predict to 
change to grassland elsewhere. Put mathematically, the probability of correctly estimating a change 

to the new state  becomes dependent on the estimates of the B matrix, so 

 

But similarly, B is dependent on the areas changing state. This inter-dependence of the two key 
unknowns makes it difficult to solve in a single step. For this reason, we split the problem into two 
parts: firstly, we estimate the B matrix using all available data; secondly, given the constraint of this 
matrix, we estimate the locations of land-use change. These two problems are different in nature, and 
accordingly, we solve them in different ways: the former we solve using MCMC; the latter we solve 
using a form of importance sampling. 

 

3 QA/QC Using Chess Data 

3.1 Introduction 
The game of chess provides a convenient analogue for land-use change. Because the system is small 
enough to count and visualise easily, and because we know the true state at all times, this is an ideal 
way to test our algorithms, providing quality assurance and quality control (QA/QC) for our code. 

Chess is played on a 8 x 8 board, so a suitably small domain of 64 squares. We can consider the chess 
board to have three states analagous to land uses: occupied by either white pieces or black pieces, or 

empty. Mathematically, u=white,empty,black. At the start, there are two rows occupied by 
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white, two rows occupied by black, and four empty rows (Awhite=16, Ablack=16, Aempty=32. At each 
move by white, one piece is moved, so its origin square changes from white to empty, and its new 
square changes either from empty to white, or from black to white (if an opposing piece is taken). So 

for example, after the first move by each side, we have a B matrix: 

##       white empty black 

## white    15     1     0 

## empty     1    30     1 

## black     0     1    15 

As the game proceeds and pieces are captured, the numbers of white and black cells decrease 

(Awhite and Ablack) and the number of empty cells (Aempty) increases. The starting position is always the 
same, so there are predictable spatial patterns in where each state is likely to be found. Thousands of 
chess games are freely available online and can be used as pseudo-data for showing how the data 
assimilation procedure works, and testing it with simple cases. 

3.2 Examples 
The plots below show some example analyses which test the functions for (i) the calculation of 

the B matrix from the time series of spatial maps (or board states) U and (ii) the calculation of the 

time series of area A, and the gross gains and losses G and L, from the B matrix. 

Here we use a single game of chess to provide the true course of land-use change over 83 years 

(moves). To simplify, we restrict this to the states at t= (1,11,15,80) years. If we designate this to 
be the true states, we can simulate two sets of observations with noise by selecting different time 

slices, in this case t= (1,3,13,60) and t= (1,12,45,83). This simulates data sets which are 

related to the true state but differ because of measurement error. These U states are plotted below. 
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Figure 3.1: True state of land use U at four time points, based on chess data 
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. 

 

Figure 3.2: Simulated observations of land use U at four time points, based on 

chess data, using time slices at different times from those designated as the true 
state. Denoted ‘Obs1’ in following figures. 
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Figure 3.3: Simulated observations of land use U at four time points, based on 

chess data, using time slices at different times from those designated as the true 
state. Denoted ‘Obs2’ in following figures. 
 
Subsequently, we have used these to test the performance of the data assimilation algorithm when 
confronted with imperfect data (results not shown). Here, we use these data as a basic QA/QC test, 

verifying that the functions correctly calculate the time series of B, A, G, and L. Verification is by 
simple cross-checking with the known values, which are easily calculated. The area of each cell is 
assumed to be 10 m^2 to provide a proper check on the consistency of units. The plots below show 

the time series of B, A, G, and L. 
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Figure 3.4: Time series of area A from simulated data sources based on chess 

data. 
  



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      18 

 

 

 

Figure 3.5: Time series of area transitions B from simulated data sources based on 

chess data. 
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Figure 3.6: Time series of area gains G from simulated data sources based on 

chess data. 
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Figure 3.7: Time series of area losses L from simulated data sources based on 

chess data. 
 

4 Data Sources 
The UK is relatively rich in data sets that provide information on different categories of land-cover and 
land management over time. However, these data sets are collected for different purposes 
(e.g. agricultural statistics, forest inventory or urban development statistics), may have different 
classification definitions and spatial resolution and rarely cover the entire time span (1990-2020) or 
region (all countries of the UK) of interest. In the Bayesian methodology, all observations have an 
associated uncertainty, and it is straightforward to include multiple data sources of differing quality 
(i.e. observations with different uncertainties). In the previous work, eight different data sources with 
these varied characteristics, with three different data structures, were combined in our posterior 
estimate of land use and land-use change. It follows from Bayes Theorem that the impact of new data 
on the posterior predictions of land use will depend on their associated uncertainty, and how much 
they differ from other observations and prior expectations. We prioritise publicly-available data sets, 
because they provide transparency, ease-of-access and a higher likelihood of continuing revision and 
availability. 

Given our starting point of having a working method for Scotland, we need to extend this to the rest 
of the UK. The first task here is assessing the available data and the addition of further data sources 
into the DA procedure. This requires updating existing data sets, and adding sources which give 
additional data for England, Wales and Northern Ireland. The main data sets of relevance are shown 
in Table 4.1. 
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The first stage is to review these data sets for their potential, in terms of information content, 
consistency, and ease of use, and prioritise work to include them on this basis. The next stage is to add 
these new data sets, which require a variable degree of data processing - translating other land-use 
classifications into the LULUCF classification, transforming raw data into one or more of the data 
structures we require as necessary, placing the data in a common spatial framework (the OSGB grid), 
and calculating time series and/or rasterising as required. Each of the data sets come with a native 
classification for land use or cover which require integration. To do this, the information in these data 
sets was assigned to the appropriate LULUCF categories using a systematic approach. The available 
descriptions and metadata for the dataset classes were compared to the UK LULUCF definitions and 
the rationale for assigning each data class will be recorded. This process was carried out with discussion 
across the project team, so that ambiguous cross-classifications were considered as a group and 
agreed. The most awkward cases are where classes are added / removed or definitions change over 
the time span of the dataset, which introduces discontinuities in the data, and methods for handling 
this are documented. 

Table 4.1: Data sources considered for use in the project. 

Dataset name 
Spatial 
coverage 

Time period LULUCF category 

Land Cover Map UK 
1990, 2015, 
2017-2019 
(annual) 

Forest Land, Cropland, 
Grassland, Wetlands, 
Settlement, Other Land 

Countryside Survey UK 
1990, 1998, 
2007 

Cropland, Grassland, 
Settlement, Other Land 

Northern Ireland 
Countryside Survey 

NI 2000, 2007 
Cropland, Grassland, 
Forest Land, Settlement, 
Other Land 

National Forest Estate 
Sub-compartments 

GB Historic-2019 Forest Land 

National Forest 
Inventory 

GB Historic-2019 
Forest Land, Forest land 
converted to other land 
use categories 

Forestry Statistics UK Historic-2019 Forest Land 

UK June Agricultural 
Census 

England, 
Scotland, Wales, 
Northern Ireland 

Historic-2019 Cropland, Grassland 

EDINA GB   

Monitoring Landscape 
Change 

England, Wales 
1947, 1969, 
1980 

Forest Land, Cropland, 
Grassland, Wetlands, 
Settlement, Other Land 
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Table 4.1: Data sources considered for use in the project. 

Dataset name 
Spatial 
coverage 

Time period LULUCF category 

National Countryside 
Monitoring Scheme 

Scotland 
1947, 1969, 
1980 

Forest Land, Cropland, 
Grassland, Wetlands, 
Settlement, Other Land 

CORINE Land Cover UK 
1990, 2000, 
2006, 
2012,2018 

Forest Land, Cropland, 
Grassland, Wetlands, 
Settlement, Other Land 

UKCEH Land Cover plus 
crops 

GB 
Annual 2015-
2019 

Cropland, Grassland 

MHCLG land-use 
change statistics 

England 
Annual 2013-
2018 

Settlement 

Integrated 
Administration and 
Control System (IACS) 

England, 
Scotland, Wales 

2014 - 
onwards 

Cropland, Grassland 

Holdings-level 
agricultural data 

England, 
Scotland, Wales, 
Northern Ireland 

2000 - 
onwards 

Cropland, Grassland 

Northern Ireland Forest 
Service Sub-
compartment 
Boundaries 

NI 2020 Forest Land 

Northern Ireland 
Woodland Base Map 

NI 2020 Forest Land 

Northern Ireland 
Agricultural Census - 
5km Grid 

NI 1997-2016 
Cropland, Grassland, 
Rough Grazing, Farm 
woodland 

The specific processing and issues with each data source are described in the following sections. 

4.1 Countryside Survey 
The Countryside Survey (UKCEH 2020a) is a series of national (GB) field surveys carried 
out in 1984, 1990, 1998/99 and 2007 by the Centre for Ecology and Hydrology and the 
former the Institute of Terrestrial Ecology. The surveys consist of detailed field 
observations, collected in 1 km sample grid squares across Great Britain (384 squares in 
1984, 508 in 1990 and 569 in 1998). Each successive survey resamples squares included 
in the previous survey. Around 0.24% of Great Britain’s land surface was surveyed in the 
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1998 survey (Barr et al. 2003). The sampling is stratified using a system of classifying 
geographical locations depending on many mapped attributes (‘ITE Landclass’).  

The Northern Ireland Countryside Survey (DAERA 2016) was initiated in the late 1980s, 
with a baseline land cover survey in Northern Ireland. This estimated the area of different 
types of Primary Habitats from a random sample set of quarter kilometre grid squares. A 
monitoring resurvey was carried out in 1998 to determine the extent of change using the 
same sample grid squares and methods as in the baseline. A third time series of the NICS 
was carried out in 2007 to survey 287 grid squares. 

The Countryside Survey (CS) classifies land use into so-called “Broad Habitats” (Jackson, 
2000). The table below shows the correspondence between CS Broad Habitats and 
LULUCF classes. 

Table 4.2: Correspondence between Broad Habitat classes used in the Countryside Survey 
and the LULUCF classes used in the present work. 

 Broad.Habitat LULUCF_ID LULUCF_name 

1 Broadleaved and Mixed 1 forest 

2 Coniferous Woodland 1 forest 

3 Arable and Horticulture 2 crop 

4 Improved Grassland 3 grass 

5 Neutral Grassland 4 rough 

6 Calcareous Grassland 4 rough 

7 Acid Grassland 4 rough 

8 Fen Marsh and Swamp 4 rough 

9 Dwarf Shrub Heath 4 rough 

11 Bog 4 rough 

12 Inland Rock 4 rough 

13 Saltwater 0 NA 

14 Freshwater 0 NA 

15 Supra-littoral Rock 6 other 
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Table 4.2: Correspondence between Broad Habitat classes used in the Countryside Survey 
and the LULUCF classes used in the present work. 

 Broad.Habitat LULUCF_ID LULUCF_name 

16 Supra-littoral Sediment 6 other 

17 Littoral Rock 6 other 

18 Littoral Sediment 6 other 

19 Littoral Sediment 4 rough 

20 Built-up Areas and Gardens 5 urban 

 
For each CS 1-km survey square that coincided between survey years (544 in 1998-2007), the area that 

changed from one land-use class to another was calculated, using ArcGIS software. The B matrix 
values were calculated by summing these for each land-use type. 

To extrapolate the CS squares to national scale, the “ITE Land Class” was used, which represents a 
broad classification of environments across the UK. Northern Ireland is treated as a single uniform unit 
as its smaller area means that it does not display the climatic or elevation variations evident across the 
rest of the UK. A mean transition matrix was calculated for each ITE Land Class. The national-scale 
matrices were calculated as the mean over all ITE Land Classes, weighted by their area coverage. To 
interpolate between survey dates, we assumed that the rates of change were constant during the 
period between surveys. 

The plots below show the estimates of land-use change produced by the Countryside Survey 
observations. The data are shown over the whole period available, 1970 to 2020. 
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Figure 4.1: Example B matrix showing the areas changing land use between 1990 

and 1991 in km2. 
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Figure 4.2: Time series of B matrix, showing the areas changing land use over 

time. The layout of panels follows the matrix itself, so rows represent the starting 
land use, columns represent the end land use. We assumed that the rates of 
change were constant during the period between surveys. 
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Figure 4.3: Time series of implied area gains G to each land use, from CS data. 

We assumed that the rates of change were constant during the period between 
surveys. 
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Figure 4.4: Time series of implied losses of area L from each land use, from CS 

data. We assumed that the rates of change were constant during the period 
between surveys. 
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Figure 4.5: Time series of implied net change in area ΔA of each land use, from 

CS data. We assumed that the rates of change were constant during the period 
between surveys. 
 

4.2 Monitoring Landscape Change 
The Monitoring Landscape Change project (Hunting Technical Services Ltd 1986) assessed land use 
change in England and Wales between 1947, 1969 and 1980. The results were derived from aerial 
photo interpretation of stratified random samples within soil strata in each county (based on the 
county boundaries established in 1974). The sample covered 2.4% of England and Wales in total. 
Areas of different land use types (in 1947, 1969 and 1980) at the county level, and matrices of 
change at the regional level, are published in the MLC reports (volumes 1, 3-6 and 10) (Hunting 
Technical Services Ltd 1986). Because these date from 1947 & 1980, they were not used in the 
current project which focusses on 1990-2019, but they are available to be used in future work. 

4.3 National Countryside Monitoring Scheme 
This project (Mackey, Shewry et al. 1998) assessed land cover change in Scotland between 1947, 1973 
and 1988 using aerial photography. A stratified random sample of 467 sample squares (7.5% of 
Scotland’s land area) was used, the size of which was determined by the need to detect national 
changes of 10% or more in major features of interest, with 95% confidence. Stratification was done by 
the regional classification of Landsat multi-spectral scanner images. Again, because the data pre-date 
the 1990s, they were not used in the current project, but they are available to be used in future work. 
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4.4 Agricultural Census 
Agricultural Census data provide annual records of the total area in the main agricultural land uses. 
The Agricultural Census is conducted in June each year by the government agriculture department in 
each of the DAs. Farmers declare the agricultural activity on their land in the form of ca. 150 items of 
data via a postal questionnaire. The results are collated at national scale. This is a long-running data 
set with near-complete coverage of agricultural land, relatively consistent over time. The Agricultural 
Census data are reported as national statistics and to the FAO. Hence it is desirable for our estimates 
of land-use change to be consistent with these data as far as possible. The classifications used differ 
by DA, and have varied over time, but the table below summarises the correspondence between the 
most consistently used Agricultural Census classes and LULUCF classes. 

Table 4.3: Correspondence between the land-use classes reported in the Agricultural Census 
and the LULUCF classes used in the present work. 

LULUCF_ID LULUCF_name AgCensus_name 

1 woods Woodland 

2 crops Total.crops 

2 crops Uncropped.arable.land..No.set.aside.1983.1989…f. 

3 grass Temporary.grass..sown.in.the.last.5.years. 

3 grass Land.used.for.outdoor.pigs..g. 

3 grass Grass.over.5.years.old 

4 rough Common.rough.grazing..e. 

4 rough Sole.right.rough.grazing 

 

Some step changes occur in the data because of methodology changes, and the data may be reported 
twice for that year, from the two different methods. To remove the effect of these step changes from 
the data, the difference each step change makes is calculated and the difference applied to all older 
data. Where a step change appears in the data without any reported methodological change, the time 
series is smoothed to remove the disjunct, which is assumed to be an artefact of unknown 
methodological change. A GAM model is fitted to the data set prior the step change, and separately 
fitted to the data set after the step change. The difference between the two smoothed predictions at 
the time of the step change is used to estimate the magnitude of the artefact. This is removed from 
the data set prior to the step change. Clearly there is some subjectivity in this procedure, and further 
analysis time could be spent on this. However, some smoothing of the data is required, because several 
changes cannot be taken at face value as true land-use change. Results for each DA are shown below. 
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4.4.1 Results 

 

Figure 4.6: Time series of land use from the June Agricultural Census in England, 
1980-2019. Points show uncorrected data; lines show corrected data; Green 
vertical lines show known step changes; Red vertical lines show suspected step 
changes which have been adjusted for. 
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Figure 4.7: Time series of land use from the June Agricultural Census in Scotland, 
1980-2019. Points show uncorrected data; lines show corrected data; Green 
vertical lines show known step changes; Red vertical lines show suspected step 
changes which have been adjusted for. 
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Figure 4.8: Time series of land use from the June Agricultural Census in Wales, 
1980-2019. 
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Figure 4.9: Time series of land use from the June Agricultural Census in Northern 
Ireland, 1980-2019. 
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Figure 4.10: Time series of land use from the June Agricultural Census in the UK, 
1980-2019. 
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Figure 4.11: Time series of net land-use change from the June Agricultural Census 
in the UK, 1980-2019. 

4.5 Agricultural Holdings Data 
Survey data for agricultural holdings were supplied by Scottish Government for Scotland for the years 
1990 to 2018. These data, which are the finest level of detail in the agricultural census, provide 
information on livestock numbers, crop and grass areas (and more) at the individual farm level (ca. 
51,000 unique holdings). The data are compiled from an annual questionnaire to a sample population 
(ca. 20 – 50%) that undergoes periodic methodological changes (such as the questions asked or the 
categories used). From a spatial perspective, this dataset does not provide information beyond the 
registered location of the holding; the actual location of crops and grass is not provided. From 2008, 
the location of the holding is provided using the postcode (c. 80% of holdings – the other c. 20% are 
parish located) and prior to this, only the parish is provided. 

The processing task had several steps. We firstly had to remove information not pertaining to crops 
and grass and standardise the remaining data. Given the diversity of information requested by the 
census over the years, it is challenging to ensure that changing questions and sub-types of various crop 
and grass types were standardised across the time series. Secondly, the locations of the holdings were 
extracted from the spatial information provided, dependent on the year. Holdings were located in the 
centroid of the parcel to which they were associated with. Where the parcel is a parish or postcode, 
this can represent a large spatial extent where we have very low-precision spatial information 
(particularly in NW Scotland where parishes and even postcodes are large areas. The data were re-
categorised to the LULUCF classification and summed by specific XY location. The net change in area 
per LULUCF category from one year to the next was calculated for each unique XY location. Absolute 
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values of gains and losses were separated and then interpolated via inverse distance weighting 
(Figure 4.12). 

The data are the finest detail of agricultural ownership in Scotland and, when totalled, agree well with 
the national Agricultural Census. This is to be expected and the spatial information gained from the 
holding location (particularly postcodes), along with the detailed categories, is advantageous but 
limited. In Scotland this issue is magnified due to the large parish/postcode sizes in remote parts of 
the country. One of the principal problems with the data is that it is a survey, not a comprehensive 
census, sampling around half of farms in a normal survey year. Estimates are made for those holdings 
that are not surveyed based on trends. Census data are always exposed to error via misreporting from 
the respondent, but this is not thought to be a significant source of error. 

  

Figure 4.12: Spatial distribution of the gains and losses in arable land from Agricultural Census data in 
Scotland for 2017-2018. The map on the left shows the raw data for each agricultural holding. The map 
on the right shows an interpolation of this using inverse distance weighting. 

The same analysis can be applied to the equivalent data for England, Wales and Northern Ireland, but 
permission to use the data for this project had still not been obtained at the time of writing. For the 
current analysis, the holding-level data for Scotland are used to estimate the spatial maps of the 
likelihood for each land use in a later section. 

4.6 Forestry Commission Data 
Forestry Service Northern Ireland Data 

Several publicly-available data sets from the GB Forestry Commission and Forestry Service Northern 
Ireland were obtained. Forestry Statistics is a compilation of statistics on woodland, forestry and 
primary wood processing in the UK, published annually for the UK and broken down to individual 
countries where possible. This is the basis for the afforestation and deforestation time series that is 
used in the current GHGI. For this project, we did not retrieve raw data, but used the data previously 
provided for the current GHGI (by Paul Henshall, Forest Research). 

https://www.forestresearch.gov.uk/tools-and-resources/statistics/forestry-statistics/
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The National Forest Inventory and the National Forest Estate Sub-compartments (SCDB) data sets were 
downloaded from the FC Open Data website (Forestry Commission 2020). The National Forest 
Inventory (NFI) is a rolling programme, starting in 2009, designed to provide accurate information 
about the size, distribution, composition and condition of forests and woodlands and about the 
changes taking place in the woodlands through time. The NFI covers any forest or woodland in Great 
Britain of at least 0.5 hectares in area with a minimum width of 20 m, and that have at least 20% tree 
canopy cover (or the potential to achieve this). The NFI includes a digital woodland map which is 
updated annually using more recent aerial photography, interpretation of satellite imagery and 
administrative records of newly planted areas covered by government grant schemes. There is also a 
field survey of a representative sample of randomly selected 15,000 one hectare (100 m x 100 m) plots 
across Britain. The first assessment of the sample sites took place between 2009-2015 with the second 
‘cycle’ of assessments taking place between 2015-2020. About two thirds of plot locations are 
permanent and will be revisited by the survey team during the second and subsequent ‘cycles’ of 
ground surveying. Data for ‘small woods’ (0.1-0.5 hectares) are based on sample field survey and/or 
newly emerging high resolution remote sensing data. 

The National Forest Estate Sub-compartment Database (SCDB) is the operational GIS data, which has 
polygonal spatial data for forest stands in GB, For the forest stands managed by FC (and its devolved 
bodies), there is considerable descriptive data (planting year, species, yield class), though this is largely 
absent from the privately-managed stands. To impute the planting year where this was missing, we 
sampled from the distribution of planting years produced for the current GHGI methodology by Forest 
Research. This means that for private forestry, the planting year is not accurate on an individual stand 
basis, but the overall distribution matches that of the rest of the forest estate. 

The equivalent of the Sub-compartment Database from the Forestry Service Northern Ireland was 
provided by AFBI. These data were reprojected to OSGB, and merged with the GB data, and rasterised 
to 25-m resolution to produce a consistent forest map for the UK (Figures 4.13). This includes the small 
woodland areas within the limits of this resolution, and a time dimension in the form of the planting 
year. The latter is imperfect information, since we do not know if this is the date of new planting or 
replanting but is the best available at present. 
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Figure 4.13: Map of forest area and date of planting across the UK from FC NFI, 
SCDB, and FSNI data. 

4.7 IACS 
The Integrated Administration and Control System (IACS) is a European-wide spatially explicit dataset 
at the field level that serves as a register of agricultural subsidy claims under the EU Common 
Agricultural Policy. IACS records field-level land use (crop type, grassland age, forest coverage), field 
geometry and its association to a farm holding. This has large, but not complete spatial coverage in the 
UK. The administration of the system differs across the DAs and has changed over time. In England, 
this is now run by the Rural Payments Agency (RPA) but we refer to this as IACS for back-consistency. 
IACS uses a very large number of classes, which has changed over time, and a table show the 
correspondence between these and LULUCF classes is too large to display here but available on GitHub. 
Although UKCEH already holds the data for use in other projects, gaining explicit permission to use the 
data for this project proved very protracted. To date, explicit permission has only been granted for the 
English IACS(RPA) data. No other IACS data are shown here for this reason. However, the Scottish data 
have already been used in this framework previously and adding these back in together with Welsh 
and Northern Irish data when available should be straightforward. 

English data were available for 2004 to 2019, as a vector product. Processing involved re-classifying 
the IACS classes to the six LULUCF classes. Data from 2015 onwards had a different classification, and 
a further sub-set of data were obtained to try to make the time series consistent. However, the issues 
are not all resolved at the time of writing, and the post-2015 data are not used here. 
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Figure 4.14: Spatial distribution of LULUCF land-use classes in the UK according 
to IACS. 

4.8 Land Cover Map 
The UKCEH Land Cover Maps (LCMs) are parcel-based thematic classifications of satellite image data 
covering the United Kingdom. The most recent Land Cover Maps release includes LCM 2017, LCM 2018, 
LCM 2019 (UKCEH 2020b). It also includes a revised LCM 1990 covering the whole of the UK to 
support comparisons with LCM 2015 and the newer products. Using the revised LCM 1990, quarter-
century change datasets have been created by comparison with LCM 2015. We note that these 
products are based on land cover, rather than land use. Land cover relates to the physical properties 
of the surface only, not how it is used. For example, clear-felled forest may not appear as forest cover 
to a satellite sensor, but its land use may remain so if it is to be replanted. Land use is therefore less 
directly detectable from satellites. 

Maps were available for 1990, 2015, 2017, 2018 and 2019, as a 25-m raster product. Processing 
involved the reprojecting and merging of data for GB (in OSGB36 coordinates) and NI (in Irish Grid 
coordinates). We re-classified the 21-class UKCEH Land Cover Map data to the six LULUCF aggregated 
classes. The table below shows the correspondence between LCM classes and LULUCF classes. 

LCM_ID LCM_name LULUCF_ID LULUCF_name 

1 Broadleaved Woodland 1 forest 

2 Coniferous Woodland 1 forest 

file://///nercbuctdb/projects1/07643_Tracking_Land_Use/luc_track/docs/land-cover-map.html%23ref-LCMweb


Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      41 

 

LCM_ID LCM_name LULUCF_ID LULUCF_name 

3 Arable and Horticulture 2 crop 

4 Improved Grassland 3 grass 

5 Neutral Grassland 4 rough 

6 Calcareous Grassland 4 rough 

7 Acid grassland 4 rough 

8 Fen, Marsh and Swamp 4 rough 

9 Heather 4 rough 

10 Heather grassland 4 rough 

11 Bog 4 rough 

12 Inland Rock 4 rough 

13 Saltwater 0 NA 

14 Freshwater 0 NA 

15 Supra-littoral Rock 6 other 

16 Supra-littoral Sediment 6 other 

17 Littoral Rock 6 other 

18 Littoral sediment 6 other 

19 Saltmarsh 4 rough 

20 Urban 5 urban 

21 Suburban 5 urban 
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Figure 4.15: Spatial distribution of LULUCF land-use classes in the UK according 
to LCM. 

4.9 Land Cover Plus Crops 
UKCEH Land Cover® plus: Crops (LCC) (UKCEH 2016) is based on the Land Cover Map parcel 
framework. Every parcel which is larger than 2 ha and categorised as agricultural land is coded with 
crop type information from satellite data - Copernicus Sentinel-1 C-band SAR (Synthetic Aperture 
Radar) and, from 2016 onwards, Sentinel-2 optical data. Data are available for 2015 (partial GB 
coverage only), 2016, 2017, 2018 and 2019 cropping years. 

Maps were available for 2015 (partial GB coverage only), 2016, 2017, 2018 and 2019 cropping years, 
as vector product. Processing involved re-classifying the 11-class UKCEH Land Cover Map data to the 
six LULUCF classes. The table below shows the correspondence between LC: Crop classes and LULUCF 
classes. 

LCCROP.ID LCCROP.DESC LULUCF_class_ID LULUCF_class_name 

1 Beet 2 crop 

2 Field Beans 2 crop 

3 Grass 3 grass 

4 Maize 2 crop 
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LCCROP.ID LCCROP.DESC LULUCF_class_ID LULUCF_class_name 

5 Oilseed Rape 2 crop 

6 Other crop 2 crop 

7 Peas 2 crop 

8 Potatoes 2 crop 

9 Spring Barley 2 crop 

10 Spring Wheat 2 crop 

11 Winter Barley 2 crop 

12 Winter Oats 2 crop 

13 Winter Wheat 2 crop 

 
Figure 4.16: Spatial distribution of crop and grass land-use classes in the UK 
according to LCC. 
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4.10 CORINE Land Use 

4.10.1 Background 

The CORINE Land Cover product (“CORINE Land Cover — Copernicus Land Monitoring 

Service”) consists of an inventory of land cover in 44 classes. CORINE is produced within the 
framework of the Initial Operations of the Copernicus programme (the European Earth monitoring 
programme previously known as GMES) on land monitoring. It attempts to provide consistent 
information on land cover and land cover changes across Europe. CORINE is produced by semi-
automatic interpretation of high-resolution satellite imagery, following a standard methodology and 
nomenclature with the following base parameters: - 44 classes in the hierarchical three level Corine 
nomenclature; - Minimum mapping unit (MMU) for status layers is 25 hectares; - Minimum width of 
linear elements is 100 metres. 

Maps were available for 2000, 2006, 2012, and 2018 as a 100-m raster product (version updated 2020). 
Processing involved the reprojecting from Lambert Equal Area projection to OSGB36 coordinates and 
re-classifying the 44-classes to the six LULUCF classes. The table below shows the correspondence 
between CORINE classes and LULUCF classes. 

CLC_CODE Corine_name LULUCF_ID LULUCF_name 

1 Continuous urban fabric 5 urban 

2 Discontinuous urban fabric 5 urban 

3 Industrial or commercial units 5 urban 

4 Road and rail networks and associated land 5 urban 

5 Port areas 5 urban 

6 Airports 5 urban 

7 Mineral extraction sites 5 urban 

8 Dump sites 5 urban 

9 Construction sites 5 urban 

10 Green urban areas 3 grass 

11 Sport and leisure facilities 3 grass 

12 Non-irrigated arable land 2 crop 
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CLC_CODE Corine_name LULUCF_ID LULUCF_name 

13 Permanently irrigated land 2 crop 

14 Rice fields 2 crop 

15 Vineyards 2 crop 

16 Fruit trees and berry plantations 2 crop 

17 Olive groves 2 crop 

18 Pastures 3 grass 

19 Annual crops associated with permanent crops 2 crop 

20 Complex cultivation patterns 2 crop 

21 
Land principally occupied by agriculture with 
significant areas of natural vegetation 

3 grass 

22 Agro-forestry areas 1 woods 

23 Broad-leaved woods 1 woods 

24 Coniferous woods 1 woods 

25 Mixed woods 1 woods 

26 Natural grasslands 4 rough 

27 Moors and heathland 4 rough 

28 Sclerophyllous vegetation 4 rough 

29 Transitional woodland-shrub 4 rough 

30 Beaches dunes sands 6 other 

31 Bare rocks 6 other 
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CLC_CODE Corine_name LULUCF_ID LULUCF_name 

32 Sparsely vegetated areas 6 other 

33 Burnt areas 6 other 

34 Glaciers and perpetual snow 6 other 

35 Inland marshes 4 rough 

36 Peat bogs 4 rough 

37 Salt marshes 4 rough 

38 Salines 6 other 

39 Intertidal flats 0 NA 

40 Water courses 0 NA 

41 Water bodies 0 NA 

42 Coastal lagoons 0 NA 

43 Estuaries 0 NA 

44 Sea and ocean 0 NA 

45 NODATA 0 NA 
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Figure 4.17: Spatial distribution of LULUCF land-use classes in the UK according 
to CORINE. 

 

4.11 CROME 
The Crop Map of England (CROME) dataset is a tessellated (hexagonal) vector product derived via 
remote sensing techniques. It concentrates on classifying areas of crops in England using the Sentinel 
satellite constellation, a random forest classification and ground-truth data. Ground-truth data were 
recorded by RPA field inspectors during the spring/summer of each year. Each hexagonal cell was ~0.4 
hectares and represents one of 80 classes (55 cereal crops, 15 leguminous crops, 1 energy crop, 3 
grassland types, 3 tree classes, water, non-agricultural land and mixed). 

Unfortunately, the data are only made available on a county-by-county basis for each year. Requests 
to the RPA for a bulk download have not yet provided the full dataset. Retrieving and processing all 46 
files for each year is feasible but time-consuming, and not deemed efficient use of time when we 
should be able to get the complete data in bulk, albeit at a later date. A further issue is that the data 
are trained and evaluated via RPA field inspections which are the same inspections used to validate 
the IACS data. Since these data are already used in the project, it is not clear whether we would gain 
any new information from this data set. We have therefore not used CROME data in the current 
project, but anticipate it being available in the near-future for examination. 

4.12 Ordnance Survey Land Use Change Statistics 
The Land Use Change Statistics (LUCS) dataset, created by the Ordnance Survey (OS), is a local 
authority-level dataset which concentrates on changes in development activities, usually associated 
with housing and development of land. Polygon data is drawn from the OS database (e.g. MasterMap) 



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      48 

 

that has undergone change and also changing address data with regards residential development. The 
data produced is derived from inferred intelligence that has not been directly observed by field or 
other survey method and may be in error with regards real world use. However, this method does 
allow for large scale analysis at a very high level of detail and spatial resolution. Data parcels that 
specifically underwent change for 2017 to 2018 were provided by the OS as vector data (c. 1.1 million 
parcels). The parcels are classified into 28 categories – predominantly building and development 
based, with some agricultural land and forestry – which were reclassified to LULUCF categories. The 
table below shows the correspondence between OS classes and LULUCF classes. 

LUCS_ID LUCS_name LUCS_DESCRIPTION LULUCF_ID LULUCF_name 

1 ~B Unidentified building 5 urban 

2 ~M 
Unidentified general 
manmade surface 

5 urban 

3 ~S Unidentified structure 5 urban 

4 ~U 
Unknown surface type 
with no classification 

6 other 

5 A Agricultural Land 2 crop 

6 B Agricultural Buildings 5 urban 

7 C Community Buildings 5 urban 

8 D Defence 5 urban 

9 F Forestry/Woodland 1 forest 

10 G Rough grassland 4 rough 

11 H Highways and roads 5 urban 

12 I Industry 5 urban 

13 J Offices 5 urban 

14 K Retail 5 urban 

15 L Leisure (indoor) 5 urban 

16 M Minerals and Mining 5 urban 
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LUCS_ID LUCS_name LUCS_DESCRIPTION LULUCF_ID LULUCF_name 

17 N Natural Land 3 grass 

18 O Outdoor Recreation 3 grass 

19 Q 
Communal 
Accommodation 

5 urban 

20 R Residential 5 urban 

21 RG Residential Gardens 3 grass 

22 S Storage and Warehousing 5 urban 

23 T Transport 5 urban 

24 U Utilities 5 urban 

25 V Vacant Land 6 other 

26 W Water 6 other 

27 X Undeveloped Land 3 grass 

28 Y 
Landfill and Waste 
Disposal 

5 urban 

The land-use change matrix derived from these data is shown below. The values in most elements of 
the matrix are extremely small, although the transitions to urban appear reasonable. Without further 
investigation, it is not clear which elements we can validly use, so these data are not used further in 
the current analysis. 
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Figure 4.18: Land-use change matrix derived from LUCS data for 2017-2018. Units 
are km2. 

4.13 Land Use and Cover Area Frame Survey 
The Land Use and Cover Area Frame Survey (LUCAS) is point database of direct observations 
throughout the EU every three years from 2006 and classifies observations into a Land Use (LU) and 
Land Cover (LC). Across the EU, around 350,000 points were surveyed in 2018, either by person (~70 
%) or by interpretation of photos (~30 %). The points are selected via stratification of roughly 1 million 
locations in Europe that lie on a 2 x 2-km grid. The data also includes soil data at roughly 10 % of 
surveyed locations. The classification is derived for not only the point location but also for the land in 
the surrounding 20 metres. The classification of the data is hierarchical; this incorporates differing 
levels of detail starting at a set of broad classes. For LC, there are 8 main categories that are further 
divided to 83 sub-classes. For LU, there are 14 main categories that are further divided to 33 sub-
classes. In total, there are roughly 17,000 points across the UK in the LUCAS dataset. The classification 
system is comparable to that of FAO and CORINE. 

The data have been obtained but need some further time to process and analyse, as their use requires 
an understanding of the data structure and sampling design for proper interpretation. Despite the 
large number of points, a very small area appears to be represented (only 20 metres around each 
point), and which of these is actually from a ground survey remains unclear, so quite how this can be 
interpreted is still open to discussion. We anticipate the data will be of some use in the future, but are 
not used in the current analysis. 
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5 Comparison of Data Sources 

5.1 Results 
Having assembled all the available data sources, we can now plot them on a common series of axes 
to compare their absolute magnitudes and relative trends in time. 

 

Figure 5.1: Time series of land-use areas A observed by different data sources. 

Note that IACS data only cover England, so are included for comparison of trends 
only. 
Figure 5.1 shows the total areas of each land-use class estimated by the available data sources. For 
the total area of woodland, Agricultural Census and IACS only record the woodland area occurring on 
agricultural land, so these should not be expected to match the actual totals; they are only included to 
compare the rate of increase. However, between the remaining sources, there is a wide range in 
estimates, varying by 16000 km2, with FC > LCM > CORINE. CORINE shows an apparent decline in 
woodland area, which has to be considered suspect. LCM and FC show similar trends, but LCM 
estimates the woodland area to be ~ 6000 km2 lower. Because the FC data is largely based on ground-
based survey and aerial photography rather than satellite, we assume this to be more reliable. 

The Agricultural Census shows the total crop area to be relatively stable at ~50000 km2. The latter part 
of the IACS data appear in close agreement with this, but they account only for England. Adding in the 
crop area of Scotland, Wales and NI suggests that the IACS estimates exceed the Agricultural Census 
by around 10000 km2. The IACS crop data show a step change after the first three year, which is 
probably an artefact of changes in the methodology of IACS reporting. The LCC data start in close 
agreement with Agricultural Census, but show a strongly rising trend of ~5000 km2 not seen in other 

file://///nercbuctdb/projects1/07643_Tracking_Land_Use/luc_track/docs/comparison-of-data-sources.html%23fig:DCplotA
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data sources. Both CORINE and LCM show higher crop areas, with a declining trend not seen in the 
ground-based data. 

For grassland, the outlying line of IACS data can be discounted as it covers only England, and is included 
only for comparison of trends. Otherwise, estimates seem in closer agreement in absolute terms, 
although trends are not very consistent across data sources. The total area of rough grazing and semi-
natural land shows a similar decline in both Agricultural Census and LCM, although their initial starting 
points differ by 10000 km2. CORINE shows the reverse, which appears implausible. For urban and built-
up land however, LCM and CORINE show very close agreement on the absolute area and trend. 
Estimates of the total area of other land uses are only provided by LCM and CORINE, and neither 
appears plausible as genuine land-use change. This other land is mostly coastal zone, and it is more 
likely that this apparent change is due to differences in satellite imagery and the algorithms used to 
classify them. 

 

Figure 5.2: Time series of area changing from each land use to every other land 

use (the matrix B) observed by different data sources. LCM and CS values 

between surveys were interpolated values as constant annual rates. 
 

Figure 5.2 shows the B matrix over time. The y axis scales are somewhat skewed by a number of 
outlying high values. The plots on the top row, representing deforestation, are dominated by the high 
values from post-2015 LCM. Given the abrupt change with the previous LCM estimate, these would 
seem implausible. For the conversions from crop to grass and vice versa, the LCC and post-2015 LCM 
data give very high values (4000 to 6000 km2) compared with CS and pre-2015 LCM (< 500 km2). IACS 
also shows similarly high values when we account for the fact that this only cover England and also 
with a step-change in the time series that appears implausible. Similar patterns are seen in other panels 
e.g. other to rough, where a single CORINE value dominates. Because of these order-of-magnitude 
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differences, it is hard to discern subtler features here. As an alternative presentation, we can show the 
matrix numerically, with the colour scale indicating the magnitude of the area (Figure 5.3). 

 

Figure 5.3: Area changing from each land use to every other land use (the 

matrix B) observed by different data sources between 2017 and 2018. 

 

Figure 5.3 indicates that LCC and LCM give B values that are approximately an order of magnitude 
higher than CS and CORINE in 2017-2018. The former give crop-grass transitions close to 4000 km2; CS 
averages 583 km2. For grass-rough transitions, LCM gives values close to 2000 km2; CS estimates 570 
km2. To examine the general patterns over time more clearly, we can plot the gross changes of each 
land-use class i.e. the sums of the rows and columns in Figures 5.4 and 5.5. 

file://///nercbuctdb/projects1/07643_Tracking_Land_Use/luc_track/docs/comparison-of-data-sources.html%23fig:DCplotBtext
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Figure 5.4: Time series of gross gain of area G to each land use observed by 

different data sources. LCM and CS values between surveys were interpolated 
values as constant annual rates. 
 

Figure 5.4 shows the gross gain in area of each land use. For woodlands, we would place highest 
confidence in the FC data (green symbols), which shows the gross gain to have declined from 250 
km2 to near zero in 2016. The 1990-2015 LCM data gives a slightly higher mean compared to this, and 
the CS data are not truly independent of the FC data as they share some data in common. The post-
2015 LCM data show much higher rates, over 2000 km2, which are not believable. CORINE also shows 
high afforestation in 2006, but sharply declining; again this is not believable, assuming the FC data are 
reasonably reliable. 

A similar lack of agreement is generally apparent in the data for the other five land uses. The 1990-
2015 LCM and CS data show reasonable agreement The post-2015 LCM, LCC and IACS data show much 
higher gross gains. In the case of crops, if we factor in that the IACS data only account for England, then 
these three data sets are in some agreement that the gross gain in crop is in the range 3000-7000 km2. 
However, their patterns over time make us suspicious of their validity. The large year-to-year variability 
seems unlikely, and the patterns in LCC and LCM are not consistent. 
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Figure 5.5: Time series of gross loss of area L from each land use observed by 

different data sources. LCM and CS values between surveys were interpolated 
values as constant annual rates. 
 

Examining the gross losses shows a similar picture(Figure 5.5). According to FC data (green symbols), 
deforestation rates have remained very low, less than 50 km2. The 1990-2015 LCM data gives a close 
but slightly higher mean compared to this. The post-2015 LCM data show much higher rates, over 2000 
km2, which again seem implausible. CORINE also shows high deforestation in 2006, which then 
decreases. Across all land uses there is essentially the same overall pattern as in the gross gains. with 
the 1990-2015 LCM and CS data showing small losses, whilst the post-2015 LCM, LCC and IACS data 
show much larger losses. 
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Figure 5.6: Time series of net change in area of each land use ΔA observed by 

different data sources. 
 
The net effect of these gains and losses is shown in Figure 5.6. The same broad pattern is apparent 
The 1990-2015 LCM and CS data give lower estimates, with little temporal resolution because of the 
frequency of the surveys. The Agricultural Census shows annual variability, oscillating from positive to 
negative, but at a lower level. LCC, post-2015 LCM data, and IACS data show higher net rates of change, 
with rates of net change 3-4 times higher and a more noisy pattern. 

5.2 Discussion 
From the above results, it appears that more work remains to be done on the EO-based data sets 
before they are suitable for use as direct measures of land-use change. Whilst the larger gross changes 
that they observe may be correct, their patterns over time make them appear less plausible. 
Particularly, the temporal patterns are not consistent (i.e. they do not increase and decrease at the 
same times), and the large year-to-year variability seems unlikely, given the way land management 
works. It appears that their sensitivity for detecting change alters over time. In the CORINE time series, 
both the gains and losses are initially large, and both decline at a similar rate over time. not useful. 
With LCM, there is a clear difference between the magnitude of gross change detected in recent years 
compared with pre-2015. The IACS data are also not consistent in time, and the magnitude and 
variability of changes appears questionable. 

None of the data sources here represent absolute truth. We cannot rule out the possibility that the 
much higher gross change rates are indeed correct, and that the Agricultural Census and CS 
underestimate these. However, we should consider other factors as well as the patterns in the data 
themselves. First is the parsimony principle: if small gross changes can reproduce the observed net 
change, this is fundamentally more probable than the occurrence of large gross changes, all else being 
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equal. In the Bayesian methodology, we can specify this as a prior probability distribution, and the 
extent to whether “all else” really is “equal” is quantified by the observed data. We use this approach 
later. Secondly, the errors produced by EO-based and ground-based estimates are quite different. If 
we estimate land-use change by differencing maps, errors in the maps appear as spurious land-use 
change. So this method will necessarily over-estimate land-use change, to an extent that can be 
predicted from the predictive accuracy of the individual maps. The error variance in the land-use 
change estimate will be the sum of the variance in the two maps used. Future work may provide a 
quantification of this. The systematic errors present in ground-based estimates are less clear-cut, as it 
depends on the methodology used. However, because it requires sampling effort to detect change, it 
is commonly assumed that it is easier to under-estimate change. Again, future work may clarify this. 

Given the uncertainties in the EO data that may be tackled at a later stage, we focus on using ground-
based observations for the data assimilation in WP-A, as originally proposed. We elect to use CS, FC 

and Agricultural Census data to estimate the B matrix. We use the spatial pattern in the other data 
sources (LCM, LCC, IACS, CORINE) to estimate the likelihood of where change occurs, but not in the 

estimation of the B matrix itself. This is a conservative approach, as the emphasis is on the same input 
data sets as used in the current inventory method but constrains them with the net change measured 
by the national-scale Agricultural Census data, and the spatial pattern contained in LCM, LCC, IACS, 
and CORINE data. In this way we can try to minimise confounding changes to the methodology for 
estimating land-use change, and the data sources used in its estimation. 

The issues with the time trends and the plausibility of much higher gross rates of change in these data 
sets are issues which may be resolved in future work, which will focus on EO data. There are various 
approaches to further examining this. For example, if the IACS data are reliable, they should match the 
spatial pattern in the Agricultural Holdings data. If the two data sets are at odds, we cannot have great 
confidence in both. The Agricultural Census contains some data which would act as a constraint on our 
estimates of the gross changes to/from grass. The area of grassland less than five years old is specified. 
Assuming a uniform distribution, one fifth of this would be converted each year on average, which 
would give a ballpark estimate of the gross gain and loss. The complications arise in the age distribution 
of grassland (what area is > 5 years old?) and whether the distribution is really uniform. Lastly, some 
other data sets exist for comparison, but have not become available within the time frame of this 
project (further IACS data, CROME, and LUCAS). 

6 Estimating B by Least-Squares 

Optimisation 

6.1 Introduction 
As a first step in the data assimilation (DA) procedure, we show that it can be done in a relatively simple 

way. In this section, we use a least-squares (LS) optimisation algorithm to estimate the B matrix 
parameters. This is done for a number of reasons. 

Firstly, for the purposes of elucidation, we show that the DA procedure can be separated from the 
Bayesian aspect. 

Secondly, there is also a practical reason: when estimating the B parameters by MCMC in the following 
section, it is helpful to have an idea of sensible starting values. MCMC chains can be initialised with 
entirely random values but starting at least one chain in a region of high posterior probability speeds 
up the process considerably. 
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Lastly, by doing the DA in a non-Bayesian way, we can illustrate the advantages of the Bayesian 
approach. 

6.2 Methods 

Firstly, we define a function to calculate the root-mean-square error (RMSE) for a given B matrix. 
RMSE is commonly used as a measure of the differences between observed values and those predicted 

by a model. Here, we have observations of land-use change in the form of ΔA, G, L and B observed 

by several different data sources. For comparison, we have the given B matrix and the resulting 

predictions of ΔA, G and L that this produces via the equations in Methods. The difference between 

the observations and predictions gives the residual; for each term ΔA, G, L, B this is squared, 
averaged, and the square root taken to give the RMSE. Because all terms have the same dimensions 
(km2 / year), we can simply add them. There are various permutations on the exact way in which the 
RMSE could be calculated here, but this is sufficient for our purposes. There are numerous optimisation 
algorithms, which will vary parameters iteratively to minimise a function. Here we use the algorithm 

of Byrd et al. (1995). For each year between 1990 and 2019, we run this algorithm to find the B matrix 
parameter set which has the smallest RMSE value, i.e. parameter set which best fits to the observed 
data. 

6.3 Results 
The figures below (6.1, 6.2, 6.3, and 6.4) show the same observed data as in the previous 
section, with the addition of the estimates from least-squares optimisation (black solid line). 
The least-squares fit is largely as expected, fitting through the centre of the observations, 

and following the same trends. Each of the terms ΔA, G, L and B are given equal weighting, 

and within these, all of the observations are given equal weighting.  
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Figure 6.1: Time series of area changing from each land use to every other land 

use (the matrix B) observed by different data sources. Coloured symbols show the 

observations; the black line shows the best-fit values estimated by least-square 
optimisation. LCM and CS values between surveys were interpolated values as 
constant annual rates. 
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Figure 6.2: Time series of gross gain in area G of each land use observed by 

different data sources. Coloured symbols show the observations; the black line 
shows the best-fit values estimated by least-square optimisation. LCM and CS 
values between surveys were interpolated values as constant annual rates.  
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Figure 6.3: Time series of gross losses of area L from each land use observed by 

different data sources. Coloured symbols show the observations; the black line 
shows the best-fit values estimated by least-square optimisation. LCM and CS 
values between surveys were interpolated values as constant annual rates. 
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Figure 6.4: Time series of net change in area ΔA of each land use observed by 

different data sources. Coloured symbols show the observations; the black line 
shows the best-fit values estimated by least-square optimisation. LCM and CS 
values between surveys were interpolated values as constant annual rates. 

6.4 Discussion 
One purpose of the exercise is to show that the DA procedure can be done in a simpler, non-Bayesian 
way, and the figures above show that this is possible. The practical purpose, to provide a quick method 
to give initial values for MCMC chains is demonstrated by the results above. 

More informatively, two main weaknesses of the non-Bayesian approach are apparent. Firstly, no 
quantification of uncertainty is provided. The LS algorithm identifies the single parameter set which 
has the best fit with the data, given our definition of RMSE. However, it gives us no estimate of the 
probability of any other parameter set, nor does it tell us anything about the confidence we should 
have in predictions. 

Secondly, our definition of RMSE is somewhat arbitrary. We implicitly assume that small RMSE values 
relate to high likelihoods, and that our best-fit parameter set might approximate to that with the 
maximum likelihood. However, we have not explicitly calculated the likelihood. Where this really 
matters is if we want to make the likelihood function more complex, to allow us to combine data 
sources with different dimensions and degrees of uncertainty. We implicitly give each observation the 
same uncertainty, and we can only add up the different terms in our RMSE because they happen to 
have the same units. If either of these were not the case, we could attempt to add in some arbitrary 
weightings to address this. However, the Bayesian approach explicitly calculates the likelihood, which 
is the probabilistically-correct formulation of the problem. In the present context, it is the answer to 

the question “what is the probability of observing the data if we know B?” (Oijen 2020). For each 
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observation, no matter what its source, measurement uncertainty or units, we obtain a probability, 
not an arbitrary residual. Because we are working in the common currency of probability, we can 
multiply the values for all observations to give the likelihood for the whole observation set - parameter 
set combination. This is the approach we apply in the next section. 

 

7 Estimating B by MCMC 

7.1 Introduction 
As described in the Methods section, we perform the data assimilation (DA) as a two-stage 
procedure. The previous section showed how the first stage can be done in a simple way 
with least-squares optimisation. In this section, we re-do the data assimilation using a 

Bayesian approach. The aim is to find not only the B matrix parameters with the maximum 

likelihood, but also the full posterior distribution for the parameters and predictions. This 
quantifies the uncertainty in our estimates and predictions of land-use change. To do this, 
we use a Markov chain Monte Carlo (MCMC) algorithm. MCMC is the standard method for 
Bayesian parameter estimation where the problem is too complex for an analytical solution 
to be found. It provides a means of sampling from an unknown posterior distribution, so long 
as the likelihood of the data can be evaluated. 

7.2 Methods 
The method used here closely follows that described by Levy et al. (2018), so our description here is 
brief, and focuses on the relatively minor differences. 

7.2.1  Observational data 

Based on the earlier discussion of data sources, we elected to use CS, FC and Agricultural 

Census data to estimate the B matrix. Other data sources can be still used to estimate the 

spatial pattern in land-use change, and can be added to the estimation of the B matrix in 

future. At present, the other data sources examined were either inconsistent in quality and 
the focus of ongoing and future work, incomplete, or unequivocal permission for use had 
not been obtained. 

7.2.2  The model 

The model used here is the simple arithmetic of matrices described in the Methods section. 

Given a matrix B, this calculates the gross and net changes in area G, L and ΔA. The only 

additional element, which is simple but potentially confusing for terminology, is that as well 

as the B values acting as parameters, we also have observations of these, and this 

comparison is included in the likelihood. In mathematical terms, we can think of this part of 
the model as being the identity function, i.e. a function which returns the input value, 

so y=f(B)=B. 

7.2.3  Prior distributions 

Levy et al. (2018) used the CS data as the prior distribution for the B matrix. This made sense in that 
context, where there were more data sources available, and CS had been used as the basis for previous 
estimates. In the present case, in order to treat all the data sources consistently, it is easier to consider 
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this as an observational data set like the others. We then need to specify a prior distribution 

for B independently of the data. We chose two options for comparison (Figure 7.1): 

• a uniform distribution, where all B parameters could vary between 0 and 10000 km2, and 

• a half-normal distribution, with mean zero and standard deviation σ=3000 km2. “Half-
normal” means that only positive values are possible. This provides a relatively weak version 
of the parsimony principle, that lower rates of gross change are more probable (all else being 

equal). The strength of this assumption can be altered by varying σ. 

Large differences were not seen between these two, and all results shown here use only the uniform 
prior assumption for simplicity, though there is scope for further exploration here. 

 

Figure 7.1: Two alternative prior distributions for the B parameters. 

7.2.4  Likelihood function 

The likelihood function is very similar to the function used to calculate RMSE in the previous section. 
The key difference is that, for each observation, a likelihood is calculated, assuming that measurement 
errors show a Gaussian distribution (hence the use of the dnorm function) and are independent of each 

other. To put this in mathematical notation, the likelihood of observing the net change ΔAobs is 
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where  is the prediction for the change in land use u, given the parameter matrix B, 

and  is the measurement uncertainty. There are analogous terms for G, L and B which can all be 
multiplied. 

 
Rather than assume that measurement uncertainty is the same for all observations, we specify that it 

is proportional to the y value. That is, observations of large areas come with larger absolute 
uncertainty. Potentially, we can specify unique uncertainties for each data source and observation. At 
present, we do not have a basis for specifying these uncertainties based on a proper quantitative 
analysis, but this could be an area of future work. For now, we assume that all data sources are equal, 
and assign them the same relative uncertainty. 

7.2.5  MCMC algorithm 

Many MCMC algorithms are available. We chose the parallelised version of the DiffeRential Evolution 
Adaptive Metropolis or “DREAMz” algorithm (Vrugt et al. 2008), a development of an earlier 
Differential Evolution algorithm (ter Braak and Vrugt 2008). These, and other MCMC algorithms are 
implemented in the R package BayesianTools (Hartig, Minunno, and Paul 2017), which allowed 
us to compare the efficiency of different approaches. Differential Evolution MCMC uses an adaptive 
algorithm, in which multiple chains are run in parallel. It uses information from the past states of 
multiple chains, by generating jumps from differences of pairs of past states. It increases efficiency, 
particularly for high-dimensional problems, producing convergence with fewer iterations and fewer 
chains, estimated to be about 5–26 times more efficient than the typical Metropolis sampler (ter 

Braak and Vrugt 2008). 

 

The problem was parallelised at two levels. Firstly, we can parallelise in the time dimension. The 
transition matrix between each pair of years can be treated independently, so we can run all years on 
separate processors at the same time. In other words, we treat the time series between 1990 and 2019 
as 30 separate tasks, rather than one. Secondly, we can parallelise across MCMC chains. The DREAMz 
algorithm uses multiple chains, each with a number of internal chains which inter-communicate. So 
long as we allow for this inter-communication, we can run each (internal) chain on a separate 
processor. For each pair of years, we ran 120000 iterations with nine chains in total (three chains, each 
with three internal chains). Running a single chain of this type takes around 10 mins. If we ran all nine 
chains for 30 years in series, this would take 30 x 9 x 10/60 = 45 hours. Using 270 processors on the 
NERC/STFC JASMIN super-computer, all chains can be run simultaneously in ten minutes, subject 
to the job queueing system having capacity. 

7.3 Results 
Figure 7.2 shows the basic diagnostic check for MCMC output. The chains should start over-dispersed, 
so that a wide range of parameter space is explored. After a “burn-in” phase, the chains should begin 
to converge on an area of high probability. To account for auto-correlation between sequential 
samples, it is standard practice to “thin” the chains by a factor of ten or more, i.e. leaving only every 
tenth value. Here, the iteration count refers to the thinned samples, so the actual iteration count is a 
factor of ten higher. Depending on the nature of the model and the data, we might expect something 
like a normal distribution around the most likely value, though this is not necessarily the case. The 
diagnostic test for convergence is whether the variation among chains is greater than the variation 
within chains, and we reach this point after about 4000 thinned iterations. 

https://www.jasmin.ac.uk/
file://///nercbuctdb/projects1/07643_Tracking_Land_Use/luc_track/docs/estimating-b-by-mcmc.html%23fig:tracePlots
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Figure 7.2: Trace plots for three parameters from the MCMC run for 2018-2019. 
Parameters represent the area changing from woods to crop, grass and rough 
grazing, respectively. The left-hand plot shows the values sampled from the 
posterior as the iterations progress in each chain. Different colours show the 
different MCMC chains. The iteration count refers to the thinned samples after 
burn-in; the actual iteration count is a factor of ten higher. The right-hand plot 
shows the density distribution of parameter values, which represents our sampled 
approximation to the posterior probability distribution. 

An important feature of the MCMC approach is that it properly estimates the joint probability 
distribution for the parameters, and these correlations are automatically incorporated. In the example 
shown in Figure 7.3, the areas changing from crop to grass and vice versa are clearly positively 
correlated. This follows because the net change is constrained by the observations; if the crop-to-grass 
area is large, the grass-to-crop area also has to be large to fit with the observed net change. 
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Figure 7.3: Correlation plot for two parameters from the MCMC run for 2018-2019. 
Parameters represent the area changing from crop to grass and vice versa. The 
plot shows the correlation between parameters values obtained over the course of 
the MCMC sampling. This represents our sampled approximation to the 
correlations in the joint posterior probability distribution for the parameters. 

In Figures 7.4, 7.5, 7.6, and 7.7, the solid red line shows the maximum a 

posteriori estimate, which represents the B parameter set with the highest posterior 

probability, the closest equivalent to a “best-fit” estimate. The shaded area denotes the 95 
% credibility interval. In these plots, the MCMC estimates do not fit any single set of 

observations or the B, G, L or ΔA variables exactly, as they are constrained by all of these 

simultaneously. 

Figure 7.4 shows the time course of the posterior distribution of the B matrix estimated by 

MCMC. The estimates are strongly influenced by the CS data, as these provide the only 

observations of B used here. However, annual variability is introduced, as the parameters 

are varied to simultaneously fit with the Agricultural Census and FC data. In most cases, 
the posterior estimates fit closely with the CS observations but this is not always the case. 
To understand the deviations and cause of year-to-year variability is not easy, because this 

is a very high-dimensional problem. For example, the B parameter for the transition woods-

to-rough is lower and more variable than the CS observation after 2000. However, the 
likelihood of this parameter is influenced by the agreement with all the other observations 
and variables. The MCMC algorithm attempts to find parameter sets which simultaneously 
satisfy all the conditions described by the observations e.g. that the area changing from 
woods-to-rough is a constant 25 km2 (CS); that the total gains and losses to/from rough are 
close to 1000 km2 (CS); and that the net change in rough grazing varies between +1500 
km2 and -1500 km2 over the same period (Agricultural Census). 
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In the case of forestry, where we have the observations of the gross gains and losses, the 
problem is much better constrained (Figures 7.5  and 7.6) . Here, the posterior estimates fit 
the FC and CS estimates well, but cannot simultaneously reproduce the pattern in the 
Agricultural Census data (Figure 7.7, top left). The Agricultural Census data, clearly have 
an influence on the year-to-year pattern in the estimates, but parameter combinations which 
would reproduce the amplitude of variation seen in the Agricultural Census data clearly have 
lower likelihood. 

 

Figure 7.4: Observations and posterior distribution of the transition matrix B, 

representing the gross area changing from the land use in each row to the land 
use in each column each year from 1990 to 2019. The shaded band shows the 2.5 
and 97.5 percentiles of the posterior distribution. The maximum a 
posteriori estimate is shown as the solid red line within this. Note the y scale is 
different for each row. 
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Figure 7.5: Observations and posterior distribution estimated by MCMC of the 

gross gain in area of each land use G from 1990 to 2019. The shaded band shows 

the 2.5 and 97.5 % percentiles of the posterior distribution. The maximum a 
posteriori estimate is shown as the solid red line within this. 



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      70 

 

 

Figure 7.6: Observations and posterior distribution estimated by MCMC of the 

gross loss of area from each land use L from 1990 to 2019. The shaded band 

shows the 2.5 and 97.5 % percentiles of the posterior distribution. The maximum a 
posteriori estimate is shown as the solid red line within this. 
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Figure 7.7: Time series of the net change in area occupied by each land use (ΔA) 

from 1990 to 2019, showing the observations and posterior distribution of 
estimates. The shaded band shows the 2.5 and 97.5 % percentiles of the posterior 
distribution of the net change in area of each land use. The solid red line shows 
the maximum a posteriori prediction. 

7.4 Discussion 
In the current GHGI method, the CS and FC data are taken at face value as the estimate of land-use 
change. The results shown above represent an advance beyond this in several ways. Most obviously, 

the constraint of national-scale survey is introduced. This means that the B estimates are less subject 
to the sampling error associated with using only 544 sites across the UK. The Agricultural Census data 
is an imperfect constraint, as it specifies only net change, but it is based on a very comprehensive and 
long-standing census programme, and it far more likely to pick up the broad trends in national-scale 
land use over long periods of time. Secondly, our method quantifies uncertainty in a rigorous way, 
consistent with probability theory. This aspect could be improved by quantifying the uncertainty on 
the input observational data in a systematic way. Lastly, although we introduce only one additional 

data source beyond those used in the current GHGI to estimate B, the framework is in place to 
introduce any other data sets we choose. For simplicity, we elected not to include the LCM, LCC, 
CORINE or IACS data in the results presented here. However, adding these in is a simple matter, if we 
choose to believe the observations or can improve their consistency. 
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8 Estimating Land-Use Change 
Spatially 

8.1 Introduction 

In the previous sections, we have estimated the posterior distribution of the B matrix for each year, 

using MCMC. Next, we need to use the B matrix to predict land-use change spatially. We do this by 

starting with the relatively well-known state of land use U at the present-day and move backwards in 

time. At each time step, the B matrix for that year tells us how many grid cells need to change from 

each class to every other class. For a given element Bij in the matrix, the candidate cells for change 

are all those where u=i. We do not know exactly which cells actually changed in a given year, but 
there are several spatio-temporal data sets which gives us information about this. For example, LCC 
and IACS both have spatio-temporal observations of the time and location of agricultural land use. The 
Agricultural Holdings data tell us where and when the changes in crop, grass and rough grazing 
occurred, based on farmer census returns. The FC NFI/SCDB data tell us the location and planting dates 
of forestry. None of these data sets are perfect, and we may not believe the absolute magnitudes of 
change implied, but they tell us something about the probability of land being used for a given purpose 
at a given location and time. Our approach attempts to make the best use of the available data to 
estimate the location of each land-use change probabilistically. Again we use a Bayesian approach. 

Each year, our aim is to sample from the posterior distribution of the land-use map Ut−1. Because we 

have already established the B matrix, and we can consider each change to be independent, the 
problem is simply to choose the location of each change in accordance with Bayes Theorem. To do 
this, we can use a method referred to as “importance sampling” (Hartig et al. 2011). Importance 
sampling is a very efficient form of rejection sampling (aka the “accept-reject” algorithm, or Sequential 
Monte-Carlo (SMC)). In the previous section we used MCMC to sample from the posterior distribution. 
This is usually necessary, because we have to to evaluate the likelihood function across a wide range 
of high-dimensional parameter space by iterative numerical sampling. However, in the case of 

estimating the land-use map Ut−1, the form of the model and the likelihood is so simple that we can 
calculate the likelihood in advance. The model is simply the identity function, and there are only six 
possible states {woods, crops, grass, rough, urban, other}. For each of these possible states, we can 

evaluate the likelihood L, the probability that the proposed land-use state û is correct, given a vector 

of observations u. For example, with a vector of observations u = {crop, crop, grass} from three data 
sources (e.g. LCM, IACS and CORINE), we might estimate the probability that the true land-use state is 
“crop” to be 2/3. If we know the precision of these data sources, we can adjust this accordingly. 
Similarly, if we have different observations, such as the probability of an increase in crop area in the 
local region, we can incorporate these also. 

Having established these six likelihoods at each location for each year, we can then use these in the 
sampling process when choosing from the candidate cells for land-use change. The basis of all sampling 
algorithms is that the probability of a parameter set belonging to the posterior distribution is 
proportional to the likelihood. The simplest such algorithm, rejection sampling, works by choosing a 
huge number of possible parameter sets at random, often from a uniform distribution; the chance of 
their being accepted is proportional to their likelihood. Importance sampling is similar, but the 
candidates are sampled with some importance weighting, such that they are somehow sampled 
approximately in proportion to their likelihood. The inefficient rejection step can be minimised 
because improbable parameters sets are not being selected in the first place. Here, we have the 
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extreme case where we exactly know the likelihood in advance, so can use this in weighting the 
sampling process such that all samples can be ascribed to the posterior distribution. We use the 
sampling algorithm in the R package wrswoR to implement this. 

8.2 Methods 
The implementation of importance sampling described above breaks down into a number of tasks. 

Firstly, we evaluate the likelihood function for each of the six possible states {woods, crops, grass, 
rough, urban, other} for all years and at all locations. Computing this for 30 years at a resolution of 100 
m requires ~two hours and a large amount of memory, but is feasible on JASMIN, and considerable 
stream-lining is possible in future. 

Then, we begin with the present-day land-use map Ut, as defined by LCM in 2019, with additional 
forest where this is reported in the current FC NFI/SCDB or FSNI data. This is a 100-m resolution raster 
grid, with 91 million cells, of which ~24 million of which are on land. For each year from the present-
day going backwards: 

• select a B matrix from the 2000 posterior samples produced in the [previous section][Data 

Assimilation: Estimating B by MCMC]; 

• for each element Bij, define the candidate cells as those where u=i; 

• select the number of cells specified by Bij from the set of candidate cells, with the probability 

of inclusion being proportional to Lu=j; 

• for the selected cells, set the new land use to equal j. 
• remove the selected cells from the candidate set so they cannot be resampled that year; 

• when this has been completed for all elements Bij, move to the next year back in time and 
repeat until the starting year is reached (1990 in this case). 

The above procedure produces a single sample from the posterior distribution of U, and it can be 
repeated to produce as many samples as desired. How many many samples are required will depend 
on the purpose at hand. 

The basics of this procedure are very simple, and it can be repeated there is no good model for 

predicting which cells change in any given year. Having Bij matrix, the candidate cells for change are 

all those where u=i. the state of land use U at the next time step. Although there are predictable 
patterns in which cells tend to be used for forest, crops or grassland etc., exactly when a given cell will 
change land use is not predictable; the process is effectively stochastic for our purposes. 

8.3 Results 
All the maps here show 1-km resolution data because higher resolution is not easily discernible for 
large areas on typical graphical devices. However, all these data are originally produced at 100-m, and 
aggregated to lower resolution for display and summary purposes. The plots below show maps of the 

likelihood L for each of the six land uses (Figures 8.1-8.6). These show little that is unexpected. The 
likelihood is expressing the number of data sources which predict that land-use type, as a fraction of 
the number of data sources available. It thereby effectively averaging predictions of that land-use type 
across the data sources. The likelihood of the presence of woods is dominated by the FC NFI/SCDB 
data, so the maps closely resemble this, but with the addition of other data sources which include the 
location of woods (LCM, CORINE, and IACS). The likelihood of the presence of crops is an amalgamation 
of all the data sources which include the location of crops (LCM, LCC, CORINE, IACS, Agricultural 
Holdings). The same principles apply to the other land-use types. 
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Figure 8.1: Spatial variation in the likelihood L of observing land use u at two 

example points in time, arbitrarily rescaled for plotting. 
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Figure 8.2: Spatial variation in the likelihood L of observing land use u at two 

example points in time, arbitrarily rescaled for plotting. 
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Figure 8.3: Spatial variation in the likelihood L of observing land use u at two 

example points in time, arbitrarily rescaled for plotting. 
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Figure 8.4: Spatial variation in the likelihood L of observing land use u at two 

example points in time, arbitrarily rescaled for plotting. 
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Figure 8.5: Spatial variation in the likelihood L of observing land use u at two 

example points in time, arbitrarily rescaled for plotting. 
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Figure 8.6: Spatial variation in the likelihood L of observing land use u at two 

example points in time, arbitrarily rescaled for plotting. 
 
Figure 8.7 shows the outcome from the importance sampling algorithm described in 
the Methods. The 2019 map is defined solely by observations (LCM, FC NHI/SCDB, and 
FSNI data). The 1990 map is the result of applying the set of land-use changes prescribed 

in the series of annual B matrices from the posterior distribution. This map is thus based on 

the magnitude and nature of land-use change from the data sources in which we have 
highest confidence in their consistency over time (CS, FC and AgCensus), and applies this 
spatially, using the data sources which provide information on the spatial pattern of land 
use change. Because the absolute extent of land changing use is small, and it tends to 
occur with relatively small granularity. Differences are not easily apparent when viewing the 
whole UK, or even at a Devolved Administration level (Figures 8.8, 8.9, 8.10), but we show 
these here for completeness. 
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Figure 8.7: Estimated state of land-use U in 1990 and 2019 in the UK. 
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Figure 8.8: Estimated state of land-use U in 1990 and 2019 in Scotland and 

Northern Ireland. 
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Figure 8.9: Estimated state of land-use U in 1990 and 2019 in England. 
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Figure 8.10: Estimated state of land-use U in 1990, 1999, 2009 and 2019 in Wales. 

 
Slightly more useful is to zoom in on smaller regions. Figures 8.11 and 8.12 show two 100 
x 100 km regions in Scotland, to illustrate the potential for analysing these results in by 
comparison with other mapped data. The broad expected patterns, such as some areas 
with known urbanisation over this period can be identified. However, beyond basic sense-
checking, a detailed spatio-temporal analysis of this output has not yet been done. 

For the purposes of the UK GHGI, the actual spatial patterns are not important in themselves 
(although obviously desirable). As currently implemented, there are no explicitly spatial 
terms in the soil carbon modelling. Instead, we can summarise the spatio-temporal data 

cube U as the set of unique vectors of land use. To greatly reduce the volume of input and 

output data, the soil carbon model can be applied to this much smaller set of inputs. We 
analyse the output of the data assimilation procedure in terms of these vectors in the next 
section. 
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Figure 8.11: Estimated state of land-use U in 1990, 1999, 2009 and 2019 in the 

100 x 100 km square containing Edinburgh. 
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Figure 8.12: Estimated state of land-use U in 1990, 1999, 2009 and 2019 in the 

100 x 100 km square centred on Dundee. 
Figures 8.13, 8.14 and 8.15 show the results in the form of the vectors with 
greatest area (most frequent). 
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Figure 8.13: Trajectories of the 100 land-use vectors in the posterior U with the 

largest areas (excluding the six vectors which show no change). Each vector of 
land use is shown in a different colour, varied arbitrarily to differentiate different 
vectors. Line thickness and opacity are proportional to the frequency of (or total 
area occupied by) each vector, so that the dominant vectors are the most visually 
obvious. 
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Figure 8.14: Trajectories of the 1000 land-use vectors in the posterior U with the 

largest areas (excluding the six vectors which show no change). Each vector of 
land use is shown in a different colour, varied arbitrarily to differentiate different 
vectors. Line thickness and opacity are proportional to the frequency of (or total 
area occupied by) each vector, so that the dominant vectors are the most visually 
obvious. 
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Figure 8.15: Trajectories of the 20 land-use vectors in the posterior U� with the 

largest areas (excluding the six vectors which show no change). Line thickness is 
proportional to the frequency of (or total area occupied by) the vector 

8.4 Discussion 
Despite reducing the dimensions, the land-use vectors are still a high-dimensional structure to 
visualise. The plots in Figures 8.13, 8.14 and 8.15 show two ways to visualise the data. Attempts to 
make visualisation easier generally comes at the cost of presenting only a restricted amount of the 
total information. Some time spent exploring other methods for visualisation would be worthwhile. 
The figures show that the dominant vectors contain the transitions between crop & grass and vice 
versa. There are no rotational changes in the top 20 vectors (Figure 8.15) i.e. involving changes back 
and forth at the same location. The frequency of such changes, and whether this matches expectations, 
remains to be examined. Figures 8.13, 8.14 and 8.15 show only a single set of vectors, based on the 

MAP B matrix. In fact, we have 2000 samples from the whole distribution, but showing the uncertainty 
in data like this, with categorical and continuous features, is particularly difficult. 

 

9 Discussion 
The results show that we can provide improved estimates of past land-use change using multiple data 
sources in the Bayesian framework. The main advantage of the approach is that it provides a coherent, 
generalised framework for combining multiple disparate sources of data. Recalling our original aim of 
making spatially- and temporally-explicit estimates of land-use change in the UK, using multiple 
sources of data, we conclude that this aim has largely been met. We have added new data beyond that 
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which is used in the present inventory method: B is now jointly determined by the annual national-
scale Agricultural Census data, rather than just decadal Countryside Survey data; the spatial pattern 
and resulting vectors are constrained by the high-resolution information contained in IACS, the 
holdings-level Agricultural Census data, LCM, LCC and CORINE (deliverables A.1). The data have been 
assimilated so as to use the information from sources which we believe to reliably represent the 
absolute magnitude of change, together with data sets which provide spatial information. This results 
in a time series of maps describing our best estimate of land-use change given the available data 
(deliverable A.1). Furthermore, rather than producing a single time series of maps, we have a set of 

these which represents the posterior distribution of the data cube U. This distribution quantifies the 
joint probability distribution of the parameters, and properly propagates the uncertainty from input 

data to final output (deliverable A.2). The resulting data cube U has been summarised in vector format 
(deliverable A.1, e.g. Figure 8.13). The code is documented, version-controlled and made available 
via GitHub (deliverable A.3). 

We suggest the work described here represents an advance on the existing GHGI methodology, but 
there remain a number of improvements and issues to resolve before this might be made operational. 
We outline some of the more important ones here. 

Possibly most importantly, we should attempt to characterise uncertainty in the different data sources. 
The Bayesian approach is quite capable of incorporating different uncertainties for different data 
sources, and indeed, at the level of the individual observation; or in more complex ways, such as 
accounting for changes in observation uncertainty over time (as we suspect happens in IACS). 
However, to do this in a rigorous and quantitative way can be quite difficult, and at present we 
represent all observations to be equal. Some advance on this state at least should be possible. This 
could involve some more detailed analysis of the data sets we have already. For example, a thorough 
comparison of the IACS data with the holdings-level Agricultural Census data would be informative. 
Good agreement would give us some confidence that these are reflecting reality rather than artefacts 
of the reporting methodology; poor agreement would necessarily raise doubts. The same comparisons 
could be made between other data sets, such as ground-based and EO-derived data. 

Most usefully, we should attempt to introduce independent constraints. For example, as discussed 
earlier, using data on the area and age structure of temporary grassland would constrain our estimates 
of the area changing between crop and grass each year. Other forestry data sets, such as annual timber 
harvest volumes, felling license data, and Woodland Grant Scheme planting data could act as 
constraints in a similar way. 

The CS data was used in the form that it is used in the current GHGI - as a constant annual value over 
the period between surveys. However, this value is not actually constant; we know the sample mean 
value over the inter-survey period, but not the annual variability. We should change the way this is 
represented accordingly. This would have the effect of increasing the uncertainty in the values for 
indivivdual years, and permitting greater year-to-year variation, as seen in AgCensus. 

As discussed in the section on the Agricultural Census, there are some apparent step changes in 
these data, with no known cause. Our approach of smoothing these out where necessary is effective, 
but subjective. As the Agricultural Census data play an important part, as the longest running data set 
with the widest coverage, some effort spent in understanding these would be worthwhile. Whether 
we apply more or less smoothing to the data is open to debate, and we should understand the 
sensitivity of the final output to this. 

The present project was carried out within a rather short time frame, and the process of obtaining 
data, and the permission to use it, can be slow. As a result, at the time of completion, we are still 
lacking permission to use some important data sets that we would want to include (notably IACS and 
holdings-level data), even though we are already in possession of the data files. The process of 
requiring the permissions requires significant staff time to establish and maintain communication with 

https://nerc-ceh.github.io/luc_track/
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personnel in the numerous different government departments who hold the data and needs some 
understanding of the legalities of data sharing. This would be an area to prioritise in any future work. 

So far, we have pooled all the data for the UK, and allowed the spatial information in the second part 
of the procedure to differentiate between the four DAs which make up the UK. This approach is 
certainly more efficient and simpler in terms of programming and data processing. However, it is 
possible that more accurate results could be achieved by applying both parts of the DA procedure to 
each of the four DAs separately. This is not essential and would mean that we have to replicate the 
whole process four times, but merits consideration. Alternatively, if we apply the GHGI inventory 
model spatially, then this might actually simplify the process, at the expense of larger data volumes. 

We have used only two different assumptions about the prior distribution of the B parameters. 
Preliminary analysis suggested that there was not much sensitivity to this. However, we suggest this is 
worth further investigation, and a wider range of priors examined. 

A potential issue is the assumption of independence of errors. The consequence of assuming non-
independence of errors would be to produce unreasonably small uncertainties in the posterior 
parameters, and that does not seem to be the case here. However, we need to be careful when 
selecting data sources that these are truly independent estimates and are not double-counting the 
same data. A much larger source of uncertainty is probably associated with classification. Depending 
on definitions used to delimit land-use classes, and the consistency of applying these definitions, quite 
different areas may be calculated for the same nominal classes. There is a real potential problem in 
combining data from different sources in that we may not be comparing like with like. Here, we reduce 
this problem by using a relatively coarse land-use classification, with only six classes. This would 
become more problematic if attempting to distinguish more refined classes. 

Whilst the code has good internal documentation (in comment lines, and text within the Rmarkdown 
files), a document to act specifically as a user manual is still lacking. We consider most parts of the 
code to be reasonably robustly tested. However, it is likely that there is an artefact of the order of 
iteration in the importance sampling loop described in section 20. The land-use classes are assigned 
an arbitrary integer 1-6, and this is determining the order in which land-use changes are computed. 
We suspect this has only a minor effect, if any. A simple solution would be to randomise the order of 
iteration every time, so as to remove any bias. This might be an unnecessary complication if not 
needed, but this should be confirmed. 

It is reasonably straightforward to display the uncertainty associated with the final output, the carbon 
flux from land-use change. This is a time series of a continuous variable, and can be plotted as a line 
with a shaded band representing 95 % CI limits (Levy et al. 2018). Summarising and visualising the 
uncertainty in categorical data like land use itself, and its change over time, is much harder. The plots 
in Figures 8.13, 8.14 and 8.15 can summarise the data, but they do not capture the uncertainty, and 
some thought needs to be given to this. 

Our method here introduces much larger data volumes than the existing method, and a dependence 
on some level of high-performance computing. The ramifications of this, the potential risks, and the 
benefits, need to be weighed up. However, the trends in availability and ease-of-use of HPC means 
that this limitation will diminish over time; low-cost commercial cloud computing services are 
becoming widely available, such as Amazon Web Services and Google Earth Engine. While it is freely 
available, the NERC JASMIN facility is ideal for our purposes at present, but there is no particular 
dependence on this. 

The remit of this project was to provide land-use maps and vectors for the GHGI. Because these data 
are not yet used in the current LULUCF methodology, no testing of the suitability of our output data 
has taken place. Before taking this work further, it would be wise to consider how the data will actually 
be used in a new LULUCF methodology. At a minimum, it should be checked that the vector data meets 
the needs of the soil carbon, land management and CARBINE models. We have previously 
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demonstrated using the first of these (Levy et al. 2018), but this used a model of minimal complexity, 
without some of the complexities that are introduced in the operational inventory model. The CARBINE 
model run by Forest Research uses closely related input data and we should consider how these two 
activities should relate to one another. Some planning ahead for this would help focus what is needed 
in future. 
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1 Model QA Log for LUC Track 
 

The main QA activity carried out in WPA was an assessment of the data processing and model code1 
(known as the luc_track model) using the BEIS model QA log for non-Excel models2. The first 
assessment was made shortly after project initiation, hence allowing for areas for improvement to be 
identified and worked on during the remainder of WPA. The log was then updated in the final week 
of the project and the following synopsis describes the assessment of the model at that point.  

The model log has been completed by the project QA manager Gwen Buys using the guidance 
provided alongside the log. The log is split into five main sections and requires the user to assess the 
model against tasks within each section, rating the model between 1 = Excellent and 5 = Significant 
Issues for each task. The individual scores are then weighted and summed to provide a final model 
score as a percentage.  When assessing the luc_track model it was kept in mind that it is a UKCEH 
model (as opposed to an internal BEIS model) hence some of the task requirements and guidance 
needed interpretation in terms of relevance to third party models.  

1.1 Documentation 
The model QA log has ten documentation tasks spanning both model and project management 
documentation and the current rating for eight of these is 1 or 2.  The luc_track model is coded in 
RMarkdown and stored in a GitHub repository resulting in the model scoring well in terms of version 
control, transparency and guidance. Governance, responsibilities and continuity planning are covered 
by UKCEH project management systems and the relevant risk assessment and data management 
planning (DMP) documents have been completed for this project. The tasks for scope and 
specification documents have currently been rated as 5 as the BEIS templates for these two 
documents have not been completed for the luc_track model. However, in practice much of the 
required content for these documents already exists within the RMarkdown, the project tender and 
the Levy et al 20183 paper. Creating official scope and specification documents for luc_track could 
form part of the QA work in WPB if this is a priority for the BEIS project manager.  

1.2 Structure & Clarity 
There are four tasks relating to model structure and clarity and the luc_track model scores 2 for all of 
these. The model has been clearly structured and has very consistent (and well described) naming 
convention throughout the code. Further improvements to clarity, simplicity, comments and the 
creation of a model map could be made during WPB if this is needed.  

1.3 Verification 
The model QA log has four tasks relating to model verification, however the guidance for one of 
these, Inputs and outputs formula correctness, seems to relate only to Excel models so the luc_track 
model has been assessed against the remaining three.  

Usability testing and code correctness & testing have been carried out by project partners Ricardo for 
a subset of the luc_track code. They found no errors in cloning the GitHub repository / reading the 
files and the process was efficient. They commented that the code is well documented and a new 

 

1 https://github.com/NERC-CEH/luc_track 
2 https://www.gov.uk/government/publications/model-quality-assurance-full-log-template-non-excel-models 
3 https://bg.copernicus.org/articles/15/1497/2018/  

https://github.com/NERC-CEH/luc_track
https://www.gov.uk/government/publications/model-quality-assurance-full-log-template-non-excel-models
https://bg.copernicus.org/articles/15/1497/2018/
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user can easily understand library dependencies and error handling. Hence, these tasks were scored 
at 2 and 3 respectively and the main recommendations are to check compatibility of the spCEH 
package (an R package developed by UKCEH) with more recent versions of R and to expand testing to 
more of the luc_track code.  These tasks can form part of the QA work during WPB. 

Autochecks & regression testing have been scored as 2. There are checks within the model (e.g. 
consistent / compatible units) which stop the model running if incompatible choices are made. 
Additionally there is a system set up to use an alternative dataset (chess games) to test functionality 
of key aspects of the model. 

1.4 Validation 
Model validation has five tasks in the BEIS QA log covering methodology correctness and extreme 
value, uncertainty and re-performance testing. There is also a task for comparison with historical 
data but this was assessed as not appropriate for the luc_track model as the intention of the model is 
to utilise historical data to create a timeseries of land use change.  

Methodology correctness has been scored as 1 and the three remaining tasked have been scored as 
2. The method used in the luc_track code is expanded on from the peer reviewed Levy et al 2018 
paper which demonstrates that the model is fit for purpose and produces logical outputs. Previous 
work (in another project) has been carried out to investigate sensitivity of parameter weighting in 
the model and further sensitivity is built into the model as each run produces 1000+ iterations of 
output. In terms of extreme value testing there are some restrictions coded into the model to 
effectively remove extreme values (including negative land use change areas) and to reduce the 
influence of unlikely land use change areas.  

Re-performance testing has been carried out by Ricardo for a subset of the luc_track code. The work 
focused on independently testing the mapping from land cover classes to LULUCF classes and was 
carried out in ArcGIS Pro for three test areas. The tests were successful and found that the mapping 
of classes was correct for all three test areas. The main recommendation for improving model 
validation in WPB would be to expand re-performance testing to further sections of the luc_track 
model.  

1.5 Data & Assumptions 
There are three QA tasks relating data and assumptions and data transformation. The luc_track 
model scores 1 for data transformation as the RMarkdown code and the project DMP thoroughly 
describe the data sources used in the model and how they are formatted and re-classified for use in 
the model. The tasks for both data and assumptions have been scored 3 as they both reference the 
use of the BEIS assumptions log template. This has not yet been completed for the luc_track model 
but the majority of the information needed for the template is already described in the RMarkdown 
and DMP. If it is a priority for BEIS then an assumptions log can be created for luc_track during WPB.  

 

2 Comparison to Approaches Used 
by Other Countries 

John Watterson, Ricardo 
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2.1 Approach 
BEIS require a “Validation of research methods as fit for purpose by review of the land-use change 
mapping approaches used by other countries”. 

In our proposal, we suggested we would conduct two main pieces of work to help meet this 
requirement: 

1) Contact key people, to canvas their opinions. 

This including contacting one of the Lead Authors, Marcelo Rocha, of the remote sensing chapter in 
the IPCC 2019 Refinement for specific views on “best practice” of using RS/EO data in LULUCF 
inventories. 

We also suggested having bilateral discussions with: Germany, Sweden, Finland, Canada and 
Australia. Canada is particularly interesting as they have extensive use of satellite data to generate a 
detailed mosaic of land use categories. 

Pierre Brender (BEIS LULUCF team) recommended contacting: 

Paulo Canaveira, Portugal. Paulo presented at a land use meeting in 2019, showing how land 
use is represented in Portugal and how consistent full time series are compiled while avoiding 
false land-use changes. Paulo also acts as the Lead Negotiator on LULUCF for the European 
Union. 

Eric Arts, Netherlands. Eric presented at the JRC workshop in 2019 to explain how the 
inventory team avoided some potential pitfalls in their spatially explicit representation of land-
use change4. 

2) Review relevant recent literature and conferences. 

We suggested a review of relevant recent literature to increase our understanding of “best practice” 
and barriers and solutions to using RS/EO data. Two examples of material that we suggested should 
be examined are: a) The “Analysis of LULUCF actions in EU Member States as reported under Art. 10 
of the LULUCF Decision” – containing an assessment of EO/RS data by Member States (Paquel, K.; 
Bowyer, C.; Allen, B.; Nesbit, M.; Martineau, H.; Lesschen, JP.; Arets, E. (2017), Analysis of LULUCF 
actions in EU Member States as reported under Art. 10 of the LULUCF Decision, a report for DG 
CLIMA of the EC, and, b) The findings of the JRC conference “Towards spatially explicit land 
representation in LULUCF inventories Experiences from capacity building activities”, EC and JRC. 

This short report summarises the work done to date. The page limit for the proposal was very tight, 
and in the proposal, the team were not able to elaborate how task to conduct the “validation of 
research methods” would be handled in detail. Work Package A has a very modest budget for this 
task, and therefore only certain elements of the work has been done to date. If Work Package B is 
commissioned, we will be able to complete this task in much more detail. 

2.2 Responses from Key People 
This section summarises the responses received as of the 11th November, 2020. 

2.2.1 Marcelo Rocha 

The IPCC 2019 Refinement, Lead Author 

 

4 https://forest.jrc.ec.europa.eu/media/filer_public/88/3d/883d9efe-f824-4515-a9af-

a21770fd4651/16_e_arets_spatial_explicit_approach_in_nl.pdf 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fforest.jrc.ec.europa.eu%2Fmedia%2Ffiler_public%2F88%2F3d%2F883d9efe-f824-4515-a9af-a21770fd4651%2F16_e_arets_spatial_explicit_approach_in_nl.pdf&data=04%7C01%7CJohn.Watterson%40ricardo.com%7C848e7c1fbecf443e908208d874d7d6fc%7C0b6675bca0cc4acf954f092a57ea13ea%7C0%7C1%7C637387817676682442%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=CESSrR1hFhShVx6qJ82gmPgxEE6xvFqhL5n1WmCi8BY%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fforest.jrc.ec.europa.eu%2Fmedia%2Ffiler_public%2F88%2F3d%2F883d9efe-f824-4515-a9af-a21770fd4651%2F16_e_arets_spatial_explicit_approach_in_nl.pdf&data=04%7C01%7CJohn.Watterson%40ricardo.com%7C848e7c1fbecf443e908208d874d7d6fc%7C0b6675bca0cc4acf954f092a57ea13ea%7C0%7C1%7C637387817676682442%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=CESSrR1hFhShVx6qJ82gmPgxEE6xvFqhL5n1WmCi8BY%3D&reserved=0
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Volume 4, Chapter 3 “Consistent representation of lands” of the IPCC 2019 Refinement 
https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html has a range of useful material about the 
use of remote sensing and satellite data. Some information is presented in the main body of the 
chapter, and in Annexes. 

In the main body of the Refinement there is useful guidance on good quality approaches to: 

3.3.4 Combining Multiple Data Sources: Typically, countries will combine a variety of different 
data sources and approaches to estimate areas of land-use 

3.3.5 Derivation of IPCC Land-Use Categories from Land Cover Information: Addressing gaps 
in remote sensing data  

3.5 Uncertainties Associated with the Approaches: Evaluation of land-use and land-use 
change information generated from remote sensing techniques and estimation of 
uncertainties; Collection of validation data; Evaluation of sample-based method; Evaluation 
of wall-to-wall methods 

 

In the Annex of the Refinement, Annex 3A.2.4 Tools for data collection Remote sensing (RS) 
techniques: 

This Annex summarises the range of RS techniques, including recent developments. There is some 
material setting out what we might judge to be “best practice” approaches to using EO/RS data. This 
material is presented in sections on: 

Time-series consistency (cross references also to Chapter 5 of Volume 1: Time-Series 
Consistency of the 2006 GLs 

Ground reference data  

Integration of remote sensing and geographical information systems  

Land-Use classification using remote sensing data (discusses the application image 
classification algorithms) 

Detection of land-use conversion using remote sensing  

Time-series classification  

Evaluation of mapping accuracy  

Ground-Based Surveys (discusses how these surveys may be used to gather and record 
information on land-use, and for use as independent ground-truth data for remote sensing 
classification). 

 

Assessment: There is no “single solution” presented in the 2019 Refinement to ensure that the 
research EO/RS methods the UK uses are fit for purpose. The approach needed will be to use a range 
of the techniques described in the Refinement, and then document their use transparently in the UK 
National Inventory report. 

 

2.2.2 Paulo Canaveira, Portugal 

No response was received from Paulo after two e-mail requests. 

 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ipcc-nggip.iges.or.jp%2Fpublic%2F2019rf%2Fvol4.html&data=02%7C01%7Cjohn.watterson%40ricardo.com%7C6c8e664943f74bf66d1e08d818ffcdb8%7C0b6675bca0cc4acf954f092a57ea13ea%7C0%7C0%7C637286834230464332&sdata=nhP98LLGwUoqM1HGqD5O%2FqVENx%2FqOAVnbE1v%2FkFOdRg%3D&reserved=0
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2.2.3 Eric Arts, Netherlands 

The maps that the Netherlands use as a basis of their spatially explicit monitoring and reporting for 
LULUCF are based on a series of base-maps that were originally created for monitoring nature 
developments. These maps are based on the national topographic maps, which in turn, are based on 
aerial photographs. An overall description on how land-use is represented and how the land-use 
change matrix of the Netherlands created is included in chapter 3 of the methodological background 
report for LULUCF: https://edepot.wur.nl/517340. 

In terms of QA/QC the initial map interpretation and first quality control is covered by the 
topographic service. Then in a next step the categories on the topographic maps are further 
aggregated to a number of (LULUCF) relevant land-use classes and the whole map is gridded (see for 
instance Kramer et al 2013: http://edepot.wur.nl/356218). An English description is only available for 
the 2009 map: https://edepot.wur.nl/14207. Subsequently the land-use change matrix resulting from 
comparing this map with a previous map is used to assess any strange and counterintuitive changes. 
These then are further assessed and verified by checking a large number of polygons representing 
those changes with the underlying aerial photographs. This is what was done after the observation 
on the 2017 map that net forest area had decreased compared to the 2013 map, which Eric 
addressed in the JRC presentation; see p.24 in the methodological background report. 

Additionally a point-validation is carried out on at least 600 points by comparing the classification on 
the map with aerial photographs. 

Assessment: The Netherlands take a multi-step approach to generating the maps of land use and 
land use change. Several organisations are involved. Quality control and verification procedures are 
completed by both the topographic service and GHG LULUCF sector experts. The work and effort is 
considerable, and involves a lot of manual analysis of maps and photographs. 

 

2.3 Review Relevant Recent Literature and 
Conferences 

This section of the report presents a simple assessment of a recent report and a conference. 

2.3.1 Analysis of LULUCF actions in EU Member States as 
reported under Art. 10 of the LULUCF Decision 

Aim of the Study 

The aim of this study5 was to support the European Commission in the implementation of the 
LULUCF Decision (no 529/2013) with a focus on its Article 10 provisions. Under Article 10 Member 
States must submit information on their most relevant current and future LULUCF actions in land use 
activities such as afforestation, forest management, cropland and grassland management, and 
wetlands management. The study analyses the initial and progress LULUCF action reports submitted 
to the European Commission between 2014 and 2017. 

Methods 

 

5 “Analysis of LULUCF actions in EU Member States as reported under Art. 10 of the LULUCF Decision” – 
containing an assessment of EO/RS data by Member States (Paquel, K.; Bowyer, C.; Allen, B.; Nesbit, M.; 
Martineau, H.; Lesschen, JP.; Arets, E. (2017), Analysis of LULUCF actions in EU Member States as reported 
under Art. 10 of the LULUCF Decision, a report for DG CLIMA of the EC 
https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupMeetingDoc&docid=10585  

https://edepot.wur.nl/517340
http://edepot.wur.nl/356218
https://edepot.wur.nl/14207
https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupMeetingDoc&docid=10585
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Between May and September 2017, the study team analysed 51 Article 10 reports. The information 
provided in the reports was first synthesised based on a set of indicators such as scope, goal, 
planning period, link to national priorities, type of policy instrument, sources of funding, expected 
impact, and data sources. The synthesis results were then analysed in order to identify the most 
often reported actions, the policy instruments used to support the actions, the LULUCF priorities 
shared by the Member States, and the most cost-effective measures. The analysis also tried to find 
out how widespread the use of spatially explicit data in LULUCF accounting is among the Member 
States, and how the methodologies for estimating GHG emission could be improved to ensure more 
accurate results. One of the study tasks was also to try to provide an estimate of the aggregated 
impact of the activities on GHG emissions, and compare it with relevant findings from other studies 
in this field. Finally, the analysis was also oriented to those LULUCF actions that could be enhanced to 
maximize the pursuit of their mitigation potential. The analysis built not only on the Article 10 
reports, but also on literature review and expert judgment. 

Synthesis findings - Methods used to determine land use and GHG impacts 

Assessment: The main relevant observation for our work is that there is no specific mention of 
quality control or verification measures in the sections of the report looking at the methods used to 
determine land use and GHG impacts. This is presumably because the authors of the study were both 
not specifically looking for information about these QC or verification measures, and, the Article 10 
reports do not present this level of methodological detail. 

Although the Article 10 reports do not include much information on the methodologies used to 
determine land use or GHG emission and removals relevant to the reported LULUCF actions, analysis 
based on other recent studies shows a high potential for improvement in both areas. It seems that an 
improvement of land use data availability and accuracy is possible and could lead to a better quality 
monitoring of LULUCF activities also in terms of their GHG impacts. The improvement could be done 
by exploiting the potential to complement the various existing data sets such as Land Parcel 
Identification System (LPIS) deployed widely under CAP, Eurostat’s Land Use and Land Cover Survey 
(LUCAS) and Copernicus, the EU Earth Observation programme, offering state of the art quality of 
land use data. 

2.3.2 Towards Spatially Explicit Land Representation in 
LULUCF Inventories 

The aim of this conference6 was to share experience from capacity building activities.  

The relevant presentation7 to this study was given by Eric Arets, of the Netherlands LULUCF inventory 
team, based at Wageningen University. The presentation considered the challenges of the use of 
land use maps in the Netherlands. It uses an example the changes in deforestation estimated 
between 2013 and 2017, and examines the reasons for the decrease in net forest area based on the 
2013 map. The approach used was to re-examine the analysis based on the aerial photos – by visual 
inspection – and to check the magnitude of the changes seen. 

The analysis found that some of the changes in deforestation between 2013 and 2017 were correct, 
and were due to: temporary forest; conversion to other nature areas; real deforestation (but before 
2013). 

 

6 The findings of the JRC conference “Towards spatially explicit land representation in LULUCF inventories 
Experiences from capacity building activities”, EC and JRC. 29th May, 2019 
https://forest.jrc.ec.europa.eu/en/activities/lulucf/workshops/workshop-2019/  
7 https://forest.jrc.ec.europa.eu/media/filer_public/88/3d/883d9efe-f824-4515-a9af-
a21770fd4651/16_e_arets_spatial_explicit_approach_in_nl.pdf 

https://forest.jrc.ec.europa.eu/en/activities/lulucf/workshops/workshop-2019/
https://forest.jrc.ec.europa.eu/media/filer_public/88/3d/883d9efe-f824-4515-a9af-a21770fd4651/16_e_arets_spatial_explicit_approach_in_nl.pdf
https://forest.jrc.ec.europa.eu/media/filer_public/88/3d/883d9efe-f824-4515-a9af-a21770fd4651/16_e_arets_spatial_explicit_approach_in_nl.pdf
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Some of the changes had been ascribed incorrectly, and were due to artefacts including: border 
effects; border along road/”bike road”; was misclassified as forest before; wood harvesting 
occurring; high voltage lines. 

The reasons for some differences between 2013 and 2017 could not be determined. 

In some cases, part of a polygon was correct, but part was incorrect. 

The conclusions of the presentation were: mapping land use is not very difficult; comparing changes 
in total areas of different land uses is also doable; spatially explicit monitoring of land-use changes 
over time according approach 3 is very challenging. 

Assessment: It is likely that in LULUCF GHG inventory land use maps there will be both 
misclassification of land use, and the size of land use change between two time periods. It is possible 
to improve the quality of the land use maps, but at least in part, it is likely that this verification will 
need to be done manually and will take time. It is also likely that the existing algorithms used to 
identify land use and land use change could be improved. In part, these improvements will be based 
on an understanding of the likely reasons for the errors which will be revealed by the verification 
studies. 
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Work Package A Final Results: Executive Summary 

This report describes work on the project “Improving Land Use Change Tracking in 
the UK Greenhouse Gas Inventory” for the Department for Business, Energy & 
Industrial Strategy (reference TRN 2384/05/2020). The aim of the project was to 
make improved estimates of land-use change in the UK, using multiple sources of 
data. We applied a method for estimating land-use change using a Bayesian data 
assimilation approach. This allows us to constrain estimates of gross land-use 
change with national-scale census data, whilst retaining the detailed information 
available from several other sources. Previous reports covered work with existing 
data sets (WP-A) and on developing new data sets (WP-B). This report describes 
subsequent work, focussed on quantifying uncertainties and improving the 
representation of crop-grass rotation. 

The random uncertainty term σ for each data source has been estimated, based on 

agreement with the net change observed in a reference data set, comprising those 
data sets we believe to be most reliable for net change. The random uncertainty is 
now represented with both absolute and relative components, as a linear function 
with intercept and slope terms. 
Systematic uncertainties represent biases in the data, and can be characterised as 
the false positive and false negative rates (i.e. detecting apparent change where 
none really occurs, and failing to detect actual change, respectively). We compared 
three different methods for estimating these rates, which gave similar results. These 
showed very high false positive rates, which mean that large corrections have to be 
applied to the data. The data assimilation algorithm now includes terms to account 
for: data-source-specific random uncertainty (sigma); data-source-specific 
systematic uncertainty (false positive and false negative rates); sampling error due 
to low survey frequency (e.g. decadal cf. annual); and uncertainty in extrapolation 
outwith (pre/post) survey time period. 

Additional data sets, which were not previously available have also been included in 
the analysis. All the holdings-level agricultural census data available in the UK from 
1990 to 2019 have now been included. The CROME data set, covering crops in 
England, has been added. 

We have improved the accuracy of how we represent crop-grass rotations, using the 
idea of “life tables” or age-specific transition probabilities, from population modelling. 
The life table probabilities are based on an analysis of the data available data from 
IACS, CROME, LCM, and LCC, and these all show consistent patterns. Of these, 
IACS has much the longest time span of data, and is the dominant source of 
information. Using this method, the observed frequencies of transitions from crop to 
grassland as a function of cropland age (and v.v. for grassland) are now reproduced 
in the land-use vectors, and thereby approximate the observed frequency of crop-
grass rotations. 

Since land-use change is now represented spatially, we can separately identify that 
occurring on mineral soils and organic soils. In summary form, land-use vectors and 
the matrices of land-use change are now provided separately for mineral and organic 
soils for each DA. 



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      102 

 

The land-use change output data are provided as space-time data cubes at 100-m 
and 1000-m resolution for the period 1950-2020. These are also provided in 
summary (non-spatial) form as the set of unique land-use vectors, and the matrices 
of land-use change. In principle, many thousand samples of the posterior distribution 
are available (currently 20000 samples of the matrices are stored per DA). Many 
samples of the mapped and vector data can be provided from these, given practical 
computing and storage constraints, but the optimal way to produce these depends 
on how they are used in the LULUCF inventory work, and this is open to discussion. 
Storing land use as a 71-digit character string at 91 million locations (for the time 
period 1950-2020 at 100-m resolution) requires ~50 MB, or ~5MB in vector summary 
form, and much less at 1-km resolution. 

The workflow for the project uses a “Make”-like paradigm to maintain a reproducible 
workflow, implemented in the R “targets” package 
(https://books.ropensci.org/targets/). This means that the dependencies among 
functions and input data are analysed dynamically and stored in a hash table. Any 
changes to source code functions or input data are detected automatically, and only 
the invalidated components re-run as necessary. This has several advantages: 
forcing the workflow to be declared at a higher level of abstraction; only running the 
necessary computation, so saving run-time for tasks that are already up to date; and 
most importantly, providing tangible evidence that the results match the underlying 
code and data, and confirm the computation is reproducible. All the code is under 
version control on GitHub. 

MCMC algorithms typically have to run for many iterations to produce an acceptable 
sample of the posterior, so that parameter estimates (the Beta matrices) are robust. 
For each year and each DA, the algorithm was run with nine MCMC chains for 
200,000 iterations. Convergence was assessed by a standard method - comparing 
within-chain variance with among-chain variance via the Gelman-Rubin statistic. As 
chains move towards convergence, the value of this tends towards 1, and the 
standard test requires that this value is less than 1.1. This criterion is well met with 
this number of iterations. It is standard to discard “burn-in” samples prior to 
convergence, and to thin chains by a factor of ten to remove any autocorrelation. 
This yields around 16000 posterior Beta samples, which gives potentially the same 
number of posterior samples of the land-use vectors. However, it may be more 
practical to combine the calculation of fluxes into this code, without storing all the 
underlying data. 

We produced a time series of maps describing our best estimate of land-use change 
given the available data, as well as the full posterior distribution of this space-time 
data cube. This quantifies the joint probability distribution of the parameters, and 
properly propagates the uncertainty from input data to final output. The output data 
has been summarised in the form of land-use vectors. The results show that we can 
provide improved estimates of past land-use change using this method. The main 
advantage of the approach is that it provides a coherent, generalised framework for 
combining multiple disparate sources of data, and adding additional sources of data 
is straightforward. 

https://books.ropensci.org/targets/
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1 WP-A Introduction 
This report describes work carried out on the project “Improving Land Use Change 
Tracking in the UK Greenhouse Gas Inventory” for the Department for Business, 
Energy & Industrial Strategy (reference TRN 2384/05/2020). The aim of the project 
was to make improved estimates of land-use change in the UK, using multiple 
sources of data, using a Bayesian data assimilation approach. Two previous reports 
describe the background to the project and results from Work Package (WP) A (Levy 
et al. 2020), using pre-existing data sets, and work developing new data sets based 
on Earth Observation in WP-B (Rowland et al. 2021). This report describes 
subsequent work which focussed on assessing the uncertainties in data sets and 
incorporating these in the data assimilation procedure. Specifically, we aimed to: 

• quantify random uncertainty in the different data sources; 
• quantify systematic uncertainty, i.e. biases which may make a data source under- or 

over-estimate land-use change; 
• represent the uncertainty associated with the different sampling frequencies of the 

data sources (e.g. annual versus decadal surveys); 
• handling the uncertainty associated with the different temporal coverage of the data 

sources (avoiding step changes when data coverage starts or stops); 
• incorporate some additional data sets which were not previously available because 

of data access or processing time constraints; 
• improve the representation of the rotational change between crop and grassland.  

The above were incorporated in the data assimilation procedure, and results 
produced for each of the Devolved Administrations (DAs) of the UK. Land-use 
change on mineral soil and organic soil was estimated separately in each DA. 

The remainder of this report describes these tasks and the resulting estimates of 
land-use change produced after their inclusion. 

The first section on quantifying uncertainty in land-use data sources describes how 
uncertainty is represented, and estimates random and systematic uncertainty by 
comparison with a reference data set. 

The next section describes an alternative method for systematic uncertainty based 
on the length of the interval between surveys. As a third method, we then look at 
how errors in map classification propagate into errors in estimates of land-use 
change. 

Next, we describe a method for more accurately representing the frequency of 
rotational land-use change, using the idea of “life tables” borrowed from population 
modelling. 

The previous reports give detailed descriptions of the methods. However, here we 
reproduce the basic rationale and approach of the project for background. 

1.1 Tracking land-use change 
The tracking of land use and land-use change is fundamental to producing accurate 
and consistent greenhouse gas inventories (GHGI) for the Land Use, Land-Use 
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Change and Forestry (LULUCF) sector. This is necessary to meet the international 
requirements of the Kyoto Protocol to the UN Framework Convention on Climate 
Change (UNFCCC) and the Paris Agreement and the national requirements of the 
UK’s Climate Change Act and related legislation within the UK’s Devolved 
Administrations. 

The estimation of land-use change in the current UK GHGI is based on a 
combination of infrequent CEH Countryside Surveys and afforestation/deforestation 
statistics from the GB Forestry Commission. It uses Approach 2 (non-spatial land-
use change matrices) as described in the KP Guidance. However, this matrix-based 
approach, and its implementation in the UK, have some important limitations. Firstly, 
the non-spatial matrix-based approach is insufficient for tracking annual land-use 
change: the matrices have no time dimension and are defined independently each 
year. There is therefore no possibility of representing a sequence of land-use on the 
same parcel of land (such as afforestation followed by deforestation, or crop-pasture 
rotations). Secondly, the data used to estimate these matrices in the UK are rather 
limited. The CEH Countryside Surveys were only carried out approximately once per 
decade, and whilst the geographical extent was very wide, the actual ground area 
surveyed was small as a fraction of the total UK area. The afforestation/deforestation 
statistics from the Forestry Commission have good national coverage (excluding 
Northern Ireland) but do not contain any information on the spatial location or land 
use prior to afforestation or following deforestation. 

In October 2019, the UNFCCC Expert Review of the UK 1990-2017 GHG inventory 
raised concerns in relation to the reporting requirements of the second commitment 
period of the Kyoto protocol. They questioned whether the current approach is 
appropriate for the identification and tracking of lands where the elected Article 3.4 
activities occur (i.e. Cropland Management, Grazing Land Management and 
Wetland Drainage and Rewetting). They recommended that the UK explore how to 
make the best possible use of available data and prepare and implement a work-
plan to enable the use of these data. The UK has already explored several 
approaches to land use tracking, including a data assimilation approach to integrate 
available land-use data into land-use vectors, which was successfully piloted in 
Scotland (Levy et al. 2018). This project builds on that approach to assess gross 
land-use change, and land-use history for the whole of the UK from 1990 to 2019. 

As well as improving accuracy of the GHGI, a time series of spatially explicit land-
use change would enable better tracking of mitigation activities and improve baseline 
data for scenario modelling. These baseline data are needed for understanding the 
potential of land-based mitigation and adaptation options. The government’s 
ambitions for Net Zero by 2050 or sooner means that the LULUCF sector will have 
an increasingly critical role in the UK’s overall GHG balance. This kind of scenario 
modelling will become very important to inform the setting of future carbon budgets 
and monitor progress towards the UK’s legal obligations to GHG emissions 
reductions. An accurate spatio-temporal land-use change data set would be useful 
to other stakeholders and UK government departments. For example, from the 
perspectives of biodiversity conservation, air quality, or ecosystem services, there 
are clear applications of these data for understanding and tracking the effects of land 
use. 
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1.2 Approach 
If we had reliable maps of land use each year, we could infer land-use change by 
difference. However, even with advances in satellite sensors, GIS and spatial data 
handling, the accuracy of change detection from EO-based products is generally too 
poor to do this; the different EO products are inconsistent (with each other, and with 
themselves over time), irregular, and become more infrequent as we go back in time. 
Change is more reliably detected by repeat ground-based surveys, but these have 
other short-comings. For example, the annual June Agricultural Census gives a long 
record of areas in different land uses, but does not provide spatial data, or any 
information on gross change (i.e. what land uses have changed to which other land 
uses). The CEH Countryside Survey did provide spatial data with gross change, but 
without complete coverage, and only at infrequent intervals. 

In light of the above, some data assimilation method, which combines the spatio-
temporal data with non-spatial repeat survey data, would appear to provide a 
solution. To this end, we previously developed a methodology using a Bayesian data 
assimilation approach, and this has been applied successfully to Scotland (Levy et 
al. 2018). This method allowed for the use of a wider range of data types, including 
high-resolution spatial data, and combined them in a mathematically coherent way. 
Importantly, the method produced the appropriate data structure needed for 
modelling the effects of land-use change on GHG emissions - the set of unique land-
use vectors (i.e. unique sequences of land use, or land-use histories) and their 
associated areas. An important feature is that the uncertainty in land-use change 
can be easily propagated to provide the uncertainty in GHG emissions, because the 
procedure explicitly handles the distribution of plausible vectors of land-use change. 
The approach provides a general framework for combining multiple disparate data 
sources with a simple model which describes how these data sources inter-relate. 
This allows us to constrain estimates of gross land-use change with reliable national-
scale census data, whilst retaining the detailed spatial information available from 
several other sources. Here, we apply this methodology to improve and update the 
tracking of land-use change for the UK. Our aim was to apply a Bayesian approach 
to make spatially- and temporally-explicit estimates of land-use change in the UK, 
using multiple sources of data. 

All the code is written in R using the “literate programming” paradigm implemented 
with Rmarkdown, which combines the source code, text/graphical output, 
documentation, and report text within the same document. This ensures integrity of 
documentation, code and corresponding outputs. All the Rmarkdown files are held 
in a GitHub repository, for version control and wider accessibility. The 
documentation is rendered using bookdown and made publicly available as a web 
site via GitHub Pages. This documentation describes the data processing workflow 
so as to make it reproducible. 

https://nerc-ceh.github.io/luc_track/
https://nerc-ceh.github.io/luc_track/


Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      106 

 

2 WP-A Quantifying Random 
Uncertainty in Land-Use Data 
Sources 

2.1 Introduction 

Several different data sources provide observations of the transition matrix B and 

the net and gross changes in area of each land use (D, G, L). The method used in 

WP-A treated all these data sources as equally uncertain and assumed the same 
relative error for all observations. However, in reality, we know that these data sets 
have different levels of uncertainty: some data sets are closer to direct observations, 
are more plausible, and we have greater faith in these. We want to reflect this in the 
methodology by quantitatively associating different uncertainties with each data set. 
This is straightforward in principle, but there are several considerations when doing 
this in practice: 

1. We can consider increasing levels of detail: 

o variable-specific uncertainties (i.e. different for B, G, L & D) 

o data source type-specific uncertainties (i.e. different for ground-based 
vs EO data) 

o data set-specific uncertainties (i.e. different for CS, IACS, LCM etc.) 

o land-use type-specific uncertainties (i.e. different for woods, crops, 
grass etc.) 

o time-specific uncertainties (i.e. different for 1990, 2000 … 2019) 

2. Rather than continuous data with a simple σ error term, the B observations 

are count data in a 6 x 6-way classification. When considering land-
use change, we can compare the 36 elements of this classification from one 
data source with another (or the truth), so we have a 36 x 36 error matrix (or 
“confusion” matrix). Various metrics can be calculated which summarise the 
agreement measured by this matrix. 

3. We can specify uncertainty with greater or lesser rigour: there are several 
possibilities for how we represent “uncertainty” in the mathematical model. 

4. We can estimate uncertainty subjectively or base it more closely on data. 
There are also several possibilities for how we translate measures of 
uncertainty in the data into the mathematical model. 

A limitation is that none of the data sources represents absolute truth, and we have 
no definitive data set against which to calibrate. 

2.1.1 Representation of random uncertainty 

The data sources are assimilated in the Bayesian method via the likelihood function, 

which includes a term σobs, representing the standard deviation in the probability 
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density function for the observation. The observation is thus not assumed to be the 
true value, but subject to errors which make it deviate from this. Random uncertainty 

is represented by the magnitude of σobs - large values of σobs represent high 

uncertainty (systematic uncertainty is considered in later Sections). For each 
observation, a likelihood is calculated, assuming that measurement errors show a 
Gaussian distribution and are independent of each other. In mathematical notation, 

the likelihood of observing the area changing from land use i to land use j, , is 

 
 

Where   is the corresponding prediction, and  is the uncertainty in the 

observation. There are analogous terms for G,L and D which can all be multiplied. 

For example, the term for the likelihood of observing the net change in land 

use u, , is 

 
We previously assumed that relative measurement uncertainty was the same for all 
observations, i.e. a constant proportion of the observed value. Thus, observations 
of large areas come with larger absolute uncertainty. Here, we estimate more 

specific uncertainties σobs for the different data sources, and potentially this can be 

extended to be specific for each individual observation. 
Two additional issues concern the specification of the random uncertainty when 
accounting for the effects of the frequency of surveys and avoiding step changes 
when data sets begin and end. For example, Countryside Survey data come from 
approximately decadal surveys, but are interpolated and used as if they were 
constant annual values within each decade. We incorporated some simple methods 
to include these effects appropriately. 

2.2 Methods 

2.2.1 Estimating σobs from reference data 

A pre-cursor step is to define a reference data set with which we compare each data 
source. In the absence of ideal ground-truth data, some subjectivity is inevitable 
here, and we use the data sets which we believe to be the most plausible or closest 
to the truth, based on judgement and prior knowledge. For agricultural land, we 
defined the reference data set as the June Agricultural Census data for crops, grass 
and rough grazing, as this is a very long record and is submitted annually as part of 
reporting to FAO. For forests, the pre-existing record of afforestation and 
deforestation based on FC statistics was used, as this is also long-running and has 
been submitted as official national data. 
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We applied a simple method, basing all the σobs terms on the “lowest common 

denominator” data set, the time series of net area change D. Although they vary in 

the higher levels of detail, all data sources produce estimates of D, so we can 

calculate a comparable metric of agreement across all data sets. Suitable metrics 
are the root-mean-square error (RMSE), mean-absolute error (MAE) and the 
correlation coefficient. We used the RMSE and the correlation coefficient, as 
measures of absolute and relative agreement, respectively. We multiplied these 

(rescaling the correlation coefficient as 1/(r2+1) to give a single scaling factor 

for σobs (“CV” in the table). This metric is used as a scaling factor in estimating σobs, 

such that data sources with poor agreement receive high σobs (high uncertainty). 

Some subjectivity comes into which metrics to use, and the absolute values of σobs, 

but the relative uncertainties (and therefore weighting) are based quantitatively on 
data. 

2.2.2 Effects of survey frequency and survey start/stop dates 

Each pair of surveys gives an estimate of land-use change over some time interval. 
When survey observations are not available annually, we are effectively trying to 
estimate the change in a population (all years) from a sample (the years when 
surveys were carried out). Using the analogy with conventional sampling theory, the 
standard error in our estimate should be lower in more frequent surveys, because 
more samples are included. We can apply the same logic to infer the appropriate 

correction to apply to σobs, such that it reflects the uncertainty about the rate of land-

use change in any given year within the inter-survey interval: 

 
where n is the survey interval length in years. This scaling means that the correction 

evaluates to 1 for annual data (no effect). 
All data sources have a limited period over which they were collected, and this would 
introduce an artefact at the boundaries. When a data set which tends to provide 
lower estimates begins, this would tend to pull the mean estimate down at this point, 
and introduce a step change purely as an effect of data availability. To counter this 
effect, we apply a similar logic to that above - the available data is an imperfect 
sample of the surrounding time interval, and the uncertainty increases with fewer 
samples and extended distance in time. We therefore extend each data set to the 
limits of the time period considered here (1950-2020), assuming a constant rate, but 

we force the uncertainty to increase with the square of distance in time  beyond 
the boundaries where data was actually available. The random uncertainty in any 
given year is 

 
scaled so that there is no effect within the time bounds of the observed data. 

2.3 Results 
The table below shows the RMSE, the correlation coefficient and the scaling factor 

for σobs (expressed as a coefficient of variation (CV), σobs as a fraction of the observed 

value. The ranking shows that CS has the lowest uncertainty and the CROME has 
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the highest (bearing in mind all the imperfections in the reference data). This 
produces a quantitative means of accounting for the different relative uncertainties 
in these data sources. 

 RMSE r2 CV 

CS 654.9496 0.2850220 0.2000000 

CORINE 830.2048 0.3533137 0.2293023 

LCM 892.9640 0.1650214 0.3184481 

IACS 1170.0198 0.1882285 0.4056547 

LCC 1340.3314 0.1350960 0.4951190 

CROME 7899.3774 -0.0819340 3.6502540 

2.4 Discussion 
Representing data source-specific random uncertainty is relatively straightforward 

in principle. We need to estimate appropriate σ values for each data source and use 

these in the likelihood function. The most fundamental problem is accurately 

estimating σ in the absence of any data which we regard as “true,” particularly for 

the B matrices which are key. There is no immediate solution to this, and a pragmatic 

approach is to define a reference data set, with more or less subjectivity/expert 
judgement, and potentially with some cross-validation. Here we implemented a 

simple method, whereby σ for each data set is scaled according to metrics 

measuring its correspondence with reference data. Currently, this is based only on 
the net change data, as this makes cross-comparison simplest, but this could be 

extended to include the gross changes G,L and B. 

 
An alternative approach would be to estimate the uncertainties as part of the data 
assimilation. This avoids the sticking point of subjectively defining a suitable 
reference data-set, when all of the available data sources, including ground-truthed 
data, are flawed in some way. The downside of this approach is that it is more 
complicated, involves estimating more parameters, and will have greater 
computation time, but merits some exploration. 
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3 WP-A Quantifying Systematic 
Uncertainty in Land-Use Data 
Sources 

3.1 Introduction 
The spatial datasets used in the data assimilation for Land Use Tracking will contain 
systematic errors, related to falsely detecting land-use change when it has not 
occurred, and missing true land-use change when it does occur. To characterise 
uncertainties in the data, we want to quantify these false positive and false negative 
detection rates. These can be estimated by comparison with a reference dataset, 
and thereby judging where the observed changes in a given data set are correctly 

identified or not. For observations of the B matrix, this is complicated by the fact that 

they form a 6 x 6-way classification. When considering land-use change, we need 
to compare the 36 elements of this classification from one data source with another 
(or the truth), so we have a 36 x 36 error matrix (or “confusion” matrix). This matrix 
has two distinct types of errors that we ideally want to distinguish: false positives 
and false negatives, or “user”/“commission” and “producer”/“omission” 
error/accuracy, in the terminology commonly used in remote sensing. 
 
As with estimating random uncertainty, a limitation is that none of the data sources 
represents absolute truth, and we have no definitive data set against which to make 
this assessment. 

3.1.1 Representation of systematic uncertainty 

Our approach here is to explicitly represent the false positive and false negative 
error terms in the likelihood function. False positives cause observations to over-
estimate change, whilst false negatives produce an under-estimate, and the 

estimated bias in the observation is a simple function of these error rates (FP and FN). 

The likelihood equation becomes: 

 
where AN is the area in which the false negative errors can occur, given by the 

number of grid cells where the land-use change ij was not detected. This equation 

calculates the likelihood of the observed change from land use i to land use j, given 

that the true value is , and with given false positive and false negative 

rates FP and FN, and random uncertainty  in the observation. This approach can 

be implemented in increasingly complex ways: 
• estimating the false positive and false negative error rates based on some set 

of confusion matrices, and thereafter assuming them to be fixed and constant 
for a given data source; 
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• as above, but calculating false positive and false negative error rates specific 

to each type of land-use change (i.e. FPij and FNij), and potentially vaying in 

time; 
• including the false positive and false negative error rates as unknown 

parameters to be calibrated, along with the B and σobs values. This is the most 

sophisticated solution, as it properly represents the fact that these are not 
truly known, and allows the values to be an emergent property of the data, 
given prior information, rather than imposing our guesses. The exact number 
of these parameters to estimate could vary as above, whether specific to each 
data source, type of land-use change, and point in time. 

3.2 Methods 
We explored the variability in false positive and false negative rates in the datasets 
at the land-use, data-source and time levels to identify the most appropriate way to 
account for uncertainty in the data assimilation. The definition of the reference data, 
calculation of false positives and negatives, and application of these values into the 
likelihood function is presented below. 

3.2.1 Creating reference datasets: 

We created the reference data by combining several spatially explicit data sources 
that are thought to have the highest accuracy and reliability for certain land use 
types, namely FC, IACS and LCM. These data-sources were added to the reference 
dataset in order of expected reliability: land use defined in FC data took precedence 
over IACS, followed by LCM. This resulted in a reference dataset that includes the 
majority of forest cells from FC, the majority of crop, grass and rough grazing from 
IACS and the majority of urban and other cells from LCM. This reference data was 
used to compare the other data-sources against (LCC, CORINE, CROME). In order 
to test FC, IACS and LCM themselves, we removed the respective dataset from the 
reference data, and tested land-use change classifications against those present in 
the remaining reference data (e.g. testing the forest, crop, grassland or rough 
grazing land-use change in IACS against that defined in FC and LCM). 

This method enabled us to build reference rasters for England for 2006, 2010, 2015, 
2017, 2018 and 2019. The 2010 reference raster comprising FC, IACS and LCM 
data is shown below, as well as the 2010 reference raster for testing IACS 
(comprising FC and LCM data). 
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The table below shows the reference data used for each data source: 

Dataset Reference 

FC IACS, LCM 

IACS FC, LCM 
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Dataset Reference 

LCM FC, IACS 

LCC FC, IACS, LCM 

CORINE FC, IACS, LCM 

CROME FC, IACS, LCM 

 

Each data source was tested against its appropriate reference data according to the 
table above. The resulting 36*36 confusion matrix quantifies the correspondence 
between the data sets, in terms of their agreement over the area of each land use 
changing to every other land use. The diagonal identifies the area of land-use 
change that was identified to occur in both the reference and test data sets. The 
unchanging land on the diagonal can be disregarded as not relevant here. 

3.2.2 False positive rates 

The false positive rate was calculated as: 

FPij = (βtest,ij - βref,ij)/ βtest,ij 

 

where βtest,ij is the observed area of land changing from use i to j in the test dataset 

and βref,ij the corresponding value in the reference dataset. 

3.2.3 False negative rates 

The false negative rate, the rate of failing to observe land-use change from i to j in 

the test dataset compared to the reference dataset, was calculated as: 
 

FNij = (βref,ij - βref,test,ij)/ (A - βtest,ij) 

 

where βref,test,ij is the area of land changing from i to j identified in both the reference 

and test data sets, and A is the total area of England. The denominator is thus the 

total land area where false negatives could occur. 

3.3 Results 
Here we use CORINE as an example showing the false positive and negative rates 
calculated between the data source and the reference dataset between 2006 and 
2018 (most recent years available for comparison). The data shows the trend across 
all of the data-sources: very high false positive rates, with slightly lower false positive 
rates for the land-use change between crop and grassland. False negative rates 
were much lower, but are expressed on a very different basis, and not directly 
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comparable. The matrices below show the false positive/negative rate for each land-
use change between the first year (row) and the second year (column). 

False positive rates for CORINE between 2006 and 2018: 

 woods crops grass rough urban other 

woods  1 0.992 1 1 0 

crops 0.977  0.928 0.949 0.994 1 

grass 0.951 0.767  0.996 0.991 1 

rough 1 1 1  1 1 

urban 1 1 0.985 1  1 

other 0 1 1 1 0  

 

False negative rates for CORINE between 2006 and 2018: 

 woods crops grass rough urban other 

woods  0 0.001 0 0 0 

crops 0.004  0.038 0.001 0 0 

grass 0.01 0.053  0.009 0.001 0 

rough 0 0 0.011  0 0 

urban 0.004 0 0.002 0.003  0 

other 0 0 0 0 0  

 

The following graphs show the false positive and false negative rates for each data 
source, with the grid of graphs showing the land use type in the first year and colour 
showing the land use in the second year. 
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False positive 
rates: 
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False negative 
rates: 

 

3.3.1 Data-source-specific false positive and false negative 
rates 

Based on the relatively low variability in false positive rates identified for many of the 
land-use change classes, we chose to summarise false positive rates at the data-
source level rather than land-use level. Data-set level false positive rates were 
calculated as an average of the land-use level false positive rate, weighted by area 
of each land-use change. 

This gave the following outputs which can be incorporated into the data 
assimilation method: 
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Data source FN FP 

FC 0.0020230 NA 

LCM 0.0013481 0.8711168 

CORINE 0.0060332 0.9029868 

LCC 0.0012670 0.6737150 

IACS 0.0020691 0.7997226 

CROME 0.0012571 0.9329713 

3.4 Updating B, D, G and L 
To examine the effect of these systematic biases on the observations, we can 

recalculate the B transition matrix. An example is provided below for IACS from 2005 

to 2019: 
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3.5 Conclusions 
We can represent data source-specific systematic uncertainty by estimating 
appropriate false positive and false negative rates for each data source and adding 
these terms to the likelihood function. 
 
Again, the most fundamental problem is the absence of any data which we regard 
as “true.” There is no immediate solution to this, and a pragmatic approach is to 
define a reference data set, with more or less subjectivity/expert judgement, and 
principles from cross-validation. 
False positive rates appear to be very high but are consistently so across most of 
the land-use categories. With this in mind, we use data-set level Fp and Fn values 
rather than land-use level values. 

4  WP-A Assessing systematic errors 
in estimates of land-use change: 

sensitivity to survey-interval 

length 

4.1 Introduction 
The spatial datasets used in the data assimilation for Land Use Tracking will contain 
systematic errors, related to falsely detecting land-use change when it has not 
occurred, and missing true land-use change when it does occur. To characterise 
uncertainties in the data, we want to quantify these false positive and false negative 
detection rates. These have previously been estimated by comparison with a 
reference dataset, and thereby judging where the observed changes in a given data 
set are correctly identified or not. However, this depends on the validity of the 
reference dataset as a standard for comparison, and we know that the reference 
data set is imperfect. Here we use an alternative method that assesses these error 
rates by analysing the apparent rate of land-use change as a function of the time 
interval between surveys. In the absence of systematic errors, no relationship with 
survey-interval length would be expected, and any apparent sensitivity can be used 
to infer the error rates. 

The observed area changing from one land-use type i to another j between two 

surveys,  (in km2 yr−1), will be made up of the true rate of change, βij and 

systematic and random error terms. Systematic errors comprise false postive (FP) 

and false negative rates (FN). Together with the random error term ϵij, we can 

express our expectation for the observations to be: 

 
As a broad approximation, we can assume that the true rate of land-use change, 
and the error rates, are approximately constant in time. With short intervals between 
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surveys, there will therefore be proportionately less true change, but the magnitude 
of the errors will be the same. Conversely, with long intervals between surveys, the 
magnitude of the errors will still be the same, but there will be proportionately more 
true change. As the time difference between surveys increases, the observed rate 

will tend towards an asymptote, equal to the true mean rate of land-use change, 

¯¯̄, as the random error term ϵij has a mean of zero. We can therefore examine the 

apparent rate of land-use change as a function of the time interval between surveys, 
and infer the error rates from this relationship. It is not possible to explicitly 

separate FP  and FN  in this analysis, only their net effect Fnet= FP − FN, although the 

shape of curve indicates which is larger in the data. If FP  and FN  were zero, or 

exactly balancing each other, the data would show a flat line in the figures below. 
For the datasets we are testing here, in all cases it appears that false positives are 
the major source of error. 
This method is potentially superior to estimating error rates by comparison with a 
reference dataset, as it does not require reliable ground-truth data, and only uses 
intrinsic properties of the observations. As a down-side, the error rates calculated 
apply to ongoing directional change, and any rotational change is effectively 
included in the error term. However, we note that this is only really an issue with 
crop-grass transitions (and v.v.), and we estimate, this affects around ~7 % of the 
grassland area (assuming that half the area of grassland < 5 years old has a rotation 
length shorter than the observation period). The method also assumes that the true 
mean rate of land use change has not changed systematically over the observation 
period. 

4.2 Methods 

• Calculate beta matrices for land-use change with all possible permutations of 
between-survey intervals available with each data source 

• Plot the relationship between time-interval length (Δ) and the apparent rate of 
land-use change 

• For each term in the β matrix, we fit an exponential model to the data using 
nonlinear least squares: 

 
 

where  is the asymptotic value, equal to the long-term mean rate of land-use 

change, A0 is the intercept at Δ=0, and k is the natural logarithm of the rate 

constant. 

From the fitted model, we obtain estimates of  and the value of  as a 

function of the time interval Δ. We can then estimate the mean net error rate for a 

given time interval from the fitted curve, expressing this as a fraction of the observed 
rate: 
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4.3 Results 
In almost all cases, we see very strong sensitivity to survey-interval length, with 
much higher apparent rates of change observed at short interval lengths. This 
implies the observations are dominated by false positives; no relationship would be 
expected in the absence of such errors. Similar trends are seen in all the data sets 
examined here. 
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4.3.1  IACS: 
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4.3.2  LCM 

LCM has the greatest number of datasets to apply this method to with 10 surveys 
conducted across 29 years. This enables comparison between surveys that give 23 
time intervals. 
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4.3.3  LCC: 

LCC only includes crop and grassland land use change so there are less data to 
test. 
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4.3.4 CROME: 

Both CROME and CORINE have few surveys meaning estimating a fit to this data 
is difficult: 
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4.3.5  CORINE: 

 

4.3.6  Summary Table 

The table below shows the error rate for all the different land use change categories 
for each of the different data sets. These are calculated for the typical time interval 
in each of the different data sources. 

luc IACS LCM LCC CORINE CROME 

crop_grassland 0.78 0.85 0.77 NA NA 

crop_other 0.82 0.87 NA NA NA 

crop_rough 0.68 0.87 NA NA NA 

crop_urban 0.96 0.80 NA NA NA 

grassland_crop 0.76 0.87 0.55 NA 0.62 

grassland_other 0.78 0.84 NA NA NA 
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luc IACS LCM LCC CORINE CROME 

grassland_urban 0.83 0.79 NA NA NA 

grassland_wood 0.28 0.89 NA NA 0.98 

other_rough 0.66 0.98 NA NA NA 

rough_crop 0.89 0.90 NA NA NA 

rough_urban 0.96 0.82 NA NA NA 

urban_crop 0.65 0.94 NA 0.87 NA 

wood_crop 0.93 0.93 NA NA NA 

wood_grassland 0.92 0.89 NA NA NA 

crop_wood NA 0.87 NA NA 0.98 

grassland_rough NA 0.91 NA NA NA 

other_crop NA 0.86 NA 0.95 NA 

other_grassland NA 0.83 NA 0.95 NA 

other_urban NA 0.87 NA NA NA 

rough_grassland NA 0.82 NA NA NA 

rough_other NA 0.90 NA NA NA 

rough_wood NA 0.60 NA NA NA 

urban_grassland NA 0.92 NA NA NA 

urban_other NA 0.93 NA NA NA 

urban_rough NA 0.93 NA NA NA 
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luc IACS LCM LCC CORINE CROME 

urban_wood NA 0.90 NA 0.90 NA 

wood_other NA 0.91 NA NA NA 

wood_rough NA 0.93 NA NA NA 

wood_urban NA 0.85 NA 0.73 NA 

 

The figure below shows the same data plotted for all data sources. 

 

4.4  Discussion and Conclusions 
The error rates we obtain from this method are similar to those derived from 
comparison with the reference data set. The net positive error rates are generally in 
the range 80-98 %; that is, 80-98 % of the ostensibly observed land-use change did 
not actually occur. Almost all other values in the range 50-80 % (with only one 
exception less than this). The conclusion from this is that these observations are 
extremely over-sensitive, and for whatever reason, differences in imagery (or survey 
data in the case of IACS) at different times is being recorded as land-use change 
when none has occurred. 
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This makes it challenging to extract useful information from these data. However, if 
we believe the error rates to be consistent, we can specify and correct for these 
errors in the data assimilation procedure, as described previously. Land-use-
change-specific rates can be estimated from this analysis, to capture the variability 
in errors between different land-use conversions. However, the error rates are 
broadly similar, and a single value per data source could justifiably be used. To 
explore this further, confidence intervals can also be calculated for the error rates in 
the table above, using the standard errors in the parameters from the exponential 
model fit. If the errors are not consistent in time, and given their magnitude of 80-98 
%, an alternative conclusion would be that these observations are not yet reliable 
enough to include in the inventory procedure for tracking land-use change. 

5 WP-A Estimating false-positive 

rates in detection of land-use 

change based on classification 

accuracy 

5.1 Introduction 
In the “Tracking Land-Use Change” project, several data sources provide a time 
series of maps of land use. An obvious approach is to estimate land-use change as 
the difference between these maps over time. However, any error in land 
classification will also be included in the estimate of land-use change, so it is 
important to quantify these errors properly and note how they propagate. Here, we 
show the calculations which propagate the error in classification through to its 
resulting effect on the estimate of land-use change. 

5.2 Methods 
The accuracy of land-use maps is usually estimated by comparison with some 
reference data set. We can then calculate confusion matrices and metrics of overall 

agreement, of which there are several. Common choices are overall accuracy (α, 

the fraction of locations where estimated land use agrees with the reference data 

set) and the κ statistic, which corrects for the probability of chance 

agreement. κ therefore gives a more robust measure, typically 5-20 % lower than 

simple percentage agreement. The probability of misclassification can be estimated 

simply as 1 - α or more stringently as 1 - κ. For maps at times t1 and t2, the 

probabilities of misclassification are denoted p1 and p2. Estimating land-use change 

involves calculating the difference between maps, and the errors are additive in the 
result. The probability of estimating erroneous land-use change because of 
misclassification in a pair of maps can be written as 

. 
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That is, the probability of error is the union of two events (misclassification occurring 

at time 1 or at time 2, minus their intersection p1∩2, which is the probability of 

misclassification at both time 1 and time 2, which would otherwise be double-

counted. p1∩2 can be estimated as p1p2 assuming that the errors leading to 

misclassification at times 1 and 2 are independent of each other. In practice, our 
estimates of the probabilities of misclassification at times 1 and 2 are usually the 

same (p1≃p2), so this simplifies to: 

. 

5.3 Results 

Estimates of α and κ from some of the data sets used in the LUC Tracking project 

are shown in the table below. 

Data source α κ� 

Corine 0.80 0.64 

LCC 0.91 0.82 

LCM 0.88 NA 

For the purposes of the examples below, we use the value of 0.88, the overall 

accuracy of the LCM, as a relatively optimistic metric. The value of p1≃p2 is 1 - α, 

and therefore = 0.12. 
Using this value in Equation yields a probability of estimating erroneous land-use 
change because of misclassification of 0.226. Because this probability applies at 
every location on the map, multiplying by the total area yields the expected area of 
erroneous land-use change. So, when comparing two UK maps which each have a 
classification accuracy of 88 %, 22.6 % of the area, around 55000 km2, will show 
land-use change where none actually occurs. This provides a huge amount of 
measurement noise when we are attempting to detect a very small signal: the 
expected magnitude of actual land use change in the UK is of the order of a few 
hundred km2, and at most a few thousand km2, based on Forestry Commission 
planting rates, Agricultural Census, and urban expansion data. The area of land 
changing use is thus less than 1 % of the total area, and we would therefore need 
the probability of misclassification error to be less than this in order to accurately 
detect true change (meaning the accuracy needs to be > 99 %). 

We can extend this to calculate the false positive rates for terms in the β matrix and 

gross gains and losses, given the appropriate denominators and estimates of the 
true extent of land-use change. For example, the area of cropland in England is 
approximately 45000 km2, and the area of gross gains and losses are estimated to 
be in the range 300-800 km2 y-1 based on CS. Based on the June Agricultural 
Census, we might estimate these rates to be higher, perhaps reaching 1000-3000 
km2 y−1. 
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Expressing the estimated true land-use change Atrue as a fraction of the total 

recorded land-use change (i.e. true + erroneous), we can calculate the relevant false 

positive rate, FP. 

 
If CS rates of land-use change are correct (300-800 km2 y-1), the false positive rate 
is in the range 92.7 to 97.1 %. 
If the Agricultural Census rates of land-use change are correct (1000-3000 km2 y-1), 
the false positive rate is in the range 77.2 to 91 %. 
Given this relationship between the classification accuracy of individual maps and 
the resulting false positive rates in detecting land-use change, we can examine the 
improvement needed to obtain false positive rates below a given level. The figure 

below shows the change in false positive rate with classification error (1- α), using 

the example of cropland gains in England as above, assuming a true rate of change 
of 1000 km2 y-1. 

 

The figure shows asymptotic behaviour because of the form in the previous 

equation, with a constant true area expressed with an increasing Afalse term in the 

denominator. The result is that it takes a substantial decrease in misclassification 
(or increase in accuracy) from present values to achieve a marked increase in the 
false positive rate. For example, to reduce the false positive rate to 0.5 requires an 
accuracy of 0.988. The basic problem is that the true areas of change are very small 
compared to current error rates, and it would require an order of magnitude 
improvement in accuracy to reduce the measurement noise to a similar level to the 
signal we want to detect. 
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5.4 Conclusions 

• Accuracy of land-use classification is in the range 0.8-0.9 in the available data 
sets. The corresponding probability of misclassification is 10-20 %. 

• The errors in individual maps can be propagated to calculate the error in their 
differences i.e. estimates of land-use change. 

• Error rates for land-use change propagating from misclassification will 
typically be greater than 20 %. This is 1-2 orders of magnitude larger than the 
expected land-use change. 

• The probability of misclassification can be used to calculate the false positive 
rate of land-use change detection, and values are typically around 90 %. 

• Whilst these errors are predictable and can be accounted for, directly 
detecting the expected land-use change rates <1 % is not currently 
practicable. 

6 WP-A Using life tables in modelling 
land-use change 

6.1  Introduction 
This section describes the concept of life tables in modelling land-use change. In the 

current procedure, we firstly estimate the B matrix each year by MCMC, then 

estimate where these land-use changes take place in a separate step. This second 
step uses static maps of likelihood for each land use. That is, for each year, we have 
a raster containing the likelihood of a given land-use occurring in each cell. This is 
based on observed data; if several data sets agree that a given cell is used for crops 
in a given year, there is a high likelihood of any new cropland being placed there by 
the algorithm (if it is not already cropland). However, these likelihood maps are 
static: they vary over time according to the data, but they are the same in every 
simulation. What this misses is the dependence of land-use change on prior history 
in the grid cell. There are a few cases where this is important. Most importantly, 
there is rotational grassland, which is used for arable crops for a number of years, 
before being returned to grassland on a repeating cycle. Thus, the likelihood of 
grassland changing to cropland is higher for a four-year old grassland than a 50-
year old grassland. This phenomenon is not well captured in the current method. For 
forests, deforestation may be more likely to occur where the trees are at a 
commercially harvestable age, so the likelihood of transition is not constant, but 
peaks at around 40-60 years. More generally, land use shows inertia, and change 
is less likely where no change has happened before. 
 
To capture such “memory” effects (i.e. that the time since past land-use change 
affects the likelihood of current land-use change), we can use an approach borrowed 
from population modelling based on “life tables.” In the population modelling context, 
life tables are a set of age-specific mortality rates. The same idea is referred to as 
survival analysis, reliability analysis, of time-to-event analysis in various domains. 
Here, we are modelling the “survival” of land under a given continuous usage. Using 
the population analogy, a forest is “born” when a grid cell is afforested (from any 
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other previous land use), and “dies” when it is deforested (converted to any other 
previous land use). Similarly, the same applies when areas of other land uses are 
created or destroyed. We can think of this as six populations (woods, cropland, 
grassland, rough grazing, urban or other land uses), each of which has a specific 
life table. In this context, rather than mortality rates, the life table is the set of age-
specific probabilities of conversion to other uses. So rather than a single dimension, 
each life table has six columns, for the probabilities to conversion to each of the five 
other land uses, plus the probability of remaining unchanged. 

6.2  Methods 
We established the life tables based on observed data, by counting the frequency of 
the length of all contiguous land uses. The land-use vectors derived from the IACS, 
CROME, and LCC data sets were used to do this for the six land-use classes 
considered here. Within these, for each land use, we performed a cross-tabulation 
of the frequency of transitions to every other land use with age. That is, taking crops 
as an example, we counted the occurrences of: 

• 1-year old crops changing to woods, 
• 1-year old crops remaining as crops, 
• 1-year old crops changing to grasslands, 
• 1-year old crops changing to rough grazing, 
• … etc., and 
• 2-year old crops changing to woods, 
• 2-year old crops remaining as crops, 
• 2-year old crops changing to grasslands, 
• 2-year old crops changing to rough grazing, 
• … etc., 

and so forth, up to an age of 10 years, the longest span of continuous data available 
(in IACS). Normalising by total count, we can convert these frequencies to estimated 

probabilities. These transition probabilities are usually denoted λ in the context of 

population modelling (probability of mortality). 

6.3  Results 
The life tables for cropland and grassland over the first ten years are shown in 
Figures 6.1 and 6.2. 
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Figure 6.1: The transition probability, λ, for cropland as a function of its age (i.e. time 

since previous land use). The panel labelled ‘crops’ shows the probability of cropland 
remaining cropland. 
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Figure 6.2: The transition probability, λ, for grassland as a function of its age 

(i.e. time since previous land use). The panel labelled grass shows the probability of 
grassland remaining grassland. 
 
The three data sources show similar patterns, although initial change is generally 
steeper in CROME and LCC. A 10-year time span is only available in IACS, so 
definitive comparisons are not possible. In the case of both crops and grasslands, 
the probability of remaining unchanged increases asymptotically with age; the 
probability of changing use decreases correspondingly. The most likely transition for 
cropland is to grassland, and vice versa. The probability of other conversions 
remains low and roughly constant. 

6.4 Discussion  
The code for the data assimilation algorithm was adapted to use the life tables 
dynamically to calculate the likelihoods L in sampling U, going back in time from 2019. 
Previously, the likelihood calculation was done as a pre-processing step, to calculate 
a number of static maps, one per year. This is now done dynamically, multiplying a 
spatial likelihood term Lstatic with the dynamic likelihood term Ldynamic (depending 
on the age of the current land use). Because Ldynamic depends only on the age (and 
not the whole previous history), we simply need to update a raster containing the age 
of each land use each year. This requires an initial estimate from which to start, and 
then works backwards. Note that the absolute values in the life tables are not critical; 
the actual number of cells changing use is determined when we estimate the β matrix 
values. Indeed, there are reasons not to trust the absolute values as they will include 
all the false positives discussed in previous sections. It is the shape of these curves 
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with age that is important. Given we know how many cells are changing from (say) 
crop to grass each year, the table determines the relative likelihood of this occurring in 
new croplands versus older more established croplands. Because the possibility of 
change occurs at every location every year, rotational land use is an emergent property 
of the simulations, at a frequency approximately the same as in the observed data. In 
principle this can occur with any land use but is only really significant with changes 
between crops and grass. 

7  WP-A Initial Results: England 
The figures below show the results of the data assimilation procedure. All the data 

sets shown were used in the algorithm, but their relative random uncertainties (σ) 

determined how much influence they have on the estimates. The spatial data sets 
were corrected for systematic uncertainties, using the estimated net false positive 

rate (FP). Having estimated the posterior distribution of the β matrix, we used this to 

simulate multiple maps of land use going back in time to 1950. The maps of the 
likelihood of transition to each land use established in WP-A were updated 
dynamically, using the life tables described in Section 5. 

 

Figure 7.1: Observations and posterior distribution of the transition matrix B, 

representing the gross area changing from the land use in each row to the land 
use in each column each year from 1950 to 2020. The grey shaded band shows 
the 2.5 and 97.5 percentiles of the posterior distribution. The maximum a 
posteriori estimate is shown as the solid black line within this. Observations from 
the different data sources are shown as coloured circles. The coloured solid lines 
show the corrected observations after accounting for systematic uncertainties, and 
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interpolating. The coloured bands around these lines show the random uncertainty, 

rescaled as σ/5 to keep with the axis scale. Because the random uncertainties 

and the corrections to the observations are generally very large in comparison to 
the actual change, scaling the axes is difficult. Note that a consistent colour 
scheme for the data sources is shown, but not all contribute to every figure.  

 

Figure 7.2: Observations and posterior distribution of the gross gain in area of 

each land use G from 1950 to 2020. The grey shaded band shows the 2.5 and 

97.5 percentiles of the posterior distribution. The maximum a posteriori estimate is 
shown as the solid black line within this. Observations from the different data 
sources are shown as coloured circles. The coloured solid lines show the corrected 
observations after accounting for systematic uncertainties, and interpolating. The 
coloured bands around these lines show the random uncertainty, rescaled 

as σ/5 to keep with the axis scale. Because the random uncertainties and the 

corrections to the observations are generally very large in comparison to the actual 
change, scaling the axes is difficult. Note that a consistent colour scheme for the 
data sources is shown, but not all contribute to every figure. 
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Figure 7.3: Observations and posterior distribution of the gross loss of area from 

each land use L from 1950 to 2020. The grey shaded band shows the 2.5 and 97.5 

percentiles of the posterior distribution. The maximum a posteriori estimate is 
shown as the solid black line within this. Observations from the different data 
sources are shown as coloured circles. The coloured solid lines show the corrected 
observations after accounting for systematic uncertainties, and interpolating. The 
coloured bands around these lines show the random uncertainty, rescaled 

as σ/5 to keep with the axis scale. Because the random uncertainties and the 

corrections to the observations are generally very large in comparison to the actual 
change, scaling the axes is difficult. Note that a consistent colour scheme for the 
data sources is shown, but not all contribute to every figure. 
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Figure 7.4: Time series of the net change in area occupied by each land use (D) 

from 1950 to 2020, showing the observations and posterior distribution of 
estimates. The grey shaded band shows the 2.5 and 97.5 percentiles of the 
posterior distribution. The maximum a posteriori estimate is shown as the solid 
black line within this. Observations from the different data sources are shown as 
coloured circles. The coloured solid lines show the corrected observations after 
accounting for systematic uncertainties, and interpolating. The coloured bands 

around these lines show the random uncertainty, rescaled as σ/5 to keep with the 

axis scale. Because the random uncertainties and the corrections to the 
observations are generally very large in comparison to the actual change, scaling 
the axes is difficult. Note that a consistent colour scheme for the data sources is 
shown, but not all contribute to every figure. 
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Figure 7.5: Estimated state of land-use in 2010 and 2020 in one realisation 

of U from the maximum a posteriori estimate of B. 
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Figure 7.6: The spatial distribution of land-use change between 2010 and 2020 in 

one realisation of U from the maximum a posteriori estimate of B. At each location 

where land use has changed, the use in 2010 is shown as a coloured square, and 
the use in 2020 is shown as a coloured circle within this 
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Figure 7.7: Trajectories of the 100 land-use vectors in the posterior U with the 

largest areas (excluding the six vectors which show no change). Each vector of 
land use is shown in a different colour, varied arbitrarily to differentiate different 
vectors. Line thickness and opacity are proportional to the total area occupied by 
each vector, so that the dominant vectors are the most visually obvious. 
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Figure 7.8: Trajectories of the 42 land-use vectors in the posterior U with the 

largest areas (excluding the six vectors which show no change). Line thickness is 
proportional to the total area occupied by each vector. 
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Figure 7.9: Trajectories of the land-use vectors in the posterior U which involve 
rotational change between crop and grassland (i.e. those which include either (i) 
transitions from crop to grass and then subsequently from grass to crop, or (ii) 
transitions from grass to crop and then subsequently from crop to grass). Each 
vector of land use is shown in a different colour, varied arbitrarily to differentiate 
different vectors. Line thickness and opacity are proportional to the total area 
occupied by each vector, so that the dominant vectors are the most visually obvious. 
 
 

8 WP-A Initial Results: Scotland 
The figures below show the results of the data assimilation procedure. All the data 

sets shown were used in the algorithm, but their relative random uncertainties (σ) 

determined how much influence they have on the estimates. The spatial data sets 
were corrected for systematic uncertainties, using the estimated net false positive 

rate (FP). Having estimated the posterior distribution of the β matrix, we used this to 

simulate multiple maps of land use going back in time to 1950. The maps of the 
likelihood of transition to each land use established in WP-A were updated 
dynamically, using the life tables described in Section 5. 



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      144 

 

 

Figure 8.1: Observations and posterior distribution of the transition matrix B, 

representing the gross area changing from the land use in each row to the land use 
in each column each year from 1950 to 2020. The grey shaded band shows the 2.5 
and 97.5 percentiles of the posterior distribution. The maximum a posteriori estimate 
is shown as the solid black line within this. Observations from the different data 
sources are shown as coloured circles. The coloured solid lines show the corrected 
observations after accounting for systematic uncertainties, and interpolating. The 

coloured bands around these lines show the random uncertainty, rescaled as σ/5 to 

keep with the axis scale. Because the random uncertainties and the corrections to 
the observations are generally very large in comparison to the actual change, scaling 
the axes is difficult. Note that a consistent colour scheme for the data sources is 
shown, but not all contribute to every figure. 
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Figure 8.2: Observations and posterior distribution of the gross gain in area of each 

land use G from 1950 to 2020. The grey shaded band shows the 2.5 and 97.5 

percentiles of the posterior distribution. The maximum a posteriori estimate is shown 
as the solid black line within this. Observations from the different data sources are 
shown as coloured circles. The coloured solid lines show the corrected observations 
after accounting for systematic uncertainties, and interpolating. The coloured bands 

around these lines show the random uncertainty, rescaled as σ/5 to keep with the 

axis scale. Because the random uncertainties and the corrections to the 
observations are generally very large in comparison to the actual change, scaling 
the axes is difficult. Note that a consistent colour scheme for the data sources is 
shown, but not all contribute to every figure. 
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Figure 8.3: Observations and posterior distribution of the gross loss of area from 

each land use L from 1950 to 2020. The grey shaded band shows the 2.5 and 97.5 

percentiles of the posterior distribution. The maximum a posteriori estimate is shown 
as the solid black line within this. Observations from the different data sources are 
shown as coloured circles. The coloured solid lines show the corrected observations 
after accounting for systematic uncertainties, and interpolating. The coloured bands 

around these lines show the random uncertainty, rescaled as σ/5 to keep with the 

axis scale. Because the random uncertainties and the corrections to the 
observations are generally very large in comparison to the actual change, scaling 
the axes is difficult. Note that a consistent colour scheme for the data sources is 
shown, but not all contribute to every figure. 
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Figure 8.4: Time series of the net change in area occupied by each land use (D) 

from 1950 to 2020, showing the observations and posterior distribution of estimates. 
The grey shaded band shows the 2.5 and 97.5 percentiles of the posterior 
distribution. The maximum a posteriori estimate is shown as the solid black line 
within this. Observations from the different data sources are shown as coloured 
circles. The coloured solid lines show the corrected observations after accounting 
for systematic uncertainties, and interpolating. The coloured bands around these 

lines show the random uncertainty, rescaled as σ/5 to keep with the axis scale. 

Because the random uncertainties and the corrections to the observations are 
generally very large in comparison to the actual change, scaling the axes is difficult. 
Note that a consistent colour scheme for the data sources is shown, but not all 
contribute to every figure. 
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Figure 8.5: Estimated state of land-use in 2010 and 2020 in one realisation 

of U from the maximum a posteriori estimate of B. 
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Figure 8.6: The spatial distribution of land-use change between 2010 and 2020 in 

one realisation of U from the maximum a posteriori estimate of B. At each location 

where land use has changed, the use in 2010 is shown as a coloured square, and 
the use in 2020 is shown as a coloured circle within this 
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Figure 8.7: Trajectories of the 100 land-use vectors in the posterior U with the 

largest areas (excluding the six vectors which show no change). Each vector of 
land use is shown in a different colour, varied arbitrarily to differentiate different 
vectors. Line thickness and opacity are proportional to the total area occupied by 
each vector, so that the dominant vectors are the most visually obvious. 
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Figure 8.8: Trajectories of the 42 land-use vectors in the posterior U with the 

largest areas (excluding the six vectors which show no change). Line thickness is 
proportional to the total area occupied by each vector. 
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Figure 8.9: Trajectories of the land-use vectors in the posterior U which involve 

rotational change between crop and grassland (i.e. those which include either (i) 
transitions from crop to grass and then subsequently from grass to crop, or (ii) 
transitions from grass to crop and then subsequently from crop to grass). Each 
vector of land use is shown in a different colour, varied arbitrarily to differentiate 
different vectors. Line thickness and opacity are proportional to the total area 
occupied by each vector, so that the dominant vectors are the most visually obvious. 

9 WP-A Initial Results: Wales 
The figures below show the results of the data assimilation procedure. All the data sets 

shown were used in the algorithm, but their relative random uncertainties (σ) 

determined how much influence they have on the estimates. The spatial data sets were 

corrected for systematic uncertainties, using the estimated net false positive rate (FP). 

Having estimated the posterior distribution of the β matrix, we used this to simulate 

multiple maps of land use going back in time to 1950. The maps of the likelihood of 
transition to each land use established in WP-A were updated dynamically, using the 
life tables described in Section 5. 
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Figure 9.1: Observations and posterior distribution of the transition matrix B, 
representing the gross area changing from the land use in each row to the land use in 
each column each year from 1950 to 2020. The grey shaded band shows the 2.5 and 
97.5 percentiles of the posterior distribution. The maximum *a posteriori* estimate is 
shown as the solid black line within this. Observations from the different data sources 
are shown as coloured circles. The coloured solid lines show the corrected 
observations after accounting for systematic uncertainties, and interpolating. The 
coloured bands around these lines show the random uncertainty, rescaled as σ/5 to 
keep with the axis scale. Because the random uncertainties and the corrections to the 
observations are generally very large in comparison to the actual change, scaling the 
axes is difficult. Note that a consistent colour scheme for the data sources is shown, 
but not all contribute to every figure. 
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Figure 9.2: Observations and posterior distribution of the gross gain in area of each 
land use G from 1950 to 2020. The grey shaded band shows the 2.5 and 97.5 
percentiles of the posterior distribution. The maximum *a posteriori* estimate is shown 
as the solid black line within this. Observations from the different data sources are 
shown as coloured circles. The coloured solid lines show the corrected observations 
after accounting for systematic uncertainties, and interpolating. The coloured bands 
around these lines show the random uncertainty, rescaled as σ/5 to keep with the axis 
scale. Because the random uncertainties and the corrections to the observations are 
generally very large in comparison to the actual change, scaling the axes is difficult. 
Note that a consistent colour scheme for the data sources is shown, but not all 
contribute to every figure. 
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Figure 9.3: Observations and posterior distribution of the gross loss of area from each 
land use L from 1950 to 2020. The grey shaded band shows the 2.5 and 97.5 
percentiles of the posterior distribution. The maximum *a posteriori* estimate is shown 
as the solid black line within this. Observations from the different data sources are 
shown as coloured circles. The coloured solid lines show the corrected observations 
after accounting for systematic uncertainties, and interpolating. The coloured bands 
around these lines show the random uncertainty, rescaled as σ/5 to keep with the axis 
scale. Because the random uncertainties and the corrections to the observations are 
generally very large in comparison to the actual change, scaling the axes is difficult. 
Note that a consistent colour scheme for the data sources is shown, but not all 
contribute to every figure. 
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Figure 9.4: Time series of the net change in area occupied by each land use (D) from 
1950 to 2020, showing the observations and posterior distribution of estimates. The 
grey shaded band shows the 2.5 and 97.5 percentiles of the posterior distribution. The 
maximum *a posteriori* estimate is shown as the solid black line within this. 
Observations from the different data sources are shown as coloured circles. The 
coloured solid lines show the corrected observations after accounting for systematic 
uncertainties, and interpolating. The coloured bands around these lines show the 
random uncertainty, rescaled as σ/5 to keep with the axis scale. Because the random 
uncertainties and the corrections to the observations are generally very large in 
comparison to the actual change, scaling the axes is difficult. Note that a consistent 
colour scheme for the data sources is shown, but not all contribute to every figure. 
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Figure 9.5: Estimated state of land-use in 2010 and 2020 in one realisation of U from 
the maximum *a posteriori* estimate of B. 

 



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      158 

 

 

 

Figure 9.6: The spatial distribution of land-use change between 2010 and 2020 in one 
realisation of U from the maximum a posteriori estimate of B. At each location where 
land use has changed, the use in 2010 is shown as a coloured square, and the use in 
2020 is shown as a coloured circle within this 
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Figure 9.7: Trajectories of the 100 land-use vectors in the posterior U with the largest 
areas (excluding the six vectors which show no change). Each vector of land use is 
shown in a different colour, varied arbitrarily to differentiate different vectors. Line 
thickness and opacity are proportional to the total area occupied by each vector, so 
that the dominant vectors are the most visually obvious. 
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Figure 9.8: Trajectories of the 42 land-use vectors in the posterior U with the largest 
areas (excluding the six vectors which show no change). Line thickness is proportional 
to the total area occupied by each vector. 
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Figure 9.9: Trajectories of the land-use vectors in the posterior U which involve 
rotational change between crop and grassland (i.e. those which include either (i) 
transitions from crop to grass and then subsequently from grass to crop, or (ii) 
transitions from grass to crop and then subsequently from crop to grass). Each vector 
of land use is shown in a different colour, varied arbitrarily to differentiate different 
vectors. Line thickness and opacity are proportional to the total area occupied by each 
vector, so that the dominant vectors are the most visually obvious. 

 

 

10 WP-A Initial Results: Northern 

Ireland 
The figures below show the results of the data assimilation procedure. All the data 

sets shown were used in the algorithm, but their relative random uncertainties (σ) 

determined how much influence they have on the estimates. The spatial data sets 
were corrected for systematic uncertainties, using the estimated net false positive 

rate (FP). Having estimated the posterior distribution of the β matrix, we used this to 

simulate multiple maps of land use going back in time to 1950. The maps of the 
likelihood of transition to each land use established in WP-A were updated 
dynamically, using the life tables described in Section 5. 
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Figure 10.1: Observations and posterior distribution of the transition matrix B, 

representing the gross area changing from the land use in each row to the land use 
in each column each year from 1950 to 2020. The grey shaded band shows the 2.5 
and 97.5 percentiles of the posterior distribution. The maximum a posteriori estimate 
is shown as the solid black line within this. Observations from the different data 
sources are shown as coloured circles. The coloured solid lines show the corrected 
observations after accounting for systematic uncertainties, and interpolating. The 

coloured bands around these lines show the random uncertainty, rescaled as σ/5 to 

keep with the axis scale. Because the random uncertainties and the corrections to 
the observations are generally very large in comparison to the actual change, scaling 
the axes is difficult. Note that a consistent colour scheme for the data sources is 
shown, but not all contribute to every figure. 
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Figure 10.2: Observations and posterior distribution of the gross gain in area of each 

land use G from 1950 to 2020. The grey shaded band shows the 2.5 and 97.5 

percentiles of the posterior distribution. The maximum a posteriori estimate is shown 
as the solid black line within this. Observations from the different data sources are 
shown as coloured circles. The coloured solid lines show the corrected observations 
after accounting for systematic uncertainties, and interpolating. The coloured bands 

around these lines show the random uncertainty, rescaled as σ/5 to keep with the 

axis scale. Because the random uncertainties and the corrections to the 
observations are generally very large in comparison to the actual change, scaling 
the axes is difficult. Note that a consistent colour scheme for the data sources is 
shown, but not all contribute to every figure. 
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Figure 10.3: Observations and posterior distribution of the gross loss of area from 

each land use L from 1950 to 2020. The grey shaded band shows the 2.5 and 97.5 

percentiles of the posterior distribution. The maximum a posteriori estimate is shown 
as the solid black line within this. Observations from the different data sources are 
shown as coloured circles. The coloured solid lines show the corrected observations 
after accounting for systematic uncertainties, and interpolating. The coloured bands 

around these lines show the random uncertainty, rescaled as σ/5 to keep with the 

axis scale. Because the random uncertainties and the corrections to the 
observations are generally very large in comparison to the actual change, scaling 
the axes is difficult. Note that a consistent colour scheme for the data sources is 
shown, but not all contribute to every figure. 
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Figure 10.4: Time series of the net change in area occupied by each land use (D) 

from 1950 to 2020, showing the observations and posterior distribution of estimates. 
The grey shaded band shows the 2.5 and 97.5 percentiles of the posterior 
distribution. The maximum a posteriori estimate is shown as the solid black line 
within this. Observations from the different data sources are shown as coloured 
circles. The coloured solid lines show the corrected observations after accounting 
for systematic uncertainties, and interpolating. The coloured bands around these 

lines show the random uncertainty, rescaled as σ/5 to keep with the axis scale. 

Because the random uncertainties and the corrections to the observations are 
generally very large in comparison to the actual change, scaling the axes is difficult. 
Note that a consistent colour scheme for the data sources is shown, but not all 
contribute to every figure. 
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Figure 10.5: Estimated state of land-use in 2010 and 2020 in one realisation 

of U from the maximum a posteriori estimate of B. 
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Figure 10.6: The spatial distribution of land-use change between 2010 and 2020 in 

one realisation of U from the maximum a posteriori estimate of B. At each location 

where land use has changed, the use in 2010 is shown as a coloured square, and 
the use in 2020 is shown as a coloured circle within this 
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Figure 10.7: Trajectories of the 100 land-use vectors in the posterior U with the 

largest areas (excluding the six vectors which show no change). Each vector of land 
use is shown in a different colour, varied arbitrarily to differentiate different vectors. 
Line thickness and opacity are proportional to the total area occupied by each vector, 
so that the dominant vectors are the most visually obvious. 
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Figure 10.8: Trajectories of the 42 land-use vectors in the posterior U with the largest 

areas (excluding the six vectors which show no change). Line thickness is 
proportional to the total area occupied by each vector. 
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Figure 10.9: Trajectories of the land-use vectors in the posterior U which involve 

rotational change between crop and grassland (i.e. those which include either (i) 
transitions from crop to grass and then subsequently from grass to crop, or (ii) 
transitions from grass to crop and then subsequently from crop to grass). Each 
vector of land use is shown in a different colour, varied arbitrarily to differentiate 
different vectors. Line thickness and opacity are proportional to the total area 
occupied by each vector, so that the dominant vectors are the most visually obvious. 

11 WP-A Discussion 
In the original proposal we envisaged that WPA would be based on ground-based 
data that were already available, whilst WPB would provide new data based on 
remote sensing. We proposed to compare land-use change estimates based on 
these individually and combined. We anticipated WP-B would produce at least two 
data sets which provide reliable, high-resolution data on land-use change, with the 
detail to provide the Beta matrices at least every few years back to 1990. However, 
based on the analysis of the false positive rate in previous sections, land-use change 
from the remotely sensed data appears to be wrong 80-90 % of the time. 
Furthermore, the new woodland maps gave no information on the Beta matrices and 
did not provide a plausible time series for new planting/deforestation, compared with 
the existing FC statistics. Basing an analysis solely on the WPB data taken at face 
value therefore seems not very useful, and we restrict the comparison to WPA 
versus the combination of WPA and WPB, where the latter are corrected for 
estimated false positive rates using ground-based data (denoted WPAB). 
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In the results of WP-A, the data assimilation estimates remain close to the 
Countryside Survey data because these are the only data that fully specify the beta 
matrix. The decadal-scale trends in these data remain clear in the assimilated 
estimates. The Agricultural Census data only specify the net change, and there is 
considerable year-to-year noise in the time series. The assimilation algorithm 
effectively smooths out a lot of this noise but follows the general trend. The Forestry 
Commission data for afforestation and deforestation are followed quite closely 
because these are specified with high precision. 

Contrasting these with results from WP-AB, the main effect is further smoothing of 
the time series. This is because it is now a weighted average of several more data 
sets, and these additional datasets do not show a strong coherent pattern. 
Particularly, these datasets do not show the sharp decadal trends seen in the CS 
data, so this is smoothed out. All these data sets have uncertainties considerably 
larger that the Agricultural Census data, so their weighting is relatively low. The 
overall effect of this is that the WP-AB estimates are smoother, but the effect on the 
general pattern and the absolute magnitude of change is relatively small.  

In terms of assessing which of these combinations should be used in the inventory, 
the answer is not entirely clear. Using only WPA data is obviously simpler, as it 
requires fewer data sources. Given the analysis of the false positive rates in the 
remotely sensed data, it is clear these are dominated by spurious differences, and 
most of the apparent change is simply noise. It is therefore questionable whether 
there is any real value in including these. The argument for including these data is 
that it is plausible that they do include some true signal as well as noise – their 
accuracy in detecting change is low but not zero. Given that we can account for the 
false positive rate and down-weight those datasets with highest random uncertainty, 
it makes some sense to use all the information that we have available. The practical 
effect is to smooth out features in the WPA data which we know to be artefacts (the 
sharp decadal trends in CS data), so given that the analysis has been done already, 
there is no immediate problem with using the additional data. 

One assumption that is implicit is that the biases in the WPB data are fixed, known 
constants, so we can reliably correct the data with the calculated false positive rates. 
The false positive rates are almost certainly not fixed, but quite how they vary, and 
whether this is systematic is hard to know. Further work would be needed to estimate 
this. A more elegant approach would be to include the false positive rates as 
parameters to be estimated in the data assimilation algorithm, at the cost of 
increasing the complexity and computation time. 

Whilst we have improved the representation of the CS data by using linear 
interpolation rather than decadal step changes, this still leaves an artefact in the 
data (a different linear trend each decade). This could be improved with a smoothing 
routine (e.g. LOESS or GAM) which would give a better approximation to what we 
expect is the true pattern of change over time. The same point can be applied to the 
Agricultural Census data, where much of the year-to-year noise seems implausible 
and smoothing this out to some degree would seem more realistic. 

The data assimilation routine still gives relatively high weight to the CS data, based 
on the unique way it monitors change. However, exactly how much uncertainty is 
introduced when extrapolating from the sample 1-km squares to national scale is 

https://nerc-ceh.github.io/luct/results-wp-a.html#results-wp-a
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unclear, and the methodology for doing this is now rather obscure. Revisiting this, 
with an appropriate method for quantifying the uncertainty in national-scale 
estimates, would be worthwhile if these data remain central to estimates of change. 

One effect of introducing the WPB datasets is that the spatial attribution of land-use 
change becomes a more confused picture: we have a number of data sources which 
give conflicting (and largely erroneous) information on where land use has changed. 
The effect of this on the time series of maps produced by the data assimilation 
algorithm is to fragment the distribution of land use types. For example, if we used 
only LCM as the basis of past change spatially, the algorithm would reproduce the 
spatial pattern contained in LCM data. If we mix several inconsistent data sets, we 
get a change in the spatial pattern which is largely incoherent. More sophisticated 
techniques for combining the spatial data are required to address this. 
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1 WP-B Introduction  
The tracking of land use and land-use change is fundamental to producing accurate and consistent 
greenhouse gas inventories (GHGI) for the Land Use, Land-Use Change and Forestry (LULUCF) sector. 
The aim of this project is to improve and update the tracking of land-use change for the UK’s GHGI in 
order to meet the international requirements of the Kyoto Protocol to the UN Framework Convention 
on Climate Change (UNFCCC) and the Paris Agreement and the national requirements of the UK’s 
Climate Change Act and related legislation within the UK’s Devolved Administrations. 

Work Package B aims to improve the maps of land-use and land-use change generated by Work 
Package A using data from remote sensing. This will require mapping land cover changes for all six Land 
Use, Land Use Change and Forestry classifications between 1990-2020.  This report describes the work 
undertaken in WPB, including the five sub-tasks and the Quality Assurance (QA) and Data Management 
components. 

1.1 LULUCF land categories 
The six LULUCF land categories are Forest Land, Cropland, Grassland, Wetlands, Settlements and Other 
Land. The UK has specific definitions for each category for GHGI reporting, published in the annual 
National Inventory Report (Brown et al. 2021). All land within the UK is assigned to one of these six 
land categories. 

1.1.1 Forest land 

The UK uses the following definition of forest for reporting under the UNFCCC: land with woody 
vegetation that meets the following thresholds: 

• Minimum area of 0.1 hectares; 

• Minimum width of 20 metres; 

• Tree crown cover of at least 20 per cent, or the potential to achieve it; 

• Minimum height of 2 metres, or the potential to achieve it. 

This definition includes felled areas awaiting restocking and integral open spaces (open areas up to 1 
hectare). 

1.1.2 Cropland 

Cropland is defined in accordance with the Agriculture, Forestry and Other Land Use Guidance (IPCC 
2006) and includes cropped land, including systems where the vegetation structure falls below the 
thresholds used for the Forest Land category (e.g. orchards). 

1.1.3 Grassland 

Grassland that has undergone land-use change and direct management is defined in accordance with 
the Agriculture, Forestry and Other Land Uses guidance (IPCC 2006)8. There are also large areas of 
extensively grazed semi-natural grassland on mineral soils, which are assigned to the 4.C.1 
“undisturbed grassland” sub-category and calculated as the area remaining after all other land use 

 

8 “This category includes rangelands and pasture land that are not considered Cropland. It also includes 
systems with woody vegetation and other non-grass vegetation such as herbs and brushes that fall below the 
threshold values used in the Forest Land category. The category also includes all grassland from wild lands to 
recreational areas as well as agricultural and silvi-pastural systems, consistent with national definitions.” IPCC 
(2006) Vol. 4, Chapter3. 
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areas are subtracted from the total UK land area. This is the buffer land use category for the UK, so 
may contain small areas of other land uses that are not directly managed.  

Grazing is the main land use on semi-natural peatland habitats that would otherwise fall within in the 
Wetland category, so areas of peatland habitat not used for peat extraction or that have been rewetted 
from forest or cropland, are also included in the Grassland category. Areas of grassland that have 
undergone rewetting (or other activities that restore peatland habitats and reduce emissions) remain 
within the Grassland category. 

1.1.4 Wetlands 

The IPCC(2006) definition of wetlands includes areas of peat extraction and land that is covered or 
saturated by water for all or part of the year (e.g. peatlands) and that does not fall into the Forest Land, 
Cropland, Grassland or Settlements categories. It includes both reservoirs and natural rivers and lakes. 
In the UK this category includes areas of both ‘near-natural’ and rewetted peatlands that have 
undergone restoration activities to restore normal peatland biogeochemical functioning. Areas of 
former peatland that have been modified for other land use are reported under the appropriate 
LULUCF category. 

1.1.5 Settlements 

Settlement is defined in accordance with the Agriculture, Forestry and Other Land Use Guidance (IPCC 
2006) and includes all developed land, including transportation infrastructure and human settlements 
of any size, unless they are already included under other categories. In the UK this category includes 
domestic gardens and allotments, waste and derelict ground and urban parkland. 

1.1.6 Other Land 

The IPCC (2006) definition of Other Land are areas that do not fall into the other land use categories. 
In the UK this category comprises inland and coastal bare rock, and areas of shingle/gravel/mud/sand 
in the inter-tidal zone.  

1.2 Summary of Work package A 
The overall aim of the project is to make improved estimates of land-use change in the UK, using 
multiple sources of data. In WP-A, we applied a method for estimating land-use change using a 
Bayesian data assimilation approach. This allows us to constrain estimates of gross land-use change 
with national-scale census data, whilst retaining the detailed information available from several other 
sources. We produced a time series of maps describing our best estimate of land-use change given the 
available data, as well as the full posterior distribution of this space-time data cube. This quantifies the 
joint probability distribution of the parameters, and properly propagates the uncertainty from input 
data to final output. The output data has been summarised in the form of land-use vectors. The results 
show that we can provide improved estimates of past land-use change using this method. The main 
advantage of the approach is that it provides a coherent, generalised framework for combining 
multiple disparate sources of data, and adding further sources of data in future would be 
straightforward.  
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2 WP-B1: Produce Land Cover 
Data/Land-Use Data 

Task B.1 is split into three components, led by UKCEH, FR and AFBI respectively, with each component 
tasked with producing new land cover or land-use data for the period 1990-2020.  

2.1 Production of new Land Cover Map data 
(UKCEH) 

The purpose of the UKCEH component of Task B.1 was to produce new Land Cover Maps (LCM) 
between 1994 and 2010, to complement the existing LCM data for 1990, 2015, 2017, 2018 and 2019; 
LCM2020 production ran in parallel with this project. Producing new LCM data sets required the 
selection, and processing, of satellite data to produce maps of land-use change in accordance with the 
six LULUCF categories and in line with the IPCC guidelines. 

This was achieved by adapting the method developed in Carrasco et al. (2019), which has since been 
applied to produce UK-wide LCMs for 2017, 2018 and 2019, and developing new post-classification 
filtering methods (Figure 1). 

 

Figure 1: Overview of the LCM production chain. 

 

2.1.1 Satellite data 

Google Earth Engine was used to create seasonal composite mosaics for 1990, 1994, 1998, 2002 and 
2010, with a pixel size of 25 m. Google Earth Engine is a cloud-processing environment, linked to cloud-
storage, which is designed to enable large-scale geospatial analysis, particularly of satellite data 
(Gorelick et al., 2017). Atmospherically corrected Landsat collection 1 tier 1 data was used (see USGS, 
2018 for full data specification; see GEE, 2021 for details of data once ingested into GEE; Wulder et al., 
2019), cloud-masking was then applied and the data were then aggregated using the median seasonal 
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value for spring, summer, autumn and winter (Figure 2). The compositing methods try to identify the 
best available pixel in a particular time period. The aim is to produce a complete coverage of imagery, 
free of clouds, cloud-shadow and snow. This significantly reduces the time required to produce Land 
Cover Maps, because the methods can be readily automated and the use of cloud-free composites for 
large square areas (circa 100km x 100km) removes the need for time-consuming hole-filing exercises 
that were crucial parts of ensuring complete UK coverage for previous LCM’s (Carrasco et al., 2019). 

To aid quality assurance the number of images used for different areas of the UK was also mapped 
(Figure 3). The seasonal mosaics were created for six Landsat bands: blue, green, red, near-infrared 
(NIR), short-wave infra-red (SWIR) 1 and SWIR2 and for the years required by the project (Table 1).  

Table 1: Summary of Landsat data. 

Year Data source Based on images covering 

1990 Landsat-5 October 1989 – September 1991 

1994 Landsat-5 October 1993 – September 1995 

1998 Landsat-5 October 1997 – September 1999 

2002 Landsat-5 & 7 October 2001 – September 2003 

2006 Landsat-5, with gap-fill by Landsat-7 October 2005 – September 2007 

2010 Landsat-5, with gap-fill by Landsat-7 October 2009 – September 2011 

 

 

Figure 2: Landsat seasonal mosaics for 1994, shown as false colour composites (NIR, SWIR and red 
bands displayed as R,G,B respectively). 
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Figure 3: Summary of the number of seasons with satellite data for the new Landsat-based LCM data 
sets. Red represents 1 season, Bright green represents 4 seasons. 

2.1.2 Ancillary data 

In addition to the spectral data, the ancillary data sets listed in Table 2 were also used for the image 
classification. 

Table 2: Summary of ancillary data sets. 

Data type Rationale Data set name Coverage Produced by: 

Altitude Constrain land cover classes to 
appropriate slopes and 
altitudes 

Digital elevation 
data 

GB Nextmap 

NI Land & Property 
Services 

Urban 
extent 

Distance from urban, used to 
limit spectral confusion, 
especially between arable and 
urban 

Buildings layer 

Road network 

GB Ordnance Survey (OS) 

Settlement 
development 
limits 

NI NI Statistics and 
Research Agency 

Coast line Constrain coastal classes so 
they do not occur inland 

Mean high/low 
water mark 

GB OS 

Coastal water NI Department of 
Agriculture, 
Environment and 
Rural Affairs (DAERA) 

Water Distance from water used to 
improve classification of 
habitats often associated with 
proximity to rivers (e.g. Fen, 
Marsh and Swamp, and 
Neutral Grassland) 

River network 

Surface water 

GB OS 

Freshwater NI DAERA 

Forest Improve extent of forest, 
especially for recently 

Forest layer GB Ordnance Survey 
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harvested forest and newly 
planted forest 

 

2.1.3 Training data 

Training data have been developed from the vector versions of LCM1990 (Rowland et al., 2020a, b) 
and LCM2015 (Rowland et al., 2017a, b) by using polygons that remained stable (i.e. the same class) 
between LCM1990 and LCM2015. The training data used the 21 LCM class specification (Table 3), with 
the classifications re-categorised to the LULUCF classes post-classification.  The training data were 
derived from areas that stayed classified as the same class between LCM1990 (Rowland et al., 2020a, 
b) and LCM2015 (Rowland et al., 2017a, b), so if a field was classified as crop in LCM1990 and LCM2015 
then it could become a crop training area. The LCM vector data set records a number of attributes 
including the modal coverage, which is the proportion of the polygon covered by the dominant class, 
as well as an attribute that captures the level of uncertainty from the Random Forest classification. 
These attributes can be used to refine the selection of training areas and to exclude some of the 
training polygons that might be less appropriate. Ideally a training polygon should be covered by a 
single land cover class and should be characteristic of that land cover class, so the modal_proportion 
attribute will be high, as will the classification certainty value. 

Table 3: Mapping from LCM classes to the LULUCF classes. Note LULUCF class 7 was added for water 
to ensure complete coverage of the UK. Note classes highlighted in red show deviations from the 
mapping used in WP-A. The deviations were discussed within the team and are based on the carbon 
content (or lack of) of the classes. Supra-littoral sediment includes vegetated sand-dunes. 

LCM_ID LCM_name LULUCF_ID LULUCF_name 

1 Broadleaved Woodland 1 forest 

2 Coniferous Woodland 1 forest 

3 Arable and Horticulture 2 crop 

4 Improved Grassland 3 grass 

5 Neutral Grassland 4 rough 

6 Calcareous Grassland 4 rough 

7 Acid grassland 4 rough 

8 Fen,  Marsh  and Swamp 4 rough 

9 Heather 4 rough 

10 Heather grassland 4 rough 

11 Bog 4 rough 

12 Inland Rock 6 other 

13 Saltwater 7 water 

14 Freshwater 7 water 

15 Supra-littoral Rock 6 other 

16 Supra-littoral Sediment 4 rough 

17 Littoral Rock 6 other 

18 Littoral sediment 6 other 

19 Saltmarsh 4 rough 

20 Urban 5 urban 

21 Suburban 5 urban 
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A range of training areas were tested on 100km x 100km tiles for a range of classification years, to 
inform development of the training data set. The classified results were manually reviewed to identify 
issues and to identify which performed best. The aim was to identify a set of training areas that could 
be used for each of the classifications from 1994-2010, and resulted in a final set of training areas for 
GB defined as: 

1. Stable areas - Polygons that were the same class in LCM1990 and LCM2015 

2. Modal coverage - Coverage by the modal class was greater than 80% in LCM1990. 

3. Pixel area - Polygons containing more than 4 pixels (the purpose of this step is to remove 

small polygons, although most of these polygons are likely to be removed in the 

classification phase anyway, as part of that process removes pixels at the edge of 

polygons). 

4. Additional sea polygons added - the spatial framework is based on Ordnance Survey 

data, which covers land, so there are few sea polygons in the LCM data. Consequently 

sea is classified poorly unless additional polygons are added. In some cases this may 

primarily be an aesthetic issue for the intermediate classifications, as few sea polygons 

will remain in the final product, but it is highly visible and is important for the inter-tidal 

areas. 

5. Additional grassland polygons added – a post LCM2015 review identified that some 

grassland types were poorly represented in LCM2015. To improve this situation, 

additional grassland training areas were produced based on areas identified as SSSI’s or 

phase 1 habitat areas from data published by NRW, NE and SNH. These areas had 

previously been used in the production of LCM1990. 

Coastal classes occurring inland are a long-standing issue with the Land Cover Map and were partly 
resolved at this stage by targeted edits to the training data, specifically:  

6. Saltmarsh correction – excess saltmarsh inland was addressed by deleting saltmarsh 

polygons with a certainty value of < 80%. 

7. Littoral sediment correction – littoral sediment, primarily the vegetated sand dune 

polygons that fall in this class, tend to cause false detection of littoral sediment near low-

lying rivers in coastal areas. Filtering based on certainty value (as applied for saltmarsh) 

was assessed but found to be ineffective due to some persistent mis-classification in 

both LCM1990 and LCM2015 that had resulted in inland areas classified as littoral 

sediment inland. Because none of the polygon attributes were distinctive enough to 

enable these training areas to be filtered out a spatial filter was applied. The spatial filter 

excluded littoral sediment training polygons that fell more than 100m from the mean 

high water mark, as defined by the OS boundary line data set. 

The corrections in steps 7 and 8 are important for classes that are aggregated into the ‘Rough 
grassland’ class. 

8. Inland rock – inland rock was represented by training areas based on LCM1990 only, 

where the polygon area was greater than 4 pixels, the modal coverage was greater than 

85% and the certainty value was higher than 80%.  

For GB this resulted in over 3 million polygons (see table 4 for full breakdown). 
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Table 4: Summary of the number of polygons for each LCM-class in Great Britain. 

LCM-class Number of polygons 

Broadleaved woodland 281223 

Coniferous Woodland 109929 

Arable and Horticulture 453037 

Improved Grassland 1444715 

Neutral Grassland 5347 

Calcareous Grassland 11070 

Acid grassland 126877 

Fen, Marsh and Swamp 3280 

Heather 27457 

Heather grassland 50127 

Bog 13633 

Inland Rock 2059 

Saltwater 2802 

Freshwater 8460 

Supra-littoral Rock 2938 

Supra-littoral Sediment 3770 

Littoral Rock 1486 

Littoral sediment 4402 

Saltmarsh 5673 

Urban 100127 

Suburban 446943 

Total 3105355 

 

The NI data was created separately (Table 5), and followed steps 1-3 of the GB methodology, but then 
diverged to resolve NI-specific issues, especially around the quality of some of the grassland and 
deciduous woodland training areas: 

1. Certainty threshold –all training polygons had to have a certainty > 80% in LCM1990. 

2. Additional grassland filtering – to remove some poor grassland training polygons, 

the certainty for grassland training polygons in LMC1990 was increased to over 90%, 

with polygons less than 90% deleted from the training data set. 

3. Additional woodland filtering – to remove some poor deciduous woodland training 

polygons, the woodland class required a certainty of over 80% in LCM2015 (as well 

as the certainty threshold in step 1). 

4. Manual edits to woodland data – after the edits above, a persistent issue remained, 

that was most apparent in Fermanagh, and was caused by long-standing issues with 

the accurate classification of small fields surrounded by mature trees. The image 

classification, across multiple LCM’s, has struggled to classify these fields as 

grassland, rather than forest. Consequently, some of these fields were being wrongly 

selected as woodland training areas. All the LCM vector attributes were reviewed to 

find a systematic solution to filter out these areas. However, some persisted, so a 

targeted manual review of the training areas was undertaken. The fields that were 

manually identified as being unsuitable deciduous woodland training polygons were 

flagged, deleted from the training data and saved as a separate data set, so they can 

be re-used in the future if required. 
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5. Additional grassland polygons – as with GB additional grassland areas were added 

(see GB text for further details). 

Table 5:  Summary of the number of polygons for each LCM-class in Northern Ireland. 

LCM-class Number of polygons 

Broadleaved woodland 1377 

Coniferous Woodland 9945 

Arable and Horticulture 2863 

Improved Grassland 42821 

Neutral Grassland 95 

Calcareous Grassland 22 

Acid grassland 1807 

Fen, Marsh and Swamp 120 

Heather 589 

Heather grassland 624 

Bog 877 

Inland Rock 66 

Saltwater 233 

Freshwater 1042 

Supra-littoral Rock 24 

Supra-littoral Sediment 191 

Littoral Rock 51 

Littoral sediment 452 

Saltmarsh 6 

Urban 2089 

Suburban 15443 

Total 80737 

 

2.1.4 Classification method 

The image data stacks were classified using the Random Forest algorithm (Breiman, 2001). The 
classifications used up to 10,000 training pixels selected from the specified training areas for each class. 
For each pixel this produced a land cover class, based on the majority vote of the 200 trees, as well as 
the probability of the majority class (based on the number of votes for the majority class). For these 
historic classifications a two-stage classification process was employed. Firstly, the classification was 
run with an input data stack comprised of satellite imagery and ancillary data layers, then the 
classification was re-run, using the satellite data, without the ancillary data. The results of the two-
classifications are then merged. This two-stage method was developed in Rowland et al., (2017c) to 
minimise issues caused by the ancillary data being current ~2015. For example, a distance to buildings 
layer is used to prevent bare arable fields occasionally being classified as urban areas, however, the 
buildings data is circa 2015, so includes housing estates that did not exist in 1990. The ancillary data 
has a strong influence on Random Forest, so Random Forest will tend to classify urban land cover 
where the ancillary layer suggests it, even if the satellite data does not show any signs of it. Hence the 
need for the two-stage process. 

The final part of the classification process included three corrections: 

• Arable in urban areas – arable land cover is sometimes detected in urban areas, primarily 
because of the spectral heterogeneity of urban parks. To resolve this the urban greenspace data sets 
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were used to identify arable in urban areas and convert it to grassland. For GB, this correction used 
the Ordnance Survey Greenspace layer (OS ref), whilst for NI it used an equivalent layer developed 
specifically for this project from Open Street Map data. 

• Airport runways – airport runways are not in the urban ancillary layer, so were being detected 
by the classification without ancillary data, but not by the classification with ancillary data. This led to 
airport runways being excluded when the two classifications were merged. To avoid this a correction 
was implemented that used urban pixels from the classification without ancillary data, within the 
boundaries of airports. To implement this airport boundaries were taken from the CORINE land cover 
data set. 

• Coastal correction – coastal classes, especially saltmarsh, have a tendency to ‘creep’ inland, 
creating false positives in low-lying areas, next to rivers. To minimise this a coastal correction was 
developed, based on the coastal extent from LCM1990 and LCM2015. It was based on a coastal buffer 
zone, with the aim of restricting coastal classes to within this extent. The coastal buffer was created 
by merging the coastal extent of LCM1990 and LMC2015 and then some manual edits were applied to 
delete some false positives, after which a 100m buffer was applied. The coastal zone was then used to 
minimise the encroachment inland of coastal classes, by using non-coastal classes (where mapped by 
either classification) beyond the coastal zone. 

 

2.2 Generation of new Forestry data for Great 

Britain (Forest Research) 
National forest inventories are carried out by the Forestry Commission to provide accurate, up-to-date 
information about the size, distribution, composition and condition of forests and woodlands in Great 
Britain. This information is essential for developing and monitoring policies and guidance which 
support sustainable forest management. 

2.2.1 Production of the 1990 woodland map 

Production of the interim 1990 woodland map 

The Interim 1990 woodland map (Figure 4) is a combination and manipulation of four data elements 
that were pre-prepared by Forest Research (FR).  

To achieve this NFI have conducted four main areas of analytical work: 

1. Production of 1995 woodland map; 
2. Elements of the 2006 NFI GIS woodland map; 
3. Elements of the NFI map and NIWT map comparison work; 
4. Manipulation and reformulation of elements of Forestry Commission new planting scheme 

GIS data 1990 to 2010. 
 

To produce an interim 1990 map, a logical ruleset that determined what existing GIS map data 
representing woodlands would be pertinent to the production of this map. 

This related to selecting map data that had evidence within it verifying the existence of woodland at 
1990, such as tree age at 1998 and 2006 (step 1 and 2). In addition, age of new planting grants was 
used. Through taking such existing GIS map data and analysing it for its actual and implied age at 1990, 
woodland polygons could be selected or rejected for existence at 1990, then if appropriate added to 
the new 1990 map. 
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The internal logic for probability of existence at 1990 was primarily built from a knowledge of when 
the data sources were created, the age of woodland when observed and the age of any imagery used 
when observed. For new planting administrative data on when woodland officers confirmed a 
successful planting was additionally used. 

 

 

Figure 4: 1990 Interim Woodland map 
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Production of the final 1990 woodland map 

In order to identify ‘large’ errors of omission within the interim 1990 woodland map, an automated 
classification of a composite 1990 Landsat image mosaic and subsequent manual verification was 
carried out. For further detail of the model used for this work, please see Appendix 1: Development of 
a 1990 Woodland Map for the BEIS Land Use project by Antony Walker. 

The model found between 4700 and 6351 hectares of woodland not previously included on the 
woodland map, although this only represents approximately 2% of the woodland area (i.e. the interim 
woodland map had already covered approximately 98% of woodland). The model performed well over 
lowland areas, but less well over vegetated coastland and upland, particularly across Scotland and 
highland areas of England and Wales. 

 

Quality assurance of the final 1990 woodland map 

To ensure that all NFI woodland maps keep in line with the same accuracy levels, the areas generated 
by the model were then manually verified by an expert interpreter.  

  

During this process, areas greater than 1.5 hectares, inclusive (15% of the total outputs produced by 
the model), were assessed individually against other sources, e.g. 1990 Landsat imagery, older aerial 
photographs and grant scheme data. Where there was enough evidence of woodland presence, the 
original output was modified to reflect the relevant woodland area. This work involved the expansion 
of the original area to include adjacent woodland area or it’s reduction to exclude open area. 

  

Due to limited support data availability during this stage of the process, as part of the quality assurance 
process, 100% of the areas that have been identified as woodland were then reviewed by a senior 
interpreter.   

Where discrepancies were found, further investigation took place prior to the inclusion or exclusion of 
these areas in the final product. 

  

For areas that didn’t show enough evidence of woodland, 50% of these were randomly selected and 
the same quality assurance process was applied. 

  

From this work a total area of 7000 ha were added to the interim 1990 woodland map. 

  

Due to time constrains, areas less than 1.5 hectares weren’t manually verified by an interpreter. As the 
inclusion of unverified data would bring along errors to the total areas, such as the incorporation of 
open space and other features in the final product, these areas were excluded from the final product. 

 

2.2.2 Production of 1995, 2000 and 2005 woodland maps 

The 1995, 2000 and 2005 woodland map are a combination and manipulation of different data 
elements that were pre-prepared by FR.  

To achieve the 1995 woodland map analytical work in four main areas was conducted. 
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1. 1995-1998 NIWT GIS woodland map, for further information regarding this work, please 
see section National Inventory of Woodlands and trees 1995 – 1998 (NIWT) 

2. Elements of the 2006 NFI GIS woodland map; 
3. Elements of the NFI map and NIWT map comparison work, for further information 

regarding this work, please see section  Comparison between NIWT and NFI estimates of 
woodland area work; 

4. Manipulation and reformulation of elements of Forestry Commission new planting scheme 
GIS data 1990 to 2010. 

 

To achieve the 2000 woodland map analytical work in four main areas was conducted. 

1. Production of the 1995 woodland map; 
2. Elements of the 2006 NFI GIS woodland map; 
3. Elements of the NFI map and NIWT map comparison work, for further information 

regarding this work, please see section  Comparison between NIWT and NFI estimates of 
woodland area work; 

4. Manipulation and reformulation of elements of Forestry Commission new planting scheme 
GIS data 1990 to 2010. 

 
To achieve the 2005 woodland map analytical work in four main areas was conducted. 

1. Elements of the 2006 NFI GIS woodland map; 
2. Elements of the NFI map and NIWT map comparison work, for further information regarding 

this work, please see section Comparison between NIWT and NFI estimates of woodland area 
work; 

3. Manipulation and reformulation of elements of Forestry Commission new planting scheme 
GIS data 1990 to 2010. 

 
 

National Inventory of Woodlands and trees 1995 – 1998 (NIWT) 

The National Inventory of Woodland and Trees 1995–1998 (NIWT) was presented as a series of 
inventory reports at a national and regional level.  

In England and Wales a digital map of all woodland showing Interpreted Forest Types was derived from 
1:25000-scale stereo colour aerial photography (1997 for Wales and 1998 for England). In Scotland, 
the main survey was based on the Land Cover of Scotland (LCS) 1988 project, which used 1:24000-
scale aerial photography to create a land cover map. For further information regarding this work, 
please see LCS88Final report available on 
https://www.hutton.ac.uk/sites/default/files/soils/lcs88_full_report.pdf. The woodland components 
of this dataset were extracted to provide the basis for a digital woodland map showing Interpreted 
Forest Types. The map was then updated to 1995 for new planting within Woodland Grant Schemes 
and the Forestry Commission woodlands.  

The digital map gave the extent of all woodland of 2 hectares or more, and this was progressively 
updated in preparation for survey work.  

 

https://www.hutton.ac.uk/sites/default/files/soils/lcs88_full_report.pdf
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Figure 5 National Inventory of Woodland and Trees 1995 - 1998 woodland map 

 

For further information the NIWT can be found at https://www.forestresearch.gov.uk/tools-and-
resources/national-forest-inventory/national-inventory-of-woodland-and-trees/.  

Comparison between NIWT and NFI estimates of woodland area work  

The NIWT used different base years for the maps and initial woodland area estimates for each of the 
individual countries (1998 for England, 1995 for Scotland and 1997 for Wales). The analysis compared 
the NFI-based estimated woodland area for Great Britain at March 2010 with the sum of the estimated 
woodland areas reported by NIWT for each of the countries at each of their respective base years, 
taking into account the differing periods involved for each of the countries.  

 

https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/national-inventory-of-woodland-and-trees/
https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/national-inventory-of-woodland-and-trees/
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NIWT estimated a total woodland area of 2,665 thousand hectares in Great Britain compared to the 
current NFI-based estimate of total woodland area in 2010 of 2,982 thousand hectares. This represents 
a net difference between the two estimates of 317 thousand hectares. The causes of this net difference 
are important to understand, analysis has been undertaken to identify and quantify the various 
individual sources of this difference, as far as can be determined.   

The work to date has concluded that most of the differences are a result of the limitations in previous 
technology that led to NIWT under-reporting woodland area in some areas and over reporting 
woodland area in other areas. Anomalies identified in this study as having been due to errors found in 
the NFI map have been rectified in the latest maps. 

These records have been analysed and where pertinent selected for inclusion into the 1990, 1995, 
2000, 2005 and 2010 woodland maps. 

For further information regarding this work, please see the National Forest Inventory Woodland Area 
Statistics for Great Britain report. 

2.2.3  Production of 2010, 2015 and 2020 Interim woodland 
maps 

The National Forest Inventory (NFI) is to be a continuous inventory of Britain’s woodlands conducted 
on a five year cycle. The elements of the inventory are a digital map of woodland in Britain constructed 
from aerial photography, complemented by other sources of information, and a programme of ground 
surveying of woodland using a representative sample drawn from the woodland and forested areas of 
Great Britain.  

The NFI succeeds a series of single inventories produced by the Forestry Commission, the most recent 
of which was the National Inventory of Woodland and Trees (NIWT).  

The NFI woodland maps covers all forest and woodland area over 0.5 hectare with a minimum of 20% 
canopy cover (or the potential to achieve it) and a minimum width of 20 metres, including areas of 
new planting (see Woodland creation data section), clearfell and restocked areas. These criteria 
conform closely to international definitions of woodland and are referred to here as areas of ‘NFI 
woodland’. Wooded areas and individual trees that do not conform to these criteria are referred to by 
NFI as ‘small woods’, which are reported on separately9. 

All forest types are assessed in aerial photography using GIS techniques to establish areas and 
percentages of tree cover. The woodland is further differentiated into interpreted forest types (IFTs), 
distinguishing primarily between conifer stands and broadleaved stands, and internal open spaces. All 
boundaries, woodland and open space are based upon 25-cm-resolution colour aerial photography for 
England and Scotland and 40-cm-resolution colour aerial photography for Wales. In addition, any open 
areas of greater than 0.5 hectare that are completely surrounded by NFI woodland are mapped as 
interpreted open areas (IOAs). Further details regarding the full list of categories in the NFI woodland 
map can be found in the NFI description of attributes document at  
https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/how-our-
woodlands-might-change-over-time-8211-nfi-forecast-reports/supporting-documents-for-the-nfi/. 

NFI uses an observational approach to estimating woodland area, augmented by reported activity in 
respect of new planting, and specific tests and conventions in defining the existence and timing of 
woodland loss in line with international conventions. In the estimation and timing of woodland loss, 
NFI does not use information on intent or declared policy. 

 

9 These smaller wooded features are referred to internationally as ‘Other Wooded Land’ (OWL). 

https://www.forestresearch.gov.uk/documents/2732/NFI_GB_woodland_area_stats_2010_FINAL.pdf
https://www.forestresearch.gov.uk/documents/2732/NFI_GB_woodland_area_stats_2010_FINAL.pdf
https://www.forestresearch.gov.uk/documents/2773/NFI-Description-of-attributes.pdf
https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/how-our-woodlands-might-change-over-time-8211-nfi-forecast-reports/supporting-documents-for-the-nfi/
https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/how-our-woodlands-might-change-over-time-8211-nfi-forecast-reports/supporting-documents-for-the-nfi/
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The first NFI woodland map and accompanying report was published in May 2011 (reference date 
March 2010). Further details can be found in the National Forest Inventory woodland area statistics 
for Great Britain report at www.forestry.gsi.gov.uk/inventory. 

The 2006 map comprised the woodland and forest areas identifiable in the aerial photography 
available at the time. The majority of the photography used was taken around 2006, but smaller areas 
were taken at other dates ranging from 1999 to 2009. For more detailed information about  the date 
ranges of the imagery used for each country, see Table 6. 

Table 6 Aerial photography dates by country used for the 2006 baseline woodland map 

 

  

 

Notes for Table 6: 

1. The full 2006 aerial photograph coverage of Wales was provided to the Forestry Commission by the Welsh 
Assembly. 

 

In addition to this main mapping exercise, areas identified under new planting grant aid schemes 
between 1990 and 2010 were also added to the map, since when trees are small (i.e. newly planted 
woodland) it is difficult to clearly identify woodland using aerial photography. To account for this, areas 
that were identified under the new planting grant aid scheme but were not clearly evident as woodland 
were added to the map and classified as ‘assumed woodland’ until the trees became visible. The NFI 
map was also compared to the 1995-1998 NIWT map and any valid and significant discrepancies 
identified by the comparison exercise that were greater than 5 hectares in size were added to the 2011 
published NFI woodland map. For more information regarding NIWT, please see 
www.forestry.gov.uk/forestry/infd-86xc6c. 

Prior to the publication of the first NFI map, additional independent cross-checks of woodland present 
were made by comparing the NFI map to satellite imagery and alternative assessments of land cover 
such as those arising from the Countryside Survey. After 2011, satellite imagery was used to identify 
areas of recent canopy change10. This included clearfell and windblow areas and areas where a change 
in land use had occurred since the date of the previous satellite image. Satellite imagery data for 2006, 
2009, 2012, 2014-2019 were analysed to produce these updates. The 2006 and 2009 datasets were 
applied retrospectively to the first NFI map. The 2012, 2014- 2019 imagery sets were used to update 
the subsquent NFI maps as part of the annual update process. 

 

10 The areas of canopy loss identified were restricted to areas of over 0.5 hectare in extent. 

http://www.forestry.gsi.gov.uk/inventory
http://www.forestry.gov.uk/forestry/infd-86xc6c
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Further improvements to the map were made between 2012, 2015 and 2019 as the following 
additional datasets became available: 

1. Bluesky’s National Tree Map (NTM) product for England and Wales. 

2. The Native Woodland Survey of Scotland (NWSS). 

3. Further NFI/NIWT comparison work (for areas less than 2 hectares). 

4.Woodland Carbon Code product. 

In addition, if new photography was available, a new aerial photography assessment was undertaken 
to confirm canopy cover in areas of the map where the photography used in the first assessment was 
more than 7 years old. 

 

Quality assurance of the NFI woodland maps 

 

The quality and accuracy of the NFI woodland maps produced by FR are of crucial importance as the 
woodland maps are the base of various statistical reports indicating an extensive and unique record of 
key information about our forests and woodlands across Great Britain. 

  

The quality assurance process followed to produce the NFI published maps ensures that all data 
published have been manually validated and confirmed against different data sources to support the 
changes between the woodland maps. 

  

The NFI uses an observational approach to estimating woodland area and monitor woodland loss. This 
approach comprises manual interpretation of aerial photography and optical remote sensing imagery 
available at the time of the assessment and reported activity in respect of new planting. 

  

To ensure the outputs’ interpretation is consistent between interpreters, a standardised set of 
mapping rules was developed ensuring the coherency and uniformity of the woodland maps over the 
years and across Great Britain. For further information on the NFI mapping rules, please see NFI Map 

Protocol document available on https://www.forestresearch.gov.uk/tools-and-
resources/national-forest-inventory/ 

  

After an initial training period, junior interpreters are then supervised and mentored by a senior 
interpreter. During this phase, junior interpreters have an opportunity to deepen their knowledge in 
the different mapping rules exceptions and on the impact of an inconsistent and bias final output. 

  

Alongside the mentoring phase, at least 20% of the areas proposed for change are reviewed by senior 
interpreters to ensure that these comply with the NFI mapping rules and it reflects the changes 
identified within the current monitoring period.  

  

Prior to publication, all geospatial data goes under extensive data integrity checks such as, attributes 
and topological checks. Additionally, the final outputs are compared with previous versions of the 
published data. This step ensures that the revised estimates of woodland area are line with the 
proposed changes and any discrepancies are accounted for. 

https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/
https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/
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Due to the volume of data to be analysed and the time constraints of this project, the data used for 
the reformulation of elements of new planting scheme GIS data 1990 to 2010 in this work, have not 
been through the same quality control and quality assurance process as the NFI published maps. 

The new planting data used to produce the 1990, 1995, 2000 and 2005 woodland maps was mostly 
taken from its original source. Very limited manual validation and only integrity data checks, e.g. 
topological checks, were carried out prior to its inclusion in the products above. 
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Figure 6 National Forest Inventory 2019 woodland map 

2.2.4 Woodland creation data  

The afforestation programme across Great Britain began with the creation of the Forestry Commission 
(FC) in 1919. Since its establishment, the FC, was given the power to acquire and plant land and 
promote timber supply.  

1) Public ownership 
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Since its inception, FC kept detailed paper records of the woodlands under its management. 
The advances in technology in the 1990s allowed for the inventory of the public forest land to 
became available geo-spatially. In 2000, the woodland stock maps were brought together with 
the woodland descriptions into a spatial database. They have been managed and maintained 
as a single unit since then.  

2) Private ownership 

To encourage woodland creation and management of existing woodlands, in 19711, the 
government approved financial incentives to private owners. Although this policy goes back to 
1947, geo-spatial records are only available from June 1988 onwards. 

 

Forestry Commission throughout this period kept spatial records of where and when all new 
woodlands were planted, both public and private. This was initially in paper form and later in GIS.  

  

For the 2010, 2015 and 2020 NFI woodland map, areas of new planting areas, either in public or private 
land, which haven’t already been included in the woodland maps were identified by a geoprocessing 
function resulting in an output of the balance of the unmapped features.  

  

These records were then assessed by the interpreters against the latest aerial photograph available 
and, where pertinent, the relevant data was updated to comply with the NFI mapping rules. The 
relevant data was then selected for inclusion into the woodland maps produced.  

  

During the assessment phase, the preferred classification would be to allocate an attribute, such as 
young trees. However, due to the imagery availability, there will be areas where no evidence of trees 
could be found at this stage. In these cases, such areas were included into the woodland areas as 
Assumed woodland. These areas will feature in various woodland maps until new imagery is available 
and evidence of trees could be seen.  

 
 

 

2.3 Generation of new forestry data for Northern 
Ireland (AFBI) 

2.3.1 Northern Ireland 2020 Woodland Basemap 

The Northern Ireland Forest Service Woodland Basemap 2020 (Figure 7) was used as the initial dataset 
for the identification of woodland polygons in Northern Ireland.  Although this indicates some 117,600 
ha of woodland, a proportion of the polygons were subsequently found to be scrub or hedgerows 
(when manually checked with reference to the 2020 Land and Property Service Orthoimage Layer).  
Scrub dominated polygons within the dataset were identified using the Department of Agriculture, 
Environment and Rural Affairs (DAERA) Land Parcel Information System (LPIS) Ineligible layer, with 
some 11,700 ha removed from the Basemap.  Detection of the included hedgerows was more 
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problematic in that a number of the hedgerows are appended onto actual woodland polygons.  
However, the majority of hedgerows (as single rows of trees) were identified using a polygon thinness 
ratio formula (4 * pi * polygon area / (polygon perimeter2), allowing the removal of approximately 
1,300 ha from the Basemap. 

Although secondary datasets were used to look for additional woodland polygons (Land and Property 
Service Vegetation Layer, Woodland Trust Sites NI, Woodland Trust Ancient Woodland Inventory), no 
updates were made.  Additional woodland polygons identified from satellite imagery classification 
(detailed in the section below) were added to the Modified Basemap, resulting in a final 2020 
woodland area of approximately 104,700 ha. 

The Modified Basemap was merged with the Northern Ireland Forest Service Sub-compartments 
dataset to allow the inclusion of planting dates for public woodlands.  Areas of new woodland 
plantation were identified, dated and previous land use recorded, evidenced by use of the Land and 
Property Service Orthoimage Layers (which run in an approximately 3-year update cycle from 2003).  
No freely available datasets were found prior to 2003, documenting new woodland plantations. 

Satellite data 

Google Earth Engine was used to create seasonal composite raster mosaics for 1990, 1998, 2002, 2004, 
2010, 2014, 2018 and 2020.  For all years, atmospherically corrected image collections were used to 
generate the composite raster; Landsat 5 for maps 1990 – 2010, Landsat 7 & 8 for 2014 and Sentinel 2 
for 2018 & 2020 (GEE 2021b, c, d. e)).  In order to reduce the impact of cloud cover to a minimum, the 
composite raster was generated over 3 years, 1 year either side of the target year, except for the 2020 
map where 2019 and 2020 source images were used.  Cloud-masking was then applied and the data 
were sampled using the median reducer function to give a representative single pixel value for that 
time-series.  Each mosaic was composed of the bands; blue, green, red, near-infrared (NIR), short-wave 
infra-red (SWIR) 1 and SWIR2.  To include aspects of seasonality in the vegetation cover, composite 
images for spring, summer and the autumn/winter period were generated for all years apart from 
2006, where only spring and summer were used due to significant cloud cover in the rest of the image 
collection.  

Woodland backcast and classification 

The Modified Basemap was backcast through the time series with the assumption that the woodlands 
identified would be generally persistent over that period.  In this process polygons flagged as new 
woodland plantations were sequentially removed based on their planting date and polygons flagged 
as lost woodland areas were reinstated.  The estimated total area of woodland resulting is shown in 
Table 7. 

Image classification was carried out in ESRI ArcPro 2.8 software using the Random Trees classifier (an 
implementation of the Random Forest classification algorithm (Breiman, 2001)).  For each year a single 
stacked image was created from the seasonal mosaics with up to 18 bands being included.  The 
classification procedure was based on up to 30,000 training pixels per land cover class and using a 200 
decision tree limit.  With the primary focus of this work being the classification of the woodland 
polygons identified in the Modified Basemap, the land cover classes in Table 8 were used.  A training 
dataset of 15,000 polygons was sourced from the Forest Service Woodland Basemap 2020 and DAERA 
LPIS 2020 dataset and used with a 70/30 training/validation split.  The area of woodland thus classified 
for the map sequence and the associated overall accuracy assessment value are illustrated in Table 7. 
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Table 7 Estimated total woodland areas in Northern Ireland 

Year Modified 
Basemap (ha) 

Modified Basemap; 
classification (ha) 

Classification accuracy 
(Kappa) 

1990 103,043 94,342 0.836 

1998 103,009 95,276 0.864 

2002 103,183 96,485 0.883 

2006 103,530 96,874 0.871 

2010 103,879 98,597 0.827 

2014 104,203 99,544 0.854 

2018 104,621 101,659 0.885 

2020 104,725 101,683 0.871 

 

 

Table 8. Land cover classes used in the classification of Northern Ireland woodland polygons.  

Map ID Land Cover Class 

1 Arable 

2 Bog 

3 Broadleaved woodland 

4 Coniferous Woodland 

5 Urban/Suburban 

6 Heather 

7 Improved Grassland 

8 Regenerating Woodland 

9 Scrubland 

10 Heather grassland 

11 Water 
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Figure 7.  Northern Ireland Forest Service Woodland Basemap 2020. 

 
 

3 WP-B.2 – Optimise Land Cover 
Change Data 

3.1  LCM Post-classification filtering to improve 
accuracy 

Having the data for eleven Land Cover Maps in a single sqlite database provides the opportunity to 
applying filtering to remove unlikely land cover changes caused by classification error. This project is 
the first time that such a database has been available for the UK, so the methods for this kind of 
processing are currently in their infancy. We conducted a brief literature review which showed that a 
range of methods have been applied. The most common, and easiest of which, is a running modal filter 
applied along the time-series, so if a classification result is recorded as class: 1, 2, 1, over 3 dates, then 
it can be changed to 1, 1, 1, if this is thought to be more appropriate. 

To aid the development of post-filtering methods, the database processing was created as follows: 

1. The modal class was calculated for each of the LCM polygons for each of the years – for GB 

this resulted in 11 classifications, for over 6 million polygons, so over 65 million land cover data 

records. The modal class for LCM’s 1994-2020 was calculated using the exactextractr package 

in R. The 1990 modal class was calculated from the vector version of LCM1990 using an sql 

query in QGIS: 
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CASE  
WHEN _mode IN (1,2) THEN 1 
WHEN _mode = 3 THEN 2 
WHEN _mode  = 4 THEN 3 
WHEN _mode  IN (5,6,7,8,9,10,11,16,19) THEN 4 
WHEN _mode  IN (13,14) THEN 7 
WHEN _mode  IN (20,21) THEN 5 
WHEN _mode  IN (12,15,17,18) THEN 6 
ELSE 0 

END 
 
The attributes for these are named: bc_1990, bc_1994 etc. 
 

2. A new set of modal class columns providing an updated value, if any filtering has been applied 

to change the values, and that echoes the original value for the polygon if no changes have 

been applied. These are the values exported to the raster LCM data. 

 
3. Add frequency columns for the seven classes. These attributes count the number of 

occurrences of the class for each polygon over the time-series. 

These seven columns are named: freq_c1 etc, where c1 is class 1. 
 
Two related attributes were also calculated to show polygons undergoing rotation between 
crop/grassland (named: crop_grass_rot) and rotation between crop/grass and rough grassland 
(named: crop_grass_rg_rot). 
 

4. From the frequency columns, the replacement class is calculated, this is the dominant/modal 

class across the time-series and it is used as a replacement value, for some of the kbe’s. 

Attribute named: rep_val 
 

5. Then a series of knowledge-enhancement (kbe) rules were created (see Table 9 for details) 

and applied. The kbe’s were designed to tackle two specific types of issues: 

a. To smooth time-series over time, where the time-series appeared to be unchanged 

and just exhibited one or two changes in land cover in the middle of the time-series. 

So, if a forest polygon was forest in 1990 and 2020, but briefly appeared to be rough 

grassland in 1996. The 1996 value would be change to forest in new_2006 (the 

appropriate column for the updated value, the original bc_2006 would remain 

unchanged). 

b. To resolve specific systematic issues, where there appeared to be a ‘drift’ in the 

classification over time. Four corrections of this type were applied (kbe’s 6-9, table 9). 

 
6. River correction – one spatial correction is currently applied. The LCM spatial framework was 

designed not to have narrow, thin polygons, however, some narrow thin features were 

retained. These features cause issues as the spatial resolution and the spatial precision of the 

satellite data increases over the time-series, which results in sections of river being classified 

in later years, but not in earlier years. This gives the appearance of a change to water. To 

remove these segments a spatial correction was devised, which uses a polyline river data set 

(Moore et al., 2000), buffers it and converts it to raster. The raster river data is then ingested 

into the database, as an attribute named: river_prop. In addition, a perimeter area ratio 

(named: pa_ratio) is calculated for each polygon to help identify long, thin polygons. The 
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river_prop and pa_ratio are then used in conjunction, to identify polygons containing river 

segments, which should not be treated as real change (Table 9).  

 
7. Then a series of change columns were added e.g. chng_90_94 for change between 1990 and 

1994. The change attributes were populated with 0 for no change over this time period and 1 

to indicate a change. These columns were created for each of the time-periods between 1990-

2020 and then the number of Land Cover Changes detected for the polygon were recorded in 

an attribute named: LCC_count. 

 
8. Class-specific columns were then added for each class, to show the year of change to enable 

review (these can be used to identify single/multiple changes over time) e.g. named attribute: 

crop populated with years of change, which can be 1994-2019. These columns were primarily 

created to export subsets of data to explore how particularly classes were faring in the review 

process. But are also used for the validation sample. 

 

The database, and associated kbe’s, were created through an iterative process, with change maps 
produced, reviewed, issues identified and corrections derived and applied. The filtering was applied 
cautiously, as there is a risk of over-filtering and removing real change. The process is also complicated 
by the size of the data-base and the lack of existing data to compare this data with.  There are likely to 
be additional corrections that would improve the quality of this database and future work should 
explore this area further.  
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Table 9: Rules applied to filter the Land Cover Change database.  

Rule 
number 

Purpose Query kbe code in 
database 

1 Smooths forestry time-series, requires 
start and end of time-series to be forest 
& forest time-series to be forest for 
more than half-the time-series 

bc_1990 == 1 & bc_2020 
== 1 & rep_val == 1 & 
freq_c1 > 6  

10 

2 Smooths crop, grass and rough grass 
time-series, requires start and end as 
crop/grass and crop/grass for more than 
half-time-series 

(bc_1990 %in% c(2,3,4)) 
& (bc_2020 %in% 
c(2,3,4)) & (rep_val 
%in% c(2,3,4)) & 
crop_grass_rg_rot > 6  

20 

3 Smooths urban time-series, requires 
start and end as urban & urban for more 
than half-time-series 

bc_1990 == 5 & bc_2020 
== 5 & rep_val == 5 & 
freq_c5 > 6  

50 

4 Smooths other time-series, requires 
start and end as other & other for more 
than half-time-series 

bc_1990 == 6 & bc_2020 
== 6 & rep_val == 6 & 
freq_c6 > 6  

60 

5 Smooths water time-series, requires 
start and end as water & water for more 
than half-time-series 

bc_1990 == 7 & bc_2020 
== 7 & rep_val == 7 & 
freq_c7 > 6  

70 

6 Remove change due to inter-tidal 
polygons that alternate between class 6 
and 7 

rep_val >= 6 & freq_c6 > 
1 & freq_c7 > 1  

80 

7 Remove false change due to different 
sensitivity to rivers over time (see river 
correction method above). 

freq_c7 > 0 & pa_ratio > 
350 &  river_prop > 0  

90 

8 Removes false urban to other in the Peak 
District, where there's spectral 
confusion between urban regeneration 
& quarries.  

bc_1990 == 5 & bc_2020 
==6  & freq_c5 > 3 &  
freq_c6 > 3  

100 

9 Removes false rough grass to inland rock 
in highlands of Scotland, seems to be 
due to slight difference in classification. 
These areas may be more susceptible to 
errors, because the areas are highly 
cloudy, suffer from high spectral 
variability due to topography and also 
experience high levels of snow cover. 
This means that the satellite data 
available to classify them is often limited 
and of lower quality. 

bc_1990 == 4 & bc_2020 
==6  & freq_c4 > 3 &  
freq_c6 > 3 

110 

 

4 WP-B.3 – Validation of datasets 
B.3 validates the accuracy of the Land Cover Data sets by quantifying the biases and random errors. 
The validation will be applied for the individual Land Cover Maps, the woodland maps and the derived 
land cover change data. This will require new confusion matrices, with user and producer errors, to be 
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produced for each of the new LCMs, as well as for each of the land cover change time-periods, thus 
providing category-by-category basis in line with the AFOLU guidelines  

4.1  Evaluation of biases in LCM data sets 
(validation) 

The LCM validation work comprised of four components: 

1. Review of classifications and of temporal filtering – this has been an ongoing strand of work 
through the whole project. The evaluating began with qualitative review of the quality of the 
initial classifications and then the revised classifications, before developing into a review of 
the preliminary change data as the project progressed. Essentially, the image classification is 
an iterative process, where initial classifications are run, reviewed, issues assessed and 
changes made to resolve, as far as possible, the issues identified. In this project, the first 
challenge to resolve was how best to create the training data set. To this end, a range of 
training sets were created and their resultant classifications reviewed to identify what 
worked best. The same process was followed to develop the temporal filtering, with initial 
sets of change data reviewed with issues identified and resolved, as far as practicable within 
the constraints of the project. 

2. Confusion matrices for each LCM – this was conducted using a composite validation data set 
that was created initially for validation of LCM’s 2017-2019 and was then manually reviewed 
to remove points that were not appropriate for LCM1990, so that it could be used for 
LCM1990 as well. Consequently, the points should be valid for the period between 1990 and 
2020.  

3. Classifications over time – validation of stable/no change fields using IACS data – change 
and stability over change for crop and grassland areas was also assessed by comparison 
against IACS data. Given uncertainties in the IACS data this maybe more of a corroboration, 
than a validation. IACS data were used to validate change and lack of change of land cover 
data. Table 10 demonstrates how the EO-date underpinning each of the LCMs was related to 
the IACS data. 

4. Manually derived change data sets - Limited data is available on land cover change, so 
manual interpretation of satellite and aerial photography was used to validate change in: 
woodland, urban, water and other land. A script was written in Google Earth Engine to 
display image at the start and the end of the change period, using imagery for the year in 
question +/- 6 months either side. So to assess change between 2006 and 2010 the filter date 
ranges would be .filterDate('2005-07-01', '2007-06-30'); and .filterDate('2009-07-01', '2011-
06-30').  
The R script used to undertake the analysis of the spatial database, included a function to 
create random validation data sets with 10 polygons for each change period for each type of 
change i.e. 1994-1998. This data was exported as sqlite files that were then reprojected to 
WGS84 and imported into Google Earth as kml files, or into Google Earth Engine as 
shapefiles. An additional column was added to enable the manual interpreter to record the 
polygon as: y (for change), n (for no change) and u for uncertain. Where possible, the manual 
assessment was conducted using the timeline of aerial photography in Google Earth Pro, as 
this provided better discrimination and assessment of the time of change. Because it’s easier 
to see the establishment/planting of woodland in Google Earth than in the GEE imagery, 
whilst there is an additional uncertainty when checking the GEE imagery for change. So it is 
likely that the timing of changes in the earlier time period contain a lag, as they require the 
woodland signal to become dominant enough for the new woodland to be clear in the 
Landsat imagery. This could explain some of the poorer correspondence between the change 
polygons and visual validation using Google Earth imagery for the later time periods. These 
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factors led to the manual checks against the satellite data being more time-consuming and 
less certain than the checks against aerial photography.  

Table 10: Summary of IACS data and harmonisation with timing of EO image acquisition.  

 

4.2  Validation of BEIS LCM’s: individual LCMs 
Table 11 and Figure 8 gives the overall accuracy and confidence limits for the reference data set when 
applied to each of the Land Cover Maps. The confusion matrix statistics were calculated using the caret 
package in R. 

The results show that the overall accuracy is between 86%-89%.  Lower overall accuracies are seen for 
LCM2017 and onwards. This may because the LCM’s produced in this project benefitted from 
additional improvements to the method and to the training data set or it may be that the difference 
in accuracy is due to the satellite data; for LCM2017 onwards the satellite is sourced from one year, 
compared to 2 years of satellite data for the Landsat-based LCMs (1990-2015). Tables 12-22 give the 
confusion matrices for LCM’s 1990-2020 and show that the user’s and producer’s accuracies are 
typically over 90% for forest, urban, other and water.  The crop, grass and rough grassland classes tend 
to exhibit the lowest classification values, however this maybe in part due to issues with the reference 
data and the assumption that the crop and grassland reference points are not subject to crop/grass 
rotation; this is discussed further in the IACS validation section. Most of the issues with rough grassland 
are due to confusion between grassland and rough grassland and reflect confusion around the 
boundaries of these two classes. 

Table 11: Summary of overall accuracy and confidence limits for LCM data.1 Due to project timing, a 
preliminary version of LCM2020 was used. 

 Overall Accuracy  95% confidence limits 

LCM1990 0.8871  0.882, 0.8921 

LCM1994 0.8848  0.8796, 0.8899 

LCM1998 0.8848 0.8796, 0.8899 

LCM2002 0.8894 0.8843, 0.8943 

LCM2006 0.8875 0.8824, 0.8925 

LCM2010 0.8919   0.8868, 0.8968 

LCM2015 0.8815 0.8762, 0.8866 

LCM2017 0.8696 0.8641, 0.8749 

LCM2018 0.8763 0.8709, 0.8815 

LCM2019 0.8711 0.8657, 0.8764 

LCM20201 0.8606 0.8550, 0.8661 
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Figure 8: Overall accuracy of the LCM data sets, with 95% confidence limits (due to project timing a 
preliminary version of LCM2020 was used). 

Table 12: Validation of LCM1990, against point reference data set.  

BEIS-LCM1990 

Reference data 

Forest  Crop  Grass  
Rough 
grassland 

Urban Other Water 
User's 
Accuracy 
(%) 

LCM 
data 

Forest  1102 1 13 24 27 1 1 94 

Crop  27 1491 279 33 42 0 0 80 

Grass  61 166 2547 580 75 3 0 74 

Rough grassland 67 13 170 4997 23 11 3 95 

Urban 10 2 3 0 2751 1 1 99 

Other 2 2 1 25 28 252 2 81 

Water 0 0 0 2 2 13 332 95 

Producer's 
Accuracy (%) 87 89 85 88 93 90 98   
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Table 13: Validation of LCM1994. 

BEIS-LCM1994 

Reference data 

Forest  Crop  Grass  
Rough 

grassland 
Urban Other Water 

User's 
Accuracy 

LCM 
data 

Forest  1149 4 20 33 8 1 1 94 

Crop  13 1433 346 36 17 0 0 78 

Grass  37 214 2419 569 34 1 0 74 

Rough grassland 58 21 221 4977 12 8 1 94 

Urban 12 3 7 3 2860 2 1 99 

Other 0 0 0 41 17 266 3 81 

Water 0 0 0 2 0 3 333 99 

Producer's 
Accuracy 91 86 80 88 97 95 98   

 

Table 14: Validation of LCM1998. 

BEIS-LCM1998 

Reference data 

Forest  Crop  Grass  
Rough 
grassland 

Urban Other Water 
User's 
Accuracy 

LCM 
data 

Forest  1177 2 22 46 6 0 1 94 

Crop  13 1422 332 37 13 0 1 78 

Grass  34 221 2414 565 31 2 0 74 

Rough grassland 35 28 236 4959 10 13 3 94 

Urban 10 2 8 4 2875 5 0 99 

Other 0 0 1 48 13 258 2 80 

Water 0 0 0 2 0 3 332 99 

Producer's 
Accuracy 93 85 80 88 98 92 98   

 

Table 15: Validation of LCM2002. 

BEIS-LCM2002 

Reference data 

Forest  Crop  Grass  
Rough 
grassland 

Urban Other Water 
User's 
Accuracy 

LCM 
data 

Forest  1177 5 35 42 7 0 1 93 

Crop  6 1419 331 34 12 1 1 79 

Grass  34 229 2442 533 26 1 0 75 

Rough grassland 40 20 197 5001 19 11 2 95 

Urban 12 2 7 3 2871 2 0 99 

Other 0 0 1 43 13 263 2 82 

Water 0 0 0 5 0 3 333 98 

Producer's 
Accuracy 93 85 81 88 97 94 98   
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Table 16: Validation of LCM2006. 

BEIS-LCM2006 

Reference data 

Forest  Crop  Grass  
Rough 
grassland 

Urban Other Water 
User's 
Accuracy 

LCM 
data 

Forest  1183 6 30 47 5 0 1 93 

Crop  11 1355 330 45 9 0 1 77 

Grass  27 292 2466 540 22 1 0 74 

Rough grassland 39 20 180 4989 11 11 1 95 

Urban 9 2 6 3 2888 4 0 99 

Other 0 0 1 35 13 263 2 84 

Water 0 0 0 2 0 2 334 99 

Producer's 
Accuracy 93 81 82 88 98 94 99   

 

Table 17: Validation of LCM2010. 

BEIS-LCM2010 

Reference data 

Forest  Crop  Grass  
Rough 
grassland 

Urban Other Water 
User's 
Accuracy 

LCM 
data 

Forest  1194 7 36 57 7 0 1 92 

Crop  7 1400 342 26 9 0 1 78 

Grass  29 250 2457 523 16 1 0 75 

Rough grassland 29 15 168 5009 13 13 1 95 

Urban 10 2 10 3 2887 1 0 99 

Other 0 1 0 41 16 263 2 81 

Water 0 0 0 2 0 3 334 99 

Producer's 
Accuracy 94 84 82 88 98 94 99   

 

Table 18: Validation of LCM2015. 

BEIS-LCM2015 

Reference data 

Forest  Crop  Grass  
Rough 
grassland 

Urban Other Water 
User's 
Accuracy 

LCM 
data 

Forest  1180 8 24 87 7 1 1 90 

Crop  9 1407 421 65 6 1 0 74 

Grass  37 245 2466 669 21 2 1 72 

Rough grassland 25 7 72 4821 0 5 1 98 

Urban 18 8 29 2 2913 4 1 98 

Other 0 0 1 15 1 266 2 93 

Water 0 0 0 2 0 2 333 99 

Producer's 
Accuracy 93 84 82 85 99 95 98   
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Table 19: Validation of LCM2017. 

BEIS-LCM2017 

Reference data 

Forest  Crop  Grass  
Rough 
grassland 

Urban Other Water 
User's 
Accuracy 

LCM 
data 

Forest  1202 13 49 127 9 1 1 86 

Crop  6 1364 411 49 3 2 1 74 

Grass  20 270 2381 702 25 3 0 70 

Rough grassland 27 18 151 4755 5 7 2 96 

Urban 14 9 21 7 2906 2 0 98 

Other 0 1 0 18 0 264 2 93 

Water 0 0 0 3 0 2 333 99 

Producer's 
Accuracy 95 81 79 84 99 94 98   

 

Table 20: Validation of LCM2018. 

BEIS-LCM2018 

Reference data 

Forest  Crop  Grass  
Rough 
grassland 

Urban Other Water 
User's 
Accuracy 

LCM 
data 

Forest  1199 15 28 114 9 1 1 88 

Crop  4 1371 392 28 2 2 1 76 

Grass  22 275 2437 704 26 2 0 70 

Rough grassland 29 6 137 4795 1 10 1 96 

Urban 15 8 19 4 2910 3 0 98 

Other 0 0 0 14 0 261 2 94 

Water 0 0 0 2 0 2 334 99 

Producer's 
Accuracy 94 82 81 85 99 93 99   

 

Table 21: Validation of LCM2019. 

BEIS-LCM2019 

Reference data 

Forest  Crop  Grass  
Rough 
grassland 

Urban Other Water 
User's 
Accuracy 

LCM 
data 

Forest  1202 11 25 143 8 1 1 86 

Crop  3 1369 412 33 1 0 0 75 

Grass  23 273 2407 725 26 3 0 70 

Rough grassland 27 11 148 4744 2 8 1 96 

Urban 14 9 20 2 2911 5 1 98 

Other 0 2 1 12 0 262 2 94 

Water 0 0 0 2 0 2 334 99 

Producer's 
Accuracy 95 82 80 84 99 93 99   
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Table 22: Validation of LCM2020. 

BEIS-LCM2020 

Reference data 

Forest  Crop  Grass  
Rough 
grassland 

Urban Other Water 
User's 
Accuracy 

LCM 
data 

Forest  1184 15 26 150 6 5 1 85 

Crop  3 1348 407 40 0 1 1 75 

Grass  24 282 2374 705 23 9 0 69 

Rough grassland 43 15 176 4735 3 67 4 94 

Urban 15 14 24 9 2916 13 1 97 

Other 0 1 6 17 0 173 4 86 

Water 0 0 0 2 0 2 324 99 

Producer's 
Accuracy 93 80 79 84 99 64 97   

 

4.3  Comparison with IACS data 
To conduct the comparison against the IACS data, the IACS raster layers created by WP-A were used. 
20,000 points were randomly distributed across the area for which IACS data were available (England) 
and then reference values were extracted from the IACS data and from the LCM data for each of the 
available time periods. The same set of points has been used here for each of the time periods. The 
IACS and LCM data were rescaled to two-digit numbers, with the first digit representing the land cover 
for the first point in time and the second digit representing the second point in time. So, a woodland 
pixel that does not change would be class 1 and then class 1 i.e. 11. A conversion from cropland (class 
2) to grassland (class 3) would be 23. 

The results of the comparison with the IACS data are summarised in Tables 23 and 24, with full results 
given in (Tables 25-29. The overall agreement between them varies between 90.29% (change between 
LCM2010 to LCM2015) to 56% (change between 2018 and 2019).  

Table 23 shows the degree of correspondence for the change categories and shows that the maximum 
values vary from lows of around 25% to high values of around 60%. The values are noticeably lower 
for the most recent LCM’s which have moved onto an annual production cycle. The cause of this 
requires further analysis. Table 24 suggests that the issue may be due to classification accuracy, 
however, the decrease observed in producer’s and user’s accuracy is primarily due to confusion 
between the Rough grassland and Grassland split. So further exploration of the LCM and IACS data is 
required to understand the underlying cause of this drop in correspondence. It maybe that more 
targeted processing of the IACS data would produce better correspondence, as inn the current 
validation data set, no effort was made to avoid points falling near field boundaries. A more serious 
issue though, may be the mis-match between the timing of the satellite data for the LCM’s for 2017 
onwards, which use calendar years (Jan. 1st – Dec. 31st), and the cropping cycle, which is affecting 
accuracy. This could be assessed by targeted reprocessing of the LCM2017-2019 data for an area with 
substantial arable-grassland churn, to see whether sourcing the satellite data over years that are more 
tuned to the cropping cycle (i.e. November-October) would produce better correspondence with the 
IACS change data. This reprocessed data would provide a better basis for understanding the accuracy 
of annual change data. 

 

The IACS data and the individual lLCM data sets were not compared, but the results of the IACS 
comparison suggests that this would be useful. For the stable cropland class (denoted as class 22), the 
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percentage accuracies are between 93%-96%. This is much higher than the accuracies for crop 
reported in the validation of the stable LCM data and highlights the issues associated with assumption 
that underlie some of that data that crop and grassland fields remain stable over time.   

Table 23: Summary of LCM and IACS correspondence for change categories. 

Focus on change categories User's accuracy Producer's accuracy 

  Average Max Average Max 

2006-2010 25% 62% 46% 51% 

2010-2015 47% 68% 54% 60% 

2015-2017 30% 37% 31% 44% 

2017-2018 12% 23% 16% 26% 

2018-2019 16% 29% 21% 35% 

Table 24: Summary of LCM and IACS correspondence for stable categories. 

Focus on no change categories User's accuracy Producer's accuracy 

  Average Max Average Max 

2006-2010 83% 96% 79% 96% 

2010-2015 95% 97% 93% 95% 

2015-2017 91% 95% 91% 93% 

2017-2018 59% 98% 58% 93% 

2018-2019 59% 98% 58% 94% 
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Table 25: Results of comparing IACS data for change between 2006 and 2010 (to interpret numbers, 
first digit represents class number at first time point, second digit represents class number at second 
time point). Pale blue highlights the main diagonal, where the two classifications correspond. 
 

IACS data 

LC
M

 d
at

a 

 
11 12 13 14 21 22 23 24 31 32 33 34 41 42 44 

11 48 0 1 0 1 8 1 1 3 0 61 0 1 0 3 

13 0 0 0 0 0 0 1 0 0 0 15 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 

21 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 

22 6 0 0 0 1 2189 23 0 0 63 53 1 0 0 1 

23 0 0 0 0 0 18 57 0 0 1 59 0 0 0 1 

24 1 0 0 1 0 8 4 0 0 1 13 0 0 0 0 

25 0 0 0 0 0 2 1 0 0 0 0 0 0 0 1 

31 0 0 0 0 0 1 0 0 0 0 13 0 0 0 0 

32 2 0 0 0 0 13 0 0 1 88 37 0 0 0 1 

33 5 1 0 0 0 34 22 0 1 5 1688 1 0 1 2 

34 1 0 0 0 0 1 2 0 1 3 90 0 0 0 0 

35 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 

37 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

41 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 

42 0 0 0 0 0 5 0 0 0 9 9 0 0 0 0 

43 1 0 0 0 0 3 3 0 0 0 86 0 0 0 0 

44 3 0 0 0 0 5 6 0 1 1 451 1 0 0 0 

45 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

51 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

54 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 

55 0 0 0 0 0 3 1 0 0 2 5 0 0 0 1 

66 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 

77 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1          
Overall accuracy 76.91 
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Table 26: Results of comparing IACS data for change between 2010 and 2015 (to interpret numbers, 
first digit represents class number at first time point, second digit represents class number at second 
time point). Pale blue highlights the main diagonal, where the two classifications correspond. 
 

IACS data 

LC
M

 d
at

a 

 
12 22 23 32 33 34 42 44 

11 0 21 2 1 2 0 0 1 

12 0 2 0 1 0 0 0 0 

13 0 2 1 1 0 0 0 0 

21 0 10 1 0 0 0 0 0 

22 1 4879 72 43 18 0 0 2 

23 0 85 93 2 13 1 0 0 

24 0 8 0 0 0 0 0 0 

25 0 8 0 0 0 0 0 0 

26 0 2 0 0 1 0 0 0 

32 0 42 3 150 27 0 0 0 

33 0 51 15 29 105 3 0 2 

34 0 1 0 1 1 0 0 0 

35 0 0 0 1 0 1 0 0 

41 0 1 0 0 0 0 0 0 

42 0 7 0 15 4 0 0 0 

43 0 9 3 3 11 0 0 2 

44 0 2 0 2 0 0 0 0 

45 0 0 0 0 0 0 0 1 

47 0 0 0 0 0 0 1 0 

52 0 4 0 0 1 0 0 0 

53 0 1 1 0 0 0 0 0 

55 0 12 1 0 1 0 0 1 

77 0 0 0 0 0 0 0 1     
Overall accuracy 90.29 
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Table 27: Results of comparing IACS data for change between 2015 and 2017 (to interpret numbers, 
first digit represents class number at first time point, second digit represents class number at second 
time point). Pale blue highlights the main diagonal, where the two classifications correspond. 
  

IACS data   
22 23 24 32 33 34 44 

LC
M

 d
at

a 

11 26 1 0 1 5 0 1 

12 5 0 0 0 1 0 0 

13 0 1 1 0 0 0 0 

14 1 0 0 0 0 0 0 

21 4 1 0 0 0 0 0 

22 4789 154 4 59 39 7 2 

23 96 96 5 7 41 13 0 

24 21 2 1 1 3 0 0 

25 3 0 0 0 1 0 0 

26 1 0 0 0 0 0 0 

27 1 0 0 0 0 0 0 

31 2 0 0 1 0 1 1 

32 87 3 0 65 30 8 0 

33 73 22 1 11 172 52 6 

34 3 1 0 0 4 1 0 

35 3 1 0 0 1 0 1 

42 6 0 0 1 0 0 0 

43 1 1 0 0 0 0 0 

44 6 0 0 0 0 1 0 

52 7 0 0 0 0 0 0 

53 1 0 0 0 0 0 1 

55 14 0 0 2 1 0 2 

62 2 0 0 0 0 0 0 

63 0 0 0 0 1 0 0    
Overall accuracy 85.53 
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Table 28: Results of comparing IACS data for change between 2017 and 2018 (to interpret numbers, 
first digit represents class number at first time point, second digit represents class number at second 
time point). Pale blue highlights the main diagonal, where the two classifications correspond. 
  

IACS data   
11 22 23 24 32 33 34 42 43 44 

LC
M

 d
at

a 

11 2 27 4 0 3 6 2 0 0 221 

12 1 4 1 0 0 0 0 1 0 2 

13 0 1 0 0 0 0 0 0 0 33 

14 2 0 0 0 0 0 0 0 0 7 

21 0 1 0 0 0 0 0 0 0 4 

22 0 5026 154 11 129 124 14 14 4 146 

23 0 51 72 5 1 60 7 1 1 118 

24 0 13 3 0 1 2 0 1 0 10 

25 0 4 1 0 0 0 0 0 0 2 

26 0 0 1 0 0 0 0 0 0 0 

31 0 1 0 0 1 0 0 0 0 16 

32 0 98 8 1 40 44 8 29 2 72 

33 1 103 25 6 17 320 91 18 18 3482 

34 0 3 1 0 2 3 2 0 0 49 

35 0 1 0 0 0 2 0 0 0 9 

36 0 0 0 0 0 0 0 0 0 1 

37 0 0 0 0 0 0 0 0 0 1 

41 0 2 0 0 0 0 0 0 0 7 

42 0 18 1 0 2 2 0 0 0 10 

43 0 5 0 0 0 3 2 0 0 67 

44 0 14 2 3 0 6 2 2 0 1514 

46 0 0 0 0 0 0 0 0 0 1 

51 0 0 0 0 0 0 0 0 0 5 

52 0 3 0 0 0 0 0 0 0 2 

53 0 2 1 0 0 1 0 0 0 10 

54 0 1 0 0 0 0 0 0 0 0 

55 0 13 1 0 1 4 0 0 0 29 

64 0 1 0 0 0 0 0 0 0 0 

66 0 0 0 0 0 0 0 0 0 14 

77 0 1 0 0 0 0 0 0 0 11   
Overall accuracy 55.65 
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Table 29: Results of comparing IACS data for change between 2018 and 2019 (to interpret numbers, 
first digit represents class number at first time point, second digit represents class number at second 
time point). Pale blue highlights the main diagonal, where the two classifications correspond. 
  

IACS data   
11 12 22 23 24 32 33 34 42 43 44 

LC
M

 d
at

a 

11 0 0 26 3 1 3 5 0 2 0 243 

12 1 0 1 0 0 0 1 0 0 0 2 

13 0 0 0 2 0 0 1 0 1 0 11 

14 0 0 2 0 0 0 0 0 0 0 6 

15 0 0 0 0 0 0 0 0 0 0 1 

16 0 0 0 0 0 0 0 0 0 0 1 

21 0 1 7 2 0 0 2 0 0 0 1 

22 0 0 5053 119 7 160 110 2 23 6 157 

23 0 0 86 91 3 8 53 2 2 1 69 

24 0 0 6 2 0 1 4 0 0 0 8 

25 0 0 1 0 0 0 0 0 0 0 0 

26 0 0 1 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 0 0 1 

31 0 0 1 1 0 1 1 0 0 0 22 

32 0 0 37 7 1 46 63 4 32 2 102 

33 1 0 109 27 10 15 330 32 19 12 3568 

34 0 0 1 0 0 1 3 0 1 1 54 

35 0 0 2 0 0 0 0 0 0 0 7 

41 0 0 1 0 0 0 0 0 0 0 7 

42 0 0 14 1 0 2 4 0 1 0 6 

43 1 0 2 2 0 1 3 0 1 0 50 

44 1 0 17 0 1 0 8 0 0 1 1524 

46 0 0 0 0 0 0 0 0 0 0 1 

47 0 0 0 0 0 0 0 0 0 0 1 

51 0 0 0 0 0 0 0 0 0 0 1 

52 0 0 2 0 0 1 0 0 0 0 1 

53 0 0 1 0 0 0 0 0 0 0 7 

54 0 0 0 0 0 0 0 0 0 0 1 

55 0 0 15 1 0 1 6 0 1 0 30 

61 0 0 0 0 0 0 0 0 0 0 1 

62 0 0 0 0 0 1 0 0 0 0 0 

64 0 0 0 0 0 0 0 0 0 0 1 

66 0 0 0 0 0 0 0 0 0 0 16 

72 0 0 1 0 0 0 0 0 0 0 0 

73 0 0 0 0 0 0 0 0 0 0 1 

77 0 0 0 0 0 0 0 0 0 0 12   
Overall accuracy 56.06 
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4.4  Manually derived change data sets: Change 
to woodland 

From the 90 points in the woodland change validation data set, 44 were correctly identified as change, 
44 were incorrectly identified, and two were classified as uncertain, giving an accuracy of 50% when 
excluding the uncertain polygons. The polygons that were incorrectly identified as change were due to 
two factors: 

• Mixed polygons – where multiple land cover types occur within a single polygon happen 

when the spatial framework poorly represents the landscape (Figure 8). These cause issues 

for the change, because they are changing from apparently being land cover type A to land 

cover type B at some point along the time-series, with little real change. For this project, the 

modal proportions (the fraction of the polygon covered by the dominant class) and 

frequency distributions showing the coverage of each class within the polygon were not 

calculated. However, it maybe that these metrics could be explored to see if they can provide 

a systematic correction for such polygons. A similar issue was also found with some urban 

polygons. 

• Classification error in one or both of the classifications.  

 

Figure 9: Example of mixed polygons from the woodland change validation data set. 

4.5  Manually derived change data sets: Change 

to urban 
From the 90 points in the urban change validation data set, 28 were correctly identified as change, 38 
were incorrect identified, and 24 were classified as uncertain, giving an accuracy of 42%. The large 
number of polygons that were recorded as uncertain were primarily for the earlier time periods, which 
relied on satellite data where it was not always clear whether a polygon had changed, this is especially 
the case for urban areas, as the polygons are typically small. The change to urban is subject to a 



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      214 

 

systematic level of noise, caused primarily by mixed polygons (Figure 10), but also some 
misclassification, which reduces the change accuracy achieved. Further work is needed to explore the 
potential for a systemic correction to rectify this issue. 

 

Figure 10: Example of mixed land cover polygons from the urban change validation data set, which 
appear to change from non-urban to urban at some point in the time-series. 

4.6 Manually derived change data sets: Change 
to water 

From the 90 points in the urban change validation data set, 60 were correctly identified as change, 27 
were incorrect identified, and 3 were classified as uncertain, giving an accuracy of 69%. 

4.7  Manually derived change data sets: Change 
to other land 

From the 90 points in the change to other validation data set, 61 were correctly identified as change, 
with 29 incorrectly identified, giving an accuracy of 68%. Some of the incorrectly identified change to 
other polygons were coastal polygons. The coastal polygons are inter-tidal areas and can legitimately 
be classified as other or as water, depending on tidal state. A filtering rule (Table 9, rule 6) was 
implemented to resolve this, but there still appears to be an issue with some polygons. The coastal 
correction focussed on polygons alternating between classes 6 (other) and 7 (water), but does not 
currently resolve issues with polygons that may have been misclassified at some point across the time-
series. Future work should review the incorrect coastal polygons so that the implementation of this 
inter-tidal correction can be revised.  

4.8 Summary of LCM data products 
The final data sets produced for this project are: 

• LCM’s in the LULUCF classes for: 1990, 1994, 1998, 2002, 2006, 2010, 2015, 2017, 2018, 

2019, 2020 that have undergoing some temporal filtering. 

• Geospatial databases for GB and NI containing the above LCM data, before and after post-

classification filtering. 
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• Maps showing the application of knowledge-based enhancements, the number of land cover 

changes and whether a particular area appears to be subject to crop/grassland rotations 

(binary data set). 

 

4.9  Discussion of LCM results 
At the start of this project there were five LCM data sets for the UK covering 1990, 2015, 2017, 2018 
and 2019.  Following the work in this project there are an additional 5 LCM data sets for 1994, 1998, 
2002, 2006 and 2010. This enabled the creation of a spatial database containing all 11 LCM data sets; 
for GB this dataset contains in excess of 60 million records on land cover at different points in time. 
This new data set enabled the first large-scale exploration of the potential of temporal filtering to 
improve the ability to map change for the UK. The results so far show some promise, for example the 
accuracy achieved with mapping change in water over time, but for other types of change there are 
still challenges that need to be resolved. This discussion below focusses on some of the key areas 
outstanding: 

Comprehensive review of results – the first stage of follow-on work should be a comprehensive review 
of what is working well and what is working poorly, building on the validation work conducted here to 
identify how best to resolve remaining issues. The review should identify the classes and types of 
change that are currently being mapped with large uncertainties, with a focus on understanding why 
these issues are occurring, so that they can be explored to identify systematic solutions. This project 
has developed a range of strategies for resolving specific issues, and these will be useful for resolving 
the outstanding issues, as some issues may require edits to the training data and re-running of 
classifications, whilst other may just require some form of post-classification correction. The change 
to water has already highlighted that a systematic correction can reduce uncertainty and remove false 
positives. 

Further development of post-classification filtering – the results here are based on a cautious 
application of post-classification filtering, so in most cases up to 2 classification results could be 
changed across the time-series of 11 values. Future work would benefit from exploring such filtering 
in greater depth, initially for a small set of test areas that can be checked in great detail to avoid any 
undesirable outcomes. This would also allow the comparison of the methods applied here, with a 
running modal filter based method. Further exploration would also help determine to what extent it 
is possible to develop robust methods to remove false positives/changes. 

Detection of woodland change - There is a lag between trees being planted and new woodland being 
detectable in the satellite data. How long the lag is depends on the scale and method of tree planting, 
as well as how long the trees take to establish a detectable level of canopy cover. Wooded areas were 
recorded as change, even if the timing of planting was unclear and in some cases may have been up to 
10 years prior to detection in the change data. If LCM is needed for LULUCF activity data on tree 
planting then more research will be required to understand the typical lag-time for detection of new 
coniferous and deciduous woodland, both within small woodland patches and large/scale plantations. 
Note, issues such as rewilding and natural regeneration of woodland will occur on slower time-scales 
and may have different assumptions, although these processes are operating at a very low level in the 
UK at the moment. This also links into the scrub issue, which has been highlighted particularly for 
Northern Ireland. 

Revisit satellite processing - Since the satellite data processing was conducted for this project, the 
results of a significant, large-scale reprocessing of the Landsat data archive have been published, as 
Landsat Collection 2. This re-processing of the Landsat archive is intended to improve the quality and 
consistency of the satellite data over time and to improve on Collection 1, which was used in this work 
(Masek et al., 2020). A particular focus of the Collection 2 improvements has been on the spatial 
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accuracy of the data (Storey et al., 2019). This improved spatial accuracy should help improve the 
quality of the resultant classifications, particularly in the 1990’s, which in turn may then help reduce 
some of the false positives currently affecting the woodland and urban change detection. 

Iterative construction of the core training data set – Further work should review the core training 
areas and their classification over time. This might aid identification of poor training areas i.e. where a 
training area is set as a particular class based on LCM1990 and LCM2015, but is not classified as that 
class for one or more LCM’s between 1994-2010. This check may be particularly relevant for arable 
polygons, where the assumption is that a polygon that is arable in LCM1990 and LCM2015 is arable for 
all years in between. This is unlikely to be true for all the arable polygons in the core training data set 
and their identification and removal is likely to improve the quality of the final classifications.  

Integration with WPA – In addition, it would be beneficial to identify which uncertainties should be 
resolved in this database and which are best tackled in the Bayesian methods developed in WPA, 
especially as the Bayesian implementation already includes some methods for dealing with improbable 
land cover dynamics.  

Northern Ireland – some additional work is requited to review classifications and to develop an 
accurate core set of training data for Northern Ireland. The accuracy of the Northern Ireland data sets 
is currently still affected by the high levels of cloud and the impact that these have had on the quality 
of historic classifications for Northern Ireland, as well as some specific issues caused by the complexity 
and size of fields in Northern Ireland. 

IACS validation - The IACS data set is a complex data set. For this analysis, the same random set of 
points was used for each of the time periods. Future work should explore in more detail the differences 
between the two data sets to get a better understanding of what change is being well detected, well 
change is being poorly detected and where the difference is due to differences in the description of 
land cover classes and/or the aggregation of classes. Part of this may involve a stratified random 
sample of points that better samples the change in the IACS data set over time. 

LCM spatial framework – some of the false positives in the change detection are due in part to the 
mixed polygons, where multiple land cover types are found within a single polygon, especially for the 
urban and woodland change. It may be calculating additional attributes for each polygons will provide 
a systematic solution for identifying these polygons. However, it may also be that the easiest solution 
is to explore the potential for remapping these polygon boundaries or recreating the spatial 
framework.  

LCM1984/85 – the time-series filtering was largely conducted with an assumption that the first and 
last classifications were correct, which places a greater pressure on these classifications. Given this, 
there would be potential benefits of producing a new LCM for 1984/85 which should be considered. 

Initially, the assumption was that having multiple classifications would be beneficial, as it potentially 
allows poor classification results to be filtered out of the time-series. But having many classifications 
can be problematic, as small changes in classification sensitivity/errors will wrongly appear to cause 
change. This is a particular problem with polygons that have mixed land cover. Further work will 
determine to what extent it is possible to improve the methods for filtering and correcting these 
systematic errors. It is not yet clear how data from different satellite sensors affects the change data. 

Accuracy of change and length of time between LCMs - The LCM’s based on a single year of satellite 
data (LCM2017 onwards) have slightly lower accuracies than the LCM data sets produced in this 
project. This will affect the ability to detect change between recent years, as demonstrated by the 
comparison to IACS data. Further work will be required to assess whether the lower accuracy of LCMs 
2017 onwards is due to methodological improvements developed and applied in this project, or 
whether it is due to the different input data, specifically using 2 years of Landsat data compared to one 
year of Sentinel-2 data. Or whether it is due to using a calendar year (as used in LCM2017 onwards) or 
a year that is more closely related to the cropping cycle (November-October).  
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A second issue is about the ideal frequency of LCM production for change mapping. For most classes 
the rate of change is slow and so for short time periods e.g. a year, the rate of change maybe less than 
the rate of classification error. The poet-classification temporal filtering potentially offers a way for 
strengthening the change signal, but relies heavily on the first and last LCM’s in the time-series, and 
the method also needs further careful development. Generally, longer time-periods are likely to offer 
higher levels of change, so that the classification error is less of an issue. 

 

5 WP-B.4 – Method inter-comparison 
This task will compare, and combine, the methods and results from WP-A and WP-B to identify the 
best source of activity data for the inventory. This activity will take place during August and September 
2021 and is reported separately (See WP-A Final Report in this document). 

6 Quality Assurance and Data 

Management 

6.1 Data management 
The UKCEH Data Management Plan (DMP), which was set up during WPA has been reviewed and 
updated for WPB. Data documentation and storage requirements were discussed with project partners 
in FR & AFBI, including a reminder of the importance of clear and comprehensive documentation of 
datasets produced for the project. Datasets have been received by UKCEH and will be reviewed by the 
project Data Manager in advance of task 4.  

6.2 Model QA 
Forest Research 

Forest Research have completed a BEIS model QA log for their 1990 Woodland Map Code. Guidance 
and examples were provided by the QA Manager Gwen Buys and completion of the log was 
coordinated by Vera Correia at FR with contributions from Liz Clark, Eve McAleer, Anthony Walker and 
Esther Whitton. An initial draft of the log was completed in July 2021, feedback was provided by Gwen 
Buys and the log was revised and finalised in September 2021. The log is accompanied by 
supplementary information including a model report and methodology documents. The model 
achieves a final score of 85% with scores of 95% for structure & clarity and verification.  

The methodology used by FR to produce the 2010, 2015 & 2020 woodland maps does not require a 
model QA log but is documented in a methodology report including a QA section. The process 
described is standardised and requires extensive user training and cross-checking by senior staff. 
Limitations are also described allowing for variation if confidence between different aspects of the 
methodology and results.  

AFBI 

AFBI have completed a BEIS model QA log for a short piece of code (~125 lines including comments) 
used to generate cloudfree composite images for Northern Ireland from Landsat 7 & 8. The model 
scores 72% overall, with scores of 84-90% for documentation, structure and clarity.  
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Additionally, AFBI have prepared a short document describing manual tasks carried out to complete 
the 2020 Woodland Basemap for Northern Ireland. The majority of these tasks are to remove spurious 
data which is outside of the forest definition.  

UKCEH 

The UKCEH land use mapping team are familiar with the BEIS model QA log, having completed one for 
a previous project undertaken in 2017 (Applying Earth Observation to assess UK Land use change: Lot 
2 Medium Resolution Optical data). Clare Rowland has updated the model QA log to reflect the status 
of the model as used in this project. The model is a revised version of an existing freely available model 
‘Random Forest for Remote Sensing’. The original model is available on github and is described in a 
peer reviewed paper. The version used for LCM classification has a BEIS model QA log with associated 
scope/specification and assumption documents. The model scores 93.2% which is comfortably over 
the 90% threshold for BEIS business critical models.  

 

6.3  Independent validation of satellite data 
classification 

The independent validation of satellite data classification was carried out by the team at Ricardo. The 
main aim was to provide independent assurance of the quality of the land use classification (LUC) 
methodology that UK CEH use. As a result, the aim was split in the following objectives. 

1. Obtain LCM 2017 raster layer (https://www.ceh.ac.uk/services/lcm2019-lcm2018-and-lcm2017) 

2. Develop a methodology that utilises the Sentinel-2 multispectral bands to create land cover 

maps 

3. Perform visual checks at selected study areas to validate the LCM 2017 by UK CEH (NB. The 

agreed validation involved the classification change, between 2017 and 2020, however the LCM 

2020 is still under development and Ricardo were not able to undertake this analysis) 

The methodology (for objective 2) was based on the development of a python script (mainly ArcPy) 
that also makes use of 3rd party libraries such (SentinelSat) to query the Copernicus API and download 
the Sentinel-2 imagery as well as to adopt utilise certain spatial (GIS) techniques to create the land 
cover maps. The spectral index adopted was the Normalised Differences Vegetation Index (NDVI) and 
the study areas involved were Lincolnshire (England), North Wales and North Scotland (see figure 11 
for the map).  

  

https://www.ceh.ac.uk/services/lcm2019-lcm2018-and-lcm2017
https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm
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Figure 11. The three study areas used for the validation of LCM 2017 

 

The datasets used have been obtained via SentinelSat (python library) using the study areas’ vector 
files (converted to geojson) as the footprint for the data to be downloaded. The rules, when 
querying, were: 

• Cloud coverage < 15%  

• Sentinel-2 Level 2A Data (Bottom of Atmosphere reflectance images) 

• Sensing period (1st March – 10th October) 

The reasons for these criteria are based on the fact the clouds (water droplets) interfere with the 
satellite images - the MSI (Multispectral Instrument) cannot penetrate clouds hence the resultant 
images are not representative of the ground condition (i.e., classification). Further to that the cloud 
coverage percentage was set to 15% to allow for satellite images to be used as in the UK it is very 
unlikely to obtain a Sentinel-2 image that’s 100 % cloud free. For North Scotland a higher percentage 
was used (50 %) to classify the cloud-free pixels as clouds are more common in the mountainous 
areas of Scotland. It is important to mention that pixels that may have been obstructed by clouds 
have been omitted from the analysis (via visual checks of the RGB image of that capture). Bottom of 
Atmosphere images were chosen because the Top of Atmosphere Sentinel-2 products were not 
available prior to March 2018 and the specific sensing period was chosen to obtain 2 cloud-free 
images that have been captured 6 months apart ensuring seasonal changes are being represented in 
the annual composite. 

 

The study areas as previously seen in figure 11 have been chosen to analyse a diverse range of land 
cover classes, assess and incorporate any seasonal changes (i.e., arable land) and for workflow 

https://sentinelsat.readthedocs.io/en/stable/
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efficiency by ensuring that these areas are fully within the boundaries of the corresponding Sentinel-2 
tiles (satellite images). Specifically, the area in Lincolnshire is dominated by arable land and grassland 
as well as smaller regions of buildings and water bodies (river) and the validation exercise aimed to 
distinguish these via NDVI. The reason for choosing the study area in North Wales was mainly to 
examine coastal changes and the area in Scotland to identify any changes in the water bodies (i.e., 
lakes) and rough land (LULUCF ID 4). 

6.3.1 Validating through NDVI 

Objective 3 of the validation exercise was based on utilising the multispectral bands of Sentinel-2 and 
the creation of annual NDVI composites using bands 4 and 8 – specifically NDVI = (NIR-VIS)/(NIR + 
VIS), where NIR is obtained from band 8 and VIS from band 4. NDVI was used as it relies on the fact 
that spongy and healthy vegetation reflect a lot of light in the near-infrared (NIR) spectrum, as 
opposed to most non-plant objects. Therefore, NDVI can help to highlight vegetation from other land 
features, and even help differentiate healthy vegetation from unhealthy vegetation (Evangelides and 
Nobajas, 2019). The classification was based on the fact low values if NDVI (< 0.1) present rough land 
(e.g., rock, stone, sand). Moderate NDVI values (0.2-0.3) correspond to bush and meadow vegetation 
whereas high index values (0.6–0.8) show presence of healthy forests or vegetation with high 
chlorophyll content. 
 
The example in Lincolnshire is presented below (figure 12) where the NDVI composite of 2017 was 
overlayed on the LCM 2017 (obtained from CEH). 
 

 
Figure 12: The created NDVI 2017 composite for validation (L) and the LCM 2017 from UK CEH (R) 
 
The spot checks for this area of interest involved two pixel-classification validation checks – one at a 
suspected urban site and one at a low healthy vegetation region. The one for the urban had an NDVI 
value below 0.1 and a classified LCM value of 20 corresponding to the ‘Urban’ LCM class. This pixel 
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along with the surrounding area in blue (left) and the cyan (right) correspond to the Urban LCM and 
LULUCF class and as a result validate the classification by UK CEH. The second pixel involved a 
moderately healthy vegetation site presented in green (left). The pixel for this site had a value 
between 0.6 and 1 corresponding to the healthier vegetation and an LCM class of 4 (improved 
grassland) resulting to the ‘grass’ LULUCF category. The same approach was carried out for the study 
area in North Scotland (only one satellite image was used for Scotland due to cloud interference). 
See figure 13 for the study area in North Scotland.  
 

 
Figure 13: Study area in North Scotland (top map presents the NDVI 2017) and the bottom map the 
LCM 2017 classification (pixels in yellow present clouds therefore were excluded from the 
comparison with the LCM product). 
 
The results from this study area also verify the UK CEH LCM classification as the low NDVI (values < 
0.1) correspond to water bodies (areas in blue) something that is aligned with the LCM 2017 with the 
pixels classified as 14 (corresponding to ‘Freshwater’ and ‘Water’ in the LULUCF names). The pixel 
with an NDVI value of 0.538306 that can be interpreted as moderately healthy, corresponds to 
heather. As a result, these exercises could validate the UK CEH LCM 2017 classification. It is 
important to mention here that for the study area in North Wales, the SentinelSat library as well as 
the interactive Copernicus Open Hub could not retrieve the relevant satellite images for 2017. 
Although satellite images older than a year are archived and the downloading requires extra time 
(usually 30’ – 1hr), this issue for North Wales’ data was not presented for North Scotland and 
Lincolnshire. The exact reason for this remains unknown despite more recent attempts. 

6.3.2 Limitations and future recommendations  

From the visual analysis of this exercise the LCM product 2017 could be verified. However, the 
comparisons of the NDVI and LCM 2017 were not performed at a national scale – the main reason 
being the time constrain for both the spot checks to be performed nationally and acquiring data for 

https://scihub.copernicus.eu/dhus/#/home
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the whole UK (to ensure that images used were captured at the same instance). As mentioned 
before, cloud interference was another limiting factor, especially in the case of North Scotland as 
only 1 image could be obtained from 2017 that was near cloud-free. This as a result, limited the 
reliability of this validation as seasonality was not taken into account. 

It is important to mention since UK CEH utilised other sources of data and information (in addition to 
Sentinel-2) as well as other processing techniques, a direct methodological comparison was not made. 
This validation utilised one source of satellite imagery that is well-documented, in the literature, to be 
able to provide a free rapid land cover classification based on the reflectance of the spectral bands of 
Sentinel-2. Future work could incorporate more sources (i.e., the upcoming Landsat-9 mission). 
Additionally, more satellites images could be used (instead of 2 instances) to improve the reliability 
and quality when creating the annual composites. More spectral indices could also be used where 
occasional events such as fires take place. The spectral indices that could improve the mapping 
component and identify the spatial extent are the Normalised Burnt Ratio ((B8A-B12)/(B8A+B12)) and 
Fire Detection Index (B12/(B8A*B09)). Future validation steps could also involve checks to determine 
if the areas are associated with bias. 

6.4  Comparison to methods used by other 
countries 

This section provides a selected review of the land use change (LUC) tracking and quality 
assurance/quality control (QA/QC) procedures that non-UK inventory compliers apply in their LULUCF 
inventories. We have not attempted a full review of QA/QC procedures in the LULUCF sector of the 
inventories considered, or, a full review of the procedures used to identify and track all land use 
activities because to do so would have been beyond the resources available. 

Using expert judgement, we have selected two main countries to focus on: Canada, and Australia. In 
addition, a short commentary has been added about France. These countries have been selected 
because they have highly developed, mature LULUCF inventories and our expectation before the work 
started was that the extent and quality of the documentation would be high. 

Our analysis from Canada, and Australia is presented first. Following this, there is a short section 
considering relevant messages from a bi-lateral exchange with France held in London, August 2018. 
We have extracted key points about LUC tracking and QA/QC from this bilateral exchange, but, have 
not reviewed the latest French NIR. 

The analysis of the methodologies used by Canada and Australia are mainly split into those used in the 
forest and non-forest sectors. There is some but not an excessive overlap in the analysis between these 
two sectors. 

Several information resources and contacts were identified at the start of this project. Subsequently, 
we found some of the references to reports and studies were already mentioned in the NIRs, or, were 
judged not be directly useful for the study. Rather than exclude the information completely from the 
project report, for completeness, we have included them in Appendix 2. To keep the context of the 
information in e-mail correspondence, we have included the full e-mails rather than just summarise 
the information in the e-mails. Perhaps in future studies this information and the contacts could prove 
useful. 

After each major section, we have provided a short section which summarises our assessment of the 
information reviewed and provides the key points from our analysis. In each of the sections, we have 
included material from the NIRs and associated reports. This has been done for completeness and to 
allow our analysis to be directly and quickly cross checked with the source material. Points that we feel 
are important in the extracts of the text are highlighted in blue shading. 
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6.4.1 Canada 

Canada has a methodologically well-developed LULUCF inventory, and a comprehensive National 
Inventory Report. The NIR is issued in three parts. Information in the NIR relevant to this study includes: 

• Part 1 of the NIR (NIR P1): Chapters 3 to 7 provide descriptions and additional analysis for 

each sector, according to UNFCCC reporting requirements. Chapter 8 presents a summary of 

recalculations and planned improvements. 

• Part 2 of the NIR (NIR P2): Annexes 1 to 7, provide a key category analysis, an inventory 

uncertainty assessment, detailed explanations of estimation methodologies. 

Part 3 of NIR is not relevant to this study. It presents rounding procedures, summary tables of GHG 
emissions at the national level and for each provincial and territorial jurisdiction, sector and gas. 

This analysis is separated into the sections covering the LUC tracking approaches used in the forest 
land and non-forest land sectors. As a general point, there is much more methodological detail 
provided both in the NIR and in supplementary reports regarding the approaches used to estimate the 
areas of forest land and the transitions between forest land and other land uses. 

12.5.1.1 Forest sector 

Information presented in the NIR 

The method that Canada uses to estimate its GHG emissions and removals in managed forests is 
presented in Section 6.3.1.2 of Part 1 of the NIR “Methodological Issues”. Canada applies a Tier 3 
methodology for estimating GHG emissions and removals in managed forests. Canada’s National 
Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS) includes a model-based 
approach (Carbon Budget Model of the Canadian Forest sector, or CBM-CFS3). The origins of this model 
can be traced back to the late 1980s. 

This model integrates forest inventory data and yield curves with spatially referenced activity data on 
forest management and natural disturbances to estimate forest carbon (C) stocks, stock changes and 
CO2 emissions and removals. 

The model uses regional ecological and climate parameters to simulate C transfers among pools, to 
harvested wood products and to the atmosphere. A more detailed description of forest C modelling is 
presented in Annex 3.5.2.1. “Carbon Modelling”. 

We have looked through the technical details provided in Part 2 of the NIR to identify information that 
is relevant to land use tracking. Section A3.5.2.5 “Forest Conversion” provides relevant information. 
The section on “Quality Assurance / Quality Control of Forest Conversion Data” indicates that the 
arrangements for the using the remote sensing analysis in the inventory is complex, and the data is 
sources from a wide variety of organisations. From the text in the NIR, we conclude that the database 
itself is used as a mechanism to record decisions about which data are used in the inventory, issues 
with the data, and solutions to overcoming the issues. There are advantages to this approach, as the 
data and the documentation about the use of the data are saved together and hence kept directly 
connected. 

The NIR P2 states field validation is conducted on an ongoing basis as resources permit. 

The NIR P2 refers to a separate publication which documents the GIS system database of “conversion 
events”. Although not completely clear from the explanation in the NIR, we interpret these events to 
be land use conversion events. 

“The remote sensing interpretation follows defined procedures (Leckie et al., 2010b; Dyk et al., 2015), although it is 
conducted by a variety of organizations, including provincial government forestry or geomatics groups, remote 
sensing or mapping companies, research and development organizations and in-house government staff. The basic 
image analysis quality control (QC) process includes: internal checks within the mapping agency or company by a 
senior person; real-time quality assurance (QA) by Canadian Forest Service specialists during interpretation, with 
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feedback provided within days of interpretation of an area; and a final QA and vetting of the interpretation by the 
Canadian Forest Service. Field validation is conducted on an ongoing basis as resources permit. Each QC point and 
revision is documented within the Geographic Information System (GIS) database of conversion events (Dyk et al., 
2015). 

Records of decision as to data used and expert judgement applied, as well as decisions on the resolution of 
contradictory data, are documented within the overall processing database (Leckie, 2006b) and updated for each new 
submission (Dyk et al., 2015). Data sources and limitations are recorded, and remote sensing data and interpretations 
archived.” 

The description indicates that both quality control and quality assurance activities are conducted. This 
procedure of applying both QC and QA measures is consistent with IPCC good practice. 

We have examined the publication referenced, Dyk et al., 2015, and this is discussed further below. It 
is worth noting that this publication was easily located in a web search. Because this publication was 
easily found, this helps improve transparency of the methodology used. 

Later in section A3.5.2.5, details are provided about methodological approaches to tracking one type 
of land use change: Land Converted to Forest Land. 

“Records of land conversion to forest land in Canada were available for 1990–2002 from the Feasibility Assessment 
of Afforestation for Carbon Sequestration (FAACS) initiative (White and Kurz 2005). Conversion activities for 1970–
1989 and 2003–2008 were estimated based on activity rates observed in the FAACS data. Additional information from 
the Forest 2020 Plantation Demonstration Assessment was included for 2004 and 2005, and an environmental scan 
was performed to identify additional sources of information on afforestation rates from 2000–2008. Each event, 
regardless of date, source, type or location, was converted to an inventory record for the purposes of C modelling. All 
events were compiled in a single data set of afforestation activity in Canada from 1970 to 2008. No new afforestation 
activity data were identified for 2009 to the current inventory year. Efforts continue to obtain additional data on recent 
afforestation activities in Canada. 

For 1990–2008, the area planted was stratified by ecozone, province and tree species. Total area planted by province 
and ecozone, in conjunction with the proportion of species planted for each province, was used to calculate area 
planted by species, resulting in estimates of the area converted to forest, by species, for each RU.” 

From this description, it is not explicitly clear if remote sensing has played any role in the assessment 
of land use change in the forestry sector. However, the report by Dyk et al. (2015) clearly states the 
role of remote sensing in the tracking of deforestation events. 

Assessment: 

Assessment: The NIR 2020 from Canada provides a reasonable summary of the work Canada does to 
track land use change in the LULUCF inventory. It cross references to a much more detailed report that 
explains the methodology that is used to track one aspect of land use change – deforestation. Methods 
in supporting documents could be found easily on the internet improving the transparency of the 
reporting. 

Information presented in the description of Canada’s National Deforestation Monitoring System (Dyk 
et al., 2015) 

This report describes the methodology that is used to track the deforestation in Canada’s forest estate. 
We have examined both the image source data and data handling approaches – but we have not 
examined the methodology to estimate carbon fluxes in detail. 

The important elements to note are: 

• Canada’s National Deforestation Monitoring System (NDMS) was designed and implemented 

to provide information needed by Canada to meet its obligation under the United Nations 

Framework Convention on Climate Change (UNFCCC) to report the areas affected annually by 

deforestation. 

• The NDMS uses deforestation mapped on a system of sample areas. 

• The mapping is based on visual interpretation of satellite imagery supported by available 

ancillary information, such as high-resolution imagery, forest inventory, and industrial 

databases, and informed by records-based information and expert knowledge. 
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• Accurate detection and mapping of deforestation events involves manual interpretation of 

satellite remote sensing imagery by specialized analysts. 

• A key factor in the mapping is to distinguish deforestation from other forest cover losses that 

occur in Canada. 

• The report describes the methods used to monitor and report on deforestation, including 

stratification and sampling, data sources, mapping and interpretation, estimation 

procedures, and quality control through all stages of the process. 

Data sources 

Section 4.2 “Data Sources and Information Collection” states that remote sensing imagery is the 
most critical input to the process of deforestation monitoring. In the NDMS, image data are used to 
identify the location, size, and timing of events. These data are also used to determine pre-existing 
forest types and subsequent post classes. The NDMS employs medium-resolution satellite imagery in 
combination with high-resolution satellite and air photo data wherever available. Ancillary sources, 
in the form of spatial data and non-spatial records, are used to support the mapping process and act 
as supplementary sources for estimation and quality control. 

A range of image source data are used to track deforestation: 
 

• Landsat. The core image data source is from Landsat. Landsat series satellites have been 

acquiring data since the early 1970s and provide a consistent data stream for all NDMS 

mapping periods with a spatial and spectral detail suitable for deforestation mapping. The 

current Landsat instruments are medium-resolution sensors with 30 × 30 m pixels and a large 

image footprint (170 × 185 km). Each satellite has a return period of 16 days, with continual 

image acquisition and scene sidelap that increases at higher latitudes. 

Higher-resolution data are also very useful in supporting the interpretation of pre-existing conditions 
and forest types, and in confirming deforestation and better identifying the post class and post-class 
modifier. High-resolution imagery is therefore used to supplement core Landsat data wherever 
possible. Additional image data are sourced from: 

• SPOT 4/5 satellites. The SPOT 4/5 satellites offer a higher spatial resolution but provide 

fewer spectral bands than Landsat. A 2.5 m resolution SPOT 5 panchromatic mosaic of the 

Prairies (circa 2006) was provided by Agriculture and Agri-Foods Canada, and a 10 m SPOT 

4/5 national coverage called GeoBase1 was obtained from the Centre for Topographic 

Information of Natural Resources Canada. 

• Google Earth™ and Bing Maps™ are a valuable resource with an ever-expanding selection of 

recent high-resolution imagery over population centres and many other regions of the 

country. This includes terrain display information and crowd-sourced Panoramio™ 

photographs. 

Ancillary data are also incorporated to support the interpretation process. These data may be used to 
validate or confirm deforestation occurrence or to support the interpretation of prior forest type or 
post-change land use. Some data types are available nationally, whereas others are present only within 
limited extents. Some data sets are directly relevant LUC activities in the LULUCF sector, such as: 
wooded areas from provincial base maps, wetlands, and forest inventories, forest management tenure 
areas. Other data sets are either indirectly relevant to LUC activities in the LULUCF sector, or are 
relevant to other inventory sectors: GIS data sets of road networks, hydrology, pit and quarry licence 
areas, specialized oil and gas pipeline and well pad databases, field oblique photos, and “other data”. 
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This report focusses on the methodology and data that is needed to track the effects of deforestation. 
From the text, it is not clear whether these image source data are also used to track other land use 
changes apart from deforestation in the LULUCF inventory, but we suspect they will be. 

Data handling and processing 

Section 4.3 describes the approaches that have been used to map the deforestation events, and the 
data handling procedures, in section 4.3.1. 

“Deforestation event mapping is done using core date imagery and multi-band image products. Mapping is broken up 
into units of mapping work, called “project packages,” to be completed by internal staff, provincial partners, or 
qualified private sector contractors. All relevant images and supporting data are assembled as a package for mapping 
in a particular area. Detection, interpretation, digitization, and attribution of individual deforestation events is done 
manually by trained interpreters according to the established NDMS methods in a standardized ArcGIS geodatabase 
(Leckie et al. 2012).” 

For the mapping approaches, there are two important aspects to note: 1) a range of staff types are 
used for the mapping work, including internal staff in the Deforestation Monitoring Group, partners, 
and private sector contractors; 2) the work is done manually. There is no information on the time taken 
to map the deforestation events, but it is likely to be time consuming. 

A figure is provided in the report (labelled as Figure 7 in the source but Figure 14 in this report), to 
illustrate how individual deforestation events are manually interpreted and identified, and delineated. 
This shows how core data imagery from the Landsat satellites are used. The caption to the figure 
explains how the Landsat satellite band combinations and change enhancements that may be used in 
the mapping process. So called “red triggers” are identified where vegetation loss or change has 
occurred. This “change enhancement” is shown in the far-right hand column of images, in the figure. 

The figure and its caption are reproduced immediately below. 

 
Figure 14. Examples of various Landsat satellite band combinations and change enhancements that may be used in the mapping 
process. Note the change enhancement at right shows red triggers where vegetation loss or change has occurred. Band 
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combinations shown are normal colour rendition on left, with colour infrared in the middle. The right-hand column shows Landsat 
Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) bands 4,5,3 (i.e., the two near infrared bands and a red band) 
displayed as red, green, blue. 

 

 

In addition to the core Landsat data, supplementary data from the SPOT 4/5 satellites and aerial 
photography are used. Figure 15 illustrates how these supplementary data are used. Of particular note 
is the use of these data to verify deforestation activities. 

This figure and its caption are reproduced immediately below. 

 
Figure 15. Examples of supplemental data use. Left: Example of confirmed and interpreted events (red and yellow lines) shown 
as polygons on the SPOT imagery (2.5 m resolution SPOT 5, top left, and 10 m SPOT 4, bottom left). Right: Example of flight 
path and oblique aerial photograph from a deforestation field verification campaign.  

 

 

Data interpretation in a GIS system 

Typically, the interpretation process is conducted in a GIS environment, where change enhancement 
and single-date images can be layered and compared. The report refers to two specific manual 
techniques to interpret the image source data: blinking, and the swipe tool. Both these comparative 
approaches help visually identify where changes have occurred in image data. 

• Using the Flicker tool (or “blinking”). If there are 2 layers of data, this tool switches the view 

between the 2 layers alternately – or “blinks” the layers. 

• Using the Swipe tool. If there are 2 layers of data, this tool allows the user to swipe 

horizontally or vertically to reveal the lower layer beneath the top layer. 

Georeferenced ancillary imagery can be simultaneously displayed, and a link between ArcGIS and 
Google Earth allows the synchronization of spatial display extents in both programs. 

Section 4.3.3 of the report, “Interpretation”, explains in more detail how the image data are 
interpreted. Image interpretation is done manually on a cell-by-cell basis. Typically, the change 
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enhancement is used first to identify change events. These are then confirmed or refuted as 
deforestation by the interpreter using the individual core date images supported by other image and 
ancillary data. The supporting data are used to assess whether an event area was forested before the 
change, and whether the event meets the deforestation definition. Supporting data are also used to 
help interpret pretype and post class. 

The boundary of a deforestation event is identified in the Landsat images, but higher-resolution 
imagery is used in a supporting role to improve event boundary delineation.  

Maintaining consistency of methodological approach when using a range of image data interpreters 
To maintain consistency of interpretation between different people and teams, interpreters follow 
specific digitizing guidelines provided in the Deforestation Interpretation Guide (Leckie et al. 2012). 
These guidelines dictate how events shall be mapped, e.g., digitize smooth lines rather than following 
pixel boundaries, avoid gaps and overlaps between adjacent events, keep the mapping topology clean, 
etc. 

In some cases, there may be some uncertainty about the land use change event. The National 
Deforestation Monitoring System has a procedure to record this uncertainty. Interpreters record their 
level of confidence about each deforestation event, i.e., how confident they are that it was forest 
before the change and that it is indeed a new land use. Comment fields are used extensively to record 
details specific to each event. These may indicate uncertainty in an event, a request by the interpreter 
for specific review by the quality control person, or the need for checking the event in a later time 
period. 

Identifying spurious results and outliers 
As part of the quality control procedure, there is a step after the mapping and GIS processing steps 
have been completed to identify spurious results and which we also assume would include the 
identification of identify outliers. 

After the mapping and GIS processing steps have been completed, the initial estimation results are 
analyzed to identify potential problems. With the nature of deforestation in Canada and intensity of 
the sample, occasionally spurious estimates may occur. 

Section 4.4.3 “Expert Intervention” explains the procedure used. A key observation is that expert knowledge is essential 
in this part of the methodology. It does not seem that an automated algorithm is used to identify spurious results. 
Rather, expert judgement is used. 

“Canadian Forest Service deforestation monitoring experts have accumulated familiarity with land use 
change patterns and activities in Canada over many years. These experts scrutinize NDMS estimation 
process outputs and investigate questionable outputs that may be then modified if a change is 
justified.  

When suspicious estimation outputs are encountered, experts intervene by evaluating available 
records information and reconnaissance data. For example, when a particular event type is rare and 
sampling produces estimates that are unexpectedly high or low, expert reviewers may scan available 
imagery to see what is occurring outside the sample cell boundaries (i.e., in the non-sampled area), 
and use this to inform expert intervention. Estimation outputs may be deemed suspicious when they 
contradict previous estimates or other available lines of evidence. All expert interventions are 
documented for transparency, and in case they need to be reassessed as new evidence emerges.” 

Quality control 

Section 5 of the report summarises the procedures that are used to control the quality of the work. 
Some of the quality steps – such as the identification of spurious results – are discussed above. The QC 
procedure appears thorough, and is a multi-step approach. 

The QC steps are split into 3 main steps: 

1. initial mapping quality control; 
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2. revision quality checks; and  

3. overall quality assurance or vetting, where a check on the final mapping data is performed. 

Strictly, we interpret step 3, the “overall quality assurance or vetting” step, as a quality control step, 
rather than a quality assurance step. A quality assurance step would involve the use of personnel who 
are outside the Canada’s National Deforestation Monitoring System. 

After the data are calculated in the estimate process, the final numbers and trends are assessed for 
changes from previous year estimates. Deforestation estimates are also scrutinized by external users 
before they incorporate the data into their applications. 

The report makes a cross reference to an old NIR of Canada, the 2011 NIR, for more details about the 
quality control approaches in the estimation of the deforestation area estimation. 

The report has 3 pages of detail about the QC system used, and we have provided a summary of this 
here. To note the Deforestation Monitoring Group’s use of documentation of the more complex quality 
control procedures from the “vetting interpreters”, rather than using the mapping geodatabase, and 
some automated QC checks at the data processing stage. In the report, the team refer to an external 
quality control step, which qualifies as a quality assurance step. 

• Quality Control at the Mapping Stage. 
Typical errors caught through quality control at the mapping stage include: incorrect event 

interpretations or delineations; event omissions or commissions; missing field values; typographical 

errors; and topology problems. During the quality control phase, an internal Canadian Forest Service 

reviewer performs detailed checks to ensure consistency with mapping and interpretation rules, and 

returns a set of points to flag and describe the problem areas to the interpreter or contractor. These 

quality control points are stored in the mapping geodatabase as a permanent layer. Throughout the 

entire mapping and revision process, an internal “project story” is maintained by the Canadian Forest 

Service. This document summarizes activity on a given project, including staff and contractors 

involved, dates, and actions completed. It also includes detailed explanation of any complex situations 

or vetting (“vet”) revisions, as well as notes on any issues raised by the quality control or vetting 

interpreters. To maintain consistency, analysts who are involved in revisions or who vet revisions read 

this project story before starting work. 

• Quality Control at the Data Processing Stage 
Once revisions are vetted, final data integrity checks are conducted on the project database to find 

and correct any technical errors, such as missing attributes, mismatched post classes and modifiers, 

incorrect or reversed event dates, inappropriate line widths, topology errors, overlaps and duplicates, 

and typos. This stage is partially automated. The final mapping layers can be loaded into the national 

database only after the integrity checks have been completed. Data quality checks are built into the 

script that automates the data processing stages. The script both delivers reports to the screen while 

running, and dumps to log files, which are reviewed by Canadian Forest Service staff to ensure the 

runs were successful. Transfer of the final GIS tables into the non-spatial deforestation database is also 

automated. The grid and event tables for each time period are checked before loading, and the 

number of records loaded is recorded and compared with previous runs to highlight any potential 

discrepancies. The database queries and tables used to create the annual estimates by industrial 

category and RU are controlled by Microsoft Access macros to ensure consistency between the runs. 

• Quality Control at the Output Analysis Stage 
Following generation of the estimate tables, the main outputs (annualized deforestation by industrial 

class and RU, pretype table, and unmanaged forest table) are evaluated closely by Canadian Forest 

Service experts to ensure that estimates have been calculated properly and that discrepancies from 

previously calculated values can be explained. To aid in this effort, a comparison spreadsheet is 

created for each RU showing the deforestation estimates by industrial class for the current and 

previous year’s national run, together with illustrations and statistics. The experts scrutinize the data 
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for changes and ensure the new estimates are consistent with the input mapping data. Any specific 

issues and special adjustments required are documented in a report that becomes part of the record 

for each year’s estimate. 

• External Quality Control 
Users of the deforestation estimates conduct their own reviews of the data prior to use in their systems, 

and communicate any issues before incorporating the data into their own business processes. When new 

issues arise, these are dealt with and the NDMS quality control processes are updated to catch similar 

issues in the future 

Assessment: 

Assessment: This report describes the methodology that is used to track the deforestation in Canada’s 
forest estate. We have examined both the image source data and data handling approaches. It is a very 
thorough report, and for the most part, explains very clearly the procedures that are used. It was easy 
to find on the internet, which ensures transparency of Canada’s climate reporting. The mapping is 
based on visual interpretation of satellite imagery supported by available ancillary information, such 
as high-resolution imagery, forest inventory, and industrial databases, and informed by records-based 
information and expert knowledge. The work relies heavily on manual image processing, and the use 
of experts both in the Deforestation Monitoring Group and other partners. To maintain consistency of 
interpretation between different people and teams, interpreters follow specific digitizing guidelines 
provided in a separate guide, the Deforestation Interpretation Guide. There is a comprehensive multi-
step quality control procedure, with additional quality assurance. For some part of the QC process, 
expert knowledge is essential. Records of the QC findings are kept both within the mapping 
geodatabase, and where more detailed analysis is necessary, separate records are kept with the 
explanations of any complex situations or vetting (“vet”) revisions. Some data quality checks are built 
into the script that automates the data processing stages. Any specific issues and special adjustments 
required are documented in a report that becomes part of the record for each year’s estimate (of 
deforestation). 

 

12.5.1.2 Non-forest sector 

Information presented in the NIR 

Part 1 of the NIR presents summaries of the methodologies used to estimate emissions from the non-
forest sectors of the LULUCF sector. Part 2 of the NIR presents more detailed methodologies. 

The sections below summarise the information presented in the NIR about estimating and tracking 
land use change in non-forest sectors. We have cited relevant material from the sections, and provided 
comments about the approaches used, and the QA/QC procedures applied. 

Part 1 of NIR 

Section 6.5. Cropland (CRF Category 4.B), pg. 157 

Section 6.5.2. Land Converted to Cropland (CRF Category 4.B.2), pg. 162 

This subcategory includes the conversion of Forest Land and Grassland to Cropland. Emissions from 
the conversion of Forest Land to Cropland account for more than 90% of the total annual emissions in 
this category, which decreased from 9.5 Mt in 1990 to 2.8 Mt in 2018. Emissions from the conversion 
of Grassland are relatively small. 

Section 6.5.2.1. Forest Land Converted to Cropland (CRF Category 4.B.2.1), pg. 162 

There is no comment in this section about the methods used to track land use conversions. There is a 
reference to Annex 3.5, which contains more detailed methodologies. 
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There is a statement about the QA/QC measures applied, with a reference to which organisation does 
the checks: 

“Quality Assurance / Quality Control and Verification: This category has undergone Tier 1 QC checks (see section 
1.3, Chapter 1) in a manner consistent with the 2006 IPCC Guidelines. Quality checks were also performed externally 
by Agriculture and Agri-Food Canada, which derived the estimates of SOC change. The activity data, methodologies 
and changes to methodologies are documented and archived in both paper and electronic form.” 

Section 6.5.2.2. Grassland Converted to Cropland (CRF Category 4.B.2.2), pg. 163 

There is no comment in this section about the methods used to track land use conversions. 

There is a statement about the QA/QC measures applied; this is a cross-reference to a statement about 
the general QA/QC procedures that are applied in the inventory: 

“Quality Assurance / Quality Control and Verification: This category has undergone Tier 1 QC checks (see section 
1.3, Chapter 1) in a manner consistent with the 2006 IPCC Guidelines. The activity data, methodologies and changes 
to methodologies are documented and archived in both paper and electronic form.” 

Section 6.6. Grassland (CRF Category 4.C), pg. 164 

Only 6.6.1. Grassland Remaining Grassland (CRF Category 4.C.1), pg. 164, is discussed as a category. 
We suspect this means that there are no use land conversions from grassland to other categories – but 
there are land use conversions to grassland. 

Section 6.7. Wetlands (CRF Category 4.D), pg. 165  

Section 6.7.1. Peat Extraction (CRF Categories 4.D.1.1 and 4.D.2.1), pg. 165 

Earth Observation (EO) was used to determine the extent of peatland areas converted for peat 
extraction: 

“An EO mapping approach was used to determine the extent of peatland areas converted for peat extraction for 1990, 
2007 and 2013 time periods and to identify the proportion of land category types converted (Forest Land and Other 
Land). Converted areas were allocated into four land management subcategories: active extraction, abandoned, 
rehabilitated and restored areas based on image interpretation and industry information. National peat production 
statistics were used to estimate the annual amount of extracted peat (NRCan 2018a). Emissions from peat extraction 
are reported under Land converted to Wetlands for the first year after conversion and under Wetlands remaining 
Wetlands thereafter. More information on estimation methodology can be found in Annex 3.5.” 

Category specific QA/QC measures are applied, as well as more general QA/QC: 

“Quality Assurance / Quality Control and Verification: Section 1.3 in Chapter 1 describes the general QA/QC 
procedures being implemented for Canada’s GHG inventory. The same procedures apply to this category as well. 
Industry and academic experts associated with the Canadian Sphagnum Peat Moss Association and Peatland 
Ecology Research Group provided QC, validation of mapping estimates and a review of domestically derived 
emission factors.” 

Section 6.7.2. Flooded Lands (CRF Categories 4.D.1.2 and 4.D.2.2), pg. 167 

There is a statement about the where the land conversion to flooded lands has occurred: 

“Since 1970, land conversion to flooded lands occurred mainly in reporting zones 4, 5, 8, 10 and 14 (i.e. Taiga Shield 
East, Boreal Shield East, Hudson Plains, Boreal Plains and Montane Cordillera).” 

“Canada’s approach to estimating emissions from forest flooding is more realistic temporally than the default 
approach (IPCC 2006), which assumes that all biomass C on flooded forests is immediately emitted. Canada’s 
method is more refined in that it distinguishes forest clearing and flooding; emissions from the former are estimated as 
in all forest clearing associated with land-use change. Further, in Canada’s approach, emissions from the surface of 
reservoirs are derived from measurements, rather than from an assumption (immediate decay of all submerged 
biomass) that clearly is not verified.” 

There is a statement about the QA/QC measures applied; this is a cross-reference to a statement about 
the general QA/QC procedures that are applied in the inventory: 

“Quality Assurance / Quality Control and Verification: Section 1.3 in Chapter 1 describes the general QA/QC 
procedures being implemented for Canada’s GHG inventory. The same procedures apply to this category as well. For 
Forest Land converted to Wetlands, also refer to the corresponding subheading in section 6.9, Forest Conversion.” 
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Section 6.8. Settlements (CRF Category 4.E), pg. 168 

Section 6.8.2. Land Converted to Settlements (CRF Category 4.E.2), pg. 169 

The NIR notes that there are activity data problem in this category: 

“While there are potentially several land categories, including forests that have been converted to Settlements, there 
are currently insufficient data to quantify areas or associated emissions for all types of land-use change. Significant 
efforts were invested in quantifying the areas of Forest Land converted to Settlements, as this has been the leading 
forest conversion type since 2000. A consistent methodology was developed for all forest conversion and is outlined 
in section 6.9.” 

Section 6.8.2.1. Cropland Converted to Settlements (CRF Category 4.E.2.2), pg. 170 

Areas of Cropland converted to Settlements were estimated from land-use maps from 1990, 2000 and 
2010 by Huffman et al. (2015a) using the methods described in Annex 3.5. 

Category specific QA/QC is applied, which relies on manual visual interpretation. To note the use of 
“verification” of the boundaries of the polygons: 

“Quality Assurance / Quality Control and Verification: Polygons from the 2011 census were used to define the 
boundary of each Census Metropolitan Area and Landsat imagery from the Global Land Surface products from 
ArcGIS online services was obtained for each area for 1990, 2000 and 2010. Over 200 points were used to verify land 
cover/land use change for each time period, using visual interpretation. The points were defined using stratified 
random sampling, 50% on areas of change from Cropland to Settlements and 50% on areas of no change, separated 
by a minimum distance of 1 km, to avoid statistical bias.” 

Section 6.8.2.2. Grassland Converted to Settlements (CRF Category 4.E.2.3), pg. 170 

The NIR notes that the large area of grassland means that tracking land use changes are difficult: 

“An accurate estimation of this direct human impact in Northern Canada requires that activities be geographically 
located and that the vegetation present prior to conversion is known—a significant challenge, considering that the 
area of interest extends over 560 Mha, intersecting with 11 reporting zones. Land-use change areas were estimated 
based on mapping from image interpretation for the years 1990, 2000 and 2010, as described in Annex 3.5.7.3.” 

There is a statement about the QA/QC measures applied; this is a cross-reference to a statement about 
the general QA/QC procedures that are applied in the inventory: 

“Quality Assurance / Quality Control and Verification: Section 1.3 in Chapter 1 describes the general QA/QC 
procedures being implemented for Canada’s GHG inventory. The same procedures apply to this category as well.”  

Assessment: 

Assessment: Our assessment of the transparency of this Part 1 of the NIR, with respect to describing 
land use conversions in Canada, is that the explanations about the methods used to estimate the land 
use conversions are normally not provided. It would be useful to have even just one or two sentences 
on the land use tracking methods used in each category, or a clear cross reference to the sections of 
the NIR where there is a description of the methodologies used. There are brief descriptions of the 
methods used for tracking land use changes in some sections e.g. 6.7.1. Peat Extraction, and there are 
some references to Annex 3.5, which contains the detailed methodologies used in the Land Use, Land-
Use Change and Forestry Sector (A3.5. “Methodology for the Land Use, Land-Use Change and Forestry 
Sector”.). 

Earth Observation data are used: for example, Landsat imagery to determine Cropland converted to 
Settlements. Visual interpretation is used in this example to verify that the conversions have been 
identified correctly. 

In some cases, the Canadian inventory struggle with lack of activity and are unable to make an 
assessment of emissions, for example , in the category Land Converted to Settlements. 

Often the sections on Quality Assurance / Quality Control and Verification simply refer back to a section 
on QA/QC in Part 1 of the NIR. This section is informative and shows general compliance with IPCC 
requirements, but, is quite generic in nature. In our experience, this approach of cross referencing back 
to a general section on QA/QC to satisfy the UNFCCC reporting requirements on QA/QC is quite 
common practice in NIRs. In a couple of cases, more detailed approaches to QA/QC are provided, for 
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example, in section 8.2.1. “Cropland Converted to Settlements”. Providing this extra detail both 
improves transparency of reporting and shows the country has applied category specific QA/QC, which 
is likely to improve the quality of the inventory and is IPCC good practice. 

Part 2 of NIR –presenting detailed methodologies 

Section “A3.5.2.5. Forest Conversion” (pg. 129) summarises the approach used for estimating forest 
areas converted to other land uses. 

In summary, the approach for estimating forest areas converted to other land uses is based on three 
main information sources: systematic or representative sampling of remote sensing imagery, records, 
and expert judgement: 

“The approach for estimating forest areas converted to other land uses is based on three main information sources: 
systematic or representative sampling of remote sensing imagery, records and expert judgement/opinion.” 

“The basic methods have been tested in several pilot projects (Leckie, 2006a), and the methodology has been 
implemented across the country.” 

“The core method involves remote sensing mapping of forest conversion based on samples from Landsat images 
dated circa 1975, 1990, 2000, 2007 and 2011. Change enhancements between two dates of imagery are produced to 
highlight areas of forest cover change and identify possible forest conversion events (i.e. “candidate events”). The 
imagery is then interpreted to determine (1) whether the land cover of the candidate event was forest initially (at Time 
1), and (2) the actual land-use change at Time 2 (Leckie et al., 2002, 2010b). This forest conversion interpretation 
process is strongly supported by additional spatial data, including digitized aerial photographs; snow-covered, leaf-off, 
winter Landsat imagery; secondary Landsat images from other dates and years; ancillary data, such as maps of road 
networks, settlements, wetlands, woodland coverage, and mine and gravel pit locations; and specialized databases 
giving locations of oil and gas pipelines and well pads (Leckie et al., 2006; Dyk et al., 2015). When readily available, 
detailed forest inventory information is also used. 

Change imagery is interpreted and analyzed; each forest conversion event larger than 1 ha is manually delineated. 
The forest type, maturity and density prior to forest conversion is interpreted,30 and the post-deforestation land use 
recorded (“post-class”). Confidence ratings on the land use at the initial time and a later time period are used in 
subsequent quality control and field validation procedures.  

Monitoring of forest conversion activity covers all forest areas of Canada and is not limited to the managed forest. The 
entire forested area of Canada is broadly stratified into regions of expected forest conversion level and dominant 
cause, which dictate the target sampling intensity. Depending on the expected spatial patterns and rates of forest 
conversion, sampling approaches range from complete mapping to systematic sampling over the entire analysis unit 
of interest to a representative selection. of sample cells within a systematic grid. For example, in populated areas of 
southern Quebec and in the Prairie fringe, a 12% sampling rate was generally achieved, with 3.5 × 3.5-km sample 
cells at the nodes of a 10 x 10-km grid (Figure A3.5–7). A lower sampling rate is used in some of the forest activity 
zones characterized by low population density, where the main economic activities are forestry and other resource 
extraction. Special cases of known, localized and large forest conversion activities are also identified, such as 
hydroelectric reservoirs and oil sands development in Alberta. In such cases, the entire areas are handled as single 
events (“Hot Spot” in Figure A3.5–6), with spatially complete mapping. 

In practice, resource constraints limit the size of the remote sensing sample; wherever possible, a target sampling 
rate of 12% or 6% was achieved. It is also important to note that different sampling rates may be applied for each time 
period, in an effort to track differing activity rates between time periods. The total areas, either fully mapped or 
sampled, cover a large portion of the Canadian land base (Figure A3.5–6), e.g. approximately 346 million hectares 
(Mha). This total area was mapped over different time periods, of which over 17 Mha were mapped for 1975–1990, 41 
Mha were mapped for 1990–2000, 22 Mha were mapped for 2000–2008 and 23 Mha were mapped for 2008–2013. 

Mapping is updated on a roughly five-year time cycle and may be integrated progressively by project for the most 
recent time period.  

Records were gathered when available. They consist mostly of information on forest roads, power lines, oil and gas 
infrastructure, and hydroelectric reservoirs (Leckie et al., 2006). The temporal coverage, availability and applicability 
of these records are assessed to determine the most appropriate information sources (records or imagery). Records 
data are sometimes used to aid in the validation of estimates made through image interpretation. In particular for 
British Columbia, records data are used to provide estimates of conversion activity for power lines and oil and gas 
activity. A mix of remote sensing image interpretation and records data are used to assess the areas of forest 
converted as a result of hydroelectric development.  

Expert opinion is only called upon when remote sensing sampling is insufficient and records data are unavailable or of 
poor quality. Expert judgement is also used to reconcile differences between records and remote sensing information 
and to resolve large discrepancies in each mapped time period (e.g. 1975–1990, 1990–2000, 2000–2008, 2008–
2013) area estimate. In such cases, available expert opinion and data sources are brought together, remote sensing 
and records data are reviewed, and decisions are made (Leckie, 2006b; Leckie et al., 2010a; Dyk et al., 2015). For 
most estimates and certainly for those with large impact, estimates are derived directly from remote sensing samples.” 

The quality control of Quality Assurance / Quality Control of Forest Conversion Data is discussed in the 
forest land LUC section of this NIR. 
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Land Converted to Forest Land, pg. 133 

This is the statement about the records of land conversion to forest land in Canada; to note that there 
are issues with completeness of recent afforestation activities: 

“Records of land conversion to forest land in Canada were available for 1990–2002 from the Feasibility Assessment 
of Afforestation for Carbon Sequestration (FAACS) initiative (White and Kurz 2005). Conversion activities for 1970–
1989 and 2003–2008 were estimated based on activity rates observed in the FAACS data. Additional information from 
the Forest 2020 Plantation Demonstration Assessment was included for 2004 and 2005, and an environmental scan 
was performed to identify additional sources of information on afforestation rates from 2000–2008. Each event, 
regardless of date, source, type or location, was converted to an inventory record for the purposes of C modelling. All 
events were compiled in a single data set of afforestation activity in Canada from 1970 to 2008. No new afforestation 
activity data were identified for 2009 to the current inventory year. Efforts continue to obtain additional data on recent 
afforestation activities in Canada.” 

 

Section A3.5.4. Cropland, pg. 140 

Section A3.5.4.2. Grassland Converted to Cropland, pg. 152 

Data sources were a combination of census data and earth observation: 
“The area of Grassland remaining Grassland (GLGL) was estimated using a combination of data from the Census of 
Agriculture and EO data. Area estimates of grassland converted to cropland were based on reconciling changes in 
land area between GLGL and land in cropland management.” 

Section A3.5.4.3. Forest Converted to Cropland, pg. 154 

Data sources: 

“The approach used to estimate the area of forest land converted to cropland is described in section A3.5.2.3. The 
annual forest conversion by reconciliation unit, RU, was disaggregated to SLC polygons on the basis of concurrent 
changes in the area of cropland within SLC polygons. Only polygons that showed an increase in cropland area for the 
appropriate time period were allocated to forest conversion, and the amount allocated was equivalent to that 
polygon’s proportion of the total cropland increase within the RU.” 

Section A3.5.6. Wetlands, pg. 158 

Section A3.5.6.1. Peat Extraction, pg. 158 

Data sources included earth observation data. Interpolation and extrapolation were used to create a 
time series of data: 

“An EO mapping approach based on manual delineation and interpretation of aerial photography, satellite imagery 
and ancillary data was developed to map the extent of peatland areas disturbed by peat extraction for circa 1990, 
2007 and 2013 time periods. Through image interpretation, the total disturbed area was allocated into the following 
four land management subcategories: active extraction areas, abandoned areas, rehabilitated areas and restored 
areas. Geospatial data developed by the Peatland Ecology Research Group and information provided by industry 
experts were utilized to aid subcategory allocation. In addition, for a subset of sites, the pre-disturbance land cover 
class (forest, shrubby or open bog peatland) was determined in order to identify the land category types converted 
(Forest Land or Other Land). 

Annual area estimates were developed using interpolation between mapped time periods and extrapolation after 
2013. Annual area estimates for various land management categories were then refined based on secondary data 
sources. The two main secondary data sources were industry statistics on peatland areas managed for peat 
extraction in 2015 compiled by the Canadian Sphagnum Peat Moss Association (CSPMA) and a survey of abandoned 
peat extraction sites in the provinces of Quebec and New Brunswick (Poulin et al,. 2005).” 

Section A3.5.6.2. Flooded Lands, pg. 160 

Three activity data sources were used: 

“Data Sources: The three main data sources used to develop area estimates were (1) information on forest 
conversion due to reservoir impoundment in reporting zones 4 and 5 (see section A3.5.2.3, Forest Conversion); (2) 
the Canadian Reservoir Database (Duchemin, 2002); and (3) official industry numbers, derived from industry 
correspondence (Eichel, 2006; Tremblay).” 

Section A3.5.7. Settlements, pg. 162 

Section A3.5.7.2. Cropland Converted to Settlements, pg. 164 

Land-maps were used as primary data sources:  
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“Urban and industrial expansion has been one of the main drivers of Cropland conversion in Canada. Areas of 
Cropland conversion to Settlements were estimated based on the land-use maps for 1990, 2000 and 2010 developed 
in Huffman et al. (2015a). Areas of conversion for the 1990–2000 and 2000–2010 periods were calculated through 
spatial analysis for each reporting unit and divided by the number of years in order to develop constant annual 
conversion rates. Areas of conversion were extrapolated after 2010.” 

Section A3.5.7.3. Grassland Converted to Settlements, pg. 165 

Polygon areas formed the activity data needed, based on land cover maps: 

“Land-use change was derived from the difference in polygon areas for each date, providing an area of change 
between the time periods (i.e.1990–2000, 2000–2010), that was divided by the total years in the time period to 
produce a constant annual rate of change. The same annual rate of land-use change was applied for the years prior 
to 1990 and following 2010. The pre-conversion land-use type for each of the land-use change polygons was based 
on available land cover maps (Wulder et al., 2008; Hermosilla et al., 2016), visual interpretation and vegetation 
indices of concurrent imagery to avoid including areas in other land-use categories (e.g. Forest Land, Cropland, 
Wetlands and Other Land). Furthermore, deforestation events above 60 degrees were also used to confirm that areas 
determined as forest conversion to settlements were excluded, to avoid double-counting.” 

Assessment 

Assessment: The primary approach to estimating forest areas converted to other land uses is based on 
using remote sensing mapping of forest conversion based on samples from Landsat images dated circa 
1975, 1990, 2000, 2007 and 2011. This approach is supplemented with other records, and expert 
judgement. Expert judgement is only used when remote sensing sampling is insufficient, and records 
data are unavailable or of poor quality. Expert judgement is also used to reconcile differences between 
records and remote sensing information and to resolve large discrepancies in each mapped time period 
(e.g. 1975–1990, 1990–2000, 2000–2008, 2008–2013). In practice, resource constraints limit the size 
of the remote sensing sample; wherever possible, a target sampling rate of 12% or 6% was achieved. 

Other land conversions are based on a mix of data types: land cover maps, census data, and earth 
observation. A mixture of aerial photography, satellite imagery and ancillary data are used, although 
in some cases the NIR does not state exactly what data sources are used. Some of the data are 
relatively old – for example the last set of data for Cropland converted to Settlements dates form 2010, 
and the later time series is based on extrapolated data. 

In many cases, a lot of effort is needed to create a consistent time series of activity data. Methods of 
interpolation and extrapolation are used, which are consistent with IPCC good practice approaches. 

In Part 2 of the NIR, which contains details of the methodologies used to assess LUC, there are no 
specific subsections on QA/QC. There are specific subsections on uncertainties though. It would 
increase transparency if even brief category specific details on QA/QC were provided. 
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6.4.2 Australia 

This analysis is separated into the sections covering the LUC tracking approaches used in the forest 
land and non-forest land sectors. As a general point, there is much more methodological detail 
provided both in the NIR and in supplementary reports regarding the approaches used to estimate the 
areas of forest land and the transitions between forest land and other land uses. 

12.5.1.3 Forest sector 

Australia has a methodologically well-developed LULUCF inventory, and a comprehensive National 
Inventory Report. 

The NIR is issues in three parts. Information in the NIR relevant to this part of the study include: 

• Volume 2 of the NIR: This volume provides details of the LULUCF methodology. Appendix 

6.A.2 “Monitoring change with remote sensing imagery” provides the key source of 

information for this review. 

Volumes 1 and 3 of NIR are not directly relevant to this this section of the study. 

Information presented in the main body of the NIR 

The method that Australia uses to estimate its GHG emissions and removals in managed forests is 
presented in 6.2.2 “Methodology”. Predominantly country specific methodologies and Tier 3 models 
(Table 6.2) are used for LULUCF. The methods used in the estimation of the LULUCF categories of the 
inventory are described in detail in Appendices 6.A to 6.K. 

Carbon modelling 

Australia uses a carbon-stock accounting approach. Their 2016 Inventory introduced a new perspective 
on the data underpinning land sector calculations in the form of carbon-stock accounts compiled under 
the System of Environmental-Economic Accounting. These carbon stocks can be spatially mapped 
using the Full Carbon Accounting Model (FullCAM) architecture underpinning the estimates. In the NIR 
2020, figure 6.7 shows carbon density on the whole of the Australian landscape, and figure 6.8 shows 
the changes in forest-related carbon stocks with a focus on South-Western Australia. These maps show 
the higher density of carbon in Australia’s native forests and highlight the mixed stories of land clearing 
and regeneration over the recent decades. 

Australia’s land sector inventory system integrates spatially referenced data with an empirically 
constrained, mass balance, carbon cycling ecosystem model (FullCAM) to estimate carbon stock 
changes and greenhouse gas emissions (including all carbon pools, gases, lands and land use activities). 
The system supports Tier 3, Approach 3 spatial enumeration of emissions and removals calculations 
for the following sub-categories: 

• Forest land converted to cropland, wetlands (Flooded Land), grassland, and settlements  

https://cfs.nrcan.gc.ca/publications?id=36042
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• Grassland, cropland and settlements converted to forest land; and  

• The agricultural/grazing system components of cropland remaining cropland and grassland 
remaining grassland.  

 
Spatial enumeration is achieved through the use of a time-series (since 1972) of Landsat satellite data 
which is used to determine change in forest and sparse woody vegetation extent at a fine spatial 
disaggregation. The forest cover change information is coupled together with spatially referenced 
databases of climate and land management practices which allows a comprehensive quantification of 
emissions (see Appendices 6.A and 6.B in the NIR 2020). 

Land sector reporting within Australia’s National Inventory System integrates a wide range of spatially 
referenced data through a process based empirical model (Tier 3) to estimate carbon stock change and 
greenhouse gas emissions at fine spatial and temporal scales. Analysis and reporting includes all carbon 
pools (biomass, dead organic matter (DOM) and soil), all principal greenhouse gases (CO2, CH4 and 
N2O), and covers both forest and non-forest land uses. A Tier 3 method is used to estimate carbon 
stock changes for agricultural soils, living woody biomass (excluding perennial woody horticulture) and 
dead organic matter.  

FullCAM is a process based ecosystem model that calculates greenhouse gas emissions and removals 
in both forest and agricultural lands using a mass balance approach to carbon cycling. The FullCAM 
framework and its development are described in Richards (2001) and Richards and Evans (2004). 

Land monitoring systems 

The approach Australia uses for land monitoring is described in section 6.3.2 “Land monitoring 
systems”. Remote sensing provides a key source of data. Supplemental data is provided from the Land 
Use Mapping programme. 

“Australia uses Approaches 1 and 3 as described in the 2006 IPCC Guidelines for National Greenhouse 
Gas Inventories to monitor land use, land use change and forestry.  

The principal monitoring system is a remote sensing programme used to identify forest lands and 
changes in forest cover. Significant improvements to the remote sensing programme were made in 2016 
(see Appendix 6.A for details).  

The remote sensing programme is implemented by the Department of Industry, Science, Energy and 
Resources. The system monitors national forest cover on an annual basis using Landsat satellite data 
(collected by MSS, TM, ETM+ and OLI sensors). The time series of national maps of forest cover extends 
across 27 time epochs from 1972 to 2018 and has been assembled on an annual basis since 2004. These 
maps are able to detect fine scale changes in forest cover at a 25 m by 25 m resolution.  
Within forest land remaining forest land, data on areas of forest management are drawn from 
Australia’s National Forest and Wood Products Statistics (ABARES 2019a), Australia’s State of the Forests 
Report (ABARES 2008) and Lucas et al. (1997). 

Supplementary spatial information from the Land Use Mapping programme of Australia’s Bureau of 
Agricultural Resource Economics and Sciences (ABARES, 2014) is used to identify land areas in the 
grassland, wetlands and other land categories. Cropland has been updated to the September 2017 
revision of these areas (ABARES, 2017). Settlements has also been updated using this revision and 
supplemented by spatial data from other unpublished sources. The other land categories are expected 
to be progressively updated over time.” 

Of note is the use of short time interval monthly satellite data to detect carbon stock changes following 

fires. This is discussed in section 6.4.1.3 “Other native forests”. 

“A time-series of monthly satellite data is used to identify the time and location of fires, which are 
simulated at the 25m x 25m plot size. The AVHRR burnt area product produced by the Western 
Australian Land Authority (Landgate), is tailored to Australian conditions and based on the visual 
interpretation of fire areas by experienced operators. The data was assessed by the Royal Melbourne 
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Institute of Technology (RMIT, 2014) and compared with a range of alternative datasets, and was found 
to be the most suitable and highest quality time series data available.” 

Information presented Appendix 6 A” Land cover change” of the NIR 
Appendix 6A contains most of the information relevant to this review. The information provided is very 
detailed and shows considered investment to develop image processing capabilities. 

The Annex states that to process satellite data, a detailed protocol of remote sensing specifications for 
land cover change was developed by Furby (2002) through extensive pilot testing (Furby and 
Woodgate, 2002) to ensure time series consistency of methods, and the provision of spatially accurate 
land cover change data through time. These specifications determine the exact way that images are 
acquired, processed and classified. 

In all, three references to technical reports regarding the development and testing of remote sensing 
image data with Furby as an author are cited. It is possible to access two of these reports, but they are 
not available on a “live” web site, and are only available on an Australian government web archive site. 
It took some time to find the second reference. The third report is unpublished, and we could not 
assess if it contains useful information for this review. These difficulties reduce the transparency of the 
GHG inventory. 

Furby, S., 2002. Land Cover Change: Specifications for Remote Sensing Analysis. National Carbon Accounting 
System Technical Report No. 9 (236pp), Australian Greenhouse Office, Canberra.  

Available at:  
https://catalogue.nla.gov.au/Record/1027610  
https://webarchive.nla.gov.au/awa/20090722031721/http://pandora.nla.gov.au/pan/102841/20090717-
1556/www.climatechange.gov.au/ncas/reports/pubs/tr09final.pdf  

Furby, S.and Woodgate, P., 2002. Pilot Testing of Remote Sensing Methodology for Mapping Land Cover 
Change. National Carbon Accounting System Technical Report No. 16 (354pp), Australian Greenhouse 
Office, Canberra.  

Main report available at: 
https://catalogue.nla.gov.au/Record/2550466  
https://webarchive.nla.gov.au/awa/20030708155556/http://pandora.nla.gov.au/pan/23322/20020220/ww
w.greenhouse.gov.au/ncas/files/pdfs/tech16_jun01.pdf   

Furby, S., 2016. General Guidelines for Thresholding Images Using Image Matching, Version 13, Unpublished 
Report, CSIRO Data61 

Report unpublished 

The QA / QC of the activity data for detecting gains and losses of woody vegetation is described in 
Appendix 6.A.4. 

The Australian 2020 NIR provides more than 20 pages of detail about the image processing and land 
use tracking approaches used. This provides good transparency in the reporting, but in addition to the 
supporting reports, constitutes a lot of material to review and synthesise. 

To provide a “fast assessment” of the information in the Australian 2020 NIR, we have extracted 
sections below directly from the NIR. In these sections, the key points are highlighted. In this draft of 
the review, we have not provided much extra commentary, but as before, have included an 
“Assessment” section after the material extracted from the NIR. The figure numbers used are those in 
the NIR. 

Satellite Data Processing 

The summary of the methodology indicates that machine learning algorithms for change detection are 
used. This is potentially very interesting 

“The sequence of data processing stages have been streamlined since the development of the Australian 
Geoscience Data Cube in 2014. Migration of legacy data processing methods to the Data Cube 

https://catalogue.nla.gov.au/Record/1027610
https://webarchive.nla.gov.au/awa/20090722031721/http:/pandora.nla.gov.au/pan/102841/20090717-1556/www.climatechange.gov.au/ncas/reports/pubs/tr09final.pdf
https://webarchive.nla.gov.au/awa/20090722031721/http:/pandora.nla.gov.au/pan/102841/20090717-1556/www.climatechange.gov.au/ncas/reports/pubs/tr09final.pdf
https://catalogue.nla.gov.au/Record/2550466
https://webarchive.nla.gov.au/awa/20030708155556/http:/pandora.nla.gov.au/pan/23322/20020220/www.greenhouse.gov.au/ncas/files/pdfs/tech16_jun01.pdf
https://webarchive.nla.gov.au/awa/20030708155556/http:/pandora.nla.gov.au/pan/23322/20020220/www.greenhouse.gov.au/ncas/files/pdfs/tech16_jun01.pdf
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environment has been completed including use of machine learning algorithms for change detection. 
The process to produce the assessment of Australia-wide land cover change consists of:  

• image compositing of highest quality cloud free pixels acquired during the summer season for 
the southern tiles and the winter season for the northern tiles, from the Data Cube;  

• mosaicing12 of multiple images to the individual map tiles for each time sequence;  

• perform a single-epoch 3-class classification using the Random Forests classifier;  

• conditional probability network (CPN) analysis (Kiiveri et al., 2001), each year over the entire 
time series; and  

• attribution13 of change to direct human-induced change. “ 
 

Image acquisition and selection 
“The time series of available Landsat images extends from 1972 to 2019. The selection of periods for 
analysis, shown in Table 6.A.1, was designed to give maximum temporal resolution immediately before 
and after 1990 and for the period from 2004 onwards to maximise accurate detection of trends in land 
cover change over time.  

Since 2004 imagery has been delivered on an annual basis. Figure 6.A.1 shows the 37 map tiles used in 
the remote sensing programme (red), the north-south seasonal divide used for image capture (blue line) 
and the paths/rows of Landsat imagery (yellow).” 

 

12 Mosaicing aggregates images into the map tiles shown in red in Figure 6.A.1, removing overlaps in the original 185 km*185 

km images and optimising cloud removal.  

 
13 Attribution uses a combination of automation and visual inspection of the image sequence to determine the cause of land 

cover change and determine subsequent/existing land use. 
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Figure 6.A.1 37 1:1 million scale map tiles used in the remote sensing programme. 

 

 

“Selection of suitable Landsat scenes from the Data Cube is fully automated. For a given location, the 
season from which the scene should be selected is identified and the best (cloud-free) image is 
automatically allocated from the stack within the Data Cube. The image selection criteria (Furby, 2002) 
require the images to be within three months of the nominated target date. The target dates vary 
between the north (winter or dry season) and south (summer) of the country and aim to provide the 
best possible forest discrimination. The precise date allocated to each land cover change (clearing and 
regrowth) pixel is randomly generated by FullCAM, within the sequence of coverage dates for the 
relevant map tile. This method provides a random (unbiased over a large sample) distribution of 
initialisation dates (timing of land cover change event) for the carbon model, within the constraint of 
the two dates in the overall interval of the image sequence.” 



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      241 

 

Table 6.A.1 Landsat Image sequence. 

 

Mosaicing 
“Scene selection and compositing is automated so multiple images can be combined within each 

path/row to create a cloud free composite (Furby, 2016). Figure 6.A.2 shows how a mosaic is 
constructed using multiple images within each path and row, resulting in a composite cloud free 

image. However, in inherently cloudy locations, some gap filling from earlier imagery may be 
required.” 

 

Figure 6.A.2Image selection procedure, to create composite cloud free imagery mosaics 

 

Unit of analysis – spatial resolution of the imagery 
“The ‘natural’ pixel size of the 1972 to 1985 Landsat MSS (57 m × 79 m) is resampled to a 50 × 50 m 
pixel. The 30 × 30 m native resolution of the Landsat TM, ETM+ and OLI data available after 1985 is 
produced as 25 × 25 m pixels. This approach deals with the change in pixel size of the various Landsat 
sensors over time and supports the need for spatially and temporally consistent integration with other 
spatial data used in FullCAM. 

To apply the pixel-by-pixel analysis over the period where the pixel size changed from 50 m to 25 m, a 
50 m MSS equivalent (in both spatial and spectral resolution) is derived from the 1989 TM (25 m) data, 
and then forest extent is calculated separately from both the 50 and 25 m data sets. Differences in the 
extents of forest between these two outputs are due to “sensor change”. An overlap technique is used 
to ensure time-series consistency such that the assessment of land cover change for 1988–89 is then 
based on a 50 m to 50 m comparison, while the 1989–1991 data is a 25 m to 25 m comparison. As part 
of continuous improvement, processing of 1988 Landsat TM data at 25m spatial resolution has been 
completed, replacing the 50 m resolution MSS data for 1988. Consequently the entire land cover time 
series data has been recalculated making use of best available data while maintaining time series 
consistency. This approach is consistent with good practice for ensuring time-series consistency where 
the instruments used to collect activity data change or degrade through time (IPCC, 2003 page 5.58). 
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All Landsat derived data are used at a consistent 25 m resolution for the full time series analysis by 
resampling the 50 m pixels (1972–1985 products) into four 25 m pixels. A spatial-temporal model (see 
the Conditional Probability Network section below) is used to reduce the effect of “mixed” isolated and 
edge pixels in the overlap period. The ability to determine, from 1988 onwards, the effects of land use 
change to 0.2 ha minimum areas is robust, given that this area is greater than the pixel resolution and 
the approach used removes mixed and other pixels which are temporally and spatially inconsistent.  

Resampling Landsat TM, ETM+ and OLI sensor data to 25 m pixels is common practice and provides 
consistency over the multiple resolutions of Landsat sensors while ensuring uniformity across the time 
series. Quality assurance and validation processes confirm that accurate results are achieved with this 
resampled data.” 

Use of Landsat 8 Data 
“Observations of recent land cover change have been derived from the latest sensor on-board the 
Landsat 8 satellite, Operational Land Imager (OLI). OLI is an advanced sensor designed to collect 
improved quality data, ensuring continuity of previous instruments – Thematic Mapper (TM) and 
Enhanced Thematic Mapper Plus (ETM+) sensors. Landsat 8 products supplied through the Australian 
Geoscience Data Cube are in a new format known as the Australian Reflectance Grid (ARG25). ARG25 is 
a pre-processed product corrected for geometric distortions and calibrated as absolute surface 
reflectance, hence the specifications of this new product are quite different to the previous Landsat 5 
and 7 data products used for the national inventory Land Cover Change Programme (LCCP). To ensure 
time series consistency and compatibility with the existing LCCP, a detailed technical assessment of the 
geometric and radiometric consistency and interoperability between these two products was 
undertaken. 

Geometric consistency was assessed by matching about 13,300 ground control points (GCP) drawn from 
the LCCP scenes held in the national inventory data library and the corresponding ARG25 scenes. 
Assuming that the correlation matching succeeds in correctly registering each point, the position 
residuals provide a measure of the accuracy of co-registration of the two datasets. This analysis showed 
that whilst the temporal geometric accuracy of ARG25 products is highly consistent, several GCPs had 
residual matching errors ranging from 1, 2 and greater than 2 pixels compared to the LCCP products. 
The mis-registration, if not accounted for, would result in false change being reported. To resolve this, 
the mean residual vector for each ground control point (GCP) was calculated and applied to the LCCP 
scenes to align with the ARG25 product base. The scene specific transformation coefficients ensure that 
the two products are aligned and consistent to within a pixel for the entire country. 

The second step was to assess the radiometric consistency between the ARG25 and LCCP products using 
339 image pairs from the 2005 continental coverage. The two products were paired up based on Landsat 
path and row, and image acquisition date. Null pixels in either image were discarded. Pixels located in 
very dark or very bright regions in the LCCP images were also excluded from the analysis, since such 
values may have potentially saturated during the pre-processing. The remaining pixels were linearly 
regressed against each other, assuming that the relationship will be strongly linear if both products are 
internally consistent in relation to radiometric characteristics. Correlation values were calculated for 
each band, gain, and offset combination. The gain and offset values for converting LCCP pixel values into 
ARG25 pixel values can be expressed as –  

ARG 25 = gain × LCCP pixel value + offset  

The relatively high correlations found in the 2005 coverage confirm that there is a strong linear 
relationship, across all bands, between the LCCP values and the equivalent ARG25 image values. A 
scene-specific, linear transformation coefficient for each band was calculated to convert the LCCP 
calibrated pixel values to be consistent with the ARG25 surface reflectance values (Devereux, et al. 
2013). The time series consistency of this method was also assessed for selected sites using eight years 
of surface reflectance data.  

Based on this study, from 2015 the ARG25 Landsat 8 datasets (Figure 6.A.3) have been processed to a 
consistent quality, LCCP compatible tile based mosaic which are then subjected to image classification 
to derive forest probability maps.” 
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Figure 6.A.3 2019 Landsat 8 surface reflectance image of Australia 

 

 

3-class Random Forests classifier 

“A new method of classifying woody vegetation has been adopted in this National Inventory update. 
The method has changed from a thresholding approach using simple decision boundaries, to a Random 
Forests (RF) classifier (Breiman, 2001). The RF classifier uses a sophisticated decision-tree approach, 
building a large number of trees from samples of training or reference data to create a class prediction. 
For a given pixel, the average prediction across all the trees is taken. It also allows class membership 
probabilities to be undertaken concurrently, requires minimal manual intervention and is readily 
extended to any number of classes of interest. 

This method incorporates previous National Inventory innovations such as the move from a 2-class 
(forest, non-forest) classification to a 3-class classification (forest, sparse, non-woody). Figure 6.A.4 
compares the previous 2-class product with the current 3-class outputs. Background image is from 
UrbanMonitorTM 2014 (Figure 6.A.4 (A)), and a Landsat false colour composite 2014 (B). Forest is 
highlighted green and Figure 6.A.4 (D) shows sparse vegetation (in orange) that was detected using the 
3-class algorithm. As the entire range of woody vegetation needs to be monitored for reporting under 
the Kyoto Protocol second commitment period and the Paris Agreement, it is essential to create a 
product that better encompasses all woody vegetation (Figure 6.A.5). 
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Figure 6.A.4 Comparison of traditional 2-class forest and non-forest product with the new 3-class product 

 

The Random Forests classification was performed on Landsat 8 imagery for the current epoch in a semi-
automated manner, to investigate the parameter settings required to optimize the performance of the 
algorithm. The classifier was fitted independently to each of the stratification zones used in the previous 
method, which encompass local soil, vegetation and land use types. The relative importance of the 
individual input variables (ie spectral bands 1–6, spectral indices 7–8, texture bands 9–10, texture index 
11) are tracked per stratification zone, and results can be used to modify the variables used in future 
updates.  

The Conditional Probability Network (CPN) outputs for 2018 were used as the training sample or “base” 
to train the RF classifier for the new update. Twenty percent of this data is extracted randomly and 
reserved to calculate an independent accuracy assessment. Early testing indicated that woody extent 
and change classifications were very sensitive to the choice of training samples, and the RF classifier 
produced much higher probabilities of class membership than the previous thresholding approach. This 
is most noticeable in the sparse class, which has historically experienced the greatest uncertainty. As a 
result, training samples were restricted to more pure examples of each class to enable the classifier to 
determine the boundary between them.  

Early results also showed that the RF classifier could classify an area cleared in the latest epoch as having 
experienced a reduction in the probability of forest, but not necessarily reduce the probability enough 
to enable the CPN to correctly identify the change, given multiple years of high forest cover probabilities 
before the change event. To correct this problem for this update, a change mask was created by 
comparing the spectral index values between 2018 and 2019. Any pixels that fell under the change mask 
were excluded from the training sample.  

Ultimately a combination of reduced error rates for sparse in 2019, the use of a change mask and 
temporal rules restricting forest to sparse conversion leading up to 2019 were employed, resulting in 
products more consistent with earlier versions.  

In future, the single-epoch classification will be refined to enable a multi-temporal classification to be 
performed across all epochs, to ensure consistency across the time series. Once all refinements have 
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been made and automation is fully implemented, this should assist in moving towards the planned use 
of Sentinel 1 and 2 imagery. 

 

Figure 6.A.5 3-class algorithm to detect entire range of woody vegetation 

 

 
Conditional Probability Network analysis 

Remote sensing pilot testing demonstrated the need for time-series consistency in image data pre-
processing, analysis and subsequent formation of time-series woody/sparse/non-woody labels. The 
operational standards (Furby, 2002) give explicit emphasis through documented rule sets to each of 
these areas. For time-series classification, these standards also include the use of a joint spatial-
temporal model, in this case a Conditional Probability Network (CPN) (Caccetta, 1997; Kiiveri et al. 2001, 
2003), for determining a time-series of woody/ sparse/non-woody classes. This process produces 
superior woody extent and change results compared to a process reliant on pair-wise differencing of 
image pairs. The use of pair-wise differencing methods can lead to change estimates that are affected 
by errors due to seasonally changing land management effects (introducing large contiguous areas of 
false change), or by subtle sampling differences where mixed pixels have varying composition of 
woody/non-woody from year to year (producing many isolated false change pixels or edge effects at 
woody boundaries). 

The land cover change programme uses Conditional Probability Network (CPN) analysis to strengthen 
confidence in the ‘woody’, ‘sparse woody’ and ‘non-woody’ classification of a pixel (previously ‘forest’ 
or ‘non-forest’). This is achieved using a series of spatial and temporal rules to create woody vegetation 
and land cover conversion datasets. The temporal rules bias against unlikely events such as multiple one 
year conversions between woody and non-woody, as the CPN empirically assesses the logic of 
vegetation cover status of a pixel at a point in time, compared to the previous and subsequent images. 
This helps to eliminate false change from a single image that may be due to anomalies in the data such 
as unseasonal greenness, wetness or flooding, or missing data. The rules are particularly effective when 
the time between observations is less than that of a forest growth and harvest cycle.  
The spatial rules consider the labelling of a pixel in the context of its spatial surroundings, where labels 
that are consistent with the neighbouring labels are reinforced as opposed to those that are inconsistent 
(e.g., isolated pixels). This method evaluates the status of adjoining pixels as well as the pixel of interest, 



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      246 

 

which has the effect of reducing ‘flickering’ false change in scattered and edge woody pixels. It also 
ensures that individual and small clusters of forest pixels have a high classification certainty in relation 
to their neighbouring pixels and through time, minimising false detection of individual woody pixels and 
minimising false change in woody classification that would otherwise occur as a result of small changes 
in the crown cover of isolated pixels. The spatial and temporal rules work together to provide spatial 
and temporal consistency, minimising temporally varying “mixed pixel” effects (due to spatially varying 
sampling from independent satellite overpass from year to year) and subsequent error in pixel and 
change labelling.  

This comparative analysis of the same land unit over time was made possible by the accurate and 
consistent geographic registration and spectral calibration of the image sequences, providing the ability 
to ‘drill’ through time on a pixel-by-pixel basis. Geographic registration ensures that the same pixel is 
being looked at through the time sequence. It also avoids incorrect change status determination due to 
substitution of neighbouring pixels that could have different forest cover status, relative to the correct 
pixel for that location. Spectral inconsistency can also potentially increase the area attributed to clearing 
and regrowth events by variable status determination due to image calibration difference. This is 
addressed by consistent (spectral) calibration, thereby preventing the identification of false clearing or 
regrowth events and results in a more accurate land cover change map. Consistent registration and 
calibration are both required to ensure robust multi-temporal change analyses.  

The CPN allows areas of missing data, such as those due to cloud cover in the Landsat imagery, to be 
filled in based on the cover status of the earlier and later images (see Figure 6.A.6). With the advent of 
optimal cloud free image selection from the Data Cube, the amount of missing data is reduced. However 
gap filling is still necessary in places due to imperfect automated cloud masks and the lack of available 
data for locations that are inherently cloudy.  

There is also potential for sub-pixel shifts to change the forest/non-forest status on the edges of forest 
systems where a small edge portion of the pixel may have previously been just over the forest area, but 
a small shift in geographical registration (e.g., 10 m) would be enough to move the pixel out of the forest 
area. The spatial rules take the status of adjoining pixels into account and so reduce false change in 
isolated and edge woody pixels. 
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Figure 6.A.6 Images of forest extent and change, showing how the CPN gap-fills missing data due to cloudy 
imagery 

 

 
Forest extent and change analysis 

Once the change in forest cover status has been determined for each pixel for a point in time, the spatial 
relationship of each change pixel to other surrounding or nearby change pixels is assessed to identify 
isolated pixels with forest cover that do not form part of a forest system. This allows for the 
identification of pixels that are isolated trees not meeting the minimum canopy criterion defining a 
forest, as opposed to those pixels that may be part of sparse linear features such as roadsides and 
riparian zones which do meet the canopy criterion. A minimum mapping unit filter is applied to remove 
the isolated pixels from the data to be used for attribution. 

The area of land cover change is determined as the sum of the changed pixels through time. This 
approach minimises inclusion of pixels that represent gaps in the forest canopy. An independent study 
which looked at the implication of the inclusion or exclusion of forest canopy gaps in this way found that 
the resultant area estimate could vary significantly between approaches (ERIC, 2001). The approach 
used only includes the area of forest canopy loss and not ‘gaps’ in the forest canopy. This provides a 
much lower estimate of area cleared than specified in clearing permits, which usually define the area 
bounded by the clearing, including gaps in forest canopy cover. Subsequent carbon stock and emissions 
estimates are computed consistently with the spatial area calculation method. That is, the carbon stock 
values should reflect the area under canopy, and are not an average that includes ‘gaps’ between areas 
of tree canopy. 

Using the 3-class product allows us to identify six types of land cover changes in the landscape, namely:  

• non-woody to sparse  

• non-woody to forest  

• sparse to forest  
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• sparse to non-woody  

• forest to non-woody, and  

• forest to sparse  
 

Land cover changes related to forest cover gain and loss are reported as land converted to forest and 
conversions of forest land to other land classifications (sections 6.5, 6.7, 6.9, 6.11 and 6.13), whereas 
changes in sparse woody cover are reported in the grassland remaining grassland, wetlands remaining 
wetlands and settlements remaining settlements categories (sections 6.8, 6.10 and 6.12) consistent with 
the 2006 IPCC guidelines. 

 
Attribution of change 

The high resolution automated spatial assessment across the continent identifies land cover change 
resulting from many causes. For unique identification of conversion to another land use, it is necessary 
to attribute the change event as either direct human-induced and permanent or due to natural 
temporary effects or methodological artefacts. Land cover change due to temporary tree dieback, 
natural dynamics of tree mortality and recruitment, drought and both seasonal and inter-annual 
variability (causing green ‘flushes’ of growth with similar spectral signals to regrowth) are also identified 
and excluded by means of an automated, rule based monitoring system. This monitors the temporary 
loss of forest cover for x number of years to determine if a permanent change in land use or 
deforestation has occurred. Qualified technical staff use visual image backdrops such as Landsat, Google 
Google EarthTM, PlanetTM and Sentinel HubTM to differentiate permanent land use change events from 
those of temporary forest cover loss events such as harvesting or forest fire.  

This attribution is achieved by the development of a series of ‘masks’ to exclude change due to:  

• intermittent water features and irrigation areas that may give a false change signal;  

• drought and growth flushes; and,  

• terrain illumination.  

In each national inventory cycle, the method of attribution is continually updated and improved to 
increase efficiency and reduce the subjectivity of visual attribution of change. 

 
Plantation typing 

To allow for more accurate modelling of emissions and removals from newly established forests (under 
Grassland converted to Forest Land), new plantings (reforestation) identified in the remote sensing 
imagery are mapped into three classes; native forest (environmental plantings), hardwood plantation 
and softwood plantation. Plantation forests are those that are identified as being due to deliberate 
human action and are identified by type (e.g., introduction of non-endemic species), evidence of 
establishment practices (e.g., rip lines) and planting patterns (e.g., rows and stand geometry). The 
identification of conversion from non-forest to forest follows the same general approach and same 
remote sensing data as described above. Plantation classes are identified by discrimination against 
regionally specific ground data. The method uses an automated spectral discrimination and is described 
in Caccetta and Chia (2004). Currently, only Landsat TM, ETM+ and OLI data is used for plantation 
classification. The 3-class method has also been applied to plantation typing. 

 

6.A.4 Quality Assurance and Quality Control 

Programme implementation 
During the initial implementation of the remote sensing programme, pilot tests were used to train and 
develop industry capacity, refine methods and software and to develop logistical systems to maximise 
both output and opportunity for quality assurance and quality control (QA/QC). The results of the pilot 
studies are published in Furby and Woodgate (2002).  
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The approach to programme administration provides for centralised progress monitoring and QA/QC at 
each stage in the processing of the Landsat data. Each processing stage is a regionally defined package 
of work based on 37 1:1,000,000 (1:1 M) map tiles of Australia (Figure 6.A 1).  

The QA/QC and data validation procedures for each of these items in Australia’s land cover change 
methods are summarised below – see also Furby (2002, 2016). Some of the resource intensive processes 
undertaken in previous years are no longer valid as multiple steps have been integrated and automated. 
As a result, QA/QC procedures have also been streamlined, resulting in significant savings and efficiency.  

 

Mosaicing 
All mosaiced images (quadrants and time slices) for a particular map sheet are assessed at the same 
time. Due to the automated processing of imagery in the Data Cube, QA/QC of the mosaiced imagery 
has been streamlined to a single step since NIR 2016. Each data set is checked to ensure completeness 
and consistency of the composite images (Furby, 2016).  

 

3-class Random Forests classifier 
As the use of the Random Forests classifier is a new process in this National Inventory, QA/QC was quite 
a significant part of the overall implementation. The classifier was run in a semi-automated manner as 
there are a number of variables that can be tuned to optimize the performance of the classification 
algorithm. In future, the aim is to fully automate the implementation of the classifier.  

Semi-automation allowed QA/QC to be undertaken to investigate a number of elements:  

• methods of training sample selection, i.e. using default automated settings versus using 
modified training samples to remove all omission and commission errors 

• use of a more ‘typical’ base year from which to create training samples, for individual 
stratification zones  

• the use of change masks to exclude areas with a change in spectral index values between 
2018 and 2019 from the training sample 

• setting of suitable probability thresholds of change within indices, per map sheet and 
stratification zone 

• tracking of the relative importance of individual input variables to probabilities for individual 
map sheets and stratification zones; and  

• monitoring of prediction accuracies per stratification zone.  

Undertaking all these investigations led to a greater understanding of how the RF classifier performed, 
and the impact of certain parameters on the probability predictions. As the choice of training sample 
data was found to greatly influence the results, this was a major focus of the QA process.  

After extensive testing, it was determined that the threshold for inclusion in the training sample should 
be allowed to vary by class, dependent on the dominant vegetation cover of each map sheet. 

CPN products for the current epoch were then compared to the cover class probabilities of previous 
epochs, to identify the impact from the change in classification methodology. This change has generally 
resulted in a shift in woody extent and change statistics which has implications for the emission 
calculations derived from this data. To compensate for the different nature of the 2019 RF probabilities, 
experiments were performed to adjust the CPN parameters to compensate for the observed shifts and 
produce a result more consistent with previous updates.  

When the probability images have passed assessment and are mosaiced, the resultant images and key 
intermediate products are assessed for mosaicing accuracy, completeness and standardised formatting.  

A final assessment report is completed, detailing the results and whether any further data review is 
required.  
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CPN products 
When the CPN datasets are supplied to the Department's Geospatial team, they undergo a 
supplementary QA review process. The purpose of this review is to provide an independent logic check 
to identify any issues which may have impacts on future geospatial processing and modelling, before 
there is a significant resource allocation.  

The review assesses the following components of the CPN products:  

• An initial contents check is conducted to ensure the correct number of CPN dataset 
components have been supplied per tile.  

• Check that designated change transitions between neighbouring epoch woody definitions are 
logical and correct across the time series on a pixel by pixel basis.  

• Ensure that for each tile the CPN dataset’s individual components for the time series contain 
pixel values that are within the acceptable range for that component.  

• Check that for each tile the CPN dataset’s individual components for the time series have 
correct spatial extents, geographic projection, pixel resolution and no null pixel entries.  

• Produce a summary of percentage difference between the previous NIRs CPN run with the 
updated CPN run, to determine any variations which would be considered extreme and 
should be investigated further.  

• A sample visual review is undertaken of the distribution of pixel values within the CPN 
dataset’s individual components to ensure they are consistent with the previous NIR and with 
satellite imagery (e.g., forest classification is consistent with forest shown in associated 
Landsat imagery for the same year).  

• For plant type designations, check they occur over the expected spatial extent when related 
to the associated forest cover datasets for 1990.  

If any issues are found from the above assessment the dataset is returned to the remote sensing 
specialists for investigation. Only when all aspects of the review are satisfactorily resolved are the CPN 
datasets available for spatial attribution and FullCAM estimates. 

 

Continuous Improvement and Verification Programme 

Periodic review of the CPN products, to ensure human-induced vegetation change is not being omitted, 
is conducted separately to the NIR. This review is undertaken within a continuous improvement and 
verification programme (CIVP).  

The CPN products identify woody vegetation cover and change, and undergo expert geospatial review 
using high resolution imagery and external datasets to isolate areas of human-induced change. This 
attribution of human-induced change is a vital part of each NIR. The ongoing verification programme 
provides an assessment of the CPN products prior to attribution, while attribution by expert operators 
ensures that errors of omission and commission related to human-induced clearing and regrowth are 
minimised in the inventory. 

Figure 6.A.7 shows the history of the CIVP and the relevant details for each iteration. CIVP-3 was 
established as an extension of CIVP-2 in response to an ERT recommendation, to determine the 
commission and omission errors associated with using the CPN algorithm to assess land cover change. 
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Figure 6.A.7 The series of continuous improvement and verification programmes 

 

For CIVP-4 the new CPN 3-class woody vegetation product (forest, sparse and non-woody) was assessed 
across 11 tiles that contribute the most emissions to the national inventory, to determine the accuracy 
of the product and to identify areas for improvement. The method established during CIVP-2 was 
followed in CIVP-4, where 400 points were created across each tile using a stratified random sample. 
The vegetation classification at each point was cross-tabulated against the visual assessment of 
vegetation type undertaken by experienced operators using very high resolution satellite imagery (see 
table 6.A.2).  

At points where the CPN identified change in vegetation cover between 2011–2014, an assessment of 
the likelihood of change during that period was also undertaken. As the CPN algorithm uses data from 
earlier and later years to determine vegetation change for each pixel, the time period for assessment of 
change in CIVP-4 was selected to ensure the change classification had stabilized using data from later 
years. In the latest assessment, the CPN land cover change product was verified using very high 
resolution satellite imagery acquired between 2009 and 2014. Imagery earlier than 2011 was consulted 
in case there was a lag between change being detected by the CPN in 2011 and change occurring prior 
to that year.  

Of the 4520 points assessed across 11 tiles, 88 per cent had experienced no change (NC) across the time 
period. Based on the CPN classification, these points were identified as forest throughout (FT), sparse 
throughout (SPT), or non-woody throughout (NWT). The operator determined if these classifications 
were definitely correct, or probably correct, if imagery was not clear or not available at the right time. 
Probably non-woody throughout was not assessed as this category was considered to be difficult to 
distinguish from probably sparse. Table 6.A.2 shows the CPN product identified forest and non-woody 
areas consistently better than the identification of sparse vegetation. Commission errors indicate where 
the classification is deemed incorrect, while omission errors are where points should have been given 
the classification but weren’t. 

 

Table 6.A.2 CIVP-4 verification results for the 3-class woody vegetation product where no change was indicated  

 

As sparse was a new class of woody vegetation and due to the difficulties detecting it remotely using 
medium resolution data, it was expected that the errors would be moderate. Despite these errors, the 
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3-class product has improved the prediction of woody and non-woody vegetation when compared to 
the previous forest and non-forest classes. Forest was predicted as correct for 96 per cent of the points 
in CIVP-2 compared to 98 per cent in CIVP-4, while non-forest was definitely correct 76 per cent of the 
time for CIVP-2 compared to 96 per cent for CIVP-4 (Lowell et al. 2012). Point data records from the 
verification programme could be used as extra sites to train the CPN algorithm and further improve the 
woody vegetation product.  

The results for the points that had experienced change during 2011–2014 are shown in table 6.A.3, with 
the number of sample points for each classification cross-tabulated against the operators’ assessment. 
Green cells indicate correct detection of change or no change (NC), red cells are erroneously detected 
change, lavender cells are undetected deforestation and blue cells are undetected regeneration. Of the 
points where the CPN had identified change (n = 550), 26 per cent were classified by the CPN as 
deforestation (DEF), 63 per cent were regeneration (REG) and 11 per cent indicated cyclic change (CYC). 
In this report DEF and REG refer to all cleared or regeneration pixels as indicated by imagery and 
associated processing. This is not to be confused with deforestation as used in the Kyoto Protocol that 
specifically refers to human-induced land conversion. A small number of points were uncertain (U) due 
to poor imagery available to confirm the classification. Pixels classified as CYC suggest errors in the 
classification given that rapid change, such as forest to non-woody and back to forest, is unlikely to occur 
over such a short time.  

It is imperative that errors of omission related to human-induced change are minimised to give 
confidence that the inventory has captured all true clearing and regeneration within the given year.  

Results of the operator assessment in table 6.A.3 take into account transitions such as forest to sparse 
and vice versa. For the purpose of this exercise such transitions were included as the verification 
programme was undertaken to assess the implications of introducing a new sparse category into the 
vegetation classification and its impact on the change product. Therefore the 71 DEF points shown in 
the table are inclusive of these transitions which do not reflect vegetation clearing.  

The 27 DEF points and 11 REG points that were incorrectly classified by the CPN in table 6.A.3 were 
subject to further evaluation by additional operators. Initial investigation indicated that 73 per cent of 
these points had no evidence of clearing or regrowth, however they reflected the classification and 
operator uncertainty between the forest-sparse and sparse-non-woody decision boundaries  

Combined errors of omission for DEF and REG were 0.4 per cent of the total 4520 points, while errors 
of commission were 7 per cent. These results are comparable to those of previous verification 
programmes (see table 6.A.4), with 0.3 per cent omission errors over 7680 points and 3 per cent 
commission errors. The higher commission errors in CIVP-4 are related to the addition of the sparse 
category into the woody vegetation product, as almost all points incorrectly identified as change had 
been classified by the CPN as sparse at some time in the change period. Errors may also be partly 
explained by the smaller sample size in CIVP-4. 

The commission error of 7 per cent within the CPN change products identified by CIVP-4 justifies the 
continuation of the attribution process by geospatial experts to ensure that non-human induced change 
(i.e. false positive change) does not enter the inventory accounts.  

Once the Random Forests classifier has been extended back through the time series, further verification 
of the 3-class CPN products produced using this new methodology will be undertaken. 

 

“Controls” (of omission errors) and “Attribution” (the final QC step, of attribution of changes identified 
in cover change maps by the CPN) are discussed in the NIR, but are not presented here in any details. 
Important to note though is a QC step where: 

“Pixel level comparisons were undertaken of woody vegetation loss between the national inventory 
data and the Queensland Government Department of Environment and Science (DES) vegetation 
monitoring system. An assessment was made of the level of agreement between the two datasets for 
the period 1988 to 2018 (see Figure 6.A.9). Using the improved 3-class change data, there is a high level 
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of agreement (within 10 per cent) between the two systems, although at a few places the clearing 
pattern does not match.” 

“Each area of disagreement was reviewed carefully and the national inventory revised accordingly, 
where appropriate, using the improved 3-class change product.” 

“A similar process was also undertaken using vegetation monitoring data for NSW from 1988 to 2014. 
All areas identified by NSW Department of Planning, Industry and Environment (DPIE) as cleared in the 
past were checked to determine if they were already part of the national inventory. This analysis showed 
a high level of agreement, and areas of disagreement were carefully reviewed and the inventory revised 
if appropriate.” 

6.A.5 Refining the CPN algorithm 

To address the errors of commission and omission related to the sparse classification identified in the 
CPN woody vegetation products (see continuous improvement and verification programme section in 
6.A.4), it is necessary to refine the CPN algorithm.  

Since the publication of the 2016 National Inventory Report, the Department has undertaken fieldwork 
to collect woody vegetation data using a LiDAR (light detection and ranging) drone and optical sensors 
over national parks in the Bourke region of NSW. The vegetation in this area is difficult to classify as the 
landscape is highly modified through clearing and grazing, vegetation responds to climatic cycles such 
as drought, and high resolution imagery is not always available. There are also numerous ERF projects 
in the area where human-induced revegetation is occurring and being monitored using the woody 
vegetation data. 

 

Figure 6.A.12 Examples of outputs from LiDAR drone analysis 

 

 

Assessment 

Assessment: 

• Land sector reporting within Australia’s National Inventory System integrates a wide range of 

spatially referenced data through a process based empirical model (Tier 3) to estimate 

carbon stock change and greenhouse gas emissions at fine spatial and temporal scales 

• Empirically constrained, mass balance, carbon cycling ecosystem model (FullCAM) 

• The principal monitoring system is a remote sensing programme used to identify forest lands 

and changes in forest cover 
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• These maps are able to detect fine scale changes in forest cover at a 25 m by 25 m resolution 

• Supplementary spatial information from the Land Use Mapping programme of Australia’s 

Bureau of Agricultural Resource Economics and Sciences 

• Appendix 6A of the 2020 NIR contains most of the information relevant to this review. The 

information provided is very detailed and shows considered investment to develop image 

processing capabilities 

• In all, three references to technical reports regarding the development and testing of remote 

sensing image data with Furby as an author are cited. Access to these reports is not easy and 

therefore hinders transparency, but, this limitation is partially offset by high levels of detail in 

the NIR 2020. 

• The Australian 2020 NIR provides more than 20 pages of detail about the image processing 

and land use tracking approaches used. This provides good transparency in the reporting. 

• Landsat image data are used. 

• Machine learning algorithms for change detection are used in satellite data image 

processing. 

• Since 2004 imagery has been delivered on an annual basis 

• Selection of suitable Landsat scenes from the Data Cube is fully automated. For a given 

location, the season from which the scene should be selected is identified and the best 

(cloud-free) image is automatically allocated from the stack within the Data Cube 

• Mosaicing: Scene selection and compositing is automated so multiple images can be 

combined within each path/row to create a cloud free composite 

• A spatial-temporal model (Conditional Probability Network, or CPN) is used to reduce the 

effect of “mixed” isolated and edge pixels in the overlap period. The ability to determine, 

from 1988 onwards, the effects of land use change to 0.2 ha minimum areas is robust, given 

that this area is greater than the pixel resolution and the approach used removes mixed and 

other pixels which are temporally and spatially inconsistent. 

• Programme of work conducted to ensure that the latest Landsat 8 image data are time series 

consistent and compatible with earlier Landsat data. Mis-registration, if not accounted for, 

would result in false change being reported 

• “3-class” random forest (RF) classifier introduced to ensure the entire range of woody 

vegetation is monitored for reporting under the Kyoto Protocol second commitment period 

and the Paris Agreement. 

• The Conditional Probability Network (CPN) outputs for 2018 were used as the training 

sample or “base” to train the RF classifier for the new update. Twenty percent of this data is 

extracted randomly and reserved to calculate an independent accuracy assessment. 

• The land cover change programme uses Conditional Probability Network (CPN) analysis to 

strengthen confidence in the ‘woody’, ‘sparse woody’ and ‘non-woody’ classification of a 

pixel (previously ‘forest’ or ‘non-forest’). 

• The CPN allows areas of missing data, such as those due to cloud cover in the Landsat 

imagery, to be filled in based on the cover status of the earlier and later images (see Figure 

6.A.6) 

• Forest extent and change analysis: Once the change in forest cover status has been 

determined for each pixel for a point in time, the spatial relationship of each change pixel to 

other surrounding or nearby change pixels is assessed to identify isolated pixels with forest 

cover that do not form part of a forest system. This allows for the identification of pixels that 

are isolated trees not meeting the minimum canopy criterion 
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• An independent study which looked at the implication of the inclusion or exclusion of forest 

canopy gaps in this way found that the resultant area estimate could vary significantly 

between approaches 

• Attribution of change: it is necessary to attribute the change event as either direct human-

induced and permanent or due to natural temporary effects or methodological artefacts. 

This attribution is achieved by the development of a series of ‘masks’ to exclude change due 

to: intermittent water features, drought and growth flushes, terrain illumination 

 
Specific comments on QA/QC 

Specific comments on QA/QC 
Extensive QA/QC procedures 

• Programme implementation: During the initial implementation of the remote sensing 

programme, pilot tests were used to train and develop industry capacity, refine methods and 

software and to develop logistical systems to maximise both output and opportunity for 

quality assurance and quality control (QA/QC). The results of the pilot studies are published 

in Furby and Woodgate (2002). 

• Mosaicing: Due to the automated processing of imagery in the Data Cube, QA/QC of the 

mosaiced imagery has been streamlined to a single step since NIR 2016. Each data set is 

checked to ensure completeness and consistency of the composite images 

• 3-class Random Forests classifier: A wide range of test conducted to impact of certain 

parameters on the probability predictions 

• Conditional Probability Network products: When the CPN datasets are supplied to the 

Department's Geospatial team, they undergo a supplementary QA review process. The 

purpose of this review is to provide an independent logic check to identify any issues which 

may have impacts on future geospatial processing and modelling, before there is a significant 

resource allocation 

• Continuous Improvement and Verification Programme: Periodic review of the CPN 

products, to ensure human-induced vegetation change is not being omitted, is conducted 

separately to the NIR. This review is undertaken within a continuous improvement and 

verification programme (CIVP). 

• “Controls” (of omission errors) and “Attribution” (the final QC step, of attribution of 

changes identified in cover change maps by the CPN): Pixel level comparisons were 

undertaken of woody vegetation loss between the national inventory data and the 

Queensland Government Department of Environment and Science (DES) vegetation 

monitoring system 

• Refining the CPN algorithm: fieldwork to collect woody vegetation data using a LiDAR (light 

detection and ranging) drone and optical sensors over national parks in the Bourke region of 

NSW; see Figure 6.A.12 

12.5.1.4 Non-forest sector 

The NIR is issues in three parts. Information in the NIR relevant to this study includes: 

• Volume 2 of the NIR: This volume provides details of the LULUCF methodology. Appendix 

6.A.2 “Monitoring change with remote sensing imagery. 

• Volume 3 of the NIR: This volume provides methodological detail about the calculations 

under the KP in Chapter 11. “Kyoto Protocol LULUCF”. 

Volume 1 of the NIR is not directly relevant to this study. 
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Appendix 6 A “Land cover change”, in volume 2, is almost exclusively concerned with the approaches 
for modelling forest carbon. We have only found one clear reference made to non-forest sectors, 
concerning an update to the method used to identify the location of settlements. The NIR states that 
the dataset was derived from the 2017 ABARES catchment scale land use data, unpublished sources 
and visual assessment of high-resolution imagery. 

The text on the updates to the settlements dataset states: 

“One of the land use categories required by the IPCC 2006 Guidelines is the location of human 
settlements, and the transitions that occur between settlements and other land use categories. For the 
National Inventory Report, settlements include areas of residential and industrial infrastructure, 
including cities, towns, and transport networks (within settlements).  

An updated settlements layer was incorporated in the latest NIR to take account of the expansion in 
settlement areas that have occurred since the last update in 2014 (see figure 6.A.11). The dataset was 
derived from the 2017 ABARES catchment scale land use data, unpublished sources and visual 
assessment of high resolution imagery.  

The updated settlement dataset was added as a base land use layer for FullCAM spatial simulations. This 
will allow modelling of emissions and reporting of land conversions such as grasslands or croplands 
converted to settlements, which is one of the ERT recommendations. Further work is planned to develop 
a time series of base land use data for all IPCC land use categories.” 

 

Section 6.A.2 “Monitoring change with remote sensing imagery” provides the details about how 
remote sensing is used to identify land use and track land use change in the inventory. However, we 
have not found direct references in this section to the approaches used to identify and track non-forest  

In Volume 3 of the NIR, information about provided about tracking land use change in cropland 
management and grazing land management. 

Section 11.7.1 “Identification of land subject to cropland management” states that Landsat satellite 
data is used: 

“Forest land converted to cropland from 1990 to the inventory year 2018 is identified based on 
attribution of the Landsat time series and is included under deforestation. Forest land converted to 
cropland prior to 1990 is identified based on attribution of the Landsat time series and is included under 
cropland management. 

Land converted to forest land, or land that is identified as forest land from the Landsat series, is excluded 
from croplands.” 

The QA/QC arrangements for cropland management are discussed in section 11.7.5 “Quality Assurance 

– Quality Control”, which refers back to Chapter 6 of Volume 2 (section 6.6.4). 

Section 11.8.1 “Identification of land subject to grazing land management” states that Landsat satellite 

data is used: 

Grazing land management lands includes grasslands, grasslands with sparse woody cover, and certain 
specified lands with forest cover – limited to situations in which the presence of grassland has been 
observed from the Landsat time series and where there has been no change in land use since 1990; or 
where burning takes place. 

The QA/QC arrangements for grazing management are discussed in section 11.8.5 “Quality Assurance 

– Quality Control”, which refers to Chapter 6.8 of Volume 2. 
Assessment 



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      257 

 

Assessment: It seemed surprising that there was almost no mention of the approaches used to identify 
land use and track land use change in the non-forest sectors in the main methodological sections of 
the NIR. The section of the NIR that presents the KP methodologies explicitly states that Landsat data 
are used for identifying cropland and grassland. 

Our view is that it is very likely that Australia uses Landsat satellite data to identify land use, and track 
land use data in the non-forest sectors. Landsat data are normally not available for every calendar 
year, and it is also very likely that gap filling is needed – and that considerable work is needed to create 
time series consistent data. 

The Australian NIR is large and it is just possible that there are references to the activity data used to 
identify and track land use in the non-forest sectors that we did not find in this study. Assuming that 
this information is not presented in the NIR, or perhaps is very difficult to find, the transparency of the 
NIR would be enhanced if it explicitly stated how land use identification and tracking in the non-forest 
sectors was done. 

Australia use the same approach to Canada to explain the QA/QC approaches used, and cross 
references back to earlier sections of the NIR. This saves space in the report, at the expense of reduced 
transparency. 
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6.4.3 France 

The UK had a LULUCF bilateral exchange with France from Wednesday 29th to Friday 31st August, 
2018. The meeting was held at BEIS conference centre, 1 Victoria St, Westminster, London SW1E 5ND. 

Attending in person: CITEPA (France): Etienne Mathias; UK BEIS: Peter Coleman; Pierre Brender; UK 
Forest Research: Paul Henshall; Ricardo: John Watterson; Glen Thistlethwaite 

Dialling in: CEH (Edinburgh) Heath Malcolm, Amanda Thomson, Gwen Buys, Hannah Clilverd 

The focus of the meeting was a discussion about the latest UNFCCC GHG inventory review reports for 
the UK and France – and what lessons and best practice could be shared to implement improvements 
based on the reviewer comments. 

Identification and tracking of land use change was considered during one of the presentations from 
CITEPA. The slides below are reproduced from one of the presentations given by CITEPA. 

In the French inventory, a combination of approaches is used to identify land use and track land use 
change. Remote sensing data have been used since 2006; see slides below. 

https://unfccc.int/documents/228017
https://unfccc.int/documents/228017
https://unfccc.int/documents/228017
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The French have a comprehensive sampling approach to determine land use and track land use change; 
see slides below. 

 

 

 

Also, there were some conclusions from the meeting that we believe are relevant for this study, and 
these are listed below. 

1. Further verification of the forest carbon modelling remains a high priority. France experience 
supported the fact that this is not straightforward, and we learned that often they make more 
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general assumptions (“we consider it in equilibrium and assume no net emissions or sink” – 
seemed quite common), whereas in UK we seem to aim to model every individual aspect. Does 
this lead to lowest uncertainties or a risk of bias? 

2. The UK should ensure the NIR is pretty “self contained”. France have tried separate stand 

alone reports to supplement the NIR - had lots of ERT findings – and have reverted to putting 

everything into the NIR. 

3. UK approach to carbon stock change in soil in forests SCOTIA modelling is much more 

advanced than the equilibrium assumption used in France – but little data to verify. Develop 

UK verification approach and refine. 

Assessment 

Assessment: Verification increases confidence in a GHG inventory, but, it can be hard to select 
appropriate verification methodologies and they can take time to implement. However, the benefits 
are worth the effort invested. 

The experience of France when it tried to use “stand alone” reports to mainly provide all the detail of 
the methodologies used in the LULUCF sector was “not positive”; the message for the UK is that it 
should ensure that the NIR is sufficiently “self-contained”. This will reduce the likely burden of 
questions from the UNFCCC review team, and, increase transparency of reporting. 
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Appendix 1: Development of a 1990 Woodland Map for the BEIS 
Land Use Project 

 
 1 Introduction  

As part of the BEIS Land Use project, Forest Research (FR) were tasked with developing a model to 
produce a woodland map for England, Wales and Scotland from 1990, which would help in tracking 
how land use has changed over time. This document aims to explain the methodology of the model 
used to develop this 1990 woodland map acting as both a technical and user guide. The scope of the 
model is to identify ‘large’ areas of woodland not identified within the existing woodland map and 
manually verify those areas found ensuring cartographic standards. The model is restricted to areas of 
omission and not areas of commission (ie will not consider regions included in the 1990 woodland map 
which were not at that time treed).  

2 Definitions  

Existing woodland map: from here on will be termed the ‘interim woodland map’.  

Large: Large areas of woodland as termed in the scope document will include areas greater or equal 
to 0.5 hectares. However, manual verification will only take place on areas greater or equal to 1.5 
hectares.  

3 Data sources  

The primary data sources for this model include the FR interim woodland map and seasonal Landsat 
imagery from 1990 (plus or minus 1 year), vegetation indices and a digital elevation model (DEM) as 
explained below. Each of the datasets were processed to include a coordinate reference system (CRS) 
aligned to GB OS grid (EPSG: 27700).  

 3.1 Interim woodland map  

The interim woodland map is an ESRI shapefile representing woodland areas across England, Wales 

and Scotland (see figure A1.1 and figure A1.2). The methodology to derive this map is included in a 

document entitled Preliminary1990WoodlandMap_Methodology_vc_bd_18112020_Final.doc. 
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Figure A1.1: ESRI shapefile of interim woodland 1990 map  
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Figure A1.2: Close up of 1990 interim woodland map at 1:100,000  
3.2 Landsat imagery  

The Landsat imagery was supplied by the Centre for Ecology and Hydrology (CEH) split into England, 
Wales and Scotland (with some overlap) and three seasonal periods (summer, spring, autumn) as 
raster .TIF files as detailed in table A1.1 and the Landsat Thematic Mapper (TM) bands as detailed in 
table A1.2. All images were captured by Landsat 4 or 5 and have a spatial resolution of 30m (see figures 
A1.3 to A1.8).  

Image (File Name)  

England_Wales_<autumn/spring/summer>_b1_b3
.tif  

England_Wales_<autumn/spring/summer>_b4_b7
.tif  

Scotland_<autumn/spring/summer>_b1_b3.tif  

Scotland_<autumn/spring/summer>_b4_b7.tif  

NI_<autumn/spring/summer>_b1_b3.tif  

NI_<autumn/spring/summer>_b4_b7.tif  

Table A1.1: Imagery supplied by CEH  
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Image Band  Landsat TM Band  

Band 1  B1: Visible - Blue - (0.45 - 0.52 μm)  

Band 2  B2: Visible - Green - (0.52 - 0.60 μm)  

Band 3  B3: Visible - Red - (0.63 - 0.69 μm)  

Band 4  B4: Near Infrared (0.76 - 0.90 μm)  

Band 5  B5: Short-wave Infrared (1.55 - 1.75 
μm)  

Band 6  B7: Mid-Infrared (IR) (2.08 - 2.35 μm)  

Table A1.2: TIFF image bands and corresponding Landsat TM bands  
 

The following details were supplied by CEH regarding image creation:  

• Process works by identifying cloud-free pixels at a point and then taking the median value (although 
there is an option to change the statistics i.e. greenest pixel, mean).  

• Cloud masking is applied to each granule separately prior to mosaicking.  

• Black areas occur in the image where there is no suitable (cloud-free) data.  

• All data are Thematic Mapper images from Landsat 4 and 5.  

 

 

Figure A1.3: Spring England/Wales Landsat 1990 imagery (RGB)  
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Figure A1.4: Summer England/Wales Landsat 1990 imagery (RGB)  

 

Figure A1.5: Autumn England/Wales Landsat 1990 imagery (RGB)  
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Figure A1.6: Spring Scotland Landsat 1990 imagery (RGB)  

 

Figure A1.7: Summer Scotland Landsat 1990 imagery (RGB)  
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Figure A1.8: Autumn Scotland Landsat 1990 imagery (RGB)  

3.3 Unusual light bands within the Landsat imagery  

The light band .tif files represent areas of the CEH Landsat imagery where there is a band of visible 
light that is clearly different (lighter) than areas either side. These are due to the way that the satellite 
captures the imagery and the mosaicking process. Light bands identified include diagonal bands in the 
SE, the SW, mid England and SE Scotland (see figures A1.9 and A1.10). These were identified and drawn 
manually in GIS software and converted to a raster.  
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Figure A1.9: Light bands across England_Wales image (Red = SW light band, Yellow = SE light band, 
Green = Mid light band, Pink = SE Scotland light band)  
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Figure A1.10: Light bands across Scotland image (Yellow = SE light band, Green = Mid light band, Pink 
= SE Scotland light band)  

3.4 Seasonal vegetation index images  
To improve the woodland detection process, the seasonal Landsat images were used to create 
seasonal vegetation index images. These were developed in separate R code and represent the 
following indices, where the bands represent spectral bands on Landsat 4 – 7.  

• Normalised difference vegetation index (NDVI) = (B4 – B3) / (B4 + B3)  

• Green normalised difference vegetation index (GNDVI) = (B4 – B2) / (B4 + B2)  

• Enhanced Vegetation Index (EVI) = 2.5 * ((B4 – B3) / (B4 + 6 * B3 – 7.5 * B1 + 1))  

• Advanced Vegetation Index (AVI) = [B4 * (1 – B3)*(B4 – B3)]1/3  

• Soil Adjusted Vegetation Index (SAVI) = ((B4 – B3) / (B4+ B3 + 0.5)) * (1.5)  

• Normalized Difference Moisture Index (NDMI) = (B4 – B5) / (B4 + B5)  

• Moisture Stress Index (MSI) = B5 / B4  

• Green Coverage Index (GCI) = (B4 / B2) -1  

• Bare Soil Index (BSI) = (B5 + B3) – (B4 + B1) / (B5 + B3) + (B4 + B1)  

• Normalized Difference Water Index (NDWI) = (B2 – B4) / (B2 + B4)  

• Atmospherically Resistant Vegetation Index (ARVI) = (B4 – (2 * B3) + B1) / (B4 + (2 * 
B3) + B1)  

• Structure Insensitive Pigment Index (SIPI) = (B4 – B1) / (B4 – B3)  
 
The Normalized Difference Vegetation Index (NDVI) is a numerical indicator that uses the red and near-
infrared spectral bands. NDVI is highly associated with vegetation content. High NDVI values 
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correspond to areas that reflect more in the near-infrared spectrum. Higher reflectance in the near-
infrared correspond to denser and healthier vegetation (see figures A1.11 and A1.12).  

 

 

Figure A1.11 and A1.12: Example vegetation index: NDVI where forested areas have higher NDVI values  

The Green Normalized Difference Vegetation Index (GNDVI) is modified version of NDVI to be more 
sensitive to the variation of chlorophyll content in the crop.  

The Enhanced Vegetation Index (EVI) is similar to NDVI and can be used to quantify vegetation 
greenness. However, EVI corrects for some atmospheric conditions and canopy background noise and 
is more sensitive in areas with dense vegetation. It incorporates an “L” value to adjust for canopy 
background, “C” values as coefficients for atmospheric resistance, and values from the blue band. 
These enhancements allow for index calculation as a ratio between the R and NIR values, while 
reducing the background noise, atmospheric noise, and saturation in most cases.  

Advanced Vegetation Index (AVI) is a numerical indicator, similar to NDVI, that uses the red and near-
infrared spectral bands. Like NDVI, AVI is used in vegetation studies to monitor crop and forest 
variations over time. Through the multi-temporal combination of the AVI and the NDVI, users can 
discriminate different types of vegetation and extract phenology characteristics/parameters.  



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      272 

 

Soil Adjusted Vegetation Index (SAVI) is used to correct NDVI for the influence of soil brightness in areas 
where vegetative cover is low.  

Normalized Difference Moisture Index (NDMI) is used to determine vegetation water content.  

Moisture Stress Index (MSI) is used for canopy stress analysis, productivity prediction and biophysical 
modelling. Interpretation of the MSI is inverted relative to other water vegetation indices; thus, higher 
values of the index indicate greater plant water stress and in inference, less soil moisture content.  

In remote sensing, the Green Chlorophyll Index (GCI) is used to estimate the content of leaf chlorophyll 
in various species of plants. The chlorophyll content reflects the physiological state of vegetation; it 
decreases in stressed plants and can therefore be used as a measurement of plant health.  

Bare Soil Index (BSI) is a numerical indicator that combines blue, red, near infrared and short wave 
infrared spectral bands to capture soil variations. These spectral bands are used in a normalized 
manner. The short wave infrared and the red spectral bands are used to quantify the soil mineral 
composition, while the blue and the near infrared spectral bands are used to enhance the presence of 
vegetation.  

Normalize Difference Water Index (NDWI) is use for the water bodies analysis. The index uses Green 
and Near infra-red bands of remote sensing images. The NDWI can enhance water information 
efficiently in most cases. It is sensitive to build-up land and result in over-estimated water bodies. The 
NDWI products can be used in conjunction with NDVI change products to assess context of apparent 
change areas.  

As the name suggests, the Atmospherically Resistant Vegetation Index (ARVI) is the first vegetation 
index, which is relatively prone to atmospheric factors (such as aerosol). The formula of ARVI index 
invented by Kaufman and Tanré is basically NDVI corrected for atmospheric scattering effects in the 
red reflectance spectrum by using the measurements in blue wavelengths.  

The Structure Insensitive Pigment Index (SIPI) is good for analysis of vegetation with the variable 
canopy structure. It estimates the ratio of carotenoids to chlorophyll: the increased value signals of 
stressed vegetation.  

3.5 Digital Elevation Model  

A digital elevation model, a raster representing different heights of the UK, was also included to cap 
the maximum elevation of woodland for a region to help distinguish areas of woodland and vegetated 
hilltops that have similar spectral properties. This DEM was obtained from OpenDEM and aligned to a 
GB OS grid reference (see figure A1.13).  

 

3.6 Regional shapefiles  

The UK was divided into 50 regional files termed ‘checkout areas’ (see figure A1.14). Note that the light 
bands/cross border regions were assigned region numbers 51 to 56.  
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Figure A1.13: DEM of England, Wales and Scotland  
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Figure A1.14: Regional shapefile with OBJECT_ID label  
 

4 Algorithm methodology  

The data sources previously identified were included in a machine-learning model developed in the R 
programming language to classify the Landsat images via a per-pixel classification. The code developed 
represents the following steps:  

1) Load libraries: The load libraries module loads all pre-requisite R libraries/packages necessary for 
the model. The model code provides descriptions of each package installed. Each package can fit into 
one of five broad categories: geospatial data (rgdal, rgeos, gdalUtils, sf, sp and RStoolbox); raster 
manipulation (raster and terra); parallel computations (parallel, doParallel, foreach); data analysis 
(data.table, Hmisc); machine learning (caret, nnet, randomForest, ranger, e1071, parallelSVM).  

2) Set model regional and seasonal parameters: The model was designed to run one region and a 
combination of two seasons at a time (i.e. ‘spring-summer’ or ‘spring-autumn’ or ‘summer-autumn’). 
The advantage of running two seasons at a time it is less likely than three regions to have ‘no-data’ 
areas. By including two seasons at a time, it has a higher probability of finding true woodland and 
reduce the number of false hits.  

3) Run first_phase/combine shapefiles code: This module simply runs the functions ‘first-phase’ or 
‘combine shapefiles’. ‘First phase’ function requires the region number, country, season 1, season 2, 
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whether there is a light band that needs to be removed from the region, and the location of that band. 
Combine shapefiles requires the country and region number.  

4) First phase function: The first phase function represents the ‘first phase’ of the algorithm which 
requires the attributes as detailed in step 3. The first step of this function is to load in the relevant 
raster files necessary for the algorithm as SpatRaster objects using the Terra package. Using the Terra 
package improves speed and efficiency in raster calculations over the Raster package, but not all 
functions from other libraries recognise SpatRaster objects and hence requires conversion from 
SpatRaster to Raster objects and reverse throughout the code. Data loading includes light band rasters 
(if required), the Landsat imagery, the vegetation indices, and the UK DEM. The rasterized interim 
woodland map was also loaded along with a shapefile (Spatvector object) representing all the regions 
across England, Wales and Scotland (approximately 50). A region number was selected representing 
the area of interest (AOI).  

5) Crop and mask layers to the AOI: A list of all the different images is formed (lists contain multiple 
objects which do not have to be of the same type). The interim woodland map is cropped and masked 
to the AOI, so only the woodland map within the AOI is left. All the objects within the raster list are 
then cropped to the extent of the remaining woodland map and converted to a multi-layer Spatraster 
object, with the country wide files removed for memory saving. This region_rast file is masked by the 
AOI leaving a Spatraster object with all the different layers with the same shape as the extent of the 
woodland map.  

6) Remove pixels within the light band: If a light band is present, the light band areas are removed from 
the AOI and pixels inside the light band are given a value of NA, and areas outside the light band a 
value of 1. When the light band is then multiplied by the Spatraster object, the pixels within the light 
band are then given a value of NA and will be dealt with at the end.  

7) Create a multi-layered woodland raster and extract quantile values: The woodland map is then 
multiplied by the region Spatraster object leaving a Spatraster object that only has the pixels that occur 
within woodland. This is then converted to a raster brick object and the 50th percentile of the NDVI 
(summer or autumn) layer is found, along with the 95th percentile of the DEM layer. All pixels in all 
layers are set to NA if the NDVI of the summer or autumn layer is less than the 50th percentile mark or 
the DEM layer is less than the 95th percentile.  

8) Unsupervised clustering and identifying non-woodland: The raster brick object is then entered into 
an unsupervised clustering machine learning model with 10 clusters and 100,000 samples. This model 
is then used to predict the cluster for the whole of the raster brick object and this cluster layer is 
converted to a Spatraster and written to file. The values of all the layers are converted to a data frame 
and ordered descending based on the summer or autumn image. Through investigation, it was found 
that the clusters with the higher summer spectral values (or autumn for the spring/autumn layer) were 
more likely to be areas of woodland that were not trees (ie gaps in the canopy, tracks, grassland etc). 
(see figure A1.15).  
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Figure A1.15: Cluster map following unsupervised classification (10 clusters) 

 
9) Development of a woodland and not_woodland map: The first four clusters were added to a 
‘not_woodland_map’ and the bottom six clusters added to a ‘woodland_map’. The NDVI 50th 

percentile figure is used to make a layer where NDVI is low which is then merged with the 
not_woodland layer ie a layer is formed that is either not_woodland as determined by the clustering 
method of has a low NDVI. This is then multiplied by the regional multi-layered Spatraster so as to find 
the pixel values for all the non_woodland/low NDVI layer. Similarly, a woodland equivalent is made by 
multiplying the regional Saptraster by the woodland_map layer. This enables a binary classifier to be 
developed. All the values are extracted to a data.table for the woodland map, and a second for the 
non_woodland areas, and the non_woodland areas filtered further by the 95th percentile of the DEM 
(ie only areas less than the 95th percentile are kept). The DEM column is then removed from each data 
table and any rows with NA omitted. A sample of the non_woodland data.table is then taken that 
matches the same number of rows of the woodland data.table, and a class (as factors) added to each 
category (0 for non_woodland, 1 for woodland).  

10) Ranger machine learning model: The data tables are then combined and added to a probability 
machine learning ‘ranger’ model which is a fast C++ implementation of Random Forest. This is then 
used to predict on the region raster which are below the DEM 95th percentile and NDVI values above 
the 50th percentile and then converted back to a Spatraster object. The areas within the woodland map 
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are then removed to leave only the pixels outside woodland. Any areas within a light band are also 
removed (see figure A1.16).  

 
Figure A1.16: Probability map following ranger machine learning  
(black = highly probable, white = highly unlikely)  
 

11) Filtering low probability and extreme values: Only high probability cells are then kept. The layer 
values of the remaining pixels are then converted to a data.table and filtered by the 95th percentile 
DEM. The data.table is then converted to a matrix and the 2.5th percentile and 97.5th percentile values 
extracted from each layer. The matrix is then filtered to remove values that fall outside the 2.5th to 
97.5th values for each layer, and converted back to a data.table. This removes extreme pixels. (See 
figure A1.17).  
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Figure A1.17: Probabilty map outside of the interim map  
(red = interim woodland map, black = highly probable, white = highly unlikely)  
 

12) Finding how closely new found woodland matches woodland within the interim woodland map: 
A data.table is formed from the first 12 bands of the woodland data.table (ie the Landsat imagery 
bands), and a similar data.table extracted for each of these bands from the likely woodland areas that 
are outside woodland. For each row of the outside woodland data.table, the woodland data.table is 
filtered where band 1 is +/- 10% of the outside woodland data table value and so on for each band. 
The number of rows left at the end give a weighting to each row within the outside woodland data 
table. Those with a high weighting are much more probable to be trees than those with a low 
weighting. Also using the find.matches package a number of similar rows within a tolerance are found 
between the outside woodland and original woodland database. This gives a distance calculation 
between the outside woodland row and the woodland database. The theory being that those with lots 
of similar rows are more likely to be trees. This is carried out in parallel to improve speed. The outside 
woodland data table is filtered so those with a distance >= 3.5 are removed (this figure was derived by 
experimentation).  

13) Forming an ESRI shapefile polygons dataset of woodland outside the interim woodland map: A 
raster layer is formed from the outside woodland data table and assigned the British grid reference 
CRS. Touching pixels are clumped together (using 8 directions) and filtered so only  
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those with 5 pixels together or greater are kept (ie >= half an hectare). This is then formed into a 
Spatvector polygons object and an area in hectares assigned and an ID. A probability figure is then also 
assigned by finding the mean probability of all the cells in each shape. This is then written to file as an 
ESRI shapefile (see figure A1.18).  

 
Figure A1.18: ESRI shapefile of woodland found outside of the interim woodland map  
(red = interim woodland map, yellow = new found woodland >= 0.5 hectares)  
 

14) Combining seasonal shapefile: The combine shapefiles function aggregates the spring-summer, 
spring-autumn, summer-autumn into one shapefile, with a union between overlapping features. A 
small buffer is added to each shapefile so they join at corners, and then the buffer is removed. This is 
then written to file.  

15) Complete for all regions: The steps above are repeated for each region (where light bands are 
treated as a separate region).  

5 User guide  

The software was developed in R with view to be operated/developed by an experienced machine 
learning/data engineer or scientist and as a one-off product. If it is to be used again, possibly to develop 
woodland maps in other years other than 1990, it is advisable to operate the code usingRStudio. 
RStudio will recognise missing libraries and offer to install them automatically. All of the files and data 
sources necessary to operate the code will be installed in the following Forest Research location, but 
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these data sources should not be referenced directly. Instead, they should be copied to a location 
suitable and the working directory should be updated in the setwd command of ‘Set model and 
regional parameters’.  

When running the code on a region, the country, region_no, season 1 and season 2 variables should 
be set, and whether there is a light band in the region and the location of that band (note some areas 
may have multiple light bands).  

It is advisable to run the code line-by-line in the first instance to check all data sources are located in 
the correct place, or at least module by module.  

5.1 Location of data sources  

All Landsat imagery should be copied into a folder in the working directory as “Images v2” with the 
format country_season_bx_by_v2.tif” where x and y refer to the start and end bands of that image e.g. 
England_Wales_summer_b1_b3.tif  

All vegetation indices should be copied into a folder in the working directory as “Images v2/NDVI” with 
the format country_season_xxxx.tif where xxxx refers to the vegetation index e.g. 
England_Wales_summer_NDVI.tif  

The DEM should be copied into a folder in the working directory as “DEM” with the format 
DEM_country.tif e.g. DEM_England_Wales.tif  

There are four light bands identified in this image and should be contained in the working directory as 
“Spatial data” given the format band_location_light_band.tif e.g. SE_light_band.tif. If new data is 
being used then new light bands may need to be identified and rasterized using GIS software.  

The rasterized interim woodland map should be copied into a folder called 
“Preliminary_1990_WoodlandMap_Nov2020”with the format country_rasterized_woodland_map.tif 
e.g. England_Wales_rasterized_woodland_map.tif  

The regional shapefile should be copied into a folder called “Spatial data” and given the name 
GB_CheckoutAreas.shp . The code is looking for a field called OBJECTID_1 to distinguish between 
different areas. Either create that field if it is missing or rename in the R code.  

5.2 Further user code refinements  

Most of the rest of the code will run without operator interference providing all the data sources are 
in the right place and the code does not run into memory or processing issues. The user can refine the 
model in the following areas:  

• When the code performs an unsupervised classification, the model picks out the four highest values 
of the summer green spectral value. If this was increased to five or six then the model would be more 
discerning removing more false hits (but also possibly some true hits). Similarly, if decreased to three, 
the model would include more areas as woodland but most likely increase false hits. The user can 
perform this by adding as.numeric(ordered_vector[x])  

to the not_woodland_vector. It is also important that this is also added to the woodland_vector. If one 
is removed, it should also be removed from the woodland_vector.  

• Similarly, the code sets a quantile for NDVI as 50th, and DEM as 95th in the DEM_quantile and quantile 
season variables. These could be increased/decreased by modifying  

quantile_season <- quantile(brick_for_prediction[[nlayer]],probs=c(0.5,0.999));  

DEM_quantile <- quantile(brick_for_prediction[[35]],probs=c(0,0.95))  

• The user has some flexibility over the probability that is set to filter out non_woodland following the 
ranger Random Forest machine learning step. Increasing the probability will remove false hits but also 
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remove true hits and lowering the probability will capture more forest but also more false hits, by 
modifying  

outside_woodland[outside_woodland>0.001] <- NA  

outside_woodland[outside_woodland<=0.001] <- 1  

• Extreme values can be restricted/increased from 2.5th and 97.5th in the matrix step by modifying q1 
<- quantile(woodland_matrix[,1],c(0.025,0.975)) and for all subsequent qx variables (where x 
represents 1 to 34).  

• The distance figure, currently set to 3.5 can also be increased/decreased to include more/less 
potential woodland by modifying outside_dt[outside_dt$distance>=3.5] <- NA  

• If a smaller/larger polygons feature size is required, the line excludeID <- f$value[which(f$count < 5)] 
should be modified by increasing/decreasing 5 (where 5 refers to the number of pixels).  

5.3 Verification  

To verify the model, 20% of the features found from 37 regions (out of 50) were manually checked 
against modern day aerial imagery. The 13 areas not checked were due to time limitations on the 
project and were all north of the central belt in Scotland. A simple assumption was made that if the 
feature is woodland today (or at the data of the aerial imagery), or felled, or a modern housing 
development, then it would be assumed to be woodland in 1990. If on the other hand the image was 
a vegetated fell, or an agricultural field or vegetated coastland etc, it will be assumed to be a false hit 
although it is possible agricultural fields have replaced some forestry. All of this is based on the fact 
that woodland is increasing in area, not decreasing and mature trees (particularly broadleadf) have a 
low probability of removal since 1990.  

In total, 8569 features across England, Wales and Southern Scotland were identified as being 
potentially omitted woodland greater than or equal to 0.5 hectares. Of these, 2783 (32.5%) were >= 
1ha and 5786 (67.5%) were < 1ha. To analyse 20% of these features resulted in a total of 1700 features. 
20% of each region were manually identified and given a rating of possible or unlikely.  

Possible % varied between regions ranging from 0% and 100%, with a mean value of 59% and a median 
value of 66%. Across England these values were nearer 75% but much lower across Scotland. This is 
because vegetated but none treed upland has very similar properties on the course Landsat imagery 
to treed woodland.  

Based on the possible% and number of features, an estimated 4700 hectares were found of woodland 
outside of the preliminary woodland map. Upscaling this to include all 50 regions could be 
between4700 hectares (if no further woodland was found) to 6351 hectares if the same proportion of 
woodland was found across the northern Scotland regions (although the actual figure is likely to be 
between the two) (see figure A1.19). 
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 Figure A1.19: Map of newfound woodland from 1990 outside of the interim woodland map  

(note: pre validation ie includes false hits)  
A decision was made to focus the efforts of the GIS team on areas equal to or above 1.5 hectares to 
improve the woodland map, and for now store the half hectare to 1.5-hectare regions for a future 
time.  

Examples of true hits are shown in figure A1.20 and example of false hits shown in figure A1.21 (often 
vegetated upland).  
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Figure A1.20: Example of true hits  
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Figure A1.21: Example of false hits (often vegetated woodland) 
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Table A1.3 and figure A1.22 shows the % of true hits for each country after visually verifying 20% of all 
features from each region. Note that this is based on using modern day aerial imagery and if a 
woodland is present (or clearfell) it is assumed to be a true hit. The estimation of area is based on 
those areas above 1ha having an average area of 1.5 hectares, and those areas less than 1 hectare 
having an average area of 0.75 hectares. The estimation is based on the % true hits of this total area.  
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Figure A1.22: Likely true woodland hits following visual verification of 20% of features from each 
region 
 

Table A1.3: Likely false and true hits of 20% of features for each region by country  
and an estimated area  

 
 
6 System requirements  

This model employed a 64-core AMD Ryzon Threadripper system with 256GB of memory and was not 
tested on lower specification systems. Although this is a high end professional system, it is likely the 
model would run on a lower specification system, although memory requirements will be high due to 
loading in multiple country wide raster files.  

7 Conclusions  

This report details the background, methodology (a technical guide), a user guide and verification of a 
model to find areas of omission from an interim woodland map for England, Wales and Scotland. The 
model found between 4700 hectares and 6351 hectares of woodland not previously included on the 
woodland map, although this only represents approximately 2% of the woodland area (ie the interim 
woodland map had already covered approximately 98% of woodland). The model performed well over 
lowland areas, but less well over vegetated coastland and upland, particularly across Scotland and 
highland areas of England and Wales.  

  



Improving Land Use Change Tracking in the UK Greenhouse Gas Inventory: Final Outputs Report 

UKCEH report … version 1.0                                      287 

 

Appendix 2: Ancillary information for intercountry comparison 

This section of the report is an Appendix of “ancillary information”. Several information resources and 
contacts were identified at the start of this task. Subsequently, we found some of the references to 
reports and studies were already mentioned in the NIRs, or, were judged not be directly useful for the 
study. 

Rather than exclude the information completely from the project report, for completeness, we have 
included them in this Appendix. To keep the context of the information in e-mail correspondence, we 
have included the full e-mail rather than just summarise the information in the e-mails. Perhaps in 
future studies they may prove useful. 

Moja global and FLINT software 

Moja global is a collaborative project under the Linux Foundation that supports ambitious climate 
action by bringing together a community of experts to develop open-source software – including the 
groundbreaking FLINT software – which allows users to accurately and affordably estimate greenhouse 
gas emissions and removals from forestry, agriculture and other land uses (AFOLU). 

The project’s members aim to support the widest possible use of credible emissions estimation 
software by countries, institutions and project managers. All members collaborate to achieve this goal, 
which not only reduces duplication and costs, but also provides more reliable software that responds 
better to user needs and delivers comparable, transparent and credible estimates. 

https://moja.global/about/ 

 

From: Rowland, Clare S. <clro@ceh.ac.uk>  
Sent: 15 March 2021 10:01 
To: Buys, Gwen B. <gnew@ceh.ac.uk>; Watterson, John <John.Watterson@ricardo.com> 
Cc: Tomlinson, Sam J. <samtom@ceh.ac.uk>; Evangelides, Christopher <Christopher.Evangelides@ricardo.com> 
Subject: RE: LUC Tracking WPB Data Management & QA Catch-up 

Hi John 

I came across this last week: https://moja.global/tools-of-moja-global/ 

I’m not sure how it fits in and whether it’s something that should be in your review – Australia and Canada seem 
to be very involved with it, so apologies if you’ve already looked at it. 

Best wishes 

Clare 

Australian spatial mapping for LULUCF 

 

From: Rowland, Clare S. <clro@ceh.ac.uk>  
Sent: 08 February 2021 12:20 
To: Watterson, John <John.Watterson@ricardo.com> 
Cc: Buys, Gwen B. <gnew@ceh.ac.uk>; Tomlinson, Sam J. <samtom@ceh.ac.uk>; Evangelides, Christopher 
<Christopher.Evangelides@ricardo.com> 
Subject: FW: Australian spatial mapping for LULUCF 

Hi John 

Attached is the discussion with Robert Waterworth from 2014 – the questions and answers at the bottom of 
the thread are all very relevant to our current work.  

I think after this email was sent other priorities intervened and I don’t think I ever followed it any further. 

https://moja.global/about/
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmoja.global%2Ftools-of-moja-global%2F&data=04%7C01%7CJohn.Watterson%40ricardo.com%7C74990a9638fb4f6aeb0a08d8e7994854%7C0b6675bca0cc4acf954f092a57ea13ea%7C0%7C0%7C637513992820839550%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=jFDm0PxznRHiZWs0L02tLh6sOg7HKF19%2FRJg5zYy4qc%3D&reserved=0
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Best wishes 

Clare 

 

From: Robert Waterworth <rob.waterworth@anu.edu.au>  
Sent: 12 July 2014 02:48 
To: Rowland, Clare S. <clro@ceh.ac.uk> 
Cc: Penman, Jim <j.penman@ucl.ac.uk>; Buys, Gwen B. <gnew@ceh.ac.uk> 
Subject: Re: Australian spatial mapping for LULUCF 
 

Dear Clare,  

No problems. The only issue I realised this morning is that I left off the key reference sources! During the NCAS 
build we published everything we did in a technical report series. It has now been archived but can still be 
accessed at http://pandora.nla.gov.au/tep/23322. Tech reports 9 and 16 are key ones. The methods changed a 
little as we went along, but this will give you an idea. I can also put you in contact with the CSIRO team who 
designed and still run the QA/QC on the Australian products if that would help. 

Cheers 

Rob 

PS: this page contains the reports as well as some other documents that may be 
useful: http://pandora.nla.gov.au/pan/23322/20080818-
0001/www.climatechange.gov.au/ncas/publications/index.html 

Robert Waterworth 

Visiting Fellow 

Fenner School of Environment and Society 

Australian National University 

Australia: Ph: +61 407 137173 | Mob: +61 428 343 864 

Indonesia: Mob: +62 8111493964 

Email: rob.waterworth@anu.edu.au 

 

(Note: j.penman@ucl.ac.uk e-mail address is no longer active) 

 

On 11/07/2014, at 11:28 PM, "Rowland, Clare S." <clro@ceh.ac.uk>  wrote: 

 

Dear Rob, 
 
Thank you for your comprehensive reply, it's extremely helpful. I'll have a read through the documents you 
attached and have a think about your comments, as well as having a look into the Canadian system. 
 
I suspect i'll be back in touch some time next week, when i've had time to read through everything and have a 
think about it. I may want to take you up on your offer to put me in contact with Werner Kurz, but i'll let you 
know next week. 
 
Thank you again for all your help, 
 
Best wishes 
 

https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpandora.nla.gov.au%2Ftep%2F23322&data=04%7C01%7CJohn.Watterson%40ricardo.com%7C9619c05d02ee4662c9b308d8cc2be9b3%7C0b6675bca0cc4acf954f092a57ea13ea%7C0%7C0%7C637483836283848581%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=Mq%2BfeQZnf%2ByKseTqUp5tQB25YZTQUxkqkU31Sfjd1%2B0%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpandora.nla.gov.au%2Fpan%2F23322%2F20080818-0001%2Fwww.climatechange.gov.au%2Fncas%2Fpublications%2Findex.html&data=04%7C01%7CJohn.Watterson%40ricardo.com%7C9619c05d02ee4662c9b308d8cc2be9b3%7C0b6675bca0cc4acf954f092a57ea13ea%7C0%7C0%7C637483836283853564%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=gTL97iV%2FP71t7NhjKhgYVNroc6TVFfyLldUAuXF18d4%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpandora.nla.gov.au%2Fpan%2F23322%2F20080818-0001%2Fwww.climatechange.gov.au%2Fncas%2Fpublications%2Findex.html&data=04%7C01%7CJohn.Watterson%40ricardo.com%7C9619c05d02ee4662c9b308d8cc2be9b3%7C0b6675bca0cc4acf954f092a57ea13ea%7C0%7C0%7C637483836283853564%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=gTL97iV%2FP71t7NhjKhgYVNroc6TVFfyLldUAuXF18d4%3D&reserved=0
mailto:rob.waterworth@anu.edu.au
mailto:j.penman@ucl.ac.uk
mailto:clro@ceh.ac.uk
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Clare 
 
________________________________________ 
From: Robert Waterworth [rob.waterworth@anu.edu.au] 
Sent: 11 July 2014 12:16 
To: Rowland, Clare S. 
Cc: Penman, Jim; Buys, Gwen B. 
Subject: Re: Australian spatial mapping for LULUCF 
 
Dear Clare, 
 
Thanks for the email. There are a few papers out on how the system works. The key ones are on the system 
concepts and design (in sustainability science), the plantation modelling and the how the databases are used to 
integrate the remote sensing with the modelling systems (both in Forest Ecology and Management). All are 
attached. 
 
The situation you describe is certainly not uncommon and one we needed to deal with in Australia. Consistent 
representation of lands using remote sensing is not something that I think has been dealt with particularly well 
in the LULUCF community but is becoming increasingly more important as more countries start to try to move 
towards use of RS. So I must admit I find your email timely and very interesting from a personal perspective. 
 
Some thoughts (rather than answers, sorry) on your questions are below. 
 
Let me know if you would like to discuss this over the phone sometime. It would also help if you could send me 
some other details, such as how you plan to use the forest inventory data: for example, will it be used to 
calculate some emissions factors or will it be used to develop systems that better represent finer scale 
dynamics (fairly important if moving to fine scale activity data updates). This decision will also drive what you 
want to get from the RS. Once you start to move towards the more complex systems you are describing I think 
you also need to be careful to avoid the AD x EF trap (i.e., thinking about the sides separately and assuming 
they will be multiplied together in a spreadsheet) and focus on how they can re-enforse and improve each 
other. IMHO this is where the real power of the RS can come to bear on the emissions estimates. 
 
Apart from the Australian system approach, the Canadian system is another option. Although for their 
inventory it runs using polygons of stands, the Canadian model can use remote sensing data as well. Again, it 
will depend on how you are planning to do the emissions estimates. I have some knowledge of the Canadian 
system but for greater detail I can put you in contact with Werner Kurz. 

Hope this helps somewhat. I am available all next week if you want to catch up. I will be in the USA the week 
after then in Canada after that (seeing Werner in fact) but can still make time if it helps. 
 
All the best, 
Rob 
 
Robert Waterworth 
Visiting Fellow 
Fenner School of Environment and Society 
Australian National University 
Australia: Ph: +61 407 137173 | Mob: +61 428 343 864 
Email: rob.waterworth@anu.edu.au<mailto:rob.waterworth@anu.edu.au> 
 
Our current issues can probably be summarised as: 
1)      How we merge data sets from different sources to create our best estimate of LU in LULUCF classes for a 
particular year. In particular, how we deal with data collected at different spatial resolutions, different spatial 
structures (some gridded, some vector-based with the vectors representing real-world objects such as fields) 
and different temporal resolutions/repeat-periods. 
This is an interesting issue. Without knowing all the data I am not sure the best way forward. We did face a 
similar situation and ended up using nearly all the data, but running a series of decision trees that both 

mailto:rob.waterworth@anu.edu.au
mailto:rob.waterworth@anu.edu.au
mailto:rob.waterworth@anu.edu.au
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prioritised data but also used other auxiliary data to help assist in decision making (for example, soil types, 
rainfall etc). The issue was deciding what data was 'best'. For example, planting maps/areas from plantation 
companies sounded great and were very accurate for the area planted, but the remote sensing never picked 
them up. In the end it turned out that the remote sensing was more accurate: sure they were planted but the 
failure rates (upwards of 80% in some cases) meant that if we had used the manual mapping we would have 
overestimate reforestation considerably. Neither dataset was necessarily better than the other, but the RS was 
better for what we needed for LULUCF. As per your note, it really involves knowing the data really well and 
what it is exactly that you are trying to produce. For spatial resolution, we simply ran at the finest scale we had 
(resampled Landsat, 25m). All other layers were multiples of this. Vector data was simply rasterised (this made 
things much easier in the late 1990's). This allowed us to drill through each individual pixel for all the data the 
model required (land use, climate, soil, forest type etc etc, there are about 5000 layers now so efficiency was/is 
key). I would note though that this is not necessary these days depending on how you are driving through the 
data layers. 
 
2)      How we deal with error in the input data – one of our concerns is that some classes will be based 
primarily (or in part) on classified satellite data, and as such will have a level of error associated with it, which is 
likely in some cases to be greater than the level of change and may give an excessive rate of change and land 
disturbance. We are working on the basis that the Forest and Crop data represent very high quality data and 
the image classifications represent lower quality data. 
Again, an interesting issue. There are two key points here from my perspective: maps at points in time (even 
using the same method) are not time-series consistent maps, especially when hunting for change and the role 
of attributing cover change to land use change. To address the first issue in Australia we run a conditional 
probability network through the time series of forest extent. This meant that the state of a pixel at any point in 
time was informed by the state in the years previous. This helped increase the time series consistently in 
change (but always means that the latest year is the most uncertain). To address the second issue we ran a 
process of attribution to focus on the areas of change. This was very important in our case as land cover change 
(forest>non-forest and non-forest>forest) is very different to deforestation and reforestation. For example, fire 
removes canopy and in many years canopy loss from fire (and gain as it regrows in subsequent years) is vastly 
greater than true clearing (close to an order of magnitude). Drought, flood, pests also all caused LC change. This 
attribution process is described in the NIR in the but has been glossed over in many other publications. Happy 
to discuss this one further as it is something that I don't think is being well addressed in the RS community. 
 
3)      How we capture known uncertainties and prevent/minimise their propagation 
I think I have at least partially covered this above, but happy to discuss further. We ran a process of continuous 
improvement and verification focusing on areas of greatest uncertainty. Having said this we tried to focus on 
the second part of the question.  For emissions estimates estimated uncertainty by running monte carlo 
analysis (no other way of doing this in a fully integrated system). 
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